
1

Paper 304-2010

SAS® Scalable Performance Data Server®: Star Schema Support

Daniel M. Sargent, SAS Institute, Cary, NC

ABSTRACT

The release of SAS Scalable Performance Data Server 4.4 included SQL planner and execution

optimizations for star schemas. This paper will cover important areas relevant to the SAS Scalable

Performance Data Server star schema support:

1. basic concepts behind the star schema
2. overview of customer needs for star schemas
3. how the query is rewritten to enhance performance
4. limitation of the star schema support
5. performance matrix comparing different execution methods to star schema
6. Configuration and limitation

STAR SCHEMA

A star schema is a physical organization of data tables common to data warehouses or data marts. This

section will cover important aspects of a Star Schema:

1. Types of tables in a Star Schema

Fact tables
Dimension tables

2. Relationship between fact and dimension tables
3. Star schema or De-normalization of table
4. Subsetting of tables in a star schema

1. From the dimension tables to the fact table
2. Rewriting the query to subset the fact table

THE TABLES OF A STAR SCHEMA

There are two types of tables in a star schema: fact table(s) and dimension tables. A star schema can have

more than one fact table depending on the business rules and the queries that the star schema will support.

The second type of table in a star schema is called a dimension table. In star schemas, there has to be least

two, but most often more than two, dimension tables. This section will provide a better understanding of the

two types of tables.

FACT TABLES

A fact table is the central table of a star schema which contains the historical transactional facts of the

business. Fact tables contain facts about the business, information about when a transaction occurred, what

product was sold, how many items were sold, how much they sold for, how they were sold (retail vs.

Internet), where they were sold, who purchased the item, and what supplier provided the products to be

sold. Each fact of the business in a star schema is identified by a unique combination of codes for each row

contained in a set of columns of the fact table which is called the primary key. The codes in the columns of

the primary key also exist uniquely in the dimension tables. This relationship between codes between the

two types of tables is explained in more detail in the section covering the relationship between the fact and

dimension tables.

The rows in a fact table are often summarized to reduce the physical size of the table. Although fine details

of transactions are lost using summarization, the information is detailed enough to provide the information to

operate the business.

For example, a grocery store does not always need to access the individual transactions for each

watermelon sold on a specific day. However, the total number sold each day is important for inventory and

SAS PresentsSAS Global Forum 2010

2

restocking purposes. The summarized row will contain information about the number of watermelons sold

and the total price paid. If a grocery store sold 30 watermelons in a single day to 30 different customers and

the fact table was to contain no summarized data compared to data summarized daily, the table would

contain 30 rows compared to 1. Repeat this for each product in the fact table and the physical reduction in

the size of the fact table can be significant.

An entire week for watermelon sales in a single store would require 7 rows of data in the fact table. We can

use the same example of a store selling 30 watermelons a day to show the table-size reduction for a week.

If 30 watermelons are sold each day of the week, the total number of watermelons sold each week will be

210. When these rows are summarized to a weekly level from detailed level, they would use only about 1/

210 of the original space required. This is the main purpose for summarizing transactions in the fact table.

DIMENSION TABLES

The second type of table in a star schema is the dimension table. A star schema requires two or more. A

dimension table most often does not have a relationship to any other dimension tables in the star schema.

The few cases where dimension tables can be related often are where the relationship is a hierarchy. For

example in the financial services industry, a star schema could have a dimension table for a household and

also a dimension table for each cardholder. The relationship between the two tables is that a set of

cardholders can be from the same household and the household key would be a part of the cardholder key.

(Keys are discussed in the next section.) Dimension tables contain the full set of descriptor information for

the codes that make up the primary keys. Descriptor information will include columns such as names,

addresses, text descriptions, geographic information, and so forth. The primary key codes are contained in a

column or a set of columns. The column or set of columns comprise a unique identifier for a given row in the

dimension table. This set of unique identifiers is called the primary key of the dimension table.

Because the values that are contained in the primary keys of the star schema tables are often just a numeric

value they provide little to no useful information for a user of the data. Granted a knowledgeable may know

the data – to properly analyze the data they will need information stored in the dimension tables. The

dimension tables is where information such as store location, state it is located in, region, ZIP code, size in

square feet, phone number, year opened, population demographics for the store location, and so forth are

stored. This important information (that is stored in the dimension tables) is linked to the fact table through

a code value in one of the columns of the fact table primary key. Another example would be the UPC code:

this code is a 12-digit number. Unless the user or business analysis knows the code and what product it is

for, the code will provide very little helpful information.

A star schema will have a dimension table that contains all the possible UPC codes that the business sells.

This dimension table will include columns with descriptor information about the code and categorical

information that is understood by users and business analysis. The descriptor information of a dimension

table often contains a field(s) with full text descriptions that describe the code. A good example would be

UPC codes for different types of cereals; each UPC code would include the size of the box.

PRIMARY AND FOREIGN KEYS

The tables in a star schema contain a column or set of columns that are called table keys. There are two

types of table keys: primary and foreign. The primary key of a table is the column or set of columns where

the value for each row of the table is unique and is the identifier for that row. In a star schema, the primary

key of the fact table is the combined set of primary key columns from the dimension tables. These columns

that link the fact and dimension tables are called foreign keys.

SAS PresentsSAS Global Forum 2010

3

The foreign keys of the fact table are the link between the fact and dimension tables. In a star schema, only

the fact table contains foreign keys with a foreign key for each dimension table. Because the relationship of

the foreign keys links to the primary key of the dimension tables, each foreign key value must match to a

primary key value in the dimension table. This is called a constraint. The SAS Scalable Performance Data

Server star-schema does not enforce the constraint values between the tables; it is up to the ETL process to

assure the rows match.

For example, take a retail star-schema with four-dimension tables: STORE, PRODUCT, SALES_PERIOD,

and SUPPLIER. The dimension table STORE has a primary key of STORE_ID, the PRODUCT table has a

primary key of PRODUCT_ID, the SALES_PERIOD has a primary key of SALE_DATE, and the table

SUPPLIER has a primary key SUPPLIER_ID. The fact table will have a four-column primary key where the

four columns in the fact table are foreign keys, and each column will map to a corresponding primary key of

the one of the dimension tables.

Star Schema Diagram:

The values in these four columns will match the values of the primary keys for the dimension tables. The

column STORE_ID in the fact table will contain the same set of values as the STORE_ID in the STORE

dimension table, the difference being, as a foreign key in the fact table; the values are almost always

repeated. Even though the values in a foreign key column might be repeated, the three values across the

primary key of the fact table must be unique. Example: The STORE dimension table has a row with a key

value of 10456, the PRODUCT table has a row with a key value of 10045, and the SALES_PERIOD table

has a row with a key value for the sales week ending on 04JAN2009. The combination of these values can

be used only once as the identifying primary key values for a row in the fact table.

SAS PresentsSAS Global Forum 2010

4

STAR SCHEMA AND DATA NORMALIZATION

The organization of data is central to the Star Schema because it achieves a reduction of the physical

footprint of data tables on disk by elimination of duplication. Below is an example set of tables common to a

retail business organized in a star schema. The table provides the number or rows for each table, width of

the rows, and a computed physical size in gigabytes. A star schema for retail business can contain other

tables; for the purpose of explaining the physical size of a star schema, this paper will limit three tables. In a

star schema, the only duplication of data are the columns used that map rows between the fact table and the

dimension tables. Even with a central fact table that contains 1 billion rows, the total space required to

physically store the data is less than 100 gigabytes. The physical size that has been computed does not

include indexes or take into account possible data compression.

Table Number of rows Row width Size

CUSTOMER_TRANS (Fact) 1,000,000,000 100 93 gigabytes

STORE (dimension) 1,000 600 586K

SALES_PERIOD (dimension) 208 200 40K

PRODUCT (dimension) 10,000 400 3906K

All combined tables N/A N/A Less than 94 gigabytes

Because descriptor and categorical information are located in columns of the dimension tables of a star

schema, the subsetting of rows will also occur through the dimension tables. With the fact of the business for

a star schema located in the columns of the fact table, this means that almost every query will involve a join

of at least two tables in a star schema. After the subsetting is done on the dimension tables, they are joined

to the central fact table. A later section will discuss the star schema optimization used which involves

subsetting of the fact table. Subsetting and joining of dimension tables to a fact table requires computer

resources.

The queries that are submitted to run against a star schema will have similar patterns of subsetting from the

dimension tables and then joining those results to the fact table. Because of these patterns, it is reasonable

to consider alternative ways to organize data. One alternative is to de-normalize the tables. De-

normalization is a method of using tables that will allow queries to access fewer tables or a single table that

can provide the same result as the queries running against a star schema would provide without having to

perform any joins. De-normalization of tables can greatly improve query performance. However, the physical

footprint of the data will increase significantly because of the duplication of data in the pre-joined table.

In a star schema, the only data columns that are duplicated are the columns needed to join tables. With de-

normalized of tables additional, often all, columns are represented on the fact table. Representing additional

columns on the fact tables shifts the location of subsetting from occurring on a dimension table to the de-

normalized table and eliminates the need to join tables. De-normalizing tables needs to be weighed carefully

against the process of loading tables and the physical footprint. The chart below shows the physical footprint

of: first, the SALES_PERIOD dimension table; second, the STORE; and third, the PRODUCT dimension

tables being de-normalized with the fact table. The number of rows in the fact table remains at 1 billion but

the row width will increase. The table below shows this change and computes a new size.

SAS PresentsSAS Global Forum 2010

5

Table Number of rows Row width Size

CUSTOMER_TRANS (Fact) 1,000,000,000 100 93 gigabytes

CUSTOMER_TRANS and
SALES_PERIOD

1,000,000,000

300

279 gigabytes

CUSTOMER_TRANS,
SALES_PERIOD, and STORE

1,000,000,000

900

837 gigabytes

CUSTOMER_TRANS,
SALES_PERIOD, STORE, and
PRODUCT

1,000,000,000

1300

1,209 gigabytes

Star schema N/A N/A Less than 94 gigabytes

From the table above, we can see that the physical size (excluding indexes or not accounting for

compression) of the single de-normalized table results in a footprint approximately 13 times larger than if the

data were organized in a star schema.

In a star schema, to bring the necessary columns together into a single table for subsetting the fact table,

the software must perform a join of the tables requested in the query. A paper given at the SAS Global

Forum in 2008 (292-2008) demonstrated the costs for the type of processing that are needed to join tables.

With a star schema, it will involve first subsetting and then sorting, followed by match-merging or index

points, to bring together the necessary columns of the tables. This type of process will be performed for

every dimension tables involved in a join.

A data management technique used by customers is to de-normalize tables into fewer tables to make

subsetting easier, plus reduce sorts, match merging, or index points needed. De-normalization is organizing

data tables by pre-joining two or more tables so that the columns necessary would be in fewer tables which

will reduce the joining and increase query response time.

Like everything, there is a trade off to using de-normalized tables: De-normalized tables it will require far

more disk space for the data tables and indexes. And, the de-normalized tables can be more difficult to load

and manage. This paper will discuss only the trade-off of disk space. To demonstrate the change in disk

space utilization for de-normalized tables, we will start with the fact table and the smallest dimension table in

the star schema and combine them into a single table. These two tables are CUSTOMER_TRANS and

SALES_PERIOD tables. The number of rows in the de-normalized table will match the number of rows in

the star schema fact table at 1 billion rows. Therefore the physical size of the new table will be larger due to

the additional columns that need to be added. Without reducing the width of the combined table by 8 bytes

to account for the duplicated column in the two tables that joins the two tables from the star schema

together, if all columns from both tables were to be stored in single de-normalized table that represented the

joined product it would be 300 bytes wide, or three times the size of the original fact table (93 gigabytes).

The physical size of the new table will be 279 gigabytes, not including indexes.

Knowing the number of rows and width of the tables in our example star schema, we can compute the

physical space needed to store a de-normalized table. We can start with the fact table and the smallest

dimension table in the star schema. These two tables are CUSTOMER_TRANS and SALES_PERIOD

tables. Combined together if all the columns from both tables were to be kept, the new table would be 300

bytes wide. The two tables have a column that shares matching values in which a star schema matches

rows in the fact table to a single row in the dimension table. If the two tables are de-normalized, then this

redundant data column can be eliminated making the table width 292 bytes. When we compute the new size

of this table, it will be 273 gigabytes. The size of the new table is about three times the size of the original

SAS PresentsSAS Global Forum 2010

6

two tables which were less than 94 gigabytes. This is a significant increase in table size, and we can start to

understand why de-normalizing of tables is not always possible.

Continuing on, we can compute a final table size if the entire star schema is de-normalized into a single

table. The next two tables are 400 and 600 bytes wide with only two columns having duplicate data between

the tables. If these tables are de-normalized with the fact table, they will add 392 bytes and 592 bytes to the

width of the de-normalized table. The final de-normalized table will be 1276 bytes wide and will contain 1

billion rows. The physical uncompressed size of this table, not including indexes, will be 1.16 terabytes. This

final table is over 10 times larger than the total physical size of the star schema.

REWRITING OF THE QUERIES

One of the strengths of SAS Scalable Performance Data Server is its ability to subset data very quickly and

efficiently. The organization of a star schema causes the subsetting of rows to occur on the dimension

tables where the descriptor, demographic, and geographic columns are located. With pair-wise joins the

subsetting of the fact table occurs when a dimension tables is joined to the fact table. This is performed via

the join keys one table at a time. In a query with four dimension tables there will be four pair-wise joins

performed. During the pair-wise join process when a dimension table is joined to the fact table intermediate

results are saved. Then, another dimension table is joined to these intermediate results and those are

saved. This process of joining a dimension table with the fact table and saving intermediate results will

continue until all the requested dimension tables have been joined with the fact table.

When the SQL planner chooses the order of dimension tables to join to the fact table, it will (based on

heuristics) try to choose the dimension table that will result in the smallest possible result set of rows

compared to the other dimension tables. This is done to create minimize the size of the intermediate results

which reduces the work necessary to join the next dimension table. As an example take a star schema with

a fact table that contains 500 million rows, subsetting on four dimension tables where the heuristics indicate

the joins of the dimension tables to the fact table will result in 20%, 16%, 23%, and 34% of the rows being

selected joined to the fact table respectively, and the final result from joining all four dimension tables to the

fact table return only 4% of the rows possible from the fact table. Selecting the dimension table that when

joined to the fact table will return only 16% of the rows, the size of the scope of the remaining joins has been

reduced as a much as possible.

As we can see in this example, the problem with this approach is after all dimension tables have been joined

to the fact table the actual number of rows returned could be far less than the 16% returned from the first

pair of tables joined. This is the key reason that pairwise joins are not always optimal for performing a join in

a star schema.

The star schema facility optimizes the query by constructing new WHERE clauses predicates using the

dimension tables which are included in a rewritten query, and expedite subsetting of the fact table. The

additional WHERE clauses allow the execution of the query to subset the fact table down to the smallest set

of rows required for the query to be executed. In other words in our earlier example rather than having to

execute a four-way pairwise join to retrieve the 4% of rows for the query, the subsetting of the fact table will

occur with a single pass. This single pass returns the 4% of rows necessary to resolve the query. This

allows the processing of the query to be performed in 3 steps: subsetting of the dimension tables, subsetting

of the fact table, and then using a single pass of the remaining fact table rows to probe back, using indexes,

to the dimension tables to gather any columns necessary for the final result.

With a star schema, this is possible because the relationships between the fact table and the dimension

tables are known. During the first phase of executing the query, the subsetting of the dimension tables

SAS PresentsSAS Global Forum 2010

7

occurs. The primary keys of the dimension tables provide the sets of unique values that are required to

create a WHERE clause that can subset the fact table to the smallest possible set of rows required to

complete the query. Below is an example of what the query will look like before and after having the

subsetting WHERE clause for the fact table applied.

INITIAL QUERY

PROC SQL ;

 Create table dans_table as

 Select f.store_id as store_id,

 f.units_sold as units_sold,

 f.total_revenue as total_revenue,

 f.product_id as product_id,

 sa.sales_period as sales_period,

 p.product__id as product_id,

 p.product_name as product_name,

 p.product_type as product_type

 st.store_id as store_id,

 st.state as state,

 st.store_size as store_size

 From spdslib.customer_trans f,

 spdslib.store st,

 spdslib.sales_period sa,

 spdslib.product p

 Where f.store_id = st.store_id

 and f.product_id = p.product_id

 and f.sales_period = sa.sales_period

 and st.state in ('CT','NC')

 and st.store_size > 40000 /* sq/ft */

 and p.product_type in ('PAPER GOODS')

 and sa.sales_year = '2009'

 and sa.day_of_week = 7 /* saturday */

 ;

quit ;

The queries where clause can be split into two sections that provide a map between the tables and provide

the subsetting criteria. The star schema optimization will look at this map to assure that there is a central

table that all other tables are being joined to. When the planner recognizes a query with tables arranged in a

star schema, it will avoid the pair-wise join method and optimize the processing for subsetting of the fact

table. The section of the WHERE clause below shows that the three dimension tables are being joined to a

single fact table.

 Where f.store_id = st.store_id

 and f.product_id = p.product_id

 and f.sales_period = sa.sales_period

The second section of the WHERE clause contains subsetting criteria that are applied to the dimension

tables in the star schema. Below, we can see the section of the WHERE clauses for the three dimension

tables.

 and st.state in ('CT','NC')

 and st.store_size > 40000 /* sq/ft */

 and p.product_type in ('PAPER GOODS')

 and sa.sales_year = '2009'

SAS PresentsSAS Global Forum 2010

8

 and sa.day_of_week = 7 /* saturday */

REWRITTEN QUERY

proc sql ;

 create table dans_table as

 select f.store_id as store_id,

 f.units_sold as units_sold,

 f.total_revenue as total_revenue,

 f.product_id as product_id,

 sa.sales_period as sales_period,

 p.product__id as product_id,

 p.product_name as product_name,

 p.product_type as product_type

 st.store_id as store_id,

 st.state as state,

 st.store_size as store_size

 from spdslib.customer_trans f,

 spdslib.store st,

 spdslib.sales_period sa,

 spdslib.product p

 where f.store_id = st.store_id

 and f.product_id = p.product_id

 and f.sales_period = sa.sales_period

 and f.store_id in (store_id list from dimension table)

 and f.product_id in (product_id list from dimension table)

 and f.sales_period in (sales_period list from dimension

 table)

 and st.state in ('CT','NC')

 and st.store_size > 40000 /* sq/ft */

 and p.product_type in ('PAPER GOODS')

 and sa.sales_year = '2009'

 and sa.day_of_week = 7 /* saturday */

 ;

quit ;

PERFORMANCE OF THE STAR SCHEMA FACILITY

This section investigates the performance of the star schema facility. To measure the performance of the

facility, two common star schemas created were created with mocked-up data for retail and financial

customers. Each star schema contained a single central fact table and four dimension tables. The fact table

for each schema has a four-column primary key with four numeric columns. The fact table for each schema

is indexed using a simple index on the four primary key columns. Each dimension table will consist of three

types of columns: a single column for the primary key, columns which are blank filled to represent additional

descriptor columns, and a subsetting column that contains numeric values between 1 and 10. Each

dimension table is indexed on the primary key column and the subsetting numeric column.

The numeric column used in the WHERE clause to subset the dimension tables is independent across the

dimension tables. For example, the rows selected with the value of 1 from two different dimension tables

when joined to the fact table will not result in the selection of 10% of the rows in the fact table.

The subsetting numeric column that contains numbers between 1 and 10 will be used to select subsets from

10% to 60% from each of the dimension tables using a WHERE clause with a single number or set of

numbers. There were six queries executed against each star schema starting with a query that selected

10% of the rows from each dimension table and ending with a query that selected 60% of the rows from the

dimension tables.

The performances of the two star schemas differ due to the differences in the number of rows in the two fact

tables and the number of rows in the dimension tables. The retail schema has a much narrower fact table

SAS PresentsSAS Global Forum 2010

9

but more than 5 times the number of rows. The ratio of rows between the fact table for each schema and the

dimension tables for each schema will also cause differences in performances.

RETAIL STAR SCHEMA EXAMPLE

The retail star schema will consist of five tables: RETAIL_FACT, STORE, PRODUCT, SALES_PERIOD, and

SUPPLIER. The RETAIL_FACT table is the central fact table and has a primary key of STORE, PRODUCT,

SALES_PERIOD, and SUPPLIER. The fact table will consist of rows of transactions summarized for each

week, product, store, and supplier. The four dimension tables are STORE, PRODUCT, SALES_PERIOD,

and SUPPLIER. These four tables are linked to the fact table through a column that is part of the

RETAIL_FACT primary key.

The fact table RETAIL_FACT contains 375 million rows with a table width of 100 bytes. It was created to

match the cross product of the four dimension tables with 60, 100, 125, and 500 rows respectively. The

RETAIL_FACT table also contains additional columns for units sold and transactional amounts.

The SALES_PERIOD table will contain 60 rows, and it will be 124 bytes wide. Each row in this table pertains

to a weekly period during. There are 60 rows because the tables will contain five years of historical

information about a monthly basis. So 4 years multiplied by 12 months in a year gives us 60 rows. The

primary key to this table is a numeric column called SALES_PERIOD. This column will contain a date value

that is the last day of each weekly SALES_PERIOD. Other columns that might be included on this table are

season, month, quarter, and year.

The SUPPLIER dimension table will contain 100 rows with a table width of 536 bytes. Each row in this table

pertains to a specific supplier of goods for the supermarket chain. The primary key for this table is a column

called SUPPLIER. Other columns that this table would contain could be columns such as supplier names

and address information.

The STORE dimension table will contain 125 rows, and the rows will have a width of 536 bytes. The primary

key for this table is a numeric column called STORE. The other columns that would typically be found in this

dimension table would be geographic information such as the street address, city, state, and ZIP code.

Other columns could contain information about the square footage of the store and when the store was

opened. These columns will be represented by large character-filled columns.

The PRODUCT table will contain 500 rows, and it will be 536 bytes wide. The primary key is a numeric

column called PRODUCT. This table will represent all possible products sold by the grocery store chain.

Some of the other columns on the table are product description, UPC code, quantity, and size.

QUERIES

There will be six queries executed against the retail star schema where each query selects a larger

percentage of rows from each dimension table. The first query will select 10% of the rows from each

dimension table. In this star schema setup, this does not mean 10% of the total rows across the entire

schema will be selected. The queries were executed using the star schema facility and using pairwise joins

as a comparison. Below is the syntax of the query.

proc sql _method ;

 connect to sasspds (dbq='bigdata'

 server=&serv..&port

 user='anonymous') ;

 execute (create table junk as

 select b.product as product,

 c.sales_period as sales_period,

SAS PresentsSAS Global Forum 2010

10

 d.supplier as supplier,

 e.store as store,

 a.units_sold as units_sold,

 a.sales_price as sales_price

 from retail_fact a,

 product b,

 sales_period c,

 supplier d,

 store e

 where a.product = b.product

 and a.sales_period = c.sales_period

 and a.supplier = d.supplier

 and a.store = e.store

 and b.product_subset_10 in (1)

 and c.sales_period_subset_10 in (1)

 and d.supplier_subset_10 in (1)

 and e.store_subset_10 in (1)

) by sasspds ;

 disconnect from sasspds ;

quit ;

RETAIL RESULTS

The results of queries executed with the star schema facility compared to pairwise join execution are in the

table below. Because the star schema facility bypasses multiple sorts and merges necessary for pairwise

joins and it rewrites the query to optimize the query by subsetting the fact table to the smallest possible row

set, it has a distinct performance advantage. The results compare the two types of joins using the total time

necessary to execute the query along with the total CPU utilization.

Percent Subset

of dimension

tables

Rows returned

by query

Run time

Star schema

CPU-utilized

Star

schema

Run time

Pairwise

join

CPU-utilized

Pairwise join

10 percent 39,000 13 sec 13 sec 22 min 42 min

20 percent 624,000 48 sec 49 sec 37 min 74 min

30 percent 3,159,000 4 min 4 min 58 min 97 min

40 percent 9,984,000 12 min 12 min 86 min 132 min

50 percent 24,375,000 30 min 30 min 120 min 164 min

60 percent 49,896,000 60 min 61 min 160 min 210 min

CREDIT CARD STAR SCHEMA

The credit card star schema will consist of five tables: FINANCIAL_FACT, HOUSE_HOLD, CARDHOLDER,

TRANS_PERIOD, and VENDOR. The FINANCIAL_FACT table is the central fact table and has primary

keys of HOUSEHOLD, CARDHOLDER, TRANS_PERIOD, and VENDOR. The fact table will consist of rows

of transactions summarized for each week, product, store, and supplier. The four dimension tables are

HOUSE_HOLD, CARDHOLDER, TRANS_PERIOD, and VENDOR. These four tables are linked to the fact

table through one of the columns that is part of the FINANCIAL_FACT primary key.

The fact table FINANCIAL_FACT contains 72,009,720 million rows with a table width of 552 bytes. It was

created to match the cross product of the four dimension tables which have 24, 1000000, 1000000, and

3000405 rows respectively. The FINANCIAL_FACT table also contains an additional column for the

transaction amount.

The TRANS_PERIOD table will contain 24 rows, and it will be 124 bytes wide. Each row in this table

pertains to a monthly time period. There are 24 rows because the tables will contain two years of historical

information on a monthly basis. The primary key to this table is a numeric column called TRANS_PERIOD.

SAS PresentsSAS Global Forum 2010

11

This column will contain a date value that is the last day of each monthly TRANS_PERIOD. Other columns

that might be included on this table are season, month, quarter, and year.

The VENDOR dimension table will contain 1000000 rows with a table width of 512 bytes. Each row in this

table pertains to a specific vendor of goods that the CARDHOLDER purchased. The primary key for this

table is a column called VENDOR. Other columns that this table could be columns such as vendor name

and address information.

The HOUSEHOLD dimension table will contain 1000000 rows, and the rows will have a width of 512 bytes.

The primary key for this table is a numeric column called HOUSEHOLD. The other columns that would

typically be found in this dimension table would be geographic information such as the street address, city,

state, and ZIP code. Other columns could contain information about the household such as the number of

members in it and income level.

The CARDHOLDER table will contain 3000405 rows, and it will be 520 bytes wide. The primary key is a

numeric column called CARDHOLDER. This table will represent every CARDHOLDER that has been issued

a credit card. Some of the other columns on the table are cardholder name, date of birth, address

information, credit limit, education, and income.

QUERIES

There will be six queries executed against the retail star schema where each query selects a larger

percentage of rows from each dimension table. The first query will select 10% of the rows from each

dimension table; in this star schema setup, this does not mean10% of the total rows across the entire

schema will be selected. The queries were executed using the star schema facility and using pairwise joins

as a comparison. Below is the syntax of the query.

proc sql _method ;

 connect to sasspds (dbq="&domain"

 server=sunflare.6150

 user="anonymous") ;

 execute (create table &domain..star_results as

 select f.household as household,

 f.cardholder as cardholder,

 f.trans_period as trans_period,

 f.vendor as vendor,

 f.trans_amt as trans_amt,

 h.household_info_s as household_info_s,

 c.cardholder_info_s as cardholder_info_s,

 t.trans_period_info_s as trans_period_info_s,

 v.vendor_info_s as vendor_info_s

 from financial_fact f,

 household h,

 cardholder c,

 trans_period t,

 vendor v

 where f.household = h.household

 and f.cardholder = c.cardholder

 and f.vendor = v.vendor

 and f.trans_period = t.trans_period

 and c.cardholder_subset_10 in (1)

 and h.household_subset_10 in (1)

 and t.trans_period_subset_10 in (1)

 and v.vendor_subset_10 in (1)

) by sasspds ;

SAS PresentsSAS Global Forum 2010

12

quit ;

FINANCIAL RESULTS

The results of queries executed with the star schema facility compared to pairwise join execution are in the

table below. Because the star schema facility bypasses multiple sorts and merges necessary for pairwise

joins and it rewrites the query to optimize the query by subsetting the fact table to the smallest possible row

set, it has a distinct performance advantage. The results compares the two types of joins using the total time

necessary to execute the query along with the total CPU utilization.

Percent

Subset of
dimension

tables

Rows returned
by query

Run time
Star schema

CPU-
utilized

Star
schema

Run time
Pairwise

join

CPU-utilized
Pairwise join

10 percent 100,557 6 min 3 min 11 min 18 min

20 percent 760,587 12 min 5 min 16 min 25 min

30 percent 2,514,804 11 min 9 min 25 min 31 min

40 percent 5,878,686 13 min 15 min 32 min 41 min

50 percent 10,634,774 20 min 24 min 40 min 52 min

60 percent 17,425,430 30 min 37 min 53 min 66 min

CONFIGURATION AND LIMITATIONS

How to configure the data tables to make use of the star schema optimizations and limitations for the star

schema facility can be found in the SAS SPD Server User guide, located online at the SAS tech support

website.

CONTACT INFORMATION

Your comments and questions are valued and encouraged. Contact the author at:

Daniel Sargent

SAS

SAS Campus Drive

Cary, NC 27513

Work phone: 919-531-6477

Fax: 919-677-4444

E-mail: Daniel.Sargent@sas.com

Web: www.sas.com

SAS and all other SAS Institute Inc. product or service names are registered trademarks or trademarks of

SAS Institute Inc. in the USA and other countries. ® indicates USA registration.

Other brand and product names are trademarks of their respective companies.

SAS PresentsSAS Global Forum 2010

	2010 Table of Contents

