
1

Paper 013-2011

Creating Custom Web Applications with SAS® 9.3 Stored Processes
Using SAS® AppDev Studio™

Bruce Faulkner and Virgil Sealy, SAS Institute Inc., Cary, NC

ABSTRACT

This paper explains how to use SAS AppDev Studio to create custom Web applications that will run SAS stored
processes on a SAS® 9.3 EBI server.

INTRODUCTION

SAS AppDev Studio, a set of plug-ins for the Eclipse IDE for Java EE Developers, helps you create customizable
Java applications through a variety of templates that speed application development. Beginning with SAS AppDev
Studio 3.4, a new set of templates helps you create Java client projects that run stored processes remotely. In SAS
AppDev Studio 3.41, these generated applications execute SAS Stored Processes in a SAS 9.3 BI server or SAS 9.3
Enterprise BI server environment, and return results to the client.

Using SAS Stored Processes enables you to access the powerful capabilities of existing SAS programs. Many
standard SAS products (such as the SAS® Stored Process Web Application, the SAS® Add-In for Microsoft Office,
and SAS® Enterprise Guide) provide the ability to run stored processes. However, you might want to perform special
processing for either the input or output of a stored process for better integration with your existing business logic.

The SAS Stored Process Service Java application programming interface (API) enables you to use Java to execute a
stored process and retrieve the results. If you are not familiar with the SAS Stored Process Service Java API, the
SAS AppDev Studio stored process templates help you by adding a simplifying abstraction for some of the API
details. The templates guide you through creating custom Java clients, and these clients interact with a stored
process running remotely on a SAS® Stored Process Server.

SAS AppDev Studio provides the ability to execute stored processes from either a custom Java console application
or a Web application. SAS AppDev Studio generates code that lets you extend the application as needed to fit your
specific requirements. This paper shows the details involved in creating a Web application that executes a SAS
Stored Process.

SAS APPDEV STUDIO SUPPORT FOR GENERATING SAS STORED PROCESS CLIENTS

SAS AppDev Studio helps you create SAS Web Application Projects that use a servlet to execute a stored process
and handle the results. The stored process servlet template produces a stored process driver servlet that uses the
SAS Stored Process Service Java API for running a stored process. The generated servlet also processes the
execution results. The servlet shows the results in your browser by default, but you can manipulate the results by
extending the generated Java code. In addition, the servlet provides the ability to handle both replay and subsequent
stored process execution.

To help you quickly build your custom Web application, SAS AppDev Studio generates one or more classes when
you use the stored process servlet template.

The template always generates source code for the StoredProcessDriverServlet class. This class provides the overall
logic for executing a stored process and manipulating the results. SAS AppDev Studio creates a separate stored
process driver servlet for each specific stored process you want to execute. You can choose a name for the servlet
when adding the template to a Web application project. Multiple driver servlets can exist in the same project, with
each servlet running different stored processes.

SAS AppDev Studio produces two additional classes providing simplified access to the Stored Process Service Java
API. These classes are:

 StoredProcessConnection, which manages the servlet’s connection to SAS Foundation Services, including the
Stored Process Service

 StoredProcessFacade, which encapsulates the service API and represents both a SAS Stored Process and its
execution results (after the stored process executes)

Applications DevelopmentSAS Global Forum 2011

2

The stored process template generates these two classes only once per Web application project. The
StoredProcessConnection and StoredProcessFacade contain common code used by all the driver servlets in a
project. The StoredProcessFacade provides the ability to access the StoredProcess2Interface and
Execution2Interface so you can use methods on those interfaces if the StoredProcessFacade does not meet all your
customization needs.

Figure 1. Overview of the Classes and Services Used by a SAS Web Application Project Containing a SAS Stored
Process Servlet

Client Tier

Middle Tier

Server Tier

Remote Foundation Services Deployment

 User Service

Session Service

StoredProcessDriverServlet

 Creates Connection and Facade

 Executes Stored Process (STP)

 Processes Results
StoredProcessFacade

 Accesses STP Objects

 Executes STP

 Returns Results

StoredProcessConnection

 Provides Access to Remote

Foundation Services

Browser

SAS Metadata Server

 Stores STP Definition

Stored Process Server

 Executes STP

Information Service

Discovery Service

Authentication Service

 Stored Process Service

 StoredProcess2Interface

 Execution2Interface

 Other APIs

Applications DevelopmentSAS Global Forum 2011

3

As shown in Figure 1, the generated stored process driver servlet does the following:

 creates a StoredProcessConnection object

 creates a StoredProcessFacade object

 populates input parameters for the stored process

 executes the stored process

 writes the results to the browser

 provides methods to handle replay and subsequent stored process execution, if appropriate

 cleans up the StoredProcessFacade and StoredProcessConnection objects

You can extend the code in this servlet as needed, especially for setting input parameters and processing results.
SAS AppDev Studio never regenerates the source code for the servlet, which preserves any changes you make to
this class. Using this approach enables you to modify the servlet to meet your requirements, You will learn about the
details of the generated code for the stored process driver servlet a little later in this paper.

The stored process servlet templates in SAS AppDev Studio support only the following two types of stored process
results when executing a stored process on a SAS Stored Process Server:

 streaming results

 output parameter results

The stored process servlet template allows you to select stored processes that have either, neither, or both of these
result types. As long as the stored process you select has at least one of the result types listed previously, SAS
AppDev Studio will generate code for that stored process. If the stored process you select produces package results
in addition to the result types listed, you access those results through the Execution2Interface exposed by the
StoredProcessFacade. Currently, SAS AppDev Studio prevents completion of the stored process template wizard
when you select a stored process that produces only package results.

In addition, SAS AppDev Studio does not generate specific code when the selected stored process has either of the
following characteristics:

 data sources

 data targets

DEFINING OR MODIFYING A STORED PROCESS

A SAS Stored Process consists of a SAS program and specific metadata associated with that particular program. You
can use either SAS Enterprise Guide or SAS® Management Console to create or modify a stored process. Both
products enable you to define input parameters (prompts), output parameters, result types (streaming or package),
and your SAS program.

Prior to SAS® 9.3, the source code for a SAS Stored Process exists on the file system. SAS 9.3 adds the ability to
store the stored process source code in metadata. See the latest release of SAS Stored Processes: Developer’s
Guide for more information about stored processes.

BUILDING A SAS WEB INFRASTRUCTURE PLATFORM STORED PROCESS SERVLET

Starting with SAS 9.2, the SAS® Web Infrastructure Platform provides centralized access to various SAS services.
The SAS Web Infrastructure Platform enables you to integrate a logon manager, which uses the SAS Authentication
Service, into your Web application. In addition, the SAS Web Infrastructure Platform enables clients to access remote
foundation services deployments instead of deploying local services. SAS AppDev Studio helps you generate Web
applications that use the SAS Web Infrastructure Platform.

Use the following resources to learn more:

 See the SAS AppDev Studio developer’s site at http://support.sas.com/rnd/appdev/. This site includes a PDF of
the SAS AppDev Studio Eclipse Plug-ins: User’s Guide. Both the site and the user’s guide contain more details
about the specifics of using SAS AppDev Studio.

Applications DevelopmentSAS Global Forum 2011

4

 See the latest SAS Intelligence Platform: Web Application Administration Guide at
http://support.sas.com/documentation/onlinedoc/intellplatform/index.html for specifics about the SAS Web
Infrastructure Platform. (Starting with the release of SAS 9.3, information about the SAS Web Infrastructure
Platform will be in a new document, SAS Intelligence Platform: Middle-Tier Administration Guide.)

SET UP YOUR WORKSPACE

You can easily build a Web application project that uses the SAS Web Infrastructure Platform and the Stored Process
Service. First, follow the steps in the SAS AppDev Studio New Workspace Setup cheat sheet. This cheat sheet
guides you through configuring your workspace so you can develop and run SAS Web application projects. (The
cheat sheet displays automatically when you initially launch the SAS AppDev Studio Eclipse Plug-Ins with an empty
Eclipse workspace.)

After you complete the cheat sheet, you might want to create a SAS Web Application Project to execute a stored
process. To create the project, launch the New SAS Web Application Project wizard using one of these techniques:

 Launch the wizard from the Eclipse File->New Menu.

 Launch the wizard after selecting a SAS Stored Process in the tree displayed in the SAS Metadata Folders view
in the SAS Metadata perspective.

CREATE A SAS WEB APPLICATION PROJECT WITH A STORED PROCESS

To use the SAS Metadata Folders view, first select the SAS Metadata perspective. Next, connect to a SAS Metadata
Server by selecting the connection button in the Eclipse status bar. Then, select the SAS Metadata Folders view to
show a tree containing the metadata objects found on that SAS Metadata Server. Expand the tree and select a stored
process—this paper uses the Sample: Multiple Output Formats stored process. You can then use the context

menu to create a new SAS Web Application Project as shown in Figure 2.

Figure 2. SAS Metadata Perspective after Selecting New SAS Web Application Project

Applications DevelopmentSAS Global Forum 2011

http://support.sas.com/documentation/onlinedoc/intellplatform/index.html

5

SELECT DETAILS IN THE STORED PROCESS SERVLET TEMPLATE

After you select New SAS Web Application Project, SAS AppDev Studio launches the wizard to create your project.
This wizard selects the SAS Stored Process Servlet Example template for you. Enter a project name in the wizard,
such as SGF_2011_MultOutFormats. The remaining steps of the wizard guide you through creating the stored

process servlet. The wizard enables you to set unique values for several other fields, including the example base
name, the servlet class name, the servlet package, the servlet name, and the servlet URL pattern.

Several of the fields in the New SAS Web Application Project wizard have default values, including the following:

 Example base name: StoredProcessDriver

 Servlet class name: StoredProcessDriverServlet

 Servlet package: servlets

 Servlet name: StoredProcessDriverServlet

The wizard derives the default values for the servlet class name and the servlet name from the example base name.

The examples shown use SGF_2011_MultOutFormats as the project name. The other wizard fields use the default

values. Of course, you might set unique values for these fields in your project.

Figure 3. SAS Stored Process Servlet Page from the New SAS Web Application Project Wizard

After selecting defaults or entering values in the previous wizard pages, choose how you want to handle both the
output results and the SAS log. This wizard contains additional pages, but the fields on those pages all have default
values. If you want to accept the default values, select the Finish button to create your project. If you want to change
or review the fields on subsequent wizard pages, select the Next button instead.

After you finish the wizard, a new Web application project appears in your workspace with the following three
generated source code files:

 StoredProcessDriverServlet.java (in the servlets package)

 StoredProcessConnection.java (in the support.storedprocess package)

 StoredProcessFacade.java (in the support.storedprocess package)

Depending on your preference settings, Eclipse might ask you to switch to either the Java or Java EE perspectives.
After you switch to one of these perspectives, open or change to the Eclipse Problems view. You might notice some
errors in the Eclipse Problems view as shown in Figure 4. Before fixing any errors present, add two additional
templates to the project. You need these templates before attempting to run the Web application.

Applications DevelopmentSAS Global Forum 2011

6

Figure 4. Eclipse Java Perspective with the Problems View Showing an Error in the Project

The problems listed in Figure 4 occur when SAS AppDev Studio cannot determine an appropriate value to generate
for an input parameter value. As a result, SAS AppDev Studio generates an eye catcher to draw your attention to the
values that you might provide. See the USING INPUT PARAMETERS section for more details about the eye

catchers.

ADD THE EXAMPLES WELCOME PAGE TEMPLATE

First, add the Examples Welcome Page by selecting the following:

 File->New->Other->SAS AppDev Studio->Add Template Content to Project->SAS Web Infrastructure Platform
Support->Examples Welcome Page

See Figure 5 for the results of selecting these items. The Examples Welcome Page template adds a JavaServer
Pages (JSP) page to the Web application. When you run the Web application in SAS AppDev Studio, this JSP
enables you to select any of the examples added to your project.

Applications DevelopmentSAS Global Forum 2011

7

Figure 5. Add Template Content to Project Wizard Page with the Examples Welcome Page Template Selected

ADD THE APPLICATION METADATA CREATION TEMPLATE

Next, add support files for creating and deploying application metadata by selecting the following:

 File->New->Other->SAS AppDev Studio->Add Template Content to Project->SAS Web Infrastructure Platform
Support->SAS Web Infrastructure Platform Application Metadata Creation

See Figure 6 for the results of this selection. This template creates several files for managing the SAS Web
Infrastructure Platform metadata necessary for running your Web application. The filenames all begin with the
application name you enter in this template. The application name defaults to the project name, but you can change
this value.

Figure 6. Add Template Content to Project Wizard Page with the SAS Web Infrastructure Platform Application
Metadata Creation Template Selected

The Application Metadata Creation template uses the Web application name as the prefix in the filenames. Adding
this template to your SGF_2011_MultOutFormats project produces a SGF_2011_MultOutFormats Create
Metadata.launch file. After you finish the wizard for this template, run this launch file as shown in Figure 7. This

launch file creates any necessary metadata to register your Web application on a SAS Metadata Server.

Applications DevelopmentSAS Global Forum 2011

8

Figure 7. Eclipse Java Perspective with Run As ->SGF_2011_MultOutFormats Create Metadata Selected

SET INPUT PARAMETERS

Now you are almost ready to execute your Web application. First, correct any errors in the Eclipse Problems view. If
SAS AppDev Studio generates an eye catcher value for one or more input parameters, you see errors in this view as
shown in Figure 4.

Stored processes use prompts to define input parameters in metadata. An input parameter (or prompt) can have a
default value. The generated driver servlet contains constant definitions for each prompt name and prompt value.
SAS AppDev Studio generates a constant for the prompt value if the prompt (input parameter) data type has a default
value and is one of the following types:

 com.sas.datatypes.StringType

 com.sas.datatypes.IntegerType

 com.sas.datatypes.DoubleType

If an input parameter has no default value or has a different data type from those listed above, then SAS AppDev
Studio generates an eye catcher. You replace the eye catcher with an appropriate value for the input parameter as
described below in the USING INPUT PARAMETERS section.

RUN THE WEB APPLICATION

After you replace the eye catcher values, run the Web application as shown in Figure 8. (See detailed instructions
describing how to run Web applications in the SAS AppDev Studio Eclipse Plug-ins: User's Guide, available from the
SAS AppDev Studio developer’s site at http://support.sas.com/rnd/appdev/.)

Applications DevelopmentSAS Global Forum 2011

9

Figure 8. Eclipse Java Perspective with the Project Name Selected, Followed by Run As, and then Run on Server,

to Run the Web Application

When you run your application from SAS AppDev Studio, a browser window opens to the logon page as shown in
Figure 9.

Figure 9. Initial SAS Logon Screen for the Web Application

Applications DevelopmentSAS Global Forum 2011

10

After a successful logon to the Web application, you see the list of all example templates you added to this project. To
execute the stored process and see the results, select the StoredProcessDriverServlet example entry you just
created, as seen in Figure 10.

Figure 10. SAS AppDev Studio Examples Welcome Page

After you select the StoredProcessDriverServlet link, the stored process driver servlet executes the Sample: Multiple
Output Formats stored process on the SAS Stored Process Server. This sample stored process uses the Output

Delivery System (ODS) to return output in different forms. By default, this sample stored process produces HTML
results as you see in Figure 11.

Figure 11. Browser Showing the HTML Results after Executing the Stored Process Driver Servlet

In addition to creating HTML results, the Sample: Multiple Output Formats stored process can produce other output
types. This stored process uses the _odsdest input parameter to select the results format. Use SAS Management

Console to view the values for this prompt, as shown below in Figure 12.

Applications DevelopmentSAS Global Forum 2011

11

Figure 12. Viewing the Values for the _odsdest Input Parameter (Prompt) of the Sample: Multiple Output Formats

Stored Process in the SAS Management Console

In your StoredProcessDriverServlet, you might set the value of the _odsdest input parameter to one of the values

listed for the prompt. Modify the value of the _ODSDEST_VALUE constant to match an unformatted value listed in the

SAS Management Console for this stored process, such as PDF. See Figure 12 for an example showing the
unformatted values. After you publish and run the Web application again, you see the PDF results in Figure 13.

Figure 13. Browser Showing the PDF Results after Executing the Stored Process Driver Servlet

Applications DevelopmentSAS Global Forum 2011

12

The Sample: Multiple Output Formats stored process has other input parameters. Changing the values for these

parameters changes the results or their appearance. For example, you might change the data set used by the stored
process or the ODS style for the results. Again, use the SAS Management Console to determine appropriate values
for the input parameters. Once you know the appropriate values, change the constant definitions in the
StoredProcessDriverServlet. Publish and run the Web application again to see the changes.

CONTENTS OF THE GENERATED STORED PROCESS DRIVER SERVLET

Now that you know how to create a stored process driver servlet, you might want to customize the servlet. Before
modifying this code, you should learn the contents of the generated servlet source code, which provides a base for
running a stored process and making the results available in the browser. Understanding the servlet source code
helps when you change the code to perform custom processing for your Web application.

IDENTIFYING THE STORED PROCESS PATH URL

Metadata defines the characteristics of a SAS Stored Process, including the location of the stored process in the
metadata repository. A SAS Business Intelligence Protocol (SBIP) Uniform Resource Locator (URL) describes the
stored process location in the repository. After you select a SAS Stored Process in the template wizard, SAS AppDev
Studio generates a constant for the SBIP URL.

The generated constant appears in the servlet like the following snippet:

// The path to the stored process to be executed initially by this servlet

private static final String STORED_PROCESS_PATH_URL =

"SBIP://METASERVER/Products/SAS Intelligence Platform/Samples/" +

"Sample: Multiple Output Formats(StoredProcess)";

The generated string contains the SBIP URL completely on one line, but this snippet splits the string for clarity.

It is not advisable to change the SBIP URL after generating the servlet. The driver servlet contains other generated
code reflecting capabilities of that stored process as well as choices you made in the wizard. If you want to change
the stored process initially executed by the servlet, use the SAS AppDev Studio templates to add another SAS Stored
Process Servlet to your project. When you create the new servlet, select the new stored process to execute, and give
the driver servlet a different name. Creating a new driver servlet ensures that the generated code handles the
characteristics of the stored process.

CREATING HELPER OBJECTS

The StoredProcessDriverServlet creates instances of the StoredProcessConnection and StoredProcessFacade
objects. These helper objects provide simplified access to several services used for executing a stored process and
for handling the results in the driver servlet.

The StoredProcessConnection provides convenient access to SAS Foundation Services, a SAS Metadata Server,
and the Stored Process Service. The StoredProcessConnection also surfaces methods to search for stored process
metadata objects in a SAS Metadata repository.

The Stored Process Service Java API provides interfaces for working with SAS Stored Processes. One of the Java
interfaces, com.sas.services.storedprocess.StoredProcess2Interface, represents a SAS Stored Process, and the
com.sas.services.storedprocess.Execution2Interface provides access to the execution results.

The StoredProcessFacade encompasses a SAS Stored Process along with its execution results—of course, the
results only become available after the stored process runs. The StoredProcessFacade wraps access to two main
elements of the Stored Process Service Java API: the StoredProcess2Interface and the Execution2Interface. By
providing access to these interfaces through simplifying abstractions, the StoredProcessFacade hides the full details
of the implementation of those interfaces.

Some of the key helper methods in the StoredProcessFacade handle:

 setting input parameters and other attributes of a stored process

 processing stored process streaming and output parameter results

 dealing with the content type and character encoding of streaming results

 retrieving from and writing to the SAS log

Applications DevelopmentSAS Global Forum 2011

13

 creating and executing replay of stored process objects

 retrieving the underlying instances of StoredProcess2Interface and Execution2Interface objects

As mentioned earlier in the SAS APPDEV STUDIO SUPPORT FOR GENERATING SAS STORED PROCESS
CLIENTS section, SAS AppDev Studio generates the source code for the StoredProcessConnection and

StoredProcessFacade only once per Web application project. The generated source code resides in the
support.storedprocess package. Do not modify the generated source code for these two classes. Each stored

process driver servlet creates instances of these classes. The servlet uses these instances to execute a SAS Stored
Process and process its results.

The driver servlet also creates a StoredProcessDestroyableObject. The servlet adds this object to both the
ExamplesSessionBindingListener and the HttpSession. Once the servlet creates and initializes the
StoredProcessConnection and StoredProcessFacade, the servlet then places these common objects into the
StoredProcessDestroyableObject. This object cleans up the StoredProcessConnection and StoredProcessFacade
when the HTTP session expires after running the servlet.

USING INPUT PARAMETERS

The StoredProcessDriverServlet uses an instance of a StoredProcessFacade to gain simplified access to the SAS
Stored Process Service Java API, so you can focus on developing custom logic in the Java servlet, if necessary.
When the StoredProcessDriverServlet creates a StoredProcessFacade instance, the servlet passes a
java.util.Map object to the StoredProcessFacade constructor. This map contains the input parameters for the

stored process.

What Are Input Parameters?

Input parameters to a stored process are optional. If a stored process contains input parameters, then the
StoredProcessFacade constructor accepts values for those input parameters to control stored process execution.
Input parameters have a name and a value; they exist in SAS programs as global macro variables. You define input
parameters (also known as prompts) in the stored process metadata using the SAS Management Console or SAS
Enterprise Guide. The StoredProcess2Interface establishes the input parameter name as a java.lang.String

and the value as a java.lang.Object.

How Does SAS AppDev Studio Generate Code For Input Parameters?

The StoredProcess2Interface enables you to supply input parameters to a stored process via a map object, with each
entry in the map having a key and a value. When you select a stored process in a SAS AppDev Studio stored
process template, the wizard retrieves the list of input parameters (if any) from the metadata. In the code that SAS
AppDev Studio generates, the input parameter name becomes the key in the map entry, while the input parameter
value becomes the value of the map entry.

As described above in the SET INPUT PARAMETERS section, when certain types of input parameters

(com.sas.datatypes.StringType, com.sas.datatypes.IntegerType, and

com.sas.datatypes.DoubleType) have a default value in metadata, then the generated code contains a

constant for the map value using the actual prompt default value.

For all other types of input parameters or for any of the types listed above without a default value defined, the
generated constant for the map value has the text REPLACE_WITH_ACTUAL_VALUE_FOR_PROMPT_YYY, where YYY

is the actual name of the input parameter. The next section shows examples of these constants.

SAS AppDev Studio creates these constants for centralized access and readability in the servlet, but you might want
to set input parameters programmatically, depending on the logic required for your application. The examples in this
paper use the generated constant values for simplicity and clarity.

The populateParameterMap() method of the StoredProcessDriverServlet uses the automatically generated

constants to add input parameter entries to a map. The servlet supplies the input parameter Map to the

StoredProcessFacade, which provides this map to the Stored Process Service Java API.

What Code Do You Modify To Override The Generated Input Parameter Values?

Looking at some sample code clarifies how the code that was generated by SAS AppDev Studio uses input
parameters. This example assumes that you have defined a stored process in your metadata repository with the
name addintegers. This stored process takes two integer input parameters and returns the sum as an output

parameter. The stored process uses the following SAS program as its source code:

Applications DevelopmentSAS Global Forum 2011

14

/* addintegers.sas

 *

 * Accepts two integer input parameters: int1 and int2, adds them, and returns

 * the result as an output parameter.

 */

%global int1 int2;

*ProcessBody;

%let Sum = %eval(&int1 + &int2);

%put Adding of &INT1 + &INT2 yields: ∑

run;

The metadata for addintegers contains the definitions of these input parameters as numeric prompts. The names

of these input parameters are int1 and int2. These input parameters do not have default values defined.

A snippet of the generated Java code in the driver servlet shows the constant definitions for the input parameters:

// Prompt: int1

private static final String INT1_KEY = "int1";

// Data Type: com.sas.datatypes.IntegerType

private static final Object INT1_VALUE = REPLACE_WITH_ACTUAL_VALUE_FOR_PROMPT_INT1;

// Prompt: int2

private static final String INT2_KEY = "int2";

// Data Type: com.sas.datatypes.IntegerType

private static final Object INT2_VALUE = REPLACE_WITH_ACTUAL_VALUE_FOR_PROMPT_INT2;

Because no definitions exist for the eye catchers, you see an error for each eye catcher in the Eclipse Problems view.
Before compiling the driver servlet, supply appropriate values for the eye catchers.

Say you want to add 2 + 3 in your servlet. You modify the eye catchers using the actual values, which results in the
following snippet of the driver servlet:

// Prompt: int1

private static final String INT1_KEY = "int1";

// Data Type: com.sas.datatypes.IntegerType

private static final Object INT1_VALUE = 2;

// Prompt: int2

private static final String INT2_KEY = "int2";

// Data Type: com.sas.datatypes.IntegerType

private static final Object INT2_VALUE = 3;

The populateParameterMap() method in the driver servlet uses these constants, so you do not have to change

this method for any parameters with generated constants. This method automatically builds a map of the input
parameters using these constants. The driver servlet calls populateParameterMap()and supplies the resulting

parameter map to the StoredProcessFacade constructor.

In the following example, you see how the generated populateParameterMap() method appears for the driver

servlet using the addintegers stored process:

/**

 * Place the keys and values for the stored process prompts (input parameters) into

 * a map. The map can then be provided to the StoredProcessFacade to supply the

 * input parameters to the SAS Stored Process.

 */

private Map<String, Object> populateParameterMap()

{

final Map<String, Object> storedProcessParameters =

new HashMap<String, Object>();

// Set the prompt (input parameter) values

storedProcessParameters.put(INT1_KEY, INT1_VALUE);

Applications DevelopmentSAS Global Forum 2011

15

storedProcessParameters.put(INT2_KEY, INT2_VALUE);

return storedProcessParameters;

}

Stored processes that have input parameters defined in metadata can generate one or more global macro variables
for each input parameter. However, you might have stored processes containing global macro variables not
associated with input parameters. The stored process metadata contains no information for global macro variables
without associated prompt definitions. As a result, SAS AppDev Studio cannot generate constants for global macro
variables in the stored process driver servlet.

You might have a stored process that uses global or reserved macro variables. Because the stored process metadata
contains no definitions for these macro variables, you modify the generated populateParameterMap() method to

supply values for these macro variables.

For example, the SAS code for the Sample: European Demographic Data stored process uses a reserved macro

variable, _GRAFLOC, to indicate the location of the associated SAS Graph applets and ActiveX control. The

_GRAFLOC variable must contain an appropriate path for the resulting browser client to work properly. To set this

value, add the following highlighted code to the populateParameterMap() method:

/**

 * Place the keys and values for the stored process prompts (input parameters) into

 * a map. The map can then be provided to the StoredProcessFacade to supply the

 * input parameters to the SAS Stored Process.

 */

private Map<String, Object> populateParameterMap()

{

final Map<String, Object> storedProcessParameters =

new HashMap<String, Object>();

// Set the prompt (input parameter) values

storedProcessParameters.put(INT1_KEY, INT1_VALUE);

storedProcessParameters.put(INT2_KEY, INT2_VALUE);

// Set _GRAFLOC to access SAS Graph Java applet or ActiveX control

storedProcessParameters.put("_GRAFLOC", "/sasweb/graph");

return storedProcessParameters;

}

Of course, you might want to use constants for any other macro variable values instead of using hardcoded
parameter values.

EXECUTING THE STORED PROCESS

After creating the helper objects and setting appropriate parameters and attributes for the stored process, the driver
servlet calls the executeStoredProcess() method of the StoredProcessFacade. This method provides the input

parameters to the underlying StoredProcess2Interface object before invoking the execute() method on that object.

The executeStoredProcess() method returns the results from executing the stored process.

PROCESSING THE STORED PROCESS EXECUTION RESULTS

Depending on the type of results the SAS Stored Process produces and on the result types you select in the SAS
Stored Process servlet wizard, the generated driver servlet contains code to handle output parameter results,
streaming results, both, or neither.

Processing Output Parameters

The writeOutputParameterList() method of the StoredProcessDriverServlet simply writes some basic HTML

into the HttpServletResponse for the browser to show. Each output parameter value appears on a new line in the
HTML. This method also writes each output parameter value to the log of the servlet context. You might want to
override this method to process the output parameters in some other way, either depending on the SAS Stored
Process you execute or on other requirements of your Web application.

Applications DevelopmentSAS Global Forum 2011

16

Displaying Streaming Results

For stored processes that produce streaming results, the StoredProcessDriverServlet writes those results to the
OutputStream of the HttpServletResponse. SAS Stored Processes returning streaming results typically use ODS to
produce those results. The SAS Integration Technologies Sample: European Demographic Data stored process

shows how a stored process uses ODS to write streaming results back to the servlet. These results then appear in
your browser. Similar to output parameter processing, you might override the writeStreamingResults() method

to process the results differently than the supplied method.

Showing the SAS Log

While developing your project in SAS AppDev Studio, you might need to view the SAS log to help debug any
problems—not that you ever have any of those! When you add a stored process template to your project, the SAS
AppDev Studio wizard enables you to select a check box for displaying the contents of the SAS log in the servlet
context log.

Even though the check box controls whether logging is active, SAS AppDev Studio always generates code for writing
to the log. However, the driver servlet uses the showSASLog Java variable for controlling whether the servlet writes

the output to the servlet context log. The value of showSASLog initially comes from the selection you made when

adding the template content to the project, but you might change the value to show the log as needed during project
development.

EXECUTING A REPLAY STORED PROCESS

Along with support in the generated StoredProcessFacade, the StoredProcessDriverServlet provides the ability to
execute a replay stored process. The replay stored process feature uses a SAS Stored Process Server session to
execute an additional in-memory stored process to provide more results to a client.

SAS Integration Technologies provides some sample stored processes that provide insight into how you might use
various SAS Stored Process characteristics. For example, the SAS Integration Technologies Sample: European
Demographic Data stored process uses a replay stored process to produce the clickable map of Europe in the ODS

results.

The replay stored process uses the same StoredProcessFacade object as the original stored process.

EXECUTING A SUBSEQUENT STORED PROCESS

The StoredProcessDriverServlet also provides the ability to execute a subsequent stored process after completing
the initial stored process (and perhaps after completing a replay stored process). The subsequent stored process can
also have a replay stored process.

Once again, the SAS Integration Technologies Sample: European Demographic Data stored process provides an

example of a subsequent stored process. When you select a country in the map displayed (via replay) after running
the original stored process, the Sample: European Demographic Data Detail stored process executes

subsequently. This stored process produces ODS results for the detailed data for the country you selected.

The StoredProcessDriverServlet creates a new StoredProcessFacade object to execute a subsequent SAS Stored

Process.

CUSTOMIZING THE GENERATED SAS STORED PROCESS SERVLET

Now that you have seen the generated code resulting from adding a SAS Stored Process Servlet template to a SAS
AppDev Studio Web Application project, you might wonder how you would customize the generated servlet to
perform additional processing in Java. Throughout this paper, you have seen various explanations of customizations
you can make.

Here is a list of the customizations presented throughout the paper, along with some other ideas for additional
processing you might consider:

Applications DevelopmentSAS Global Forum 2011

17

 programmatically set input parameters in the servlet

 create a custom user interface to let your users supply input parameter values

 programmatically set additional global macro variables for the stored process

 override the writeOutputParametersList() method to get the output parameter values and process them

before displaying them

 override the writeStreamingResults() method to get the results and process them before displaying them

 retrieve the Execution2Interface object from the StoredProcessFacade to access package results

 override the executeSubsequentStoredProcess() method to retrieve values from the HTTP session object

or to set additional stored process options

 override the handleExecutionStatus() method to add logic based on the completion status or SAS return

code

 override the writeSASLog() method to process the log or write log results somewhere other than the

ServletContext log

You can create additional Java code to execute in your application as well.

For more information about SAS Stored Processes, the SAS Stored Process Service Java API, and other related
concepts, see the following:

 SAS AppDev Studio developer’s site

 SAS AppDev Studio Eclipse Plug-ins: User's Guide

 SAS Stored Processes: Developer's Guide

 SAS Intelligence Platform: Web Application Administration Guide (starting with the SAS 9.3 release, see SAS
Intelligence Platform: Middle-Tier Administration Guide)

These references give you more detail to help you customize the generated code.

In addition, see the package Javadoc for the com.sas.services.storedprocess package. To find the most

recent Javadoc:

1. Navigate to the SAS AppDev Studio developer’s site at http://support.sas.com/rnd/appdev/.

2. Select the SAS BI API Documentation link.

3. Select the SAS Foundation Services link from the SAS BI Packages Libraries.

4. Select the com.sas.services.storedprocess package.

5. Scroll down in the package Javadoc to read detailed information about working with the Stored Process Service
Java API.

CONCLUSION

SAS AppDev Studio helps you develop custom Web applications that use the power of SAS Stored Processes. You
have seen that SAS AppDev Studio generates source code as a foundation for working with stored processes. You
have the ability to modify the generated servlet to implement different or additional business logic in Java.

You learned how to do the following:

 use SAS AppDev Studio features for generating code executing SAS Stored Processes

 build a SAS Web Infrastructure Platform Stored Process servlet from either the File->New menu or from the SAS
Metadata Folders view

 understand the contents of the generated StoredProcessDriverServlet, StoredProcessConnection, and
StoredProcessFacade and how to use them

 take advantage of input and output parameters

 register your Web application on a SAS Metadata Server

Applications DevelopmentSAS Global Forum 2011

18

 customize the generated code

You create customizable stored process Web applications through the templates that SAS AppDev Studio supplies.
These templates help you easily build the foundation code for servlets running stored process servlets. The
generated StoredProcessConnection and StoredProcessFacade objects provide a layer of abstraction, which avoids
repeating code unnecessarily. You might even modify the StoredProcessDriverServlet to tailor the result handling for
your application requirements.

ACKNOWLEDGMENTS

We acknowledge and greatly appreciate the help on this paper from several of our colleagues at SAS Institute Inc.
Our colleagues made a careful review this paper, and they provided numerous helpful suggestions and corrections
that improved this paper. We thank the following colleagues:

 Denise Crosson validated the accuracy of the technical content of this paper. As always, Denise paid careful
attention to detail and goes the extra step in ensuring high quality.

 Gordon Hirsch provided excellent suggestions about the structure and content of the paper. His insight especially
provided focus on explaining new concepts to readers of this paper.

 Rich Main articulated the original vision for the addition of stored process templates to SAS AppDev Studio. He
provided much appreciated support during the development of the templates, and he provided several
suggestions for improving this paper.

 Ernest Pasour gave valuable feedback on the paper. He always displayed keen technical insight during the
development of the SAS AppDev Studio stored process templates.

RECOMMENDED READING

 SAS AppDev Studio developer’s site at http://support.sas.com/rnd/appdev/

 SAS AppDev Studio Eclipse Plug-ins: User's Guide (located on the SAS AppDev Studio developer’s site)

 SAS Stored Processes: Developer’s Guide

 SAS Intelligence Platform: Web Application Administration Guide

 SAS Intelligence Platform: Middle-Tier Administration Guide (available with the SAS 9.3 release)

 SAS Intelligence Platform: System Administration Guide

 SAS Intelligence Platform: Overview

 SAS Integration Technologies: Overview

 SAS Integration Technologies: Java Client Developer's Guide

 SAS Foundation Services: Administrator's Guide

 SAS Intelligence Platform: Application Server Administration Guide

CONTACT INFORMATION

Your comments and questions are valued and encouraged. Contact the authors at:

Bruce Faulkner
SAS Institute Inc.
SAS Campus Drive
Cary, NC 27513
Work Phone: +1 919 531 6846
Fax: +1 919 677 4444
E-mail: Bruce.Faulkner@sas.com
www.sas.com

Applications DevelopmentSAS Global Forum 2011

19

Virgil Sealy
SAS Institute Inc.
SAS Campus Drive
Cary, NC 27513
Work Phone: +1 919 531 5182
Fax: +1 919 677 4444
E-mail:Virgil.Sealy@sas.com
www.sas.com

SAS and all other SAS Institute Inc. product or service names are registered trademarks or trademarks of SAS
Institute Inc. in the USA and other countries. ® indicates USA registration.

Other brand and product names are trademarks of their respective companies.

Applications DevelopmentSAS Global Forum 2011

	2011 Table of Contents

