
1

Paper 003-2011

Automatically Generating Highly Customized Excel® Reports with
SAS/Macro® and Integration Technologies (DDE)
Helen Fu, Meghal Parikh, Elayne Reiss, and Sandra Archer

University of Central Florida, Orlando, Florida

ABSTRACT
As a fast growing large public metropolitan research institution, the Office of University Analysis and Planning
Support at the University of Central Florida (UCF) is challenged with transforming very large data sets into
information that will support strategic planning and decision making. This paper describes a process that utilizes
SAS® macro language and integration technologies with Microsoft Excel®, to generate a series of highly customized
Excel reports in an automated approach.

This methodology allows SAS to process a data set of over 400,000 records, consolidate the data, open pre-
formatted Excel templates, and write the data to designated data ranges. The integration technology used, called
Dynamic Data Exchange (DDE), reduces report generating time by up to 90%, compared to prior methods that used
Excel PivotTables and manual copying and pasting of results, while improving report accuracy by reducing human
error. Additionally, SAS macro language enables programmers to customize the report to suit the needs of a variety
of end users.

INTRODUCTION
As a rapidly growing large public metropolitan research university, the largest public institution in Florida and the
second largest nationwide, the University of Central Florida (UCF) is committed to offering the best undergraduate
education in Florida. In order to better understand the dynamic marketplace of collegiate enrollment, UCF performs a
variety of analyses and produces many reports for institutional leadership.

For example, UCF uses the National Student Clearinghouse StudentTracker data system to track subsequent
enrollment of students who were admitted but not enrolled, as well as denied students. The data system provides
UCF with data records that describe subsequent terms of enrollment on all of the student records that are queried.
Generating useful reports out of this rich data source requires a process that takes into consideration several key
factors: the ability to process a large data set of more than 400,000 records and more than 300 variables, the ability
to generate similar reports without much repetitive effort, a quick turnaround time, and good integration with Microsoft
Excel products.

SAS is powerful software for large-scale data manipulation and processing. At UCF, senior management is often
provided analysis in Excel so that they get the flexibility of using the data and manipulating the charts. There are a
number of ways to export SAS data to Excel, including PROC EXPORT, ODS, ODBC, and OLE DB. Nevertheless,
these methods do not allow data to be loaded into a report format that was as highly customized to meet our needs.

Before using the SAS DDE technique, the data were compiled by VBA in Excel. The process was not only time-
consuming, but also error-prone. By using SAS macro language and Dynamic Data Exchange (DDE), our office was
able to process the data and make the data available on the web within 5 business days. In this paper, we will
concentrate on the design of the Excel templates and the SAS DDE technique.

DYNAMIC DATA EXCHANGE PROCESS OVERVIEW
Introduced in 1987, the Dynamic Data Exchange (DDE) protocol has been in use since Microsoft Windows® 2.0. It is
a data communication protocol which uses the Windows internal messaging layer for communicating and sharing
commands and data within, as well as among, different Windows applications. A prominent place where the DDE
communication protocol is utilized involves the copy, cut and paste functions in the Windows environment where
multiple applications “talk” to each other using the underlying protocol of DDE.

Newer technology such as ActiveX COM (Component Object Model) has replaced DDE functionality; however, some
applications still support the use of DDE as it provides easy communication from other applications including
Microsoft Excel and Word®. According to Koen Vyverman, DDE “allows a SAS session to take control of the Excel
application, and perform manipulation of cells, spreadsheets and entire workbooks just as if you were doing so
manually.” This technique is especially useful when one has multiple data sets for which the same analysis is
required and results should be presented through a consistent Excel template.

Applications DevelopmentSAS Global Forum 2011

Automatically Generating Highly Customized Excel Reports with SAS/Macro and Integration Technologies (DDE), continued

2

The DDE client/server model is presented in Figure 1.
The DDE communication process encompasses a
“DDE Client” and a “DDE Server”. Windows
applications such as Word or Excel may function as a
DDE server. A SAS program can operate as a DDE
client to send data and commands to any DDE server.

A DDE server application (like Excel) can be invoked
using the X command within SAS, which is serving as
the DDE client. The X command is a SAS-based
Windows Management command. It helps SAS
programmers perform Windows commands such as
opening or closing a file, or to launch an application
like Word or Excel. For example, this command can
be used to shut down the system from the SAS
environment; the command would be:

X C:\Windows\system32\shutdown.exe".

A DDE protocol uses a FILENAME statement to
initiate a client/server DDE link. This statement
defines the output location and helps issue
commands during the “conversation.” An argument
called ‘DDE Triplet’ is also issued with the filename.
The DDE triplet is application dependent and is
different for every application that is run.

DDE SERVER
Eg. Microsoft Excel

DDE Protocol

DDE CLIENT
Eg. SAS

DDE Client/Server Model

Figure 1: DDE Client/Server Model

The DDE triplet argument consists of the following:

1. Application – The executable filename of the server application, in this case Excel

2. Topic – Microsoft defines the topic as ‘System’ to enable SAS code to send commands to Excel. System is a
special topic name which helps the programmer to execute commands in the server application. By using
‘System' as a topic name a SAS programmer can use the INPUT statement for input from an application and
the PUT statement to issue commands to the server application from SAS.

3. Item – Typically the range of conversation (like specific cells in Excel) between SAS and the application

Each DDE conversation is restricted to the application and topic requested by the client at initiation. Once the
client/server link is established, the PUT statement may be used to send data and commands to Excel. For example,
the PUT statement may be used to execute Excel macro commands. ‘Close’ and ‘save as’ file commands in Excel
can also be controlled and executed using the PUT statement, giving the user complete control of the output in the
server application from the SAS environment itself. In the SAS code, the PUT statement is usually embedded in a null
data step.

DDE EXAMPLE WITH SYNTAX AND TECHNICAL DETAILS
To manually generate a report in Excel, an analyst takes the following steps: design the report template, prepare the
data in SAS, open Excel, enter the data into Excel, save the file, and then close Excel. The SAS DDE process follows
a similar procedure, except that the DDE process takes an additional step of initiating the link between the client and
server, as demonstrated in Figure 2.

Applications DevelopmentSAS Global Forum 2011

Automatically Generating Highly Customized Excel Reports with SAS/Macro and Integration Technologies (DDE), continued

3

Pre‐
formatted
Excel file

X CommandPROC Summary,
PROC SQL

Filename
statement with
DDE triplet

PUT statements
embedded in
Data null step

SAS Macro to rerun code for each college

Figure 2: Process Overview

Before designing a SAS DDE process similar to this one, an analyst needs to consider the trade-offs. A few questions
may be asked, to help with the decision. Does the process include a large number of similar reports that need to be
generated? Do the reports share the same or similar templates? Is the process is repetitive? Is the process going to
be useful in future analysis? Is the project long-term in nature? If the answers are ‘yes’ to some of the questions
above, the DDE process can be helpful.

The following sections provide a detailed description of the steps used to implement the process.

TEMPLATE DESIGN
Before coding the DDE process, Excel report templates must be designed.

An example of a DDE-based process used at the University of Central Florida is the National Student Clearinghouse
StudentTracker project. Every August, a report is created for each of the ten colleges at UCF. The process involves a
large number of reports, all sharing the same template. The project not only requires a quick turn-around time, but
also consistency and accuracy of data. Therefore, DDE process serves as a perfect tool for this particular project.

Figure 3 illustrates the first table of the template. This particular report is designed to study higher education re-
enrollment among baccalaureate and master’s graduates of a particular college. The DDE process automatically
writes data to the green shaded areas, while the cells in the orange shaded areas contain formulas that are

Applications DevelopmentSAS Global Forum 2011

Automatically Generating Highly Customized Excel Reports with SAS/Macro and Integration Technologies (DDE), continued

4

subsequently evaluated and completed. The L-shaped areas contain formulas, which automatically calculate the
subtotals and totals. The two rectangular shaped formula areas contain a concatenation of plain text and calculated
figures, serving as notes for the information in the tables above. This table helps to demonstrate the powerful
combination of SAS-driven DDE to process the heavier figures and the capability in Excel to create meticulously
spaced and formatted layouts, along with the calculation of consistently-used formulas.

Figure 3: DDE Report Template Design – Formula Writing

In addition to integrating formula calculations, Excel features conditional formatting that can be used to improve the
readability of the data tables. Figure 4 illustrates how conditional formatting is used in the template design.

In the template, columns A-C contain the major for UCF graduates, columns D-F contain a major track where
applicable, columns H-M display the number of students in each track, and among those graduates, the number of
those who re-enroll in higher education institutions within one year after graduation.

In order to increase the readability, the lines are gray/white shaded; in addition, there are borders to separate each
major. Therefore, the rows in the table may have four different statuses: white row without border, gray row without
border, white row with border, gray row without border. In order to automatically format the area based on the value
of the columns, four different values may be assigned to a row, and the conditional formatting in Excel is based on
the assigned value.

Column O decides the color shade, and is hard-coded. The gray shaded rows are assigned a value of 1, and the
white rows are assigned a value of 0.

Column P decides the border by using a formula. If the major in column A in the current row is different than the
previous row, then the row value is assigned 4; otherwise, the row value is assigned 2. The larger value represents
that there will be a border; while the smaller value represents that there will not be a border.

Column Q is the sum of column O and P, and serves as the rule value for conditional formatting. As shown in Figure
4, the possible values for column Q are 2, 3, 4, and 5, and each value represents the row format for columns A-M.

Applications DevelopmentSAS Global Forum 2011

Automatically Generating Highly Customized Excel Reports with SAS/Macro and Integration Technologies (DDE), continued

5

Figure 4: An Example of Conditional Formatting

USING SAS STEPS TO POPULATE THE EXCEL TEMPLATE
Once the Excel template is designed, the data is prepared in SAS. SAS is a powerful tool for data manipulation. SAS
procedures, such as PROC SQL or PROC SUMMARY, can assist with this process. When the data is ready, the
SAS code will start Excel, initiate the client/server DDE link, write data to the Excel sheets, and save and close the
file.

Start Excel

Running the code below with the appropriate pathname will launch Excel. From our own experience, we found that
SAS 9.1.3 or below only works with Excel 2003; SAS version 9.2 or above works with Excel 2007 or 2010.

 options noxwait noxsync obs=max;
X "'C:\Program Files\Microsoft Office\Office12\Excel.exe'";

The “nowait” option causes the system to automatically return to SAS after the command is executed; “nosync”
returns to the SAS system without closing the process generated by the X command; and the X statement submits a
command to the operating system.

Depending on the type of hardware and software environment, it may take a few seconds for Excel to launch. To
address this concern, SAS can ‘wait’ a few seconds, with the following:

 data _null_;
 X = sleep(5); /* SAS waits for 5 seconds */

run;

The code above allows the SAS system to stop for 5 seconds, wait for Excel to be fully launched, and run the rest of
the code.

Initiate Client/Server DDE Link

After Excel is launched, the link between the DDE client and DDE server needs to be established. The link is initiated
by means of a special form of SAS filename statement, the DDE triplet. Here, the server application is Excel, and the
topic is 'system'. The triplet allows the client application to send system-level commands to the server, therefore
allowing SAS to tell Excel what to do. In our example, "commands" is the file reference for the Excel system.

Applications DevelopmentSAS Global Forum 2011

Automatically Generating Highly Customized Excel Reports with SAS/Macro and Integration Technologies (DDE), continued

6

Syntax: filename <fileref> dde '<server app>|system';

Example: filename commands DDE 'Excel|SYSTEM';

Open Excel Template

Once Excel has been launched and the DDE client/server link established between SAS and Excel, commands may
be written from SAS to Excel through the fileref established in the DDE triplet. In our example, the fileref is
"commands." In the null data step, the PUT statement is used to send the file open command to the Excel system.

Syntax:
 data _null_;
 file <fileref>;
 put "[open(""<file path and name>"")]";
 run;

Example:
 data _null_;
 file commands;
 put "[open C:\template.xlsx"")]";

run;

Initiate Another Client/Server DDE Link

To write data from SAS to Excel, another DDE triplet is
written. Here, the server application is "Excel", the topic is
the desired sheet name, and the item is the data range to
which we would like to write data from SAS. In this
example, the file name is “template”, the sheet name is
"GradReport", and the data range is r8c4:r11c5.

Figure 5: Data Range

Syntax:
 filename <fileref> dde '<server app>|<topic>!<item>';

Example:
 filename mysheet DDE "Excel|[template.xlsx]GradReport!R8C4:R11C5" NOTAB LRECL=3000

The "notab" option prevents SAS from converting tabs in Excel to blanks. The "LRCL =" option specifies the record
length (in bytes). In our case, it was given a large value, so that all the actual length of our characters is less than the
value. With these two DDE triplets executed, “commands” now refers to the Excel system, and “mysheet” refers to
the cells in the specified sheet and tab.

Write information to Excel sheets

After establishing the connection between SAS and Excel, data are ready to be written. The code below uses a PUT
statement in a null data step to write data directly to the specific Excel worksheet cell range. In this example, "BS" is
associated with a backspace (-1), and "T" with a tab ('09'x is its hexadecimal code).

Syntax:

 data _NULL_;

 retain BS (-1) T '09'X;
 set <dataset>;
 file <fileref>;
 put
 <variable name1> T+BS
 <variable name2>;
 run;

Example:

 data _NULL_;

 retain BS (-1) T '09'X;
 set work.data;
 file mysheet
 put
 public T+BS
 private
 run;

Applications DevelopmentSAS Global Forum 2011

Automatically Generating Highly Customized Excel Reports with SAS/Macro and Integration Technologies (DDE), continued

7

Close Excel

In this step, the new file is generated and closed. If the file already exists, Excel will first ask the user whether to
overwrite the file.

Syntax:

 data _null_;
 file commands;
 put "[Save.as(""<file path\name>"")]";
 put "[File.Close()]";
 run;

Example:

 data _null_;
 file commands;
 put "[Save.as(""C:\report.xlsx"")]";
 put "[File.Close()]";
 run;

Results

Figure 6 illustrates the result for the spreadsheet presented in Figure 3. When SAS DDE writes the data to the
template, all the pre-existing data, formulas and cell formats on the template remain unchanged. The column width,
row height, data font and color are all kept the same as in the template. As soon as the data are written, all the
formulas on the template automatically evaluate. Sometimes, the length of the data or character may exceed the row
height or column width. It is important to check the final contents of the report to ensure that the results fit properly
within the template.

Figure 6: Result (1) - Template with Formula

Figure 7 illustrates the result of the conditionally formatted Excel template depicted in Figure 4. For example, column
A indicates that row 78 and 79 both address psychology majors, while row 80 addresses social sciences majors.
Therefore, based on the formulas, the values for cells Q78, Q79 and Q80 are 2, 3, and 4, respectively. Based on the
conditional formatting described in the process depicted by Figure 4, the background colors of the cells are white,
gray and white, and there is a cell border above row 80 to separate the different majors. Column O, P and Q, used
strictly for conditional formatting indicators, may be hidden in the final report before distribution.

Applications DevelopmentSAS Global Forum 2011

Automatically Generating Highly Customized Excel Reports with SAS/Macro and Integration Technologies (DDE), continued

8

Figure 7: Result (2) – Conditional Formatting

SAS Macro Language and SAS DDE

As discussed previously, one of the motivations for developing a SAS DDE process is that a large number of similar
reports need to be generated. This section gives an example on how SAS macro language is coded in conjunction
with SAS DDE to automatically generate several similar reports.

Suppose that the Excel template is designed as in Figure 4, and the data are summarized in a data set "temp_sum",
as shown in Figure 8. The data set contains the following information: student major, major track, number of
baccalaureate graduates, number of baccalaureate graduates who re-enroll within one year after graduation, number
of master’s graduates, and the number of master’s graduates who re-enroll within one year after graduation.

Applications DevelopmentSAS Global Forum 2011

Automatically Generating Highly Customized Excel Reports with SAS/Macro and Integration Technologies (DDE), continued

9

Figure 8: Example Data Set

In the following sample code, we can see the DDE code is called by the SAS macro procedure to produce multiple
reports, one for each college.

/*******Sample code to create multiple report using SAS DDE and MACRO*********/

%let AY = 2009; *specifying the year of report for global variable AY;

%let template="C:\SASGF\DDE\GradReport"; *specifying the directory path and file name
 for the Excel template;

%let output= C:\SASGF\DDE; *specifying the directory path where the output Excel
 reports will be stored;

libname DDEPaper 'C:\SASGF\DDE';

/*launch Microsoft Excel*/
options noxwait noxsync obs=max;
X "'C:\Program Files\Microsoft Office\Office11\Excel.exe'";

/*initiating client/server DDE link using the filename commands in the DDE Triplet*/
FILENAME commands DDE 'Excel|SYSTEM';

/*creating a macro named report which will be called for each college */
%macro report(college,title,filename);

 data _null_; *null data step to open pre-formatted Excel template;
 file commands;
 ddeopen="[open(""&template..xlsx"")]";
 PUT ddeopen;
 run;

 data Table_C; *data step to select data specific to this college;
 set DDEPaper.temp_sum;
 option missing=0;
 where College=&college.;
 run;

Applications DevelopmentSAS Global Forum 2011

Automatically Generating Highly Customized Excel Reports with SAS/Macro and Integration Technologies (DDE), continued

10

 *initiate DDE link to cells in the Excel template using file name mysheet;
 FILENAME mysheet DDE "Excel|[GradReport.xlsx]GOI!R59C1:R81C9" NOTAB LRECL=3000;

 data out_2; *null data step to write data into columns A, D, H, I;
 retain BS (-1) T '09'X;

 set Table_C;
 file mysheet;

 put Major T+BS T+BS T+BS
 Track T+BS T+BS T+BS T+BS

 B_Grad T+BS
 B_cont T+BS;
 run;

 *initiate DDE link to a different set of cells in the Excel template;
 FILENAME mysheet DDE "Excel|[GradReport.xlsx]GOI!R59C11:R81C12" NOTAB LRECL=3000;

 data out_3; *null data step to write data into columns H and I;
 retain BS (-1) T '09'X;
 set third;
 file mysheet;

 put M_Grad T+BS
 M_cont ;
 run;

 data _null_; *save the Excel file with the name of the college and year;
 file commands;

 put "[Save.as(""&output.\&filename.&AY"")]";
 put "[File.Close()]";*close Excel;
 run;

/*end the macro */
%mend report;

/*Call the SAS macro "report" for each college passing the parameters of college name,
report title and file name */
%report('COS','UCF Graduates Report - College of Sciences',GradReport_COS);
%report('COM','UCF Graduates Report - College of Medicine',GradReport_COM);
%report('CON','UCF Graduates Report - College of Nursing',GradReport_CON);
%report('EDUC','UCF Graduates Report - College of Education',GradReport_COE);
%report('UGST','UCF Graduates Report - Undergraduate Studies',GradReport_UGST);

CONCLUSION
Using the power of SAS macro language, the challenge for creating recurring, uniform Excel-based reports with
required multiple data sets and tables can be overcome. This paper demonstrated how a wide array of commands,
ranging from open and save functions, to writing data to specific cells in Excel can be performed with straightforward
DDE commands using PUT statements written in SAS data steps. Similarly, DDE can be used to pull data from
specific cells in Excel into the SAS system through INFILE and INPUT statements, or run more complex system
commands such as creating Excel tabs or calling VBA for Excel macros. In this example project presented in this
paper, analysts at the University of Central Florida are able to provide a series of highly customized Excel reports to
institutional leadership in a very quick timeframe. Through the use of SAS, analysts can focus on sharing and drawing
conclusions from the data, rather than spending an excessive amount of time exporting and formatting reports.

Applications DevelopmentSAS Global Forum 2011

Automatically Generating Highly Customized Excel Reports with SAS/Macro and Integration Technologies (DDE), continued

11

REFERENCES
• Chen, Chienchung. 2010. “Generating Reports With DDE and VBA, the Concept - Alternative to ODS to

Produce Complex Reports”. Proceedings of the SAS Global Forum 2010, Seattle, WA. Available at
http://support.sas.com/resources/papers/proceedings10/074-2010.pdf

• Derby, Nathaniel. 2007. “Revisiting DDE: An Updated Macro for Exporting SAS Data into Custom-Formatted
Excel Spreadsheets Part I - Usage and Examples”. Proceedings of the WUSS Fifteenth Annual Conference,
San Francisco, CA. Available at
http://www.wuss.org/proceedings07/DataPresentations&BusIntell/DPBI_Derby_RevisitingDDEI.pdf

• Helbers, Lawrence and Vinokurov, Alex. 2007. “SAS Output to Excel: DDE and Beyond”. Proceedings of the
Northeast SAS Users Group, Portland, ME. Available at
http://www.nesug.org/proceedings/nesug02/ad/ad007.pdf

• Li, M, Archer, S., Denslow, R. 2003. “Using DDE and SAS/MACRO® for Automated Excel Report
Consolidation and Generation”. Proceedings of the Southeast SAS Users Group, St. Pete Beach, FL..
Available at http://analytics.ncsu.edu/sesug/2003/DM08-Li.pdf

• SAS Institute, Inc. May 2010. SAS 9.2 Companion for Windows, Second Edition. Page 275 – 284. Cary, NC.
SAS Publishing.

• Symes, Rebecca. 2005. “Using DDE to connect SAS results with MS-Excel”. Proceedings of the Northeast
SAS Users Group, Baltimore, MD. Available at http://www.nesug.org/proceedings/nesug05/pos/pos15.pdf

• Vyverman , Koen. 2002. "Creating Custom Excel Workbooks from Base SAS with Dynamic Data Exchange:
a Complete Walkthrough." Proceedings of the 27th SAS Users Group International Conference, 2002.
Available at http://www2.sas.com/proceedings/sugi27/p190-27.pdf

CONTACT INFORMATION
Your comments and questions are valued and encouraged. Contact the authors at:

Helen Fu, Meghal Parikh, Elayne Reiss, and Sandra Archer
University of Central Florida
12424 Research Parkway, Suite 215
Orlando, FL 32826
Phone: (407)882-0285
Fax: (407)882-0288
uaps@ucf.edu
http://uaps.ucf.edu

SAS and all other SAS Institute Inc. product or service names are registered trademarks or trademarks of SAS
Institute Inc. in the USA and other countries. ® indicates USA registration.

Other brand and product names are trademarks of their respective companies.

Applications DevelopmentSAS Global Forum 2011

	2011 Table of Contents

