
1

Paper 002-2011

Windows Application Using .NET and SAS® to Produce Custom Rater Reliability Reports

Sailesh Vezzu, Educational Testing Service, Princeton, NJ, USA

ABSTRACT

Some of the common measures used to monitor rater reliability of constructed response items include Percent Exact
Agreement, Percent Adjacent Agreement, Simple Kappa Coefficient, Weighted (Cicchetti-Allison, Fleiss-Cohen) Kappa
Coefficient, Pearson Correlation Coefficient, Mean Difference, Standardized Mean Difference, and Matched-Pair T-Test. This
paper discusses the development of a Windows application using Visual C#.NET and SAS® to calculate various measures of
rater reliability and produce custom reports. Users can select which measures to include in their reports and set threshold
values to flag items with low rater reliability values.

INTRODUCTION

In the Research and Development division at Educational Testing Service (ETS), I work on several projects, which require me
to calculate different measures of rater reliability in different ways. Depending on the purpose of the project, these measures
sometimes need to be calculated per each item across several raters, per each rater across several items, or per each scoring
session across all items and raters. In order to accommodate these scenarios, I built this application, which allows users to
enter several parameters and produce customized reports with different measures of rater reliability.

The first section of this paper will discuss different measures of rater reliability and how to compute those using SAS. The
second section of this paper will show how to build a Windows application using Visual C#.NET, get user input, and pass the
input into SAS as parameters.

Figure 1 below shows the structure of a sample input data set for this application. A typical input data set includes the name of
the item, the IDs of both rater 1 and rater 2, and the scores given by the raters. The data in this paper is for demonstration
purposes only and is not actual data.

Figure 1. Sample Input Data Set

I recommend running the FREQ procedure on all the discrete variables and the MEANS procedure on all the continuous
variables in the data set to check for missing and out of range values.

Applications DevelopmentSAS Global Forum 2011

2

APP-FRIENDLY SAS CODING

To easily incorporate the SAS code into various applications, SAS code is organized into the following modules depending on
SAS procedures used to compute these measures:

1. To calculate means, standard deviations, absolute mean difference and standardized mean difference
2. To calculate simple Kappa Coefficient and (Cicchetti-Allison, Fleiss-Cohen) weighted Kappa Coefficient
3. To calculate matched pair t-value and the corresponding p-value
4. To calculate Percent Exact Agreement and Percent Adjacent Agreement
5. To calculate Pearson Correlation Coefficient
6. To generate custom reports

All of these modules have an input data set and output data set as parameters. Any temporary data sets created during the
module will be deleted at the end of the module using the DATASETS procedure.

MODULE 1: MEANS, STANDARD DEVIATIONS, MEAN DIFFERENCES

PROC MEANS can be used to calculate all the means, standard deviations, absolute mean differences, and standardized
mean differences.

Absolute mean difference is the absolute value of the difference between the 2 scores, and the standardized mean difference
is the difference between the means expressed in terms of the pooled standard deviation.

%Macro get_ns_means_diffs(indat, outdat, var1, var2, byvar);

proc means data=&indat. noprint;

 var &var1. &var2. ;

 by &byvar.;

 output out=t_1 (drop=_type_ _freq_)

 n=N_&var1._&var2. mean=Mean_&var1. Mean_&var2.

 STD=SD_&var1. SD_&var2.;

run;

data &outdat.;

set t_1;

mnd_&var1._&var2. = abs(Mean_&var1. - Mean_&var2.);

stdd_&var1._&var2. = (Mean_&var2. - Mean_&var1.)/(sqrt(((SD_&var1.**2) +

(SD_&var2.**2))/2));

keep &byvar. N_&var1._&var2. Mean_&var1. Mean_&var2. SD_&var1. SD_&var2.

mnd_&var1._&var2. stdd_&var1._&var2;

run;

proc datasets nolist;

delete t_1;

run; quit;

%Mend;

As you can see in the code above, module 1 has input and output data sets as parameters. Temporary data set “t_1” created
during the module will be deleted at the end of the module. All of the modules used in this application expect the input data set
to be sorted by the “byvar”. This is more efficient than sorting the input data set in each module. My personal preference in
writing app-friendly SAS code is to never alter or even sort the input data set inside a module. If for some reason I have to
make changes to the input data set, I create a separate temporary work data set and make changes to it. Doing this can help
avoid unnecessary hassles when working with several modules within the same application.

MODULE 2: KAPPA COEFFICIENTS

Kappa coefficients are measures of association between score 1 and score 2 after correcting for chance agreement rates.
Kappa is a more appropriate statistic to use when you want to compare reliability of items with different scales.

Agree option in PROC FREQ will produce the simple or unweighted Kappa coefficient and the Cicchetti-Allison or linear
weighted Kappa coefficient. When (wt=fc) is used next to the Agree option in PROC FREQ, it produces the simple Kappa
coefficient and the Fleiss-Cohen or Quadratic weighted Kappa coefficient.

Applications DevelopmentSAS Global Forum 2011

3

Kappa coefficients for balanced data

When there is an equal number of rows and columns in a crosstab between score1 and score 2, as shown in Figure 2 below,
you have a simple case of balanced data. In this case, SAS computes Kappa coefficients without any problems.

Figure 2. Balanced Data Example

%Macro get_kappas(indat, outdat, var1, var2, byvar);

…

…

proc freq data = &indat.;

tables &var1. * &var2. / norow nocol nopercent nocum agree;

output out = kappas_stats1 kappa wtkap;

run;

…

proc freq data = &indat.;

tables &var1. * &var2. / norow nocol nopercent nocum agree (wt=fc);

output out = kappas_stats2 kappa wtkap;

run;

…

%Mend;

The first version of the PROC FREQ above produces the simple and the linear weighted Kappa coefficients. The second
version of the PROC FREQ above produced the simple and the quadratic weighted Kappa coefficients.

Kappa coefficients for unbalanced data

When there is an unequal number of rows and columns in a crosstab between score1 and score2, as shown in Figure 3,
PROC FREQ doesn’t produce the agree statistics.

 Figure 3. Unbalanced Data Example

In the above crosstab between score1 and score2, there is a total of 8 observations where score1 equals 4, while there are 0
observations where score2 equals 4, hence resulting in a case of unbalanced data. The SAS support Web site published a
solution for this by adding a dummy observation where score2 equals 4 and assigning it a weight of 0, while giving a weight of
1 for the rest of the observations. This solution is easy and simple to apply when you know in advance where the dummy
observation needs to be added to your data. When you are running your program on several items, you don’t want to manually
check for all items to see if you have unbalanced data. This solution of having a weight of 0 is only possible with SAS versions
9 or later.

Applications DevelopmentSAS Global Forum 2011

4

One other possible solution to this problem is to add a set of dummy observations for all possible cells in the crosstab to cover
all bases instead of checking the crosstab each time to see how your data is unbalanced.

%Macro get_kappas(indat, outdat, var1, var2, byvar);

…

data for_dummy (drop=i j);

do i = 1 to 10 by 1;

 do j = 1 to 10 by 1;

 &var1 = i;

 &var2 = j;

 flag = "dummy";

 output;

 end;

end;

run;

…

data score;

set &indat.;

flag = "score";

if &byvar. = "&tmp_by_var.";

run;

…

data t_1;

set score dummy;

run;

proc freq data = t_1;

tables flag * &var1. * &var2. / norow nocol nopercent nocum agree;

output out = kappas_stats1 kappa wtkap;

run;

…

%Mend;

The snippets of code above show how to create a data set with 100 dummy observations, append the dummy data to the
original data set, and use a flag variable to distinguish scoring observations from the dummy observations. Using the flag
variable in the tables statement would produce Kappa statistics for each value of flag ”score ” and “dummy” and across all
observations. To get the desired Kappa statistics, you just need to filter the output data set for flag=“score”.

MODULE 3: MATCHED PAIR T-TEST

A t-test is a commonly used hypothesis test for determining differences between 2 groups. Since the data here consists of
pairs of scores for each paper, a matched pair t-test can be used to test for significant differences between 2 groups. The
paired statement in the TTEST procedure produces the Matched Pair t-value and the corresponding p-value. A p-value of 0.05
or lower means that the 2 groups are significantly different at an Alpha level of 0.05.

%macro get_mptvalue(indat, outdat, var1, var2, byvar);

proc ttest data =&indat.;

paired &var1. * &var2.;

by &byvar.;

ods output ttests = t_1(keep=&byvar. tvalue probt);

run;

…

%mend;

MODULE 4: PERCENT EXACT AND ADJACENT AGREEMENTS

To understand Percent Exact Agreement and Percent Adjacent Agreement, please see the crosstabs below in Figure 4 and
Figure 5.

Applications DevelopmentSAS Global Forum 2011

5

 Figure 4. Crosstab of score1 * score2: Counts Figure 5. Crosstab of score1 * score2: Percents

Percent Exact Agreement is the sum of all percents in red on the diagonal from Figure 5. Percent Adjacent Agreement is the
sum of all percents in red and green from Figure 5. To calculate these measures in SAS, get the absolute difference between
score1 and score2, and then produce a frequency distribution of the difference variable. The percent of 0 differences is the
Percent Exact Agreement, and the cumulative percent of 0s and 1s is the Percent Adjacent Agreement.

%Macro get_agree_0_adj_1(indat, outdat, var1, var2, byvar);

data t_1;

set &indat.;

ad_&var1._&var2. = abs(&var1. - &var2.);

run;

…

proc freq data = t_1;

tables ad_&var1._&var2./out = t_2 outcum;

by &byvar.;

run;

…

data t_3(rename=(CUM_PCT=agr_&var1._&var2.));

set t_2;

if ad_&var1._&var2. = 0;

keep &byvar. cum_pct;

run;

…

data t_4(rename=(CUM_PCT=adj1_&var1._&var2.));

set t_2;

if ad_&var1._&var2. = 1;

keep &byvar. cum_pct;

run;

…

%Mend;

MODULE 5: PEARSON CORRELATION COEFFICIENT

Pearson Correlation Coefficient is another measure of association between score1 and score2, which can easily be produced
using PROC CORR in SAS.

%Macro get_correl(indat, outdat, var1, var2, byvar);

proc corr data=&indat. noprint outp=t_1 vardef=n;

 var &var1. &var2.;

 by &byvar.;

run;

…

%Mend;

MODULE 6: GENERATE CUSTOM REPORTS

Module 6 shows how to generate custom reports with only the measures specified by the user and flag cases with reliability
values lower than the threshold values set by the user. In the next section of this paper, I will demonstrate how to design a
Windows form and get input from the user. For now, assume that user input is available in the form of macro variables.

%let variable1 = score1;

%let variable2 = score2;

…

Applications DevelopmentSAS Global Forum 2011

6

%let prt_means_sds = Yes; /* whether or not to print in the output file */

let prt_ckappa = Yes;

%let prt_fkappa = No;

…
%let kappa_threshold = 0.60; /* threshold values */

%let ckappa_threshold = 0.70;

%let fkappa_threshold = 0.75;

%let pea_threshold = 60;

%let paa_threshold = 75;

To highlight the stats with reliability lower than the threshold values set by the user, use PROC FORMAT to define formats.

Proc format;

…

value ckap_flags low - < &ckappa_threshold. ='graybb';

value fkap_flags low - < &fkappa_threshold. ='graybb';

value pea_flags low - < &pea_threshold. ='graybb';

…

run;

PROC REPORT, along with ODS TAGSET EXCELXP, can be used to generate output files in XML format which can easily be
saved as Excel files.

%macro gen_report(outdat, fl, fn, tt1, var1, var2, byvar);

/*&fl. and &fn. are macro variables containing the output file location and name*/

ods tagsets.Excelxp style=printer file = "&fl.&fn.";

ods tagsets.Excelxp options

(embedded_titles='yes'

embedded_footnotes='yes'

sheet_name ="&var1.&var2."

zoom = '90'

Frozen_Headers = '5'

);

proc report data = pro_to_rep nowd split= '~' style=[just=center];

…

columns

(&byvar.)

("&var1. by &var2."

("N" N_&var1._&var2.)

…

%if &prt_ckappa. = Yes %then %do;

 LWKap_&var1._&var2.

%end;

%if &prt_fkappa. = Yes %then %do;

 QWKap_&var1._&var2.

%end;

…

%if &prt_ckappa. = Yes %then %do;

define LWKap_&var1._&var2. / analysis mean "Linear wtd ~ kappa" center

style={background=ckap_flags.};

%end;

%if &prt_fkappa. = Yes %then %do;

define QWKap_&var1._&var2. / analysis mean "Quad wtd ~ kappa" center

style={background=fkap_flags.};

%end;

…

run;

ods tagsets.Excelxp close;

…

%mend;

%if statements, along with the appropriate macro variables, can be used to control what is being printed in the output file as
shown above. Also, %if statements can be used to control which define statements get submitted.

Applications DevelopmentSAS Global Forum 2011

7

RUNNING SAS CODE FROM VISUAL C#.NET

In this section, I will discuss how to design a Windows form using Visual C#.NET, get input from the user and pass the input to
SAS, and call SAS programs from Visual C#.NET using various parameters received from the user through this Windows
form.

DESIGNING A WINDOWS FORM

Open Visual Studio 2008 and create a new project. Select Visual C# and Windows application when creating this new project.
You will then see the Visual Studio 2008 interface to design a Windows form, as shown in Figure 6 below.

Figure 6. Designing a Windows form

On the left hand side of the screen, you will see common controls which can be dragged and dropped onto the blank Windows
form. On the right hand side of the screen, you will see properties of the selected object. Start by dragging and dropping a
textbox onto the form. As soon as you click on the textbox to select it, the properties windows on the right hand side will show
the default properties of this textbox. You can easily rename it, change the size, add a default text, etc. by changing the
properties window on the right. You can also drag and drop buttons to the form. You can assign a method to the event “button
click”, by double clicking on the button. Double clicking a button in this interface will cause Visual C#.NET to create a method
and associate it with that button click.

Applications DevelopmentSAS Global Forum 2011

8

To design a frontend (Windows form) for the rater reliability application, drag and drop a few labels, checkboxes, textboxes,
and buttons to your form. Once you have these controls on your Windows form, rename them, resize them, assign default
properties, and arrange them nicely on the form by changing their properties on the right hand side of the screen. Figure 7
shows some default threshold values for the flags in the form, which a user can change before clicking the submit button.

 Figure 7. Windows form used in our application

Once you double click the “Browse” button in the interface, Visual C#.NET will create a blank method in its code window. Then
you just have to write the code to open and select the input data set.

private void browse1_Click(object sender, EventArgs e)

{

OpenFileDialog fd1 = new OpenFileDialog();

fd1.Title = "Select sas dataset";

fd1.Filter = "sas datasets (*.sas7bdat)|*.sas7bdat|All files (*.*)|*.*";

fd1.FilterIndex = 1;

if (fd1.ShowDialog() == DialogResult.OK)

{

sasds_tb1.Text = fd1.FileName;

}

}

The Visual C# code shown above creates a new file dialog window, asks the user to select a SAS data set, and sets the
default filter for the file dialog window to “.sas7bdat” files. Once the user selects the appropriate input file, the filename is
written in the textbox shown next to the “Browse” button. Once you double click the submit button, Visual C#.NET creates a
blank method in the code window. Then you can write the code to get all the input from the user and submit the SAS modules
with appropriate parameters.

GETTING USER INPUT

Figure 8 below shows a screenshot of the Windows application in action (running), where the user entered the necessary
input.

Applications DevelopmentSAS Global Forum 2011

9

 Figure 8. Windows application in action

The user of this application picks the SAS data set, enters variable names, picks the statistics to be printed in the output file,
changes the threshold values if needed, and clicks the submit button. All the input that the user entered in this form is gathered
and read as C# string variables.

private void submit_button_Click(object sender, EventArgs e)

{

 // reading textboxes

 string input_sas_file_path_name = sasds_tb1.Text.ToString();

string var1 = var1_tb.Text.ToString();

 string var2 = var2_tb.Text.ToString();

 …

// reading checkboxes input

if (ckappa_cb.Checked == true) ckappa = "Yes";

if (fkappa_cb.Checked == true) fkappa = "Yes";

…

// reading threshold values

string ckap_thvalue = ckap_th.Text.ToString();

string fkap_thvalue = fkap_th.Text.ToString();

…

}

Now that you have all the input from the user in the form of C# string variables, you have to pass them onto SAS and submit
the SAS program.

SUBMITTING SAS CODE FROM VISUAL C#.NET

To work with SAS from Visual C#.NET, you need to add SAS references. To do this, open the solution explorer in Visual
Studio, right click on “references” and choose “add reference”. Add the SAS Workspace Manager reference on the COM tab.
Adding this reference will allow Visual C#.NET to communicate with SAS without actually opening the SAS environment in
Windows.

Applications DevelopmentSAS Global Forum 2011

10

Add the “using statements” in C# code for convenience.

using SAS;

using SASWorkspaceManager;

Define a new StringBuilder “sascode” in C# and append all the SAS code you wish to submit to that string.

private void submit_button_Click(object sender, EventArgs e)

{

 …
 …
 StringBuilder sascode = new StringBuilder();

 …
 sascode.Append("%let input_directory =" + input_directory + ";");

 …
sascode.Append("%let variable1 = " + var1 + ";");

sascode.Append("%let variable2 = " + var2 + ";");

…
sascode.Append("%let prt_ckappa = " + ckappa + ";");

sascode.Append("%let prt_fkappa = " + fkappa + ";");

…
sascode.Append("%let ckappa_threshold = " + ckap_thvalue + ";");

 sascode.Append("%let fkappa_threshold = " + fkap_thvalue + ";");

…
…

}

Now that you have all the input from the user assigned to global parameters in SAS, the next step is to submit the SAS
program calling the modules with the necessary parameters. To do this, simply append the location of the SAS program calling
the macros to the “sascode” with a %inc statement.

private void submit_button_Click(object sender, EventArgs e)

{
…
sascode.Append("%inc 'C:\\SXV6600\\raterrel\\eval_net.sas';");

…

}

To submit the SAS code you appended to “sascode”, create a new instance of the SAS workspace and submit the “sascode”
through the language service.
{

…

WorkspaceManager wsm = new WorkspaceManager();

Workspace sasworkspace = Workspace)wsm.Workspaces.CreateWorkspaceByServer("",

SASWorkspaceManager.Visibility.VisibilityProcess, null, "", "", out errorMessage);

ILanguageService langservice = sasworkspace.LanguageService;

langservice.Submit(sascode.ToString());
…

}

Figure 9 below shows the output XML file that is created, which can easily be saved as an Excel file.

Applications DevelopmentSAS Global Forum 2011

11

 Figure 9. Output file

The grey cells in the above output indicate the reliability values lower than the threshold levels set by the user.

VIEWING SAS LOG AND LISTING

You can use Message Boxes in Visual C#.NET to ask the user if he or she wants to view the SAS log and listing.

 Figure 10. View SAS Log? Figure 11. View SAS Listing?

If the user clicked yes, you can create a new form, then add a rich textbox to display the SAS log and/or listing.
private void submit_button_Click(object sender, EventArgs e)

{
…
if (MessageBox.Show("View SAS Log?", "View SAS Log",

MessageBoxButtons.YesNo, MessageBoxIcon.Question) == DialogResult.Yes)

{

string saslog = langservice.FlushLog(10000000).Replace("/f", "");

RichTextBox rtb = new RichTextBox();

rtb.Size = new System.Drawing.Size(895, 545);

Form f2 = new Form();

f2.Text = "SAS Log";

f2.ClientSize = new System.Drawing.Size(900, 550);

f2.Controls.Add(rtb);

Applications DevelopmentSAS Global Forum 2011

12

rtb.Text = saslog;

f2.Show();

}

//To flush sas listing use this

if (MessageBox.Show("View SAS Listing?", "View SAS Listing",

 MessageBoxButtons.YesNo, MessageBoxIcon.Question) == DialogResult.Yes)

{

string saslisting = langservice.FlushList(100000000).Replace("ƒ", "_");

RichTextBox rtb2 = new RichTextBox();

rtb2.Size = new System.Drawing.Size(895, 545);

Form f3 = new Form();

f3.Text = "SAS Listing";

f3.ClientSize = new System.Drawing.Size(900, 550);

f3.Controls.Add(rtb2);

rtb2.Text = saslisting;

f3.Show();

}

…

}

 Figure 12. Viewing SAS Log and Listing

CONCLUSION

Applying the same principle used in this paper, SAS and Visual C#.NET can be used to build Windows and Web applications
for doing data analysis and producing custom reports. SAS is a great tool for doing data analysis, and Visual C#.NET provides
a quick and easy way to build Windows and Web interfaces to interact with the user.

REFERENCES

SAS Institute Inc. 2009. SAS® 9.2 Integration Technologies: Windows Client Developer’s Guide. Cary, NC: SAS
Institute Inc

Applications DevelopmentSAS Global Forum 2011

13

ACKNOWLEDGEMENTS

I would like to thank my colleagues and friends at ETS for supporting this paper and my professional development
and my beautiful wife Meg for her endless support in all I do and her help with editing this paper.

CONTACT INFORMATION

Your comments and questions are valued and encouraged. Contact the author at:
Sailesh Vezzu
Educational Testing Service
Rosedale Road, MS 20T
Princeton, NJ 08541
(609) 734 -5786
svezzu@ets.org

TRADEMARKS

SAS® and all other SAS Institute Inc. product or service names are registered trademarks or trademarks of SAS Institute Inc.
in the USA and other countries. ® Indicates USA registration. Other brand and product names are trademarks of their
respective companies.

Applications DevelopmentSAS Global Forum 2011

	2011 Table of Contents

