
1

Paper 004-2011

Building Enterprise Applications Using SAS® Real-Time Services

Falko Schulz, SAS Institute Inc., Brisbane, Australia

ABSTRACT

SAS
®
 Web services can help you meet the challenges of integrating the processes in your service-oriented

architecture (SOA). Real-time services allow you to leverage the power of SAS across the enterprise and beyond.
This paper demonstrates how to create SAS Web services and how to call these Web services from a third-party
application. Increase your return on investment by integrating more processes in your SOA with SAS Web services.

Note: A zip file with code examples from this paper is available at

http://www.sascommunity.org/wiki/Building_Enterprise_Applications_using_SAS_real-time_services.

INTRODUCTION

SAS 9.2 has excellent capabilities to create Web services that surface SAS advanced analytics. Using Web services
standards ensures that these services are available to all applications in your SOA.

SAS BI Web services expose SAS stored processes as Web services, making it easy for other applications to call
SAS code. A Web service is described by a Web Service Description Language (WSDL). WSDL is an XML file that
describes the set of operations that a service contains as well as the inputs and outputs of each operation.

EXAMPLE SCENARIO

For the purpose of this document the following scenario is used:

There is the requirement to build a new call center interface to help call center operatives make the best possible
tariff recommendations to customers. The interface should be able to retrieve the customer’s details by providing the
customer’s phone number or ID. The operator should also be able to make changes to the customer’s details. Finally,
the interface needs to retrieve the customers churn score and make promotion offers in real time.

Figure 1. Flow Diagram Visualizing the Example Scenario

The following figure shows the proposed interface. Technology used to develop the user interface is Adobe Flex.

Applications DevelopmentSAS Global Forum 2011

http://www.sascommunity.org/wiki/Building_Enterprise_Applications_using_SAS_real-time_services

2

Figure 2. Call Center Application

CREATING THE SAS WEB SERVICE

SAS BI Web services are a part of SAS
®
 Integration Technologies, which runs on the middle (Web) tier.

Given the call center application design, there are two Web services that need to be built.

Figure 3. Customer Details

1. Customer Detail Record Service – a

Web service returning the customer
details by providing the customer ID or
phone number

2. Customer Update Service – a Web

service updating the customer detail
record and returning the recalculated
churn score

Each Web service will be executed by clicking either the Update or the Search button.

CUSTOMER DETAIL RECORD SERVICE

This Web service returns the customer details by a given customer ID or phone number. A service is a SAS program
executed by the SAS

®
Stored Process Server. Parameters passed to this service are available as SAS macro

variables and results of the SAS program are streamed back as XML as part of the Simple Object Access Protocol
(SOAP).

This paper uses the following sample table as data source (you can download the full table at
http://www.sascommunity.org/wiki/Building_Enterprise_Applications_using_SAS_real-time_services).

Applications DevelopmentSAS Global Forum 2011

http://www.sascommunity.org/wiki/Building_Enterprise_Applications_using_SAS_real-time_services

3

Figure 4. Sample Customer Records

For demonstration purposes, the following SAS program is used. You will need to change the program accordingly to
retrieve data from other data sources.

The program below requires the following parameter to work correctly:

 _custID = Customer ID

/*

 Returns the data for a given table

*/

%macro getCustomerDetails;

 /* filter the customer data set by given customer ID */

 data data;

 set temp.customers;

 where custID = &_custID;

 custComments = "";

 custPromotion = "";

 custPromo1ID = "";

 custPromo1Desc = "";

 custPromo2ID = "";

 custPromo2Desc = "";

 run;

%mend;

/* basic parameter validation */

%macro validateParameters;

 %if not %symexist(_custID) %then %do;

 %global _custID;

 %let _custID=;

 %end;

 %if not %symexist(_custPhone) %then %do;

 %global _custPhone;

 %let _custPhone=;

 %end;

 %else %if not %symexist(_custID) or not %symexist(_custPhone) %then %do;

 data data;

 error = "1";

 message = "Parameter '_custID' or '_custPhone' is missing.";

 run;

 %end; %else %do;

 %checkds(temp.customers);

 %getCustomerDetails;

 %end;

%mend;

%validateParameters;

Applications DevelopmentSAS Global Forum 2011

4

/* write out XML stream */

libname _WEBOUT xml;

data _WEBOUT.CALL_CENTER_WEB_SERVICE_OUTPUT;

 set data;

run;

Figure 5. Customer Detail Record Service

The SAS program needs to be registered as a stored process so it can be deployed as a Web service. This is done
via SAS

®
 Management Console. The documentation for SAS Management Console shows the process for registering

the SAS program as a stored process. There are two important steps to deploy a SAS Stored Process as a Web
service:

 specifying the XMLA Web Service keyword (Figure 6. General Properties)

 filling in the dialog boxes to define the parameters (Figure 7. Parameters)

Figure 6. General Properties

Figure 7. Parameters

Once the SAS program has been registered as a stored process it can be deployed as a Web service. This is done
using the SAS Web Service wizard from SAS Management Console. Access this wizard by right-clicking the stored
process and selecting Deploy As Web Service from the context menu:

Figure 8. Access 'Deploy As Web Service' Wizard

Applications DevelopmentSAS Global Forum 2011

5

Figure 9. Web Service Information

Figure 10. Web Service Keywords

Figure 11. Web Service Deployment

Figure 12. Web Service Deployed

After the Web service is deployed to the application server a confirmation dialog box will be displayed with the
endpoint URL for the newly created service (Figure 12. Web Service Deployed).

The Web Service Definition Language (WSDL) file can be accessed by adding “?wsdl” to the endpoint URL (Figure

13. WSDL File).

Hint: To copy this URL from the dialog box, use Ctrl-C from the keyboard.

Applications DevelopmentSAS Global Forum 2011

6

Figure 13. WSDL File

CUSTOMER UPDATE SERVICE

This service will be used to update the customer detail record. It should be capable of retrieving new customer
details, which then get updated in the underlying database. This service will also rescore the likelihood of churn
based on the new details received. Finally, this service will provide recommended promotions, which can be offered
to a customer to prevent churn.

The program below requires the following parameters to work correctly:

 _custID = Customer ID

 _custPhone, _custTitle, _custSegment, _custFirstName, _custLastName, _custAddress1,

_custCity, _custState, _custPostcode, _custPhone, _custEmail, _custGender, _custDoB,

_custTariff

/*

 Returns the data for a given table

*/

%macro updateCustomerDetails;

 /* update customer data set with new values */

 proc sql;

 update temp.customers

 set custTitle = "&_custTitle",

 custSegment = "&_custSegment",

 custFirstName = "&_custFirstName",

 custLastName = "&_custLastName",

 custAddress1 = "&_custAddress1",

 custCity = "&_custCity",

 custState = "&_custState",

 custPostcode = &_custPostcode,

 custPhone = "&_custPhone",

 custEmail = "&_custEmail",

 custGender = trim("&_custGender"),

 custDoB = input("&_custDoB", ddmmyy10.),

 custTariff = &_custTariff

 where custID = &_custID;

 quit;

 /* re-calculate the churn score */

 data data;

 set temp.customers;

 where custID = &_custID;

Applications DevelopmentSAS Global Forum 2011

7

 /* Replace churn score calculation with real SAS Enterprise Miner model: */

 custProb = ranuni(-1) * 100;

 if (custProb > 80) then do;

 custPromo1ID="TAR001"; custPromo1Desc="Any tariff Upgrade free for 1 month";

 custPromo2ID="FAM003"; custPromo2Desc="Family and Friends trial package free

for 3 months";

 end;

 else if (custProb > 60) then do;

 custPromo1ID="FAM002"; custPromo1Desc="Family and Friends trial package free

for 2 months";

 custPromo2ID="MIN001"; custPromo2Desc="100 free minutes call time to any

network each month";

 end;

 else do;

 custPromo1ID="MIN002"; custPromo1Desc="200 free minutes call time to any

network each month";

 custPromo2ID="HST004"; custPromo2Desc="Free handset upgrade and 500MB free

data per month";

 end;

 run;

%mend;

/* some basic parameter validation */

%macro validateParameters;

 %if not %symexist(_custID) %then %do;

 %global _custID;

 %let _custID=;

 %end;

 %if not %symexist(_custPhone) %then %do;

 %global _custPhone;

 %let _custPhone=;

 %end;

 %else %if not %symexist(_custID) or not %symexist(_custPhone) %then %do;

 data data;

 error = "1";

 message = "Parameter '_custID' or '_custPhone' is missing.";

 run;

 %end; %else %do;

 %updateCustomerDetails;

 %end;

%mend;

%validateParameters;

/* write out XML stream */

libname _WEBOUT xml;

data _WEBOUT.CALL_CENTER_WEB_SERVICE_OUTPUT;

 set data;

run;

Register this SAS program following the same steps described for the “Customer Detail Service”. The only difference
is the service name (Figure 14. Customer Update Service) and parameters used (Figure 15. Parameters).

Applications DevelopmentSAS Global Forum 2011

8

Figure 14. Customer Update Service

Figure 15. Parameters

BUILDING THE CALL CENTER INTERFACE

The technology used to build the user interface is Adobe Flex. Rich Internet Applications (RIA) are Web applications
that have the usability of desktop software and give users a more interactive and enriching experience. They are
deployable on all major browsers and operating systems, which removes the hassle of performing a client installation.
Most systems that run an RIA have Adobe Flash Player installed, which is a prerequisite to running a Flex
application.

Note: A zip file with code examples and the full application source code from this paper will also be available at

http://www.sascommunity.org/wiki/Building_Enterprise_Applications_using_SAS_real-time_services

The following diagram visualizes the Web service process.

Figure 16. Overview of the Web Service Process

The Adobe Flex client application communicates directly with the middle-tier Java code, making a standardized call
(SOAP) to the Web service. The middle tier then makes an Integrated Object Model (IOM) call to the SAS Application
Server and executes the stored process. The results are streamed back to the middle tier and are finally returned to
the client application.

CALLING A WEB SERVICE IN FLEX

Flex consists of two languages: MXML and ActionScript. MXML is an XML-based language, which incorporates many
built-in functions and is generally used to lay out the user interface. When compiled, each MXML tag is generated into
ActionScript. ActionScript is a powerful object-oriented programming language. This section of the paper provides a
brief overview of the important parts of the code that call the previously created Web service. A basic knowledge of
Flex programming is required for understanding the content of this section.

Applications DevelopmentSAS Global Forum 2011

http://www.sascommunity.org/wiki/Building_Enterprise_Applications_using_SAS_real-time_services

9

To call your Web service, use the <mx:WebService> tag. This tag requires the WSDL address

(http://localhost:8080/SASBIWS/services/customerDetailService?wsdl), the operation name

(customerDetailService), and any parameters (_custID, _custPhone) that you want to pass into the Web service.

Here is an example of how your Web service call should be set up in Flex:

<mx:WebService id="webService" showBusyCursor="true"

 wsdl="http://localhost:8080/SASBIWS/services/customerDetailService?wsdl">

 <mx:operation name="customerDetailService"

 resultFormat="object"

 result="onCustomerRecordRecieved(event);"

 fault="getFault(event);">

 <mx:request>

 <parameters>

 <_custID> {custID.toString()}</_custID>

 <_custPhone> {custPhone.toString()}</_custPhone>

 </parameters>

 </mx:request>

 </mx:operation>

</mx:WebService>

The only fields that are unfamiliar at this point should be in the <mx:operation name=""> tag, specifically

resultFormat, result, and fault. The resultFormat function lets the compiler know that the return type of the Web

service will be an object. The result function executes when the operation is completed, and the fault function

executes if any problems are encountered. Instead of specifying fix values for your parameters (for example,

<_custID>12</_custID>), you can use ActionScript to assign dynamic values using the following syntax: <_custID>

{custID.toString()}</_custID>.

To call a Web service, the application uses a sendWSRequest function. The Web service gets executed by calling the

send() function on the operation object as shown in the following code:

private function sendWSRequest(service:WebService, reqObj:Object):void {

 var operation:Operation = service.operations[0];

 // add the request object to the operation. The request object contains call parameters

 operation.request = reqObj;

 operation.send();

}

The onCustomerRecordRecieved function retrieves the results that are generated by the Web service and places

them into an ArrayCollection:

private function onCustomerRecordRecieved(evt:ResultEvent):void {

 //retrieve the SAS table name from the XML property file

 var drWS:XMLList = xmlProperties..service.(@name == "DETAILRECORD");

 var tableName:String = String(drWS[0].@outputTable);

 // do we have a result stream

 if (evt.result.Streams) {

 // create a new array collection using the ArrayUtil class

 var orArray:ArrayCollection = new

ArrayCollection(ArrayUtil.toArray(evt.result.Streams._WEBOUT.Value.TABLE[tableName].source));

 if (orArray.length == 0)

 orArray = new

ArrayCollection(ArrayUtil.toArray(evt.result.Streams._WEBOUT.Value.TABLE[tableName]));

 // if the array contains values use the field mappings to assign values

 if (orArray.length > 0) {

 var firstRow:Object = orArray[0];

 var fieldMappings:XMLList = drWS..field;

 loadFields(firstRow, fieldMappings);

 }else{

 Alert.show("Customer ID " + this.custID.text + " not found.");

 }

 }else{

 Alert.show("Customer ID " + this.custID.text + " not found.");

 }

}

Applications DevelopmentSAS Global Forum 2011

10

The preceding code snippet reads the SAS output table name from a property file, which configures the application.
This way you do not need to re-compile your application if the Web service output table changes. The application also

calls the loadFields function, which reads each customer record detail and assigns it to an input field.

Once all fields are loaded, the user interface shows the customer details:

The complete Flex code can be downloaded at
http://www.sascommunity.org/wiki/Building_Enterprise_Applications_using_SAS_real-time_services. This code also
produces an interactive bar chart, line plot, and other call center interface-related outputs. Figure 17 shows the final
call center application interface.

Figure 17. Final Call Center Application Interface

The application also provides the user with the capability to update the customer record. The updated fields can be

written back to the server by pressing the button. This will initiate a request to execute the

„customerUpdateService‟ Web service, which updates the SAS data set.

Field values are passed to the SAS Web service using a request object (reqObj):

Applications DevelopmentSAS Global Forum 2011

http://www.sascommunity.org/wiki/Building_Enterprise_Applications_using_SAS_real-time_services

11

private function updateCustByID(event:Event):void {

 var reqObj:Object = new Object();

 reqObj.parameters = {

 _custID: this.custID.text.toString(),

 _custTitle: this.custTitle.text.toString(),

 _custSegment: String(this.custSegment.selectedItem.@name),

 _custFirstName: this.custFirstName.text.toString(),

 _custMiddleName: this.custMiddleName.text.toString(),

 _custLastName: this.custLastName.text.toString(),

 _custAddress1: this.custAddress1.text.toString(),

 _custAddress2: this.custAddress2.text.toString(),

 _custCity: this.custCity.text.toString(),

 _custState: this.custState.text.toString(),

 _custPostcode: this.custPostcode.text.toString(),

 _custPhone: this.custPhone.text.toString(),

 _custEmail: this.custEmail.text.toString(),

 _custGender: this.custGender.selectedItem.toString(),

 _custDoB: dfShort.format(this.custDOB.selectedDate),

 _custTariff: String(this.custTariff.selectedItem.@name),

 _custComments: this.custComments.text.toString(),

 _custPromotion: this.custPromotion.text.toString()

 };

 // use our utility class to send the web service request

 sendWSRequest(urService, reqObj);

}

This service will re-calculate the recommended promotion based on the new information. For the purpose of this
paper, the customer churn probability is randomly generated (that is, replace this with a SAS® Enterprise Miner™

scoring model). Based on the churn probability, the new promotion offers are calculated. This prototype application
uses a simplified SAS code that needs to be updated in a production environment. See the “Customer Update
Service” above for more details.

GLOSSARY

 WSDL – The Web Services Description Language (WSDL) is an XML-based language that provides a

model for describing Web services. (http://en.wikipedia.org/wiki/Web_Services_Description_Language)

 SOA – Service-oriented architecture (SOA) is a flexible set of design principles used during the phases of

systems development and integration in computing. A system based on an SOA architecture will package
functionality as a suite of interoperable services that can be used within multiple separate systems from
several business domains. (http://en.wikipedia.org/wiki/Service-oriented_architecture)

 SOAP – SOAP, originally defined as Simple Object Access Protocol, is a protocol specification for

exchanging structured information in the implementation of Web services in computer networks. It relies on
Extensible Markup Language (XML) for its message format, and usually relies on other Application Layer
protocols, most notably Remote Procedure Call (RPC) and Hypertext Transfer Protocol (HTTP), for
message negotiation and transmission. (http://en.wikipedia.org/wiki/SOAP)

 IOM – The Integrated Object Model (IOM) in SAS Integration Technologies provides distributed object

interfaces to SAS software features. To call these interfaces, clients can use industry-standard languages,
programming tools, and communication protocols. The interfaces are built into SAS and are available to
clients whenever SAS is executed as an object server.
(http://support.sas.com/documentation/onlinedoc/inttech)

CONCLUSION

Using SAS BI Web service is an easy and convenient way to stream results from SAS analytics processes into
enterprise applications. Real-time services allow you to leverage the power of SAS across the enterprise and beyond,
while integrating the processes in your SOA.

Applications DevelopmentSAS Global Forum 2011

http://en.wikipedia.org/wiki/Web_Services_Description_Language
http://en.wikipedia.org/wiki/Service-oriented_architecture
http://en.wikipedia.org/wiki/SOAP
http://support.sas.com/documentation/onlinedoc/inttech

12

REFERENCES

Flynn, Joe. 2010. “Flex Your SAS
®
 Muscle.” Proceedings of the SAS Global Forum 2010 Conference. Cary, NC: SAS

Institute Inc.

Vincent, Stephen A. 2010. “SAS
®
 Application Messaging: How to Integrate Disparate Processes in Your Service-

Oriented Architecture.” Proceedings of the SAS Global Forum 2010 Conference. Cary, NC: SAS Institute Inc.

ACKNOWLEDGMENTS

I would like to thank Jeremy Rankcom for his help in reviewing this paper.

CONTACT INFORMATION

Your comments and questions are valued and encouraged. Contact the author at:

Name: Falko Schulz
Enterprise: SAS Institute Inc., Australia
Address: 1 Eagle St
City, State ZIP: Brisbane, QLD, 4001
Work Phone: 07-3233 320
E-mail: Falko.Schulz@sas.com
Web: http://www.sas.com

SAS and all other SAS Institute Inc. product or service names are registered trademarks or trademarks of SAS
Institute Inc. in the USA and other countries. ® indicates USA registration.

Other brand and product names are trademarks of their respective companies.

Applications DevelopmentSAS Global Forum 2011

http://www.sas.com/

	2011 Table of Contents

