
1

Paper 014-2011

Macro Design Automation Tool (MDAT) – A methodology for storing macro
design information, generating documentation and code templates, and

automating parameter validation

Richard Schneck, BOGIER Clinical & IT Solutions, Inc., Raleigh, NC, USA

Mindy Rodgers, Eli Lilly and Company, Indianapolis, IN, USA

ABSTRACT

As members of a SAS
®
 macro development team, we realized that we were spending considerable resources dealing

with the basic tasks involved with the documentation and testing of each macro we develop, particularly with respect
to information about the macro‟s parameters and source data requirements. If we could devise a systematic method
of capturing this information, then it would be possible to develop a process to automate the creation of user
documentation, parameter-validation code, testing documents, and even a customized template for the macro.
Besides saving time and effort, major benefits of such a process would be the standardization and improved quality
that would naturally result.

INTRODUCTION

When developing all but the simplest of macros, the tasks of designing, documenting, coding and testing a macro can
be intensive. In addition to the primary logic and functionality of the macro, there are some repetitive tasks to be
performed, primarily involving the macro‟s parameters and source data requirements. Basic information about each
parameter must be included in the user documentation and in the source code header block; including the parameter
description, the default value, whether it is case sensitive, whether a non-null value is required, and what non-null
values are allowed. Furthermore, procedures for handling invalid parameter values and missing source data must be
coded and documented. Independent programs must be written to verify that these procedures execute successfully.

In our regulated environment, all of this documentation is required in order to comply with policies and procedures,
but producing it is time consuming. To achieve organizational objectives and allow time for innovation, we needed to
free our developers from the “mechanics of validation” (Rodgers, 2007). We needed to identify consistent themes in
our macro designs, and use this information to devise a method of automating these tasks. Our approach was to
create a document for collecting each macro‟s design information, a centralized metadata library for storing the
information, and a process that uses the metadata to build customized documentation and code templates. In
addition, we developed a macro that dynamically validates the macro call during execution by checking the actual
parameter values and source data against the information contained in the metadata.

Our goal was the development of a process that automates a significant portion of the repetitive work; is
comprehensive (i.e., allows for the inclusion of non-standard parameter designs); ensures standardization; and
encourages good design. In addition, since macros occasionally need to be modified after they are in use, it was
important to develop a process that allows for efficient versioning.

The key components of the MDAT process are as follows:

 The MDAT Workbook - a customized file, built from a standard template, created separately for each individual
macro to be developed using the MDAT process, that stores parameter design and other basic information

 The Design Metadata Sets - a series of SAS data sets that reside in a common macro library and contain the
cumulative data from all of the MDAT workbooks for the individual macros

 The MDAT Loading Program - a SAS program that adds the data from an individual MDAT workbook to the
design metadata sets

 The MDAT Execution Program - a SAS program that reads the design metadata observations for an individual
macro, and generates customized documentation and code templates

 The Parameter Validation Macro - a SAS macro called from within the macro being developed that reads the

design metadata observations for the specific macro, and validates the actual parameter values passed by the
calling program

Applications DevelopmentSAS Global Forum 2011

http://sgf2011.confnav.com/sgf2011/web/sessions/search/process#20100927153253286612000000
http://sgf2011.confnav.com/sgf2011/web/sessions/search/process#20100927153253286612000000
http://sgf2011.confnav.com/sgf2011/web/sessions/search/process#20100927153253286612000000

Macro Design Automation Tool (MDAT) – A methodology for storing macro design information, generating documentation and code templates,
and automating parameter validation, continued

2

THE MDAT WORKBOOK

Implementation of the MDAT concept begins with a tool for collecting and storing macro design information. Our
simple version of this tool is a multiple-worksheet Excel file that contains five worksheets. Certainly a more
sophisticated interface could be developed, but ours is sufficient to illustrate the concept.

Each of the five worksheets in the MDAT workbook is used to collect a specific type of information about a macro.
Collectively, the information in these worksheets paints a complete picture of the macro‟s design in terms of its
general functionality, its parameters, and its source data requirements.

The five worksheets are summarized in the following table:

General_info

General description of the
macro

Info_item A description of the information item

Info_value The information requested

Parms

General parameter
information with one line for
each macro parameter

Parm_name The parameter name

Parm_description The parameter description

Parm_type Whether the parameter is keyword or positional

Default The default value

Required Whether a non-null value of the parameter is required

Case_sensitive Whether the parameter is case sensitive

Example An example value of the parameter

Parm_values

One line for each valid value
of each parameter, or
expression describing a type
of valid values

Parm_name The parameter name

Value The parameter value; can be either a fixed constant value,
or [sas_dataset], [sas_variable], or [other]

Other Description of valid parameter values if VALUE=‟[other]‟

Required_input

Required source data sets
and variables

SAS_dataset The name of a required SAS data set (or parameter
representing a required data set, preceded by “&”)

SAS_variable The name of a required SAS variable (or parameter
representing a required variable, preceded by “&”)

SAS_variable_type Whether the variable is required to be numeric or character
(leave blank if either type is allowed)

Special

Special-case requirements,
too complex to capture on
the other worksheets

Parm_name The parameter name (if the requirement is related to a
particular parameter; otherwise enter „[none]‟)

Requirement The special-case requirement

Table 1. Summary of Worksheets in the MDAT Workbook

It must be emphasized that specific details in these worksheets can vary from the version presented here to meet the
needs of your organization. However, once a template is established, it must remain constant and be followed strictly
to ensure compatibility with the programs that drive the process. For each macro to be developed using this process,
an MDAT workbook is created by copying the template to a project-specific location, and filling in the required
information. Each MDAT workbook contains the same worksheets with the same names, the same columns and
column headers required for each worksheet, and follows the same rules for entering information in the columns.

The displays that follow show the worksheets of the MDAT workbook in more detail. A workbook completed for a
sample macro called “laundry_machine” is used as an example. (As will be seen in the sections that follow, our
sample project is the development of version 2 of this macro. This is merely to illustrate that the process allows for
macro versioning.)

Later, we will see how the information in these worksheets is used to build customized documentation and code
templates.

Applications DevelopmentSAS Global Forum 2011

Macro Design Automation Tool (MDAT) – A methodology for storing macro design information, generating documentation and code templates,
and automating parameter validation, continued

3

GENERAL INFORMATION WORKSHEET

The general information worksheet, called general_info, is used to collect general information about the macro

including the macro name, description, software version, general descriptions of the input and output, and
assumptions.

Figure 1. General Information Worksheet of the MDAT Workbook

PARAMETERS WORKSHEET

The parameters worksheet, called parms, is used to collect basic information about each macro parameter, including

the parameter name and description, the default value, whether a non-null value is required, whether it is a keyword
or a positional parameter, and whether it is case sensitive. It contains one row for each parameter.

Figure 2. Parameters Worksheet of the MDAT Workbook

Applications DevelopmentSAS Global Forum 2011

Macro Design Automation Tool (MDAT) – A methodology for storing macro design information, generating documentation and code templates,
and automating parameter validation, continued

4

PARAMETER VALUES WORKSHEET

The parameter values worksheet, called parm_values, is used to specify the valid values of the macro parameters.

For parameters with a finite number of valid values that can be described with constant text, this worksheet contains
a separate line for each valid value. Parameters with an infinite number of valid values, such as those representing
the names of SAS

data sets, appear on a single line on which the value column contains an expression in square

brackets such as “[sas_dataset]”. Parameters that do not fit into any of these categories appear on a single line on
which the value column contains the expression “[other]”, and the other column contains a free-text description of the

parameter values.

Figure 3. Parameter Values Worksheet of the MDAT Workbook

REQUIRED INPUT WORKSHEET

The required-input worksheet, called required_input, is used to specify input data sets and variables that must exist
in order for the macro to function correctly. The text entered in the sas_dataset or sas_variable column can be

either a constant data set or variable name; or the name of one of the macro parameters, preceded by an ampersand
(&), denoting a resolved parameter value. If it is the latter, the parameter must be a macro parameter that represents
a SAS

data set or variable, as appropriate for the column. The sas_dataset column must be populated on any row

on which the sas_variable column is populated. For each required data set, there must be one row on which only
the data set name is entered, with nothing entered in the sas_variable column. When a variable is entered in the
sas_variable column, the sas_variable_type column is optional; leaving it blank indicates that there is no restriction

on the variable type.

Figure 4. Required Input Worksheet of the MDAT Workbook

Applications DevelopmentSAS Global Forum 2011

Macro Design Automation Tool (MDAT) – A methodology for storing macro design information, generating documentation and code templates,
and automating parameter validation, continued

5

SPECIAL CASE WORKSHEET

The special case worksheet, called special, is used to capture requirements that are too complex to document on the

other worksheets. The requirements may or may not be associated with a specific parameter. For requirements not
associated with any parameter, the constant expression “[none]” is entered in the parm_name column. The inclusion

of this worksheet allows the MDAT process to accommodate non-standard parameter designs.

Figure 5. Special Case Worksheet of the MDAT Workbook

DESIGN METADATA SETS / THE MDAT LOADING PROGRAM

Once a new MDAT workbook is completed for a particular macro, the MDAT loading program is executed to read the
worksheets of the MDAT workbook and add the data to the MDAT design metadata library. This library consists of
five SAS data sets, each one corresponding to one of the worksheets of the standard MDAT workbook. Whereas the
MDAT workbook for each macro is stored in a project-specific location, the design metadata sets are stored in a
centralized macro library. Each of these data sets contains the cumulative information from the corresponding
worksheet from all of the MDAT workbooks, and has variables to identify the macro and version represented by each
observation.

For example, the display below shows an excerpt from the data set containing the required input metadata derived

from the worksheet shown in Figure 4 above, along with some metadata observations from other macros. Note that
variables macro_name and version are used to allow different macros, and different versions of the same macro, to

be represented in the data set. (Only version 2 of “laundry_machine” is seen here; assume that observations from
version 1 are also in the data set.) Metadata sets that correspond to the other four worksheets of the MDAT
workbook are similarly created by the MDAT loading program and stored in the metadata library.

Figure 6. Example of MDAT Design Metadata Set – Required Input

Applications DevelopmentSAS Global Forum 2011

Macro Design Automation Tool (MDAT) – A methodology for storing macro design information, generating documentation and code templates,
and automating parameter validation, continued

6

The code shown below is from the project-specific MDAT loading program that reads the MDAT workbook for the
macro “laundry_machine”, version 2 (shown in Figures 1-5 above), and adds this information to the design metadata
sets. The loading program calls a macro called mdat_load, which automates this process. The only information

needed is the location of the MDAT workbook (input), the location of the folder containing the metadata sets (output),
and the name and version number of the macro (to specify the values to be assigned to variables macro_name and
version on the new observations to be created in the metadata sets).

If the metadata sets already contain observations for the specified macro name and version, macro mdat_load

deletes these observations prior to adding the data from the MDAT workbook. It does not simply overwrite them. If it
did, there could be unwanted observations remaining in the metadata sets.

%mdat_load(macroname = laundry_machine,

 version = 2,

 mdatfile = c:\MDAT\laundry_machine\laundry_machine_v2_mdat.xls,

 metalib = c:\MDAT\Macro_library\Metadata);

CUSTOMIZED TEMPLATES / THE MDAT EXECUTION PROGRAM

After the MDAT loading program has been executed to add the information from the MDAT workbook to the design
metadata sets, the MDAT execution program is executed. This program reads the metadata and uses it to
automatically generate a series of customized templates that will be very useful in the ongoing development of the
macro.

The code shown below is from the project-specific MDAT execution program that reads the design metadata sets for
the macro “laundry_machine” (version 2), and uses this data to create the customized templates. The loading
program calls a macro called mdat_exec, which reads the metadata observations for the specific macro and version.

The only information needed is the location of the metadata sets (input), the location of the project-specific folder in
which the customized templates will be created (output), and the name and version number of the macro
(corresponding to the values of variables macro_name and version in the metadata sets).

%mdat_exec(macroname = laundry_machine,

 version = 2,

 outlib = c:\MDAT\laundry_machine\mdat_output,

 metalib = c:\MDAT\Macro_library\Metadata);

As a result, the following customized templates are generated:

 User Documentation Template – a document containing a summary of the macro design information

 Testing Document Template – an Excel worksheet containing a series of numbered tests organized into

categories

 Testing Program Template – a SAS program file containing code for executing the tests described in the testing

document

 Macro template – a SAS program file containing a template for the macro, including a complete header block

Since these templates are generated from a single source (the design metadata sets, which contain the data from the
MDAT workbook), we can be assured that the information in them will be accurate and consistent. However, it must
be remembered that these files are intended to be a head start, not the finished product. The macro development
team is ultimately responsible for ensuring that the documentation and testing procedures are correct and complete.

We recommend copying the templates to a separate location from the output folder where they are created, and
renaming them, prior to using them. This prevents working files from getting confused with the output from the MDAT
process, or being overwritten when the MDAT execution program is re-executed.

The displays that follow show the customized templates in more detail. As you review this output, you may refer to
Figures 1-5 above to see how the information in these templates reflects the information in the MDAT workbook.

Applications DevelopmentSAS Global Forum 2011

Macro Design Automation Tool (MDAT) – A methodology for storing macro design information, generating documentation and code templates,
and automating parameter validation, continued

7

USER DOCUMENTATION TEMPLATE

In the user documentation template created by the MDAT execution program, the information from the MDAT
workbook is neatly summarized in a compact form that is suitable for formal documentation. The display below
shows only the parameter information table from this file. The actual file also includes a table of general information,
and a table of “additional notes” consisting of requirements that are not associated with any specific parameter.

Figure 7. User Documentation Template Created by MDAT Execution Program

TESTING DOCUMENT TEMPLATE

The testing document template created by the MDAT execution program is an Excel worksheet that contains the
macro requirements from the MDAT workbook, automatically numbered and organized into categories for testing, for
formal validation purposes. The following categories are included: optional parameters, required parameters, valid
values, invalid values, other parameter-based requirements, and non-parameter-based requirements. Only the first
two categories are shown in the display below.

Figure 8. Testing Document Template Created by MDAT Execution Program

Applications DevelopmentSAS Global Forum 2011

Macro Design Automation Tool (MDAT) – A methodology for storing macro design information, generating documentation and code templates,
and automating parameter validation, continued

8

TESTING PROGRAM TEMPLATE

The testing program template created by the MDAT execution program is a SAS program file in which a macro call
for each test described in the testing document template has been automatically generated, along with a comment
containing the test description. This saves the tester from the tedious work of looking up each test in the testing
document and manually typing the comments and building the macro calls. The tester only needs to read the test
descriptions that are already in the program, enter the parameter values, and add any code necessary to produce the
conditions needed for each particular test. Only the first test description and macro call are shown in the display
below.

Figure 9. Testing Program Template Created by MDAT Execution Program

MACRO TEMPLATE

In the macro template created by the MDAT execution program, much of the repetitive work normally involved in
building a new macro is already completed. This includes the macro definition syntax complete with parameter
names and default values; a complete header block that includes general information, parameter information, and a
sample macro call; and even some standard program code.

Parts of this macro template are shown in the displays that follow. Once again, you may refer to Figures 1-5 above to
see how the information in the template reflects the information in the MDAT workbook.

The following display shows the general information section of the header block created by the MDAT execution
program:

Figure 10. Macro Template Created by MDAT Execution Program – General Info

Applications DevelopmentSAS Global Forum 2011

Macro Design Automation Tool (MDAT) – A methodology for storing macro design information, generating documentation and code templates,
and automating parameter validation, continued

9

The following display shows the parameter information section of the header block created by the MDAT execution
program:

Figure 11. Macro Template Created by MDAT Execution Program – Parameter Info

Once the MDAT execution program has successfully created this macro template, the programmer can bypass the
manual work normally involved with this task, and immediately start working on the main body of the code.

PARAMETER-VALIDATION MACRO: %PARMCHECK

Why bother creating the design metadata sets? Why not simply read the MDAT workbook directly and create the
customized templates described above, in a single program? One reason is that the metadata serves as an
information repository where the data from all of the MDAT workbooks is stored in one convenient location. Another
is that storing the requirements in the metadata makes it is possible to update them by simply modifying the
metadata, without the need to modify and re-validate the macro. But the primary benefit, which we discuss in this
section, is that the metadata can be readily accessed by a calling macro and used to verify the parameter values and
source data specified by a user when the macro executes.

Since the design metadata sets contain specific information about valid parameter values and source data
requirements for any given macro, we realized that it was possible to write a macro (which we called PARMCHECK)
that would be called from within any macro we develop, to validate the actual parameter values (and source data
provided) against this information. For example, if the metadata indicates that a non-null value is required for a given
parameter, and a null value is passed in for that parameter, then macro PARMCHECK detects this as an invalid
condition. To give another example, if the metadata indicates that parameter ABC represents a SAS variable, and
the actual value passed in for ABC is not a valid SAS

variable name, macro PARMCHECK detects this as an invalid

condition. Furthermore, if the metadata indicates that variable ABC must exist in data set XYZ, then PARMCHECK
detects an invalid condition if this is not the case. In all such cases, if an invalid condition is detected, PARMCHECK
prints an appropriate message in the SAS log file, and sets the value of a global error-status macro variable. After
PARMCHECK has executed, the calling macro aborts if the value of this macro variable indicates that an invalid
condition has been detected.

Macro PARMCHECK, therefore, eliminates the need to manually write the code to perform these checks.

Note: The only metadata sets used by PARMCHECK are those that correspond to the PARMS, PARM_VALUES,

and REQUIRED_INPUT worksheets of the MDAT workbook. Special-case requirements entered on the SPECIAL
worksheet, and those with a value of “[other]” on the PARM_VALUES worksheet, are not used by PARMCHECK.
Any coding necessary to verify these requirements must be added by the macro programmer following the call to
PARMCHECK.

The following display shows the portion of the macro template created by the MDAT execution program that contains
standard program code, including the call to PARMCHECK, and a place to enter any additional parameter-validation
code that is not covered by PARMCHECK.

Applications DevelopmentSAS Global Forum 2011

Macro Design Automation Tool (MDAT) – A methodology for storing macro design information, generating documentation and code templates,
and automating parameter validation, continued

10

Figure 12. Macro Template Created by MDAT Execution Program – Standard Code

Note that the two positional parameters in the call to PARMCHECK represent the macro name and version of the
macro as recorded in variables macro_name and version in the metadata sets.

SUMMARY

Initial implementation of the MDAT process involves the creation of an MDAT workbook template suitable for your
organization. After the template is finalized, the SAS programs that load the MDAT data into metadata sets, build the
customized documentation and code templates, and perform automated parameter validation must be developed.

Once the process is implemented, using it for a specific macro development project involves (1) copying the template
to a project-specific location, and completing it for the specific macro design; (2) running the MDAT loading program
to update the metadata sets; (3) running the MDAT execution program to generate the customized templates; and (4)
copying the customized templates to the appropriate locations for ongoing project development. Once the macro is
completed, any program that calls it must access the metadata library in order to execute macro PARMCHECK to
perform automated parameter validation.

The flowchart that follows shows an overview of the MDAT process:

Applications DevelopmentSAS Global Forum 2011

Macro Design Automation Tool (MDAT) – A methodology for storing macro design information, generating documentation and code templates,
and automating parameter validation, continued

11

Figure 13. Overall MDAT Process Flow

CONCLUSION

The value of the MDAT process is not only its potential for significant time savings, but also the improved quality that
naturally results from standardization. Using the templates generated by this process ensures that the
documentation and code headers for every macro will contain the same types of information, in the same format, with
consistent language to describe similar design elements. The inconsistencies and omissions that inevitably result
from human error are eliminated. Finally, a standard convention for organizing and cataloguing requirements for
formal validation is built into the process, and automatically implemented in the generation of the testing documents.

Many variations of the MDAT process described in this paper are possible. The process can be customized for the
needs of any macro development team depending on its particular organizational needs, its documentation
requirements, and the type and complexity of the macros that it usually develops. Enhancements might include the
addition of new parameter value types. New worksheets can be added to automate the validation of multi-parameter
value combinations and conditional defaults. The MDAT workbook can be enhanced to include Excel VBA, or
replaced with a GUI.

But the core concept remains the same: a single source of basic macro design information from which all related
documents and code templates are derived, resulting in uniformity, improved quality, and greater efficiency.

Applications DevelopmentSAS Global Forum 2011

Macro Design Automation Tool (MDAT) – A methodology for storing macro design information, generating documentation and code templates,
and automating parameter validation, continued

12

REFERENCES

Rodgers, M./Steffens, G. “The Art of Code Validation” Proceedings of the SAS Global Forum 2007 Conference.
Available at http://www2.sas.com/proceedings/forum2007/TOC.html

ACKNOWLEDGMENTS

The authors would like to express their gratitude to Greg Steffens, Craig Hansen, Kallin Carter, Retha Bogier, and
Jason Morgan for their vision, participation, expertise, and support toward the successful development and
implementation of this concept and paper.

CONTACT INFORMATION

Your comments and questions are valued and encouraged. Contact the authors at:

Name: Richard Schneck Mindy Rodgers
Enterprise: BOGIER Clinical & IT Solutions, Inc. Eli Lilly and Company
Address: 900 Ridgefield Drive, Suite 390 Lilly Corporate Center
City, State ZIP: Raleigh, NC 27609 Indianapolis, IN 46285
Work Phone: (919) 816-2535 (317) 277-7062
E-mail: richard@richardschneck.com msrodgers@lilly.com

SAS and all other SAS Institute Inc. product or service names are registered trademarks or trademarks of SAS
Institute Inc. in the USA and other countries. ® indicates USA registration.

Other brand and product names are trademarks of their respective companies.

Applications DevelopmentSAS Global Forum 2011

http://www2.sas.com/proceedings/forum2007/TOC.html
mailto:richard@richardschneck.com
mailto:msrodgers@lilly.com

	2011 Table of Contents

