SAS Global Forum 2010 SAS Presents

Paper 313-2010

Thoroughly Modern SAS®: The SAS® Code Analyzer Helps Bring Programs Up to
Date
Merry Rabb, SAS Institute Inc., Cary, NC

ABSTRACT

How would you like to revive and reuse your older SAS® jobs to make use of some newer capabilities? There are
some easy ways to modernize your use of SAS without manually rewriting your existing SAS programs. The SAS
Code Analyzer is the secret behind some new features for importing SAS code into SAS solutions such as SAS®
Data Integration Studio and SAS® Enterprise Guide®. You can also use the SAS Code Analyzer to create a version of
a program to run in a distributed computing environment such as with SAS® Grid Manager. This presentation will
provide an overview of the SAS Code Analyzer and will include some practical examples of using it to create
programs for distributed parallel processing.

INTRODUCTION

If your responsibilities include maintaining large legacy SAS programs, then you probably wish you had time to bring
some of those programs up-to-date. Maybe you’d like to modify them to take advantage of some of the more recent
advancements in SAS capabilities, use them in the SAS Data Integration Studio, use them in SAS Enterprise Guide,
or make modifications to get them to run more efficiently. Even if the program was written a long time ago, if it still
runs properly, then it's usually considered too costly and time consuming to spend time pouring through the code and
making manual changes.

The SAS Code Analyzer, introduced with SAS 9.2, is a useful tool that can help you maintain and modify these
legacy programs. The SAS Code Analyzer, or SCAPROC procedure, is a Base SAS® procedure. It executes an
existing SAS program and while the program runs, it collects and analyzes information related to the SAS steps, input
and output data, and any dependencies. It records information that can be used to enhance the manageability and
efficiency of the program. In this paper, you will be introduced to the SAS Code Analyzer, understand what type of
information it collects and records, and see some examples of using it to create a new SAS program that has been
divided into tasks that can be run in parallel on multiple processors.

USING THE SAS CODE ANALYZER

Despite the name SAS Code Analyzer, PROC SCAPROC does not read or interpret the SAS code itself. Rather, it
gathers information from an executing SAS program. This means that in order to make use of PROC SCAPROC, you
must have not only your program, but data and anything else that is required for the program to fully execute. When
PROC SCAPROC runs, it will record and analyze information and generate commented SAS code. The resulting
code can be:

e Imported into the SAS Data Integration Studio (Code Importer feature).
e Imported into SAS Enterprise Guide.
e Executed on multiple processors if the GRID option is used.

e Manually analyzed by a programmer to look for other ways to improve the program.

There are three steps you use in your programming environment in order to use PROC SCAPROC:
1. Activate PROC SCAPROC, including specifying options and designating a location for results files.
2. Submit the existing SAS program.
3. Close the PROC SCAPROC process and write out the results files.

SAS Global Forum 2010 SAS Presents

The results files are new versions of the program that contain special comments. There is always one results file of
code with comments detailing the information gathered such as data sets read and written, dependencies, and so
forth. If you are using the GRID option, then a second results file is created that includes statements to grid enable
the program and to remote submit the SAS code in separate blocks to run in parallel.

AN EXAMPLE

Here is a sample program that will serve to illustrate the basics of what PROC SCAPROC does and how it works.
The program consists of a DATA step to read in some data and a PROC step to perform computations:

data a;
attrib x label="xnum" format = 1.;
input x y z ;
cards;

proc summary data=a;

var X;

output out=newl mean=meanx;
run;

In order to run PROC SCAPROC with this program, we need to add code at the beginning of the program to invoke
the procedure:

proc scaproc;
record 'examplel.txt' ;
run;

Note that we are writing the results out to a file called examplel.txt. After the main body of the program we will add
code to close the PROC SCAPROC process:

proc scaproc; write; run;

When we submit this program, the program executes within the wrapper of the PROC SCAPROC process. The data
lines are read, a data set a is created, and the SUMMARY procedure executes against data set a and creates data
set newl. Shown below are the contents of the results file, examplel.txt, after this program has run.

The special comments prefaced with the label “JOBSPLIT:” contain the information that is captured about the
executing SAS steps and the input and output data. The information in these comments can be used by other SAS
applications. For example, the SAS Data Integration Studio reads this output and creates jobs, tables, and libraries in
the SAS® Metadata Server as part of importing the program. Once the job is imported, you can use all of the SAS
Data Integration Studio features including debugging and the ability to view performance metrics when the job is run.

Contents of the file examplel.txt:

/* JOBSPLIT: DATASET OUTPUT SEQ WORK.A.DATA */

/* JOBSPLIT: LIBNAME WORK V9 'C:\DOCUME~1\sasmgr\LOCALS~1..” */
/* JOBSPLIT: SYMBOL GET SYS IOUSEEE */

/* JOBSPLIT: ELAPSED 94 */

/* JOBSPLIT: PROCNAME DATASTEP */

/* JOBSPLIT: STEP SOURCE FOLLOWS */

data a;
attrib x label="xnum" format = 1.;
input x y z ;

SAS Global Forum 2010 SAS Presents

cards;

/* JOBSPLIT: DATASET INPUT SEQ WORK.A.DATA */

/* JOBSPLIT: LIBNAME WORK V9 'C:\DOCUME~1\sasmgr\LOCALS~1.." */

/* JOBSPLIT: DATASET OUTPUT SEQ WORK.NEW1.DATA */

/* JOBSPLIT: LIBNAME WORK V9 'C:\DOCUME~1\sasmgr\LOCALS~1.." */

/* JOBSPLIT: FILE OUTPUT C:\Documents and Settings\sasmgr\examplel.txt */
/* JOBSPLIT: SYMBOL GET SYS TOUSEEE */

/* JOBSPLIT: SYMBOL GET SYSSUMTRACE */

/* JOBSPLIT: ELAPSED 172 */

/* JOBSPLIT: PROCNAME SUMMARY */

/* JOBSPLIT: STEP SOURCE FOLLOWS */

proc summary data=a;

var x;

output out=newl mean=meanx;
run;

/* JOBSPLIT: END */

Additional information can be created in the JOBSPLIT comments depending on the options you use. If you add the
ATTR option to the RECORD statement, then PROC SCAPROC will also output additional information about the
variables in data sets. Adding the OPENTIMES option to the RECORD statement will cause PROC SCAPROC to
output information about when input data sets were opened and their size. For a complete explanation of the types of
JOBSPLIT comments that might appear and the information that they describe, please refer to the PROC SCAPROC
documentation in the Base SAS® 9.2 Procedures Guide.

USING THE GRID OPTION

You can manually examine an existing SAS program, identify individual steps and interdependencies, and then re-
work the code so it can run on a grid. Most SAS programs are a lot longer and more complex than this simple
example. The process of examining and re-working the code can be very time consuming, especially if you are not
the person who created the program in the first place. The SAS Code Analyzer can be used to create a grid-enabled
parallel SAS job that can save you much of this effort. PROC SCAPROC will execute the logic of the existing SAS
program and output information that identifies the input and output data sets and the interdependencies of the
procedure and DATA steps in the program, then use this information to output a second grid-enabled version of the
program. It is highly recommended that you review, run, and test this new grid-enabled version of the application
before you consider it a production application.

Here is a slightly longer program we can run to illustrate the use of the GRID option of PROC SCAPROC to generate
a grid enabled version of the program. The regular output that is similar to what we saw above will be found in the file
outl.txt and the grid enabled output will be found in the file outl.grid. The GRID option can be used as long as you
have SAS Grid Manager or SAS/CONNECT® licensed.

proc scaproc;
record 'outl.txt' grid 'outl.grid';
run;

data a;
attrib x label="xnum" format = 1.;
input x y z ;
cards;

123

SAS Global Forum 2010 SAS Presents

SR W
501N
o N W

-

un;
proc summary data=a;

var x;

output out=newl mean=meanx;
run;

proc summary data=a;

var y;

output out=new2 mean=meany;
run;

proc summary data=a;

var z;

output out=new3 mean=meanz;
run;

proc scaproc; write; run;

After running this program, there will be two results files. The one named outl.txt will contain the code and the
“JOBSPLIT:” comments similar to what was shown in the first example. The contents of the second results file
named outl.grid are shown below. The following lists several important things to note about this output:

e The initial comments say that the job has four tasks, but none of them can be RSUBMITed (run in parallel on
remote processors) because they use WORK data sets. This is a very important thing to remember about
grid enabling a SAS program — any data used by the program will need to be permanently available to all
processors or nodes on the grid. WORK data sets present a problem because they are temporary — they
cannot be created in a SAS job on one processor then be used by a SAS job on another processor. In a
moment we will look at how to deal with this issue.

e Code has been inserted to enable grid processing (a call to a function gridsvc_enable) and macros are used
to start up the remote SAS sessions (%scagrid_sessions) and to close the sessions when the tasks are
complete (%scagrid_waitfors).

e There is a macro variable called SCAGRID_SESSIONS that defaults to 3. This defines the number of
SAS/CONNECT sessions that will be initiated. For example, you can change this value to correspond to
how many processors you actually have or how many SAS sessions you want started as part of running on
a grid.

e This is an executable program. As the comments indicate, if you submit this program, then the tasks will
actually run locally. In our next example we will look at a version of this program that can make use of
multiple grid nodes.

Contents of the file outl.grid:

/* __ */
/* There are 4 tasks in this job. */
/* 0 of these tasks can be RSUBMITed. */
/* 4 of the tasks cannot be RSUBMITed because they use data sets in WORK. */
/* These 4 tasks used 61 units of time. */
/* The longest task took 32 units of time, 52.5% of total time. */
/* __ */
/* __ */
/* This is the user-modifiable number of connect sessions */
/* Numbers of sessions should be between 1 and 20 inclusive. */
/* __ */
%let SCAGRID SESSIONS=3;

/* __ */
/* *** Please don't edit anything below this line. */
/* *** Regenerate the file if you need to make changes. */

SAS Global Forum 2010 SAS Presents

2 ————————— */
2 ——————— */
/* Enable grid service */
2 ———————— */
%let rc=%sysfunc(grdsvc enable(all , resource=SASMain));

2 . x /
/* This macro starts up the connect sessions */
2 . x /

%macro scagrid sessions (count);
$do i = 1 %to &count;
signon sessé&i connectwait=no;
%put Session started on grid node $%sysfunc(grdsvc getname (sessé&i));
%end;
%mend scagrid sessions;

2 N —————————., */
/* Start up our connect sessions. */
2 N ———————., */
$scagrid sessions (&SCAGRID SESSIONS) ;

2 R R EEEEE—E——————— */
/* This function call initializes data structures for our SCAGRID functions. */
/* We pass in the number of sessions and the number tasks in this job. */
2 ———————., */
proc scaproc; startup 4 &SCAGRID SESSIONS; run;

2 R R EEEEE—E——————— */
/* TASK 1 run locally */
2 R R ERREEESE———————— */
/* I/0 Activity */
2 R R EEEEE————————— */
/* DATASET OUTPUT SEQ created in task 1 WORK.A.DATA */
2 R R R EEEEEE———————— */
/* Symbol activity */
2 R EEEEE——————— */
/* SYMBOL GET task:0 used by subsequent task:no Name:SYS IOUSEEE */
2 R —————————— */
/* ELAPSED 0 */
2 N ————————— */
data a;

attrib x label="xnum" format = 1.;
input x y z ;

cards;

123

343

122

4 5 6

run;

) F */
/* TASK 2 run locally */
) F */
/* I/0 Activity */
) F * /
/* DATASET INPUT SEQ created in task 1 WORK.A.DATA */
/* DATASET OUTPUT SEQ created in task 2 WORK.NEW1.DATA */
R */
/* Symbol activity */
SR *)

SAS Global Forum 2010 SAS Presents

/* SYMBOL GET task:0 used by subsequent task:no Name:SYS IOUSEEE */
/* SYMBOL GET task:0 used by subsequent task:no Name:SYSSUMTRACE */
2 ——————— */
/* ELAPSED 14 */
2 ——————— */
proc summary data=a;

var x;

output out=newl mean=meanx;
run;
2 E—————. x /
/* TASK 3 run locally */
2 —————— */
/* I/0 Activity */
2 —————— */
/* DATASET INPUT SEQ created in task 1 WORK.A.DATA */
/* DATASET OUTPUT SEQ created in task 3 WORK.NEWZ2.DATA */
2 x /
/* Symbol activity */
2 x /
/* SYMBOL GET task:0 used by subsequent task:no Name:SYS IOUSEEE */
/* SYMBOL GET task:0 used by subsequent task:no Name:SYSSUMTRACE */
2 ———— */
/* ELAPSED 32 */
2 ———— */
proc summary data=a;

var y;

output out=new2 mean=meany;
run;
2 x /
/* TASK 4 run locally */
2 x /
/* I/0 Activity */
K x /
/* DATASET INPUT SEQ created in task 1 WORK.A.DATA */
/* DATASET OUTPUT SEQ created in task 4 WORK.NEW3.DATA */
/* FILE OUTPUT created in task 4 C:\Documents and
Settings\sasmgr\outl.txt */
2 x /
/* Symbol activity */
2 x /
/* SYMBOL GET task:0 used by subsequent task:no Name:SYS IOUSEEE */
/* SYMBOL GET task:0 used by subsequent task:no Name:SYSSUMTRACE */
2 — */
/* ELAPSED 15 */
2 ——— */
proc summary data=a;

var z;

output out=new3 mean=meanz;
run;
K */
/* This macro issues waitfors and signoffs for our sessions. */
2, */

$macro scagrid waitfors(count);
$do 1 = 1 %to &count;
waitfor sessé&i;
signoff sessé&i;
send;

SAS Global Forum 2010 SAS Presents

smend scagrid waitfors;

2 ——————— */
/* Wait for and sign off all sessions. */
2 ———————— */
$scagrid waitfors (&SCAGRID SESSIONS) ;

2 . */
/* Termination for our SCAGRID functions */
2 ————. */
proc scaproc; shutdown; run;
2 ——————— */
/* All done. */
2 ————. */

GRID ENABLING PROGRAMS THAT USE TEMPORARY DATA SETS

You cannot take a program that passes temporary data sets from step to step and divide it up over multiple
processors. In order to grid enable such a program, you need to make the data that is shared among the different
steps into permanently stored data sets. Obviously, this could be done by manually modifying the program, but
another way is to make use of the “USER=" system option. By specifying this option, you can use one-level names to
reference permanent SAS files in SAS statements. For example, if we add the following statement to the above
example, then we will get a different result in the results file from PROC SCAPROC:

options user='c:\temp’;

When we add that option to the program, the resulting outl.grid file is shown below. The following lists some
differences to note between this version of the results file and the one above:

e All four tasks can be RSUBMITed. None of the tasks need to be run locally.

e Before the first proc summary step we see comments that indicate that this step (Task 2) is dependent on
Task 1 (the DATA step) and the following code is inserted to force a synchronization with Task 1:

proc scaproc; taskwait 1; run;

There are similar comments about dependency on Task 1 for the subsequent two PROC SUMMARY steps.

/* __ */
/* There are 4 tasks in this job. */
/* 4 of these tasks can be RSUBMITed. */
/* These 4 tasks used 170 units of time. */
/* The longest task took 63 units of time, 37.1% of total time. */
/* __ */
/* __ */
/* This is the user-modifiable number of connect sessions */
/* Numbers of sessions should be between 1 and 20 inclusive. */
/* __ */
slet SCAGRID SESSIONS=3;

/* __ */
/* *** Please don't edit anything below this line. */
/* *** Regenerate the file if you need to make changes. */
/* __ */
/* __ */
/* This is the USER option from the original run of the job */
/* __ */

SAS Global Forum 2010 SAS Presents

/* Enable grid service */
A — */
%let rc=%sysfunc(grdsvc _enable(all , resource=SASMain));

X */
/* This macro starts up the connect sessions */
X */

$macro scagrid sessions (count);
%do 1 = 1 %$to &count;
signon sess&i connectwait=no inheritlib=(user) ;
%put Session started on grid node $%sysfunc(grdsvc getname (sessé&i));
%end;
%mend scagrid sessions;

2 N E—————— */
/* Start up our connect sessions. */
2 N E————— */
%scagrid sessions (&SCAGRID SESSIONS) ;
2 ——————.. */
/* This function call initializes data structures for our SCAGRID functions. */
/* We pass in the number of sessions and the number tasks in this job. */
2 R EEEE————————— */
proc scaproc; startup 4 &SCAGRID_SESSIONS; run;
2 ——————.. */
/* TASK 1 run in rsubmit */
2 E——————.. */
/* I/0 Activity */
2 ——————., */
/* DATASET OUTPUT SEQ created in task 1 USER.A.DATA */
2 N ——————.. */
/* Symbol activity */
2 .. */
/* SYMBOL GET task:0 used by subsequent task:no Name:SYS IOUSEEE */
2 —— I */
/* ELAPSED 63 */
2 N ———————. */
2 R R EEE—————————— */
/* Get an available session with the scagrid gs function */
2 N E———————, */

proc scaproc; getsession 1 "sess"; run;
%put sess=&sess;

/* __ */
/* rsubmit for task 1 */
/* __ */

rsubmit &sess sysrputsync=yes cmacvar=scagrid task 1;

data a;

attrib x label="xnum" format = 1.;

input x y z ;

cards;
123
343
122
4 5 6
run;

endrsubmit;

SAS Global Forum 2010 SAS Presents

/* TASK 2 run in rsubmit */
2 E—————. x /
/* I/0 Activity */
2 x /
/* DATASET INPUT SEQ created in task 1 USER.A.DATA */
/* DATASET OUTPUT SEQ created in task 2 USER.NEW1.DATA */
2 —————— */
/* Symbol activity */
2 ——————— */
/* SYMBOL GET task:0 used by subsequent task:no Name:SYS IOUSEEE */
/* SYMBOL GET task:0 used by subsequent task:no Name:SYSSUMTRACE */
2 x /
/* ELAPSED 30 */
2 ——————— */
2 ————. x /
/* Dependencies */
/* Depends on task 1 DATASET USER.A.DATA */
/* Highest task depended on: 1 */
2 x /
2 EEE———— */
/* Sync with task 1 (USER.A.DATA) */
2 ———— */
proc scaproc; taskwait 1; run;

2 T ————— */
2 x /
/* Get an available session with the scagrid gs function */
2 x /

proc scaproc; getsession 2 "sess"; run;
%put sess=é&sess;

K *)
/* rsubmit for task 2 */
K *)

rsubmit &sess sysrputsync=yes cmacvar=scagrid task 2;
proc summary data=a;

var x;

output out=newl mean=meanx;
run;

endrsubmit;

2 ——— */
/* TASK 3 run in rsubmit */
2 T ——— */
/* I/0 Activity */
2 —— */
/* DATASET INPUT SEQ created in task 1 USER.A.DATA */
/* DATASET OUTPUT SEQ created in task 3 USER.NEW2.DATA */
/* DATASET OUTPUT MULTI created in task 3 WORK. TF0005.UTILITY */
2 e */
/* Symbol activity */
2 — */
/* SYMBOL GET task:0 used by subsequent task:no Name:SYS IOUSEEE */
/* SYMBOL GET task:0 used by subsequent task:no Name:SYSSUMTRACE */
K */
/* ELAPSED 62 */
K */
2 */
/* Dependencies */
/* Depends on task 1 DATASET USER.A.DATA */
/* Highest task depended on: 1 */
2 */

SAS Global Forum 2010 SAS Presents

2 o ———————— */
/* Get an available session with the scagrid gs function */
2 ——————— */

proc scaproc; getsession 3 "sess"; run;
%put sess=&sess;

K */
/* rsubmit for task 3 */
K */

rsubmit &sess sysrputsync=yes cmacvar=scagrid task 3;
proc summary data=a;

var y;
output out=new2 mean=meany;

run;

endrsubmit;

K */
/* TASK 4 run in rsubmit */
K */
/* I/0 Activity */
) */
/* DATASET INPUT SEQ created in task 1 USER.A.DATA */
/* DATASET OUTPUT SEQ created in task 4 USER.NEW3.DATA */
/* FILE OUTPUT created in task 4 C:\Documents...\sasmgr\outl.txt */
K */
/* Symbol activity */
K */
/* SYMBOL GET task:0 used by subsequent task:no Name:SYS IOUSEEE */
/* SYMBOL GET task:0 used by subsequent task:no Name:SYSSUMTRACE */
/2 */
/* ELAPSED 15 */
/2 */
K */
/* Dependencies */
/* Depends on task 1 DATASET USER.A.DATA */
/* Highest task depended on: 1 */
K */
K */
/* Get an available session with the scagrid gs function */
K */

proc scaproc; getsession 4 "sess"; run;
%put sess=&sess;

K *)
/* rsubmit for task 4 */
K *)

rsubmit &sess sysrputsync=yes cmacvar=scagrid task 4;
proc summary data=a;

var z;

output out=new3 mean=meanz;
run;

endrsubmit;

/* __ */
/* This macro issues waitfors and signoffs for our sessions */
/* __ */

$macro scagrid waitfors(count);
$do 1 = 1 %to &count;
waitfor sessé&i;

10

SAS Global Forum 2010 SAS Presents

signoff sessé&i;
%end;
smend scagrid waitfors;

2 ——————— */
/* Wait for and sign off all sessions. */
2 ——————— */
%$scagrid waitfors (&SCAGRID SESSIONS) ;
2 E—————.. */
/* Termination for our SCAGRID functions */
2 E—————. */
proc scaproc; shutdown; run;
2 ————. */
/* All done. */
2 —————. */

MORE HINTS AND TIPS FOR GRID ENABLING PROGRAMS WITH PROC SCAPROC

PROC SCAPROC is a great way to get started on grid enabling a SAS program, but it's not always going to give you
100% of the benefit that a manual rewrite could give you. If a good SAS programmer takes the time to review a
complex SAS program and re-works it to run on the grid, the results are often going to be better and more efficient
than the results you can obtain with this procedure alone. PROC SCAPROC is new in SAS 9.2 and more features will
be added to it in subsequent releases. Even with enhanced capabilities, an automated procedure like this simply
cannot anticipate and account for every single thing a SAS program can do. What we have tried to accomplish with
PROC SCAPROC is to get you most of the way there in terms grid-enabling legacy programs. The best approach is
to use PROC SCAPROC and then look through the results for potential improvements you can make yourself. Here
are a few things to keep in mind when using PROC SCAPROC and evaluating the results.

PROC SCAPROC will not “reorganize” code logically in order to put related code into the same remote submit block.
For example, what if our program above had a second DATA step that creates data set b and one or more of the
PROC SUMMARY steps executed against DATA step b instead of DATA step a? For example:

options user='c:\temp';

proc scaproc;
record 'out2.txt' grid 'out2.grid';

run;

data a;
attrib x label="xnum" format = 1.;
input x y z ;
cards;

proc summary data=a;

var Xx;

output out=newl mean=meanx;
run;

data b;
attrib n label="nop" format = 1.;
input n o p ;
cards;

123

343

11

SAS Global Forum 2010 SAS Presents

I

2 2
56
n;:

’

-

u

proc summary data=b;

var o;

output out=new3 mean=omean;
run;

proc summary data=a;

var vy;

output out=new2 mean=meany;
run;

proc scaproc; write; run;

The results file generated by this program will properly indicate that there are five tasks and all five can be remote
submitted. PROC SCAPROC will have detected that Task 2 is dependent on Task 1 as before. It will also determine
that Task 4 (PROC SUMMARY using data set b) is dependent on Task 3 (the DATA step that created data set b) and
that the last PROC SUMMARY in Task 5 depends on Task 1. So the output is correct and the program will run on a
grid, but if you were re-writing this program yourself, you might re-order the tasks. For example, you could put the
two DATA steps first. All the other tasks are dependent on one of them and have to wait for one of them to run, so
the sooner they run, the sooner the others can start executing. With PROC SCAPROC, all the tasks are submitted
sequentially. Since Task 2 has to wait for Task 1, nothing after Task 2 will be submitted until after Task 2 is
submitted, even though Task 3 for example (the second DATA step) is independent of Tasks 1 and 2 and could be
running while Task 2 waits. SAS is doing research on the possibility of enhancing PROC SCAPROC in a future
release to do some re-ordering of tasks based on dependencies, but as of SAS 9.2 this is something a programmer
will want to do manually, if appropriate.

Another thing to be aware of in this initial release of PROC SCAPROC is that it does not fully expand any macros that
might be invoked in your existing program. This is something that will change in a future release with the addition of
an “expand macros” option, but in SAS 9.2 code encapsulated in macros is treated as a black box and the code
generated by the macro is not split into separate tasks even if the generated code consists of multiple DATA and
PROC steps.

PROC SCAPROC gathers its information at run time, so the information gathered is a snapshot of the conditions at
the point in time when the program was run. If your program is data driven, that is, if data or macro variable values at
run time determine what code is executed, then only the code actually generated and executed within the PROC
SCAPROC process will be analyzed. If you are using macro programming or any other approaches to generate data
driven programs, then you might need to do some manual work in order to “generalize” the results of PROC
SCAPROC.

CONCLUSION

The SAS Code Analyzer is an easy to use tool that helps automate the process of analyzing program flows and
generating grid enabled programs. When used with the SAS Data Integration Studio or SAS Enterprise Guide, it
provides an easy way to move existing programs into a managed environment. PROC SCAPROC creates results
files of executable SAS code and automatically inserts the necessary syntax for grid enablement, which helps limit
potential programming errors due to manual modification and accelerates the learning curve for creating parallel
programs. PROC SCAPROC can get you started quickly on the road to modernizing your SAS code and moving to a
grid environment.

REFERENCES

Thies, Eric, and Rick Langston. 2008. "Introducing the SAS® Code Analyzer." Proceedings of the SAS Global Forum
2008 Conference. Cary, NC: SAS Institute Inc. Available at http://www2.sas.com/proceedings/forum2008/006-

2008.pdf.
Doninger, Cheryl, and Nancy Rausch. 2009. "Data Integration in a Grid-Enabled Environment." Proceedings of the

SAS Global Forum 2009 Conference. Cary, NC: SAS Institute Inc. Available at
http://support.sas.com/resources/papers/proceedings09/098-2009.pdf.

12

http://www2.sas.com/proceedings/forum2008/006-2008.pdf
http://www2.sas.com/proceedings/forum2008/006-2008.pdf
http://support.sas.com/resources/papers/proceedings09/098-2009.pdf

SAS Global Forum 2010 SAS Presents

Stander, Jeff. 2009. “For Base SAS® Users: Welcome to SAS® Data Integration!”Proceedings of the SAS Global
Forum 2009 Conference. Cary, NC: SAS Institute Inc. Available at
http://support.sas.com/resources/papers/proceedings09/092-2009.pdf.

SAS Institute Inc. 2009. Base SAS® 9.2 Procedures Guide. Cary, NC: SAS Institute Inc. Available at
http://support.sas.com/documentation/cdl/en/proc/61895/HTML/default/a003199742.htm.

CONTACT INFORMATION
Your comments and questions are valued and encouraged. Contact the author:

Merry Rabb

SAS Campus Drive

SAS Institute Inc.

Work Phone: 919-531-7042
Fax: 919-677-4444

E-mail: Merry.Rabb@sas.com

SAS and all other SAS Institute Inc. product or service names are registered trademarks or trademarks of SAS
Institute Inc. in the USA and other countries. ® indicates USA registration.

Other brand and product names are trademarks of their respective companies.

13

http://support.sas.com/resources/papers/proceedings09/092-2009.pdf
http://support.sas.com/documentation/cdl/en/proc/61895/HTML/default/a003199742.htm

	2010 Table of Contents

