Paper 002-2011
Windows Application Using .NET and SAS® to Produce Custom Rater Reliability Reports

Sailesh Vezzu, Educational Testing Service, Princeton, NJ, USA

ABSTRACT

Some of the common measures used to monitor rater reliability of constructed response items include Percent Exact
Agreement, Percent Adjacent Agreement, Simple Kappa Coefficient, Weighted (Cicchetti-Allison, Fleiss-Cohen) Kappa
Coefficient, Pearson Correlation Coefficient, Mean Difference, Standardized Mean Difference, and Matched-Pair T-Test. This
paper discusses the development of a Windows application using Visual C#.NET and SAS® to calculate various measures of
rater reliability and produce custom reports. Users can select which measures to include in their reports and set threshold
values to flag items with low rater reliability values.

INTRODUCTION

In the Research and Development division at Educational Testing Service (ETS), | work on several projects, which require me
to calculate different measures of rater reliability in different ways. Depending on the purpose of the project, these measures
sometimes need to be calculated per each item across several raters, per each rater across several items, or per each scoring
session across all items and raters. In order to accommodate these scenarios, | built this application, which allows users to
enter several parameters and produce customized reports with different measures of rater reliability.

The first section of this paper will discuss different measures of rater reliability and how to compute those using SAS. The
second section of this paper will show how to build a Windows application using Visual C#.NET, get user input, and pass the
input into SAS as parameters.

Figure 1 below shows the structure of a sample input data set for this application. A typical input data set includes the name of
the item, the IDs of both rater 1 and rater 2, and the scores given by the raters. The data in this paper is for demonstration
purposes only and is not actual data.

™ VIEWTABLE: Sgf.Demo_data

itemMName raterlid rater2id scorel scorel ~
1 Item01 Rater01 Raters? 1 1
2 Item01 Rater01 Raters8 1 1
3 Item01 Rater01 Rater6? 1 1
4 Item(1 Rater01 Rater21 1 1
5 Item01 Rater01 Raterd3 2 2
B Item01 Rater02 Raters1 2 3
10926 | Item24 Raterd0 Raterg6 1 1
10927 | ltem24 Rater40 Rater88 1 1
10928 | ltem24 Rater40 Rater8s 2 2

Figure 1. Sample Input Data Set

| recommend running the FREQ procedure on all the discrete variables and the MEANS procedure on all the continuous
variables in the data set to check for missing and out of range values.

APP-FRIENDLY SAS CODING

To easily incorporate the SAS code into various applications, SAS code is organized into the following modules depending on
SAS procedures used to compute these measures:

To calculate means, standard deviations, absolute mean difference and standardized mean difference

To calculate simple Kappa Coefficient and (Cicchetti-Allison, Fleiss-Cohen) weighted Kappa Coefficient

To calculate matched pair t-value and the corresponding p-value

To calculate Percent Exact Agreement and Percent Adjacent Agreement

To calculate Pearson Correlation Coefficient

. To generate custom reports

All of these modules have an input data set and output data set as parameters. Any temporary data sets created during the
module will be deleted at the end of the module using the DATASETS procedure.

ocoupwdE

MODULE 1: MEANS, STANDARD DEVIATIONS, MEAN DIFFERENCES

PROC MEANS can be used to calculate all the means, standard deviations, absolute mean differences, and standardized
mean differences.

Absolute mean difference is the absolute value of the difference between the 2 scores, and the standardized mean difference
is the difference between the means expressed in terms of the pooled standard deviation.

%Macro get ns means diffs(indat, outdat, varl, var2, byvar);

proc means data=&indat. noprint;
var &varl. &var2. ;
by &byvar.;
output out=t 1 (drop= type freq)
n=N &varl. &var2. mean=Mean &varl. Mean &var2.
STD=SD &varl. SD &var2.;
run; - -

data &outdat.;

set t 1;
mnd &varl. &var2. = abs(Mean &varl. - Mean &var2.);
stdd &varl. &var2. = (Mean &var2. - Mean_&varl.)/(sqrt(((SD_&varl.**Z) +

(SD_&var2.**2))/2));
keep &byvar. N &varl. &var2. Mean &varl. Mean &var2. SD &varl. SD_&var2.
mnd &varl. &var?2. stdd &varl. &var2;

run;

proc datasets nolist;
delete t 1;
run; quit;

%$Mend;

As you can see in the code above, module 1 has input and output data sets as parameters. Temporary data set “t_1" created
during the module will be deleted at the end of the module. All of the modules used in this application expect the input data set
to be sorted by the “byvar”. This is more efficient than sorting the input data set in each module. My personal preference in
writing app-friendly SAS code is to never alter or even sort the input data set inside a module. If for some reason | have to
make changes to the input data set, | create a separate temporary work data set and make changes to it. Doing this can help
avoid unnecessary hassles when working with several modules within the same application.

MODULE 2: KAPPA COEFFICIENTS

Kappa coefficients are measures of association between score 1 and score 2 after correcting for chance agreement rates.
Kappa is a more appropriate statistic to use when you want to compare reliability of items with different scales.

Agree option in PROC FREQ will produce the simple or unweighted Kappa coefficient and the Cicchetti-Allison or linear
weighted Kappa coefficient. When (wt=fc) is used next to the Agree option in PROC FREQ, it produces the simple Kappa
coefficient and the Fleiss-Cohen or Quadratic weighted Kappa coefficient.

Kappa coefficients for balanced data

When there is an equal number of rows and columns in a crosstab between scorel and score 2, as shown in Figure 2 below,
you have a simple case of balanced data. In this case, SAS computes Kappa coefficients without any problems.

Scorel * Score2
Counts 1 2 3 4 Total
1 264 24 4 0 292
2 10 69 12 1 a2
3 3 10 26 5 44
4q 1 1 6 5 13
Total 278 104 48 11 441

Figure 2. Balanced Data Example

%Macro get kappas (indat, outdat, varl, var2, byvar);

proc freq data = &indat.;
tables &varl. * &var2. / norow nocol nopercent nocum agree;
output out = kappas statsl kappa wtkap;

run;

proc freq data = &indat.;
tables &varl. * &var2. / norow nocol nopercent nocum agree (wt=fc);

output out = kappas stats2 kappa wtkap;
run;

%$Mend;

The first version of the PROC FREQ above produces the simple and the linear weighted Kappa coefficients. The second
version of the PROC FREQ above produced the simple and the quadratic weighted Kappa coefficients.

Kappa coefficients for unbalanced data

When there is an unequal number of rows and columns in a crosstab between scorel and score2, as shown in Figure 3,
PROC FREQ doesn’t produce the agree statistics.

Scorel * Score2
Counts 1 2 3 Total
1 264 24 4 292
2 10 o9 12 01
3 3 10 26 39
4q 1 1 o]
Total 278 104 48 430

Figure 3. Unbalanced Data Example

In the above crosstab between scorel and score2, there is a total of 8 observations where scorel equals 4, while there are 0
observations where score2 equals 4, hence resulting in a case of unbalanced data. The SAS support Web site published a
solution for this by adding a dummy observation where score2 equals 4 and assigning it a weight of 0, while giving a weight of
1 for the rest of the observations. This solution is easy and simple to apply when you know in advance where the dummy
observation needs to be added to your data. When you are running your program on several items, you don’t want to manually
check for all items to see if you have unbalanced data. This solution of having a weight of 0 is only possible with SAS versions

9 or later.

SAS Global Forum 2011 Applications Development

One other possible solution to this problem is to add a set of dummy observations for all possible cells in the crosstab to cover
all bases instead of checking the crosstab each time to see how your data is unbalanced.

%Macro get kappas(indat, outdat, varl, var2, byvar);
data for dummy (drop=i j);

do i =1 to 10 by 1;
do j =1 to 10 by 1;

&varl = 1;
&varz = j;
flag = "dummy";
output;
end;
end;
run;

data score;
set &indat.;

flag = "score";

if &byvar. = "&tmp by var.";
run; o
data t 1;

set score dummy;
run;

proc freq data = t 1;
tables flag * &varl. * &var2. / norow nocol nopercent nocum agree;
output out = kappas statsl kappa wtkap;

run;

%$Mend;

The snippets of code above show how to create a data set with 100 dummy observations, append the dummy data to the
original data set, and use a flag variable to distinguish scoring observations from the dummy observations. Using the flag

variable in the tables statement would produce Kappa statistics for each value of flag "score ” and “dummy” and across all
observations. To get the desired Kappa statistics, you just need to filter the output data set for flag="score”.

MODULE 3: MATCHED PAIR T-TEST

A t-test is a commonly used hypothesis test for determining differences between 2 groups. Since the data here consists of
pairs of scores for each paper, a matched pair t-test can be used to test for significant differences between 2 groups. The
paired statement in the TTEST procedure produces the Matched Pair t-value and the corresponding p-value. A p-value of 0.05
or lower means that the 2 groups are significantly different at an Alpha level of 0.05.

%macro get mptvalue (indat, outdat, varl, var2, byvar);
proc ttest data =&indat.;

paired &varl. * &var2.;

by &byvar.;

ods output ttests = t 1 (keep=&byvar. tvalue probt);

run;

$mend;

MODULE 4: PERCENT EXACT AND ADJACENT AGREEMENTS

To understand Percent Exact Agreement and Percent Adjacent Agreement, please see the crosstabs below in Figure 4 and
Figure 5.

Scorel * Score2 Scorel * Score?

Counts 1 2 3 4 Total Percents 1 2 3 4 Total
1 264 24 4 1] 202 1 59.9% 5.4% 0.9% 0.0% 66.2%

2 10 69 12 1 92 2 2.3% 15.6% 2.7% 0.2% 20.9%

3 3 10 26 5 44 3 0.7% 2.3% 5.9% 1.1% 10.0%

4 1 1 6 g 13 4 0.2% 0.2% 1.4% 1.1% 2.9%
Total 278 104 48 11 441 Total 63.0% 23.6% | 10.9% 2.5% 100%

Figure 4. Crosstab of scorel * score2: Counts Figure 5. Crosstab of scorel * score2: Percents

Percent Exact Agreement is the sum of all percents in red on the diagonal from Figure 5. Percent Adjacent Agreement is the
sum of all percents in red and green from Figure 5. To calculate these measures in SAS, get the absolute difference between
scorel and score2, and then produce a frequency distribution of the difference variable. The percent of O differences is the
Percent Exact Agreement, and the cumulative percent of 0s and 1s is the Percent Adjacent Agreement.

%Macro get agree 0 adj 1(indat, outdat, varl, var2, byvar);

data t 1;

set &indat.;

ad &varl. &var2. = abs(&varl. - &var2.);
run; N B

proc freq data = t 1;
tables ad &varl. &var2./out = t 2 outcum;
by &byvar.;

run;

data t 3 (rename=(CUM PCT=agr_ &varl. &var2.));
set t 2;
if ad:&varl._&varZ. = 0;
keep &byvar. cum pct;

run; B

data t 4 (rename=(CUM PCT=adjl &varl. &var2.));

set t 27
if ad &varl. &var2. = 1;
keep &byvar. cum pct;
run;
%$Mend;

MODULE 5: PEARSON CORRELATION COEFFICIENT

Pearson Correlation Coefficient is another measure of association between scorel and score2, which can easily be produced
using PROC CORR in SAS.

%Macro get correl (indat, outdat, varl, var2, byvar);
proc corr data=&indat. noprint outp=t 1 vardef=n;
var &varl. &var2.;
by &byvar.;
run;

$Mend;

MODULE 6: GENERATE CUSTOM REPORTS

Module 6 shows how to generate custom reports with only the measures specified by the user and flag cases with reliability
values lower than the threshold values set by the user. In the next section of this paper, | will demonstrate how to design a
Windows form and get input from the user. For now, assume that user input is available in the form of macro variables.

$let variablel = scorel;
%let variable2?2 = score2;

SAS Global Forum 2011 Applications Development

$let prt means sds = Yes; /* whether or not to print in the output file */
let prt ckappa = Yes;
%let prt fkappa = No;

$let kappa threshold = 0.60; /* threshold values */
%let ckappa threshold = 0.70;

%let fkappa threshold = 0.75;

%let pea threshold = 60;

slet paa threshold = 75;

To highlight the stats with reliability lower than the threshold values set by the user, use PROC FORMAT to define formats.

Proc format;

value ckap flags low - < &ckappa threshold. ='graybb';
value fkap flags low - < &fkappa threshold. ='graybb';
value pea flags low - < &pea threshold. ='graybb';

run;

PROC REPORT, along with ODS TAGSET EXCELXP, can be used to generate output files in XML format which can easily be
saved as Excel files.

%macro gen report (outdat, fl, fn, ttl, varl, var2, byvar);
/*&fl. and &fn. are macro variables containing the output file location and name*/
ods tagsets.Excelxp style=printer file = "&fl.&fn.";
ods tagsets.Excelxp options
(embedded titles='yes'
embedded footnotes='yes'

sheet name ="&varl.&var2."
zoom = '90'
Frozen Headers = '5'

)i
proc report data = pro to rep nowd split= '~' style=[just=center];

columns

(&byvar.)

("&varl. by &var2."
("N" N_&varl. &var2.)

%if &prt ckappa. = Yes %then %do;
LWKap &varl. &var2.

%end;

%if &prt fkappa. = Yes %then %do;
QWKap_ &varl. &var2.

%end;

%if &prt ckappa. = Yes %then %do;
define LWKap_ &varl. &var2. / analysis mean "Linear wtd ~ kappa" center
style={background=ckap flags.};

%end;

%if &prt fkappa. = Yes %then %do;
define QWKap_ &varl. &var2. / analysis mean "Quad wtd ~ kappa" center
style={background=fkap flags.};

send;

run;
ods tagsets.Excelxp close;

$mend;

%if statements, along with the appropriate macro variables, can be used to control what is being printed in the output file as
shown above. Also, %if statements can be used to control which define statements get submitted.

6

SAS Global Forum 2011 Applications Developmen

RUNNING SAS CODE FROM VISUAL C#.NET
In this section, | will discuss how to design a Windows form using Visual C#.NET, get input from the user and pass the input to

SAS, and call SAS programs from Visual C#.NET using various parameters received from the user through this Windows
form.

DESIGNING A WINDOWS FORM

Open Visual Studio 2008 and create a new project. Select Visual C# and Windows application when creating this new project.
You will then see the Visual Studio 2008 interface to design a Windows form, as shown in Figure 6 below.

* Demo - Microsoft Visual Studio

File Edit ‘“iew Project Buld Debug Data Format Tools Test Analyze ‘Window Help
AR R N - N e e - D P R 1. - [13 G =R
S & S| L TR o gl | A P Loge e 0 B | & 41 gt st | [H[ELL G S S
Toolbox > Ex m‘forml.csibesign]ﬂ v X | Properties -~ 3 X
#all Windows Forms - | Form1 System.Windows.Forms.Form -
/= Common Controls g
R Pointer j
Button B Accessibility Rad
CheckBox AccessibleDescription
87 CheckedListBox AccessibleName
ey AccessibleRole Default
ComboBox B Appearance
T DateTimePicker BackColor [control
A Label = BackgroundImage |:| (none)
A LinkLabel BackgroundImageLayout Tile
£ ListBox Cursor Default
e Font Microsoft Sans Serif, 8.25pt
e LERE] ForeColor Il cControlText
-] MaskedTextBox FormBorderStyle Sizable
EE MonthCalendar RightToLeft Mo
E NotifyIcon RightToLeftLayout False
[£3 NumericUpDown Lefo o= :"I"ml
=1 o . | seiaitCursor alse
| PictureBox e
&) ProgressBar AllowDrop False .
® RadioButton AutoValidate EnablePreventFocusChange
a% RichTextBox ContextMenuStrip {none)
[abl] TextBox DoubleBuffered False
§~__—I ToolTip Enabled True
S e] ImeMode MNoControl
== B Data
53 webBrowser (ApplicationSettings)
= Containers (DataBindings)
R Pointer Tag
& FlowLayoutPanel B Design
[*"] GroupBox {Name) Form1
7] Panel — — = Language (Default)
Output v 3 Xx Localizable False
[T splitContainer ' R i s B
[TabControl Show output from: = LB &) 2 = | [3] E s
TableLayoutPanel Causesvalidation True
Menus & Toolbars El Lavaut &
R Pointer Accessibility
[¥| ContextMenuStrip
E MenuStrip J
| Statusstrip @ “_"a Error List I [Z] Output lmFind Symbol Results |@Snlution Explorer |§Pr0perties l
Ready 15, 15 I 468x413

Figure 6. Designing a Windows form

On the left hand side of the screen, you will see common controls which can be dragged and dropped onto the blank Windows
form. On the right hand side of the screen, you will see properties of the selected object. Start by dragging and dropping a
textbox onto the form. As soon as you click on the textbox to select it, the properties windows on the right hand side will show
the default properties of this textbox. You can easily rename it, change the size, add a default text, etc. by changing the
properties window on the right. You can also drag and drop buttons to the form. You can assign a method to the event “button
click”, by double clicking on the button. Double clicking a button in this interface will cause Visual C#.NET to create a method
and associate it with that button click.

SAS Global Forum 2011 Applications Development

To design a frontend (Windows form) for the rater reliability application, drag and drop a few labels, checkboxes, textboxes,
and buttons to your form. Once you have these controls on your Windows form, rename them, resize them, assign default
properties, and arrange them nicely on the form by changing their properties on the right hand side of the screen. Figure 7
shows some default threshold values for the flags in the form, which a user can change before clicking the submit button.

7« RaterRelApp - Microsoft Visual Studio

Fle Edt View Project Buld Debug Data Took Test Analyze Window Help
- 05 | % a9 - - -] b Debug - Any CPU - % 136 MR Bec !N =R
e S I e A B sae 2 $ &1 [=
Toolbox > B X _ Form1.Designer.cs | Formi.cs ' Forml.cs [Design]| ~ X | Properties > 2 Xx
All Windows Forms %) | Form1 System.Windows.Forms.Form <
= Common Controls S — — =
£ o =
[£ RaterRel s [E s B
Button |B Accessibility ~
(zt) (=] bil -
s AccessibleDescripti
CheckBox Select the sas dataset to run rater reliabilties nz:zz:ue,«:.f:p 0.
il | e | AccessbleRole Default
ComboBox |8 Appearance
T DateTimePicker BackColor [control
A Label 3 Backgroundmage [(none)
A Linkiabel Enter Variable Name for score 1 [1l Backgroundimaget ayc Tle
e | Cursor Default
=3 ListBox I 3 -
STpa : @ Font Microsoft Sans Serf, 8.2!
337 Listview Enter Variable Name for Score 2 T B oot =
; ; yle Sizable
{72! MonthCalendar Eler CreE Vet RightToLeft No
=1 Notifylcon Enter Title1 ‘ RightToleftLayout False
[£7] NumericUpDowin | Text RalterReI
UseWaitCursor False
Al PictureBox z 2
& Select Measures to he included in the report |8 Behavior
i e=tal Alowdrop False
@ RadioButton Enter Threshold Values i cusChar =
&= oo -
22 RichTextBox ContextMenustrip (none)
Gl Tousos Means. SDs Kappa DoubleBuffered False
. ToolTip Absolute Mean Difference Linear Weighted Kappa Enabled True
= 5))) ImeMode NoControl
i Treeview Standardized Mean Difference Quad Weighted Kappa. & pata
(53 webB : | e
& we ot Matched Pair T-Test % Exact Agreement |B (ApplicationSettings)
/= Containers i |@ (DataBindings)
R Pointer % Adjacent Agreement | Tag
== FlowLayoutPanel Pearson Corelation |8 Design
(] GroupBox (Name) Form1
[pare loomoe Gota)
N s Localizable False
[0 splitcContainer o i
[TabControl 18 Focus
ableLayoutPanel % | Cousesvalidation True
BL t
nus & Toolbars OutpUE v I x Yo .
R Pointer = . ; = —
; utput from: 2| =[5
5| ContextMenustrip Saiatio e S L= TThe text associated with the contral.
2 Menustrip
L Statusstrip 5| [Error st (5] Outiut [Find Syrmbol Resuls [CJ5oluton Explorer | saProperties |
Read: 4
by o |

Figure 7. Windows form used in our application

Once you double click the “Browse” button in the interface, Visual C#.NET will create a blank method in its code window. Then
you just have to write the code to open and select the input data set.

private void browsel Click(object sender, EventArgs e)

{
OpenFileDialog fdl = new OpenFileDialog();
fdl.Title = "Select sas dataset";
fdl.Filter = "sas datasets (*.sas7bdat)|*.sas7bdat|All files (*.*) |*.*";
fdl.FilterIndex = 1;
if (fdl.ShowDialog() == DialogResult.OK)
{
sasds_tbl.Text = fdl.FileName;
}
}

The Visual C# code shown above creates a new file dialog window, asks the user to select a SAS data set, and sets the
default filter for the file dialog window to “.sas7bdat” files. Once the user selects the appropriate input file, the filename is
written in the textbox shown next to the “Browse” button. Once you double click the submit button, Visual C#.NET creates a
blank method in the code window. Then you can write the code to get all the input from the user and submit the SAS modules
with appropriate parameters.

GETTING USER INPUT

Figure 8 below shows a screenshot of the Windows application in action (running), where the user entered the necessary
input.

SAS Global Forum 2011 Applications Development

ol RaterRel

Select the sas dataset to run rater reliabilties

|C:\SX\/BBDD\raterrel\testing\sgf_demo1.Sas?bdat | [Browse
Enter Wariahle MName for score 1 |Soore1 |

Enter “ariable Mame for Score 2 hcomE |

Enter Grouping Yariable |ItemName |

Enter Title1 |SGFDewm:RmerRammmms

Select Measures to be included in the report

Enter Threshold Walues

Means, 505 Kappa
Ahsolute hMean Difference Linear¥Weighted Kappa. @
Standardized Mean Difference Cuad Weighted Kappa @
tatched Pair T-Test % Exact Agreement

% Adjacent Agreement

Fearson Correlation

=
o
=

Figure 8. Windows application in action

The user of this application picks the SAS data set, enters variable names, picks the statistics to be printed in the output file,

changes the threshold values if needed, and clicks the submit button. All the input that the user entered in this form is gathered
and read as C# string variables.

private void submit button Click(object sender, EventArgs e)
{
// reading textboxes
string input sas file path name = sasds_tbl.Text.ToString();
string varl = varl tb.Text.ToString();
string var2 = var2 tb.Text.ToString();

// reading checkboxes input
if (ckappa cb.Checked == true) ckappa = "Yes";
if (fkappa cb.Checked == true) fkappa "Yes";

// reading threshold values
string ckap thvalue = ckap th.Text.ToString();
string fkap thvalue = fkap th.Text.ToString();

}

Now that you have all the input from the user in the form of C# string variables, you have to pass them onto SAS and submit
the SAS program.

SUBMITTING SAS CODE FROM VISUAL C#.NET

To work with SAS from Visual C#.NET, you need to add SAS references. To do this, open the solution explorer in Visual
Studio, right click on “references” and choose “add reference”. Add the SAS Workspace Manager reference on the COM tab.

Adding this reference will allow Visual C#.NET to communicate with SAS without actually opening the SAS environment in
Windows.

SAS Global Forum 2011 Applications Development

Add the “using statements” in C# code for convenience.

using SAS;
using SASWorkspaceManager;

Define a new StringBuilder “sascode” in C# and append all the SAS code you wish to submit to that string.

private void submit button Click(object sender, EventArgs e)

{

StringBuilder sascode = new StringBuilder();

sascode.Append ("%let input directory =" + input directory + ";");
sascode.Append ("$let variablel = " + varl + ";");

sascode.Append ("$let variable2 = " + var2 + ";");

sascode.Append ("$let prt ckappa = " + ckappa + ";");

sascode.Append ("%let prt fkappa " + fkappa + ";");

sascode.Append ("%let ckappa threshold = " + ckap thvalue + ";");
sascode.Append ("$let fkappa threshold = " + fkap thvalue + ";");

}

Now that you have all the input from the user assigned to global parameters in SAS, the next step is to submit the SAS
program calling the modules with the necessary parameters. To do this, simply append the location of the SAS program calling
the macros to the “sascode” with a %inc statement.

private void submit button Click(object sender, EventArgs e)

{

sascode.Append ("%inc 'C:\\SXV6600\\raterrel\\eval net.sas';");

To submit the SAS code you appended to “sascode”, create a new instance of the SAS workspace and submit the “sascode”
through the language service.
{

WorkspaceManager wsm = new WorkspaceManager () ;

Workspace sasworkspace = Workspace)wsm.Workspaces.CreateWorkspaceByServer ("",
SASWorkspaceManager.Visibility.VisibilityProcess, null, "", "", out errorMessage);
ILanguageService langservice = sasworkspace.lLanguageService;

langservice.Submit (sascode.ToString());

}

Figure 9 below shows the output XML file that is created, which can easily be saved as an Excel file.

10

A B E o E E G H 1] K k M N o} P
1 SGF Demo:
2
3 scorel by scorel
4 N scorel scorel stats

Linear
sample Abs mean| std Paired P Simple wid |Quad wtd % Yo adj

5 | ItemName size mean sd mean sd diff diff tValue | Value kappa | kappa kappa agree agree
B Ttem01 448 137 0.58 146 0.63 0.09 0.15 469 0 0.68 071 0.75 8393 9911 0.77
7 Ttem(2 437 141 0.69 139 0.67 0.03 -0.04 213 0341 0.88 0.91 093 9451 LT7 093
a Ttem03 477 179 0. 1.85 098 0.05 0.0 -2.73 0.0066 0.75 0.82 0.89 83.86 98.95 0.
9 Trem{<4 449 159 0.74 1.67 0.8 0.08 L1 -3.24 0.0013 0.63 0.7 0.77 7795 98 0.77
10 Ttem{5 455 161 0.57 1.63 0.58 0.01 0.02 -128 0.2012 0.91 092 0.93 95.16 100 093
11 TtemO6 454 1.69 094 17 094 0.01 0.01 -1 0317 097 097 0.97 9846 98.68 097
12 Ttem07 457 232 0.69 2.35 0.67 0.02 0.04 151 0.1309 0.82 0B84 0.87 8906 99.78 0.88
i i Ttem08 453 13 06 132 0.61 0.02 0.04 -158 01139 0.84 0.86 0.88 93.82 9912 0.83
14 Trem{9 443 1.66 0.69 1.66 071 o 0.01 021 0.8333 0.74 0.76 0.79 Ba.42 98 42 0.79
15 Item10 474 21 0.69 213 0.69 0.03 0.04 262 0.0092 0.92 0.93 054 95.36 99.79 054
16 Ttemii 449 192 0.85 1.93 0.84 0.01 0.01 -0.38 0.7059 0.84 0.87 09 8931 98.89 09
17 Ttemi2 480 261 0.78 2.63 078 0.02 0.03 -1.61 0.1087 0.88 0.9 092 92.71 99.17 0.92
i8 Ttem13 449 114 0.4 1.15 042 0.02 0.04 13 0.194 0.76 0.78 031 94388 9055 081
19 Tremid 464 161 0.6 164 0.59 0.03 0.05 -1.73 0.0851 0.78 0.79 0.82 87.72 100 0.82
20 Ttemis 450 149 07 153 073 0.04 0.06 -2.63 0.008% 0.82 085 0.85 2022 9933 0.89
21 Ttemi6 463 196 0.55 194 0.55 0.02 -0.04 155 01229 0.81 0.82 0.85 9093 100 0.85
22 Ttemi7 457 205 092 207 093 0.02 0.02 -0.64 0.5251 071 0.79 0.84 B2.06 97.16 0.83
23 Itemi1B 484 269 0.88 272 0.9 0.04 0.04 -12 0.2509 054 064 0.74 686 9731 0.74
24 Ttemid 448 233 0.84 2.35 0.83 0.02 0.03 -1.46 0.1453 0.84 0.88 091 90.63 9888 091
25 Ttem20 456 192 0.56 192 0.64 0 0.01 019 0.8529 0.56 0.59 062 76.54 9934 0.65
26 Ttem21 446 208 1 209 101 0.01 0.01 -0.65 0517 0.92 094 0.96 9395 9055 0.96
27 Ttem22 451 0.79 212 0.76 0.02 0.03 -0.98 0.3296 0.6 0.68 077 75.83 98.67 0.77
28 Item23 443 102 236 1.08 0.01 .01 -0.51 06122 74 0.83 08 80.81 991 0.
29 Trem24 441 0.79 153 0.79 0.03 0.04 -1.32 0.1862 0.67 0.73 08 8254 97.73 08

Figure 9. Output file

The grey cells in the above output indicate the reliability values lower than the threshold levels set by the user.

VIEWING SAS LOG AND LISTING

You can use Message Boxes in Visual C#.NET to ask the user if he or she wants to view the SAS log and listing.

View SAS L X View SAS Listing X
_? / View SAS Log? _? / View SAS Listing?
| Ves I [No J [Yes J [No J
Figure 10. View SAS Log? Figure 11. View SAS Listing?

If the user clicked yes, you can create a new form, then add a rich textbox to display the SAS log and/or listing.
private void submit button Click(object sender, EventArgs e)

{
if (MessageBox.Show ("View SAS Log?", "View SAS Log",
MessageBoxButtons.YesNo, MessageBoxIcon.Question) == DialogResult.Yes)
{

string saslog = langservice.FlushLog(10000000) .Replace("/£f", "");
RichTextBox rtb = new RichTextBox();

rtb.Size = new System.Drawing.Size (895, 545);

Form £2 = new Form();

f2.Text = "SAS Log";

f2.ClientSize = new System.Drawing.Size (900, 550);
f2.Controls.Add (rtb);

11

SAS Global Forum 2011

rtb.Text =
£2.Show () ;
}

saslog;

//To flush sas listing use this

if

{

string saslisting
RichTextBox rtb2

rtb2.Size =
Form f3 =
£f3.Text

f3.ClientSize =

MessageBoxIcon.Question)

f3.Controls.Add (rtb2);

rtb2.Text =
£3.Show () ;

% 5AS Log,

1 The §45 System 13:55 Tuesday, February 15, 2011
NOTE: Copyright (c) 2002-2008 by SAS Institute Inc., Cary, NC, US4
NOTE: SAS [1) Propretary Software 9.2 (TS 2Mi)

Licerred to CSC/EDUCATIONAL TESTING SERVICE. Site 7000E807

TE: This session is executing on the XP_PRO- platfam

NOTE: SAS Initislization used (T otal process time)

realtine
cpu time: 0.00 seconds
1 Zitinpul_diectory =CASKVEEDY aterrelhlesting.Zlet inpul_dataset = sof_demo? et
1 path =
1 | CASRVEBDDYatereiMesting! let tile_1 = SGF Demo: Rater Reliabilties:Zlet
1 pi_means_sds = Yes:¥let prt_sbsmeandit = Yes %let pri_stdmeandif = Yes; it
1 Ipimptvalue pit_kappa = Yes:let pit_ckappa = Yes et prt_fkappa = Yes:
1 e pi_pea= paa = Yes et pit_po = DED:
1 et ckappa t B5:%let lkanpa_thizshol = 70let

:%let peor_threshold = 0.70.Zin
43 +aplions ps=1201s = 120
50 +ods nopiitle;
51 il
52«
53 +ibname inp "Sinpul_directory"
NOTE: Libref NP was successiully assianed as follows:
ngine: 3
Physical Name; C:ASHYE600N atereltesting
54 +dalafor_input,
55 +iength thyvar, $30.;
56 +setinpinput dataset;
57 +un:

NOTE: There were 20000 observalions read from the deta set INF.SGF_DEMO1
NOTE: The data set WORK.FOR_INFUT has 20000 abservations and 5 variables.
NOTE: DATA statement used [T ofal process tme]

realtine .28 seconds
cpu time 0.01 seconds

heans, 8Ds

Absolute hMean Difference
Standardized Mean Difference
Matched Pair T-Test

Kappa
Lineareighted Kappa
Quad Weighted Kappa

% ExactAgreement

% Adjacent Agrearment

Fearsan Correlation

EfteT ThrEsnom Ve

saslisting;

% 5AS Listing

(MessageBox.Show ("View SAS Listing?",
MessageBoxButtons.YesNo,

"View SAS Listing",
== DialogResult.Yes)

langservice.FlushList (100000000) .Replace("f", "
new RichTextBox();
new System.Drawing.Size (895,
new Form();
"SAS Listing";
new System.Drawing.Size (900,

545) ;

550) ;

13:55 Tuesday, Februaiy 15,2011 1

ltem Cumulative, Cumulative
Name Frequency Percert Frequency Percent
flem0l 1031 516 1031 516
lleml2 97 434 20i8 1009

femd3 70 485 2938 1434

femd4 G765 488 3954 1982

femd5 1023 512 4387 2434

femDS 987 43¢ 5974 297

femd7 ME 473 B30 3480

femd3 988 43¢ 7908 3954

temd3 M6 473 9854 4427

om0 992 435 9345 4923

femll 975 4B 1082 5402

femlz 958 473 11782 5840

feml3 985 478 127N B3B3

feml4 1034 617 13771 6886

feml5 1038 519 14809 7405

ieml 1040 E20 15843 7935

feml7 1083 532 18912 8456

ieml8 1042 B2 17954 8977

ieml3 1084 632 19018 9509

fem20 982 431 20000 100.00

Itemd1 13:55 Tuesday, Februan 15,2011 2
Table 1 of scorel by score?
Contraling for flag=durriy
scorel score?
Frequency,

Applications Developmen

")

&

Figure 12. Viewing SAS Log and Listing

CONCLUSION

Applying the same principle used in this paper, SAS and Visual C#.NET can be used to build Windows and Web applications
for doing data analysis and producing custom reports. SAS is a great tool for doing data analysis, and Visual C#.NET provides
a quick and easy way to build Windows and Web interfaces to interact with the user.

REFERENCES

SAS Institute Inc. 2009. SAS® 9.2 Integration Technologies: Windows Client Developer’s Guide. Cary, NC: SAS

Institute Inc

12

SAS Global Forum 2011 Applications Development

ACKNOWLEDGEMENTS

| would like to thank my colleagues and friends at ETS for supporting this paper and my professional development
and my beautiful wife Meg for her endless support in all | do and her help with editing this paper.

CONTACT INFORMATION

Your comments and questions are valued and encouraged. Contact the author at:
Sailesh Vezzu
Educational Testing Service
Rosedale Road, MS 20T
Princeton, NJ 08541
(609) 734 -5786
svezzu@ets.org

TRADEMARKS

SAS® and all other SAS Institute Inc. product or service names are registered trademarks or trademarks of SAS Institute Inc.
in the USA and other countries. ® Indicates USA registration. Other brand and product names are trademarks of their
respective companies.

13

	2011 Table of Contents

