
1

Paper 006-2011

A better way to search text: Perl regular expressions in SAS

Kevin McGowan, Independent SAS Consultant

Brad Lagle, SRA International, Durham, NC

ABSTRACT

Many programmers use regular expressions to make their programs more efficient, especially

when the program processes large amounts of text format data. One popular type of regular

expressions are Perl regular expressions. Starting with version 8 of SAS
®

, the power of Perl

regular expressions is now available to SAS programmers. This paper provides a short

introduction to Perl regular expressions in SAS. The reader should already have a basic

knowledge of SAS data step programming and some knowledge about how to create regular

expressions.

INTRODUCTION

Pattern matching enables a program to search for and extract multiple matching patterns from a

character string in one step, as well as to make several substitutions in a string in one step. The

SAS Data step supports two types pattern-matching functions and CALL routines: SAS regular

expressions and Perl regular expressions.

Regular expressions are a widely used pattern language which provides a programmer with tools

for parsing large amounts of text. Regular expressions are composed of standard characters and

special characters that are called metacharacters.

SAS introduced Perl regular expressions in version 8 to give SAS programmers the power to use

the same type of regular expressions that are currently used in Perl and other programming

languages. Some of the advantages of using Perl regular expressions are:

 Many users already know them from working in other languages.

 Perl regular expressions have more flexibility than the existing SAS regular expressions.

 Users can combine Perl code with SAS code in the same program.

Many times a SAS program performs the following tasks: validates data, replaces text, and

extracts a substring from a string. Using Perl regular expressions allows the program to do all

three tasks in one step, rather than in multiple steps. By reducing the number of steps, the

program is easier to maintain and is also less prone to have mistakes.

Perl regular expressions have been widely used by many programs in other languages such as

Java for a long time. SAS implements regular expressions using a modified version of Perl 5.6.1

via a set of new functions in SAS called the PRX functions. Only Perl regular expressions are

available in SAS via the PRX functions, not the entire Perl language. The following parts of Perl

regular expressions are not supported within SAS:

Applications DevelopmentSAS Global Forum 2011

2

 Perl variables

 The regular expression options /c, /g, and /o and the /e option with substitutions

 Named characters, which use the \N{name} syntax

 The metacharacters \pP, \PP, and \X

 Executing Perl code within a regular expression. This includes the syntax (?{code}),

(??{code}), and (?p{code}).

 Unicode pattern matching

 Using ?PATTERN?. ? is treated like an ordinary regular expression start and end

delimiter.

 The metacharacter \G.

 Perl comments between a pattern and replacement text. For example: s{regexp} # perl

comment {replacement}

 Matching backslashes with m/\\\\/. Instead m/\\/ should be used to match a backslash.

Perl regular expression basics

Perl regular expressions are composed of characters and special characters that are called

metacharacters. To perform a match, SAS searches a source string for a substring that matches

the Perl regular expression that you specify using the new PRX functions. Metacharacters

enable SAS to perform special actions when searching for a match. The following is a short list

of metacharacters that are used in Perl regular expressions:

\ Marks the next character as either a special character, a literal, a back reference or

an octal escape

^ Matches the position at the beginning of the input string

$ Matches the position at the end of the input string

| Specifies an or condition when you compare alpha numeric strings

* Matches the preceding sub expression zero or more times

+ Matches the preceding sub expression 1 or more times

[abc] a character set that matches any of the enclosed characters

[^123] a character set that matches any character that is not enclosed

[1-4] a character set that matches any character that is within the range enclosed

[^3-9] a character set that matches any character that is not within the range enclosed

There are many more metacharacters that can be used in Perl regular expressions.

Applications DevelopmentSAS Global Forum 2011

3

Basic SAS functions for Perl regular expressions

There are five primary functions that make up the language elements to implement Perl regular

expressions in SAS. The five functions along with brief descriptions are:

 PRXPARSE – “Compiles” a Perl regular expression so that other PRX functions can use

it for pattern matching of a character string. It returns a pattern matching number. If an

error occurs in the parsing of the regular expression, SAS returns a missing.

PRXPARSE constructs the Perl regular expression with met. Typically, this is the first

function that will be used in a program. This function alone is not very helpful until its

output is combined with other PRX functions.

 PRXPAREN – Returns the last bracket for which there is a match in the pattern. This

function is used when there is more than one bracket in the regular expression.

 PRXMATCH – Searches for a pattern match and returns the position at which the pattern

is found. You commonly include this function to search for a string within text.

 PRXCHANGE – This function actually performs a pattern matching replacement.

PRXCHANGE is very similar to the standard SAS substring function when the function

is used on the left side of the equal sign.

 PRXPOSN – Returns the value of the capture buffer. It is used to determine where in the

string the pattern occurs. The capture buffer is created with one of the other PRX

functions. This function does not directly return the substring. This must be done using

the standard SAS substring function.

These additional SAS PRX functions are less commonly used:

 CALL PRXFREE – A call function that frees up the unneeded memory that was allocated

to a Perl regular expression

 CALL PRXNEXT – Returns the position and length of a substring that matches a pattern

and iterates over multiple matches within one string.

 CALL PRXDEBUG – This function enables PRX functions in a Data step to send debug

output to the SAS log. When things are not working out correctly, this function can be

very helpful.

 CALL PRXSUBSTR – Returns the position and length of a substring that matches a

pattern.

Examples of three basic uses of Perl Regular Expressions in SAS

There are typically three cases in which Perl regular expressions are handy in SAS programming

in a data step: replacing text, extracting a substring, and validating data. One important note

about the use of regular expressions in SAS is that they normally only need to be created one

Applications DevelopmentSAS Global Forum 2011

4

time. If the regular expression is going to be used in a data step, in most cases it can be done

while the first data set record is being processed and then stored in a SAS variable using the

retain function for later use. By using this technique all of the processing for regular expression

compilation will only be done one time instead of potentially thousands of times. The

following examples cover each of those three situations.

Example 1 – Text replacement

This example uses macro variables and regular expressions to replace two occurrences of

symbols: the less-than character (<) is replaced by < and the two occurrences of the greater-

than character (>) are replaced by >.

data _null_;

 if _N_ = 1 then do;

 retain abclt abcgt;

 abclt = prxparse('s/</</'); /* make a regular expression */

 abcgt_ = prxparse('s/>/>/'); /* make a regular expression */

 if missing(abclt) or missing(abcgt) then

 do;

 putlog "ERROR: Invalid regexp."; /* check to make sure the

regular expressions compiled OK */

 stop;

 end;

 end;

 input;

 call prxchange(abclt, -1, _infile_); /* perform the replacements using

 PRXCHANGE */

 call prxchange(abcgt, -1, _infile_);

 put _infile_;

 datalines4;

Example 2 – Data validation

This example shows how to use Perl regular expressions to validate data to make sure it is in the

correct format. In this case, we are checking to make sure the data is in the format of a standard

US phone number. The program checks for two formats for phone numbers – with parentheses

or with dashes.

data _null_;

 if _N_ = 1 then do; /* only do this one time , for first record */

 parenf = "\([2-9]\d\d\) ?[2-9]\d\d-\d\d\d\d"; /*check for format w parens */

 dashf = "[2-9]\d\d-[2-9]\d\d-\d\d\d\d"; /* check for format with dash */

Applications DevelopmentSAS Global Forum 2011

5

 phregexp = "/(" || parenf || ")|(" || dashf || ")/"; /* look for both patterns */

 retain re;

 re = prxparse(phregexp); /* compile the regular expression */

 if missing(re) then /* check to make sure expression is valid */

 do;

 putlog "ERROR: Invalid regexp " phregexp; /* print if error found */

 stop;

 end;

 end;

 length first last home business $ 16;

 input first last home business; /* read in the data */

 if ^prxmatch(re, home) then /* check for valid home number */

 putlog "NOTE: Invalid home phone number for " first last home;

 if ^prxmatch(re, business) then /* check for valid business number */

 putlog "NOTE: Invalid business phone number for " first last business;

 datalines;

Jonas Grumby (949)369-1890 (910)446-2167

Monty Hall 800-899-2164 360-973-6201

Peter Parker (508)852-2146 (508)366-9821

Elvis Presley . 919-782-3199

David Thompson . .

Renee Foster 7042982145 .

Thunderclap Newman 209/963/2764 2099-66-8474

;

Example 3: Sub string extraction

This example shows how to use Perl regular expressions to take sub strings out of text. In this

case, we are checking to make sure the data is in a North Carolina area code number set that we

specify. This example also uses validation when it checks the area codes against a list of

numbers that is stored in the program. The first part of this example is a repeat of the last

example, so there are no comments for that section.

data _null_;

 if _N_ = 1 then

 do;

 parenf = "\(([2-9]\d\d)\) ?[2-9]\d\d-\d\d\d\d";

 dashf = "([2-9]\d\d)-[2-9]\d\d-\d\d\d\d";

Applications DevelopmentSAS Global Forum 2011

6

 phregexp = "/(" || parenf || ")|(" || dashf || ")/";

 retain re;

 re = prxparse(phregexp);

 if missing(re) then

 do;

 putlog "ERROR: Invalid regexp " regexp;

 stop;

 end;

 retain areacode_re; /* use retain since the data does not change */

 areacode_re = prxparse("/828|336|704|910|919|252/"); /* list of codes */

 if missing(areacode_re) then

 do;

 putlog "ERROR: Invalid area code regexp";

 stop;

 end;

 end;

 length first last home business $ 16;

 length areacode $ 3;

 input first last home business; /* read in data */

 if ^prxmatch(re, home) then /* check for home format */

 putlog "NOTE: Invalid home phone number for " first last home;

 if prxmatch(re, business) then /* found a business number */

 do;

 which_format = prxparen(re); /* determine which format */

 call prxposn(re, which_format, pos, len); /* determine position */

 areacode = substr(business, pos, len); /* get area code from number */

 if prxmatch(areacode_re, areacode) then /* check area code vs. list */

 put "In North Carolina: " first last business;

 end;

 else

 putlog "NOTE: Invalid business phone number for " first last business;

 datalines;

 [data would be placed here]

CONCLUSION

Good programmers are always looking for ways to make their programs better and

more efficent. Any SAS programmer who processes text data on a regular basis

Applications DevelopmentSAS Global Forum 2011

7

should strongly consider adding Perl regular expressions to their SAS

programming toolbag.

CONTACT INFORMATION

Kevin McGowan

Kpmnc24@yahoo.com

Brad Lagle

Brad_Lagle@sra.com

SRA International

2605 Meridian Parkway

Durham, NC 27707

919-313-7707

SAS and all other SAS Institute Inc. product or service names are registered trademarks or

trademarks of SAS Institute Inc. in the USA and other countries. ® indicates USA registration

Applications DevelopmentSAS Global Forum 2011

	2011 Table of Contents

