
Paper 307-2010

The Power of Personalisation with JMP
®

Ian Cox, PhD, JMP Marketing Manager

ABSTRACT

Whether it‟s used alone or in conjunction with other SAS® technologies, JMP is often promoted as a point-and-
click environment whose unique features allow informed users to get value from their data quickly and easily.
Sometimes, though, users are intimidated by the sheer power and versatility of JMP, and the question becomes
how it can meet specific needs, experience levels and application-oriented patterns of use. Through a series of
examples, this presentation shows how the JMP scripting language, JSL, can be used to unleash the power of
personalisation, from simply combining report elements in a desired way to building complete applications.

INTRODUCTION

As we begin, it is worth noting that there is no sense in which this paper can be exhaustive. The examples are
intended as exhibits that may help to convince you that personalisation of JMP via JMP Scripting Language (JSL)
is worth further consideration or study. By drawing attention to the completeness of JSL and some of its more
advanced features, we seek to make the material pertinent for those who are already hard-core developers and
programmers, as well as those who are just starting down this path. So although we do reference other useful
resources, this paper is necessarily mostly about “what” and “why,” with often only broad outlines of “how.” The
code for most of the examples shown can be downloaded from the JMP File Exchange at:
http://www.jmp.com/community/.

JMP® AND STATISTICAL DISCOVERY

As its tag line proclaims, the key strength of JMP lies in its ability to support statistical discovery, the process by
which users who understand their data can interact with it quickly and easily to arrive at answers that are
valuable in their specific context. JMP is built to support an unfolding rather than preplanned style of
investigation, in which the emergence of new and interesting questions through the course of the analysis can be
as important as obtaining answers to the questions posed before the analysis started. To support this pattern of
use, the functionality of JMP is organised and surfaced through a variety of platforms that, typically, consume a
single JMP table to produce a report that the user can interact with further. The report contains hot spot or “red
triangle” menu options from which the user selects after an initial review of the output, which is almost always
shown in a graphical form. The ability to select and show data conditionally from directly within a report supports
statistical discovery. For highly dimensional data, this support is further enhanced because reports are non-
modal, and multiple reports generated from the parent table are linked to one another via this table.

As powerful and liberating as it is, this “free-form” usage of JMP as a toolbox can be intimidating for some users,
particularly because after 20 years of continuous development JMP is so very functional, and is becoming more
so with each release. Perhaps more fundamentally, although statistical discovery involves both exploration
(“Uncover Relationships”) and modelling (“Model Relationships”), modelling is not always required to find useful
and valuable answers from data (see Figure 1).

SAS PresentsSAS Global Forum 2010

http://www.jmp.com/community/

Figure 1. Statistical Discovery as a Transformational Process

No matter how the details are drawn, Figure 1 emphasises that, overall, statistical discovery can be seen as a
transforming process with two inputs:

 The user, with particular skills, aptitudes and training.

 The data, with particular dimensionality, structure and quality.

and one output:

 New insight and knowledge useful within the specific context.

Clearly, for this overall process to function well, JMP has to respect both the nature of the user and the data the
user want to work with. So, in addition to the obvious use of JMP as a toolbox, we should consider how well we

can adapt JMP to more application-oriented usage patterns.

PROGRAMMING, APPLICATION BUILDING, PERSONALISATION AND MASS
CUSTOMISATION

The purpose of programming is to create a blueprint for certain desired behaviour in a specific setting, and there
is an ongoing debate about the extent to which the writing of programs is an art, a craft, or an engineering
discipline [1]. Unfortunately, gaining consensus about exactly what this desired behaviour should be is not always
easy, particularly if there are several points of view or if the setting is ambiguous. Furthermore, even when there
is consensus about the desired behaviour, there is almost always more than one way to deliver it. Some ways
will be good, others less so. Finally, it is almost inevitable that knowledge of requirements and how they can be
met changes as implementation unfolds, because it‟s usually not economical to strive for a perfect plan in
advance. All of these issues help to explain the rise in interest in agile development [2], where the application
evolves under the influence of the real-world experiences gained as implementation proceeds.

Used originally in relation to Web development, personalisation is narrowly taken to mean that the user‟s
experience of an application is based on attributes such as his department, functional area or role. In contrast,
customisation refers to the ability of users to modify the application layout or specify what content should be
displayed. As we shall see, JMP can easily support customisation and personalisation based on group
membership, through an appropriate mix of implicit personalisation (in which no user intervention is needed) and
explicit personalisation (under user control).

Mass customisation has been defined as "a strategy that creates value by some form of company-customer
interaction at the fabrication and assembly stage to create customised products with production cost and

SAS PresentsSAS Global Forum 2010

monetary price similar to those of mass-produced products." [3] More generally, it is a way to postpone the task
of providing differentiating functionality for a specific customer until the latest possible point in the supply network.

Given that:

 JMP installs as a toolbox.

 An agile approach assures that an application is fit for purpose.

 Users seem to value personalisation.

… it is clear that mass customisation is of interest in fostering JMP usage so long as it is technically feasible and
easy to accomplish. This is particularly so given the extraordinary inventiveness of users in finding new
applications for JMP, and the fact that even if it were possible, meeting all foreseeable needs with a monolithic
product would not be economic. Fortunately, and as we hope to demonstrate through the following examples, in
addition to the customisation and personalisation mentioned previously, JMP also allows mass customisation by
third parties or end users. It is in this more general sense that „personalisation‟ appears in the title of this paper,
and is used subsequently.

No matter what technical environment JMP is embedded in, and with or without the help of other SAS
technologies, personalisation of JMP requires some familiarity with JMP‟s programming language, usually, but
not necessarily, working in conjunction with the built-in platforms. So let‟s look at some code.

A FIRST EXAMPLE – BUILDING A CUSTOMISED REPORT

Even when JMP is used interactively to make a report from a table, JMP generates JSL code behind the scenes
that you can readily exploit. Saving this code allows you to repeat the same analysis, and this is one way to
share your results with others. The saved script can also be used with new data so long as the columns to which
it refers still exist in the current table. Usually, it is most convenient to save the script to the associated table
(using Script > Save Script to Data Table from the report‟s red triangle menu), so that the script is carried along
with the table. But to inspect the code itself, using Script > Save Script to Script Window opens up a JMP editor
window containing the code that has been generated by pointing and clicking. Figure 2 shows the results of doing
this by looking at the distribution of the variables height and weight in the Big Class sample data table.

Figure 2. Automatically Generated Code from Distribution

Note these characteristics of JSL syntax:

1. The keyword „Distribution‟ originating from the platform used.
2. The arguments bracketed by „(„ and „)‟ and delimited by „,‟.
3. The prefix „:‟ indicating a reference to a column in a table.
4. The white space.
5. The terminating „;‟.

Figure 3 shows the updated script window after following a similar procedure looking at height against weight in
the Fit Y by X platform. Clicking the right mouse button on the script window brings up a context menu containing
the command Run Script, which just makes two new versions of the Report windows that you already have open.

SAS PresentsSAS Global Forum 2010

Figure 3. Automatically Generated Code from Distribution and Fit Y by X

But suppose you want the Reports to appear in the same window? Modifying the code in the Script Window as in
Figure 4 easily does this. Note that because they are now within the scope of the New Window command, the
Distribution and Bivariate expressions now have to be delimited by a „,‟ which can be effected by modifying No. 5
above. In fact, it is more appropriate to think of „;‟ as the glue operator in JSL, since it is used to glue expressions
together. Thus the „;‟ in line 8 of Figure 4 could actually be removed with no effect because it glues the Bivariate
expression to the empty expression that follows it.

Figure 4. Putting Distribution and Fit Y by X Output in the Same Window

Running this code shows that the two report elements are arranged vertically. To obtain a horizontal
arrangement, we need to know about the JSL expression HListBox (H stands for horizontal). Making a further
addition to the code, and using the Reformat Script context menu command gives Figure 5, which achieves the
desired effect.

Figure 5. Using HListBox to Make a Horizontal Arrangement

Suppose now that we want the histograms to have the same orientation as their respective axes. A little
experimentation with the red triangle menu options in the Distribution report soon allows you to come to the code

in Figure 6, which gets close. But running the code shows that the alignment of the axes is not very precise.
Although this can be improved, closer scrutiny of the options in the Fit Y by X report allows you to find the much
neater solution shown in Figure 7.

SAS PresentsSAS Global Forum 2010

Figure 6. Imperfect Alignment of Axes

Figure 7. Using Inbuilt Functionality to Align Axes Correctly

Although this example served to introduce the rudiments of JSL and how to build upon code automatically
generated by JMP, the moral of the story is really that you are well advised to fully investigate what‟s already
provided in the JMP toolbox! A thorough understanding of what‟s possible interactively will always stand you in
good stead. Similarly, close and repeated scrutiny of Help > Books > JMP Scripting Guide and Help > indices will
pay dividends as you start to write JSL for yourself.

A SECOND EXAMPLE – OFFERING ROLE-BASED FUNCTIONALITY

The initial state of a report window can be customised by each user using the Platforms option under File >
Preferences. The options offered here generally map to red triangle menu items in the report itself, so that if for
some reason the initial state specified is not actually the most suitable, it can easily be changed interactively. Edit
> Customize > Menus and Toolbars does what is described, bringing up a window in which menu branches can
be modified or pruned, or new branches or items added (usually giving the user access to new or repackaged
functionality involving JSL).

Another way to give access to specific functionality is through a JMP Journal file, as exemplified by the JMP
Starter Window (View > JMP Starter). Using a journal has the advantage that, in comparison with customized
menus, it is easier to offer “in-line” commentary or guidance to a user, and to build a more obvious workflow by
making appropriate use of the hierarchical outline nodes. Such journals can be built by hand and then made
available to a user or group of users, or can be built by JSL if needed. This section looks at both of these options
and concludes with a look at what is possible with a little time and energy.

When JMP initialises, it looks for a file called jmpStart.jsl in the appropriate Builtin Scripts folder of the install. If
this file exists, the JSL code therein is executed automatically, which opens up a number of possibilities. For
example, the code in Figure 8 can be used to “bootstrap” the current session, in this case by running all the JSL
files in a second folder, perhaps on a shared drive that is easier to administer than the C:/ drive of each desktop.
Note that the variable files in line 9 is returned as a list, a very common data structure in JSL. List items are
delimited by „,‟, and are between an opening „{„ and a closing „}‟. The for construct in line 11 lops over all the
items in this list (all the files in the specified folder) and tries to run the code in each one by using Include. Note
that this approach is far from robust, because the specified folder could contain other types of file, or the JSL in
any one file may not be syntactically correct. JSL allows for throwing and catching exceptions, and, as usual, the
work that goes into foreseeing and coding for every eventuality is a function of the intended use. Note that files is
evaluated at run time, giving an easy way to manage the shared initialisation(s) by modifying, adding or deleting
the JSL files in the folder referenced.

SAS PresentsSAS Global Forum 2010

Figure 8. Using jmpStart.jsl to Bootstrap a JMP Session

Suppose that one of the included files contains the code shown in Figure 9, which shows a simple way to get the
ID of the named user licensed to use this JMP install. The method relies on parsing the value of $HOME, a built-
in path variable used by JMP. The code also shows:

 An example of a JSL function definition. The „{}‟ in line 1 indicates that arguments are
passed to a function as a list, in this case with no items since we don‟t need getUserID to
take an argument.

 The fact that a JSL function is an example of an expression that can be evaluated. Line 4
prints this expression to JMP‟s Log Window (check the option View > Log, then select
Window > Log). To have the ID shown in the log, we need to evaluate the expression (line
5).

Figure 9. Crude Way to Get User Information

We shall see that the fact that a JSL expression is any combination of variables, constants and functions, linked
by operators, which can be evaluated, is a very powerful feature of the language. In this case the expression is
simply the definition of a function, but it could be all or part of an entire script. Depending on your prior
experience with other programming languages, it‟s also fair to say that this feature can be confusing at first, so it
is worth investing time to understand it fully. The Winter 2010 JMPer Cable article, Expression Handling
Functions – Part 1

[1]
, is an excellent jumping-off point, and tinkering with code that already works is a great way

to learn more.

Relying on $HOME may not be the most robust solution, so Figure 10 shows an alternative that makes use of the
ability to call DLL files from within JMP (requires JMP 8 or a later release). As in the previous version,
getUserInfo is a function that does not require an argument. The {Default Local} indicates that variables defined
therein will be local to that function, and in line 16 the „<<‟ is the JSL syntax for sending a message to an object
(in this case, the DLL that was loaded in the previous line). Note also that if a function has more than one output,
these are returned as a list. In this case, there are two outputs (line 32), and EvalList forces the evaluation of
every item in the list so that each value is available to the calling program. Finally, the JSL syntax „[]‟ always
denotes a subscript that allows you to index into a list or matrix and retrieve specific items or elements (see line
36).

SAS PresentsSAS Global Forum 2010

Figure 10. Using a Microsoft DLL to Get User Information

Once we have the user information, we can easily take conditional action as we initialise JMP for that user: We
could maintain a JMP table that details this action, or access a LDAP server to learn more about that user.

As mentioned above, one scenario is to present a user-specific journal that guides and perhaps constrains that
user in an appropriate way. So the question naturally arises as to how such a journal can be built and
maintained. To illustrate this, we slightly modify an example from the aforementioned JMPer Cable article. Figure
11 shows the desired result, namely a Journal with some buttons that perform specified actions.

Figure 11. A Simple User Interface in a Journal

The code to achieve (part of) this result by brute force is shown in Figure 12. This shows some new display
boxes, including ButtonBox, whose second argument is the expression detailing the action to take when the
button is pressed (in this case, simply opening a particular file). It‟s clear that this approach could soon become
unwieldy, so take a look at the alternative in Figure 13. The user interface is assembled from the specification
detailed in layout, which can be easily maintained without affecting the subsequent code. The addnode function

SAS PresentsSAS Global Forum 2010

iterates through the items in layout, using „[]‟ to index items appropriately. The inner loop over y builds a
command (an expression . . .) cmd that appends a new ButtonBox using the << Append() message, after which a
TextBox containing the description of that ButtonBox is also appended. Both display boxes are added to a
LineupBox, and the option NCol(2) gives the neat arrangement in two columns. Note that casting cmd as an
expression is crucial to the correct functioning of the code, else there is a danger that all the ButtonBoxes that
are built end up opening the same table (the final one referenced as we iterate). For a detailed explanation,
please see Expression Handling Functions – Part 1

 [1]
.

Figure 12. Brute Force Way to Produce Figure 11

Figure 13. More Elegant Way to Produce Figure 11

To conclude this section, take a look at the screenshots in Figures 14 and 15. These are from a pre-release
version of JMP Genomics (which requires JMP 9, due September 2010). Building on the techniques shown
already, this JMP Genomics Starter is built (using JSL) by parsing the XML specification held in a .jmpmenu file.

The starter configures access to JMP Genomics functionality according to user role or persona, and personas
can be selected from the drop-down list at the top. New personas can be defined (by the user, if necessary)

through a point-and-click interface, and these can be saved and restored.

SAS PresentsSAS Global Forum 2010

Figure 14. More Complex UI (Persona 1) Figure 15. More Complex UI (Persona 2)

A THIRD EXAMPLE – PRE-FILTERING SPECTRAL DATA WITH THE SAVITZKY-GOLAY
METHOD

A spectrum consists of a set of intensities measured at various wave lengths or frequencies. Such spectral data
occurs in many areas of application, and it is quite common to pre-filter the data prior to any attempts at statistical
modelling via techniques such as partial least squares. A variety of filtering and smoothing methods are routinely
used, one being the Savitzky-Golay method that replaces each measured value with one interpolated from a
local polynomial fit. In this case, there are three parameters that affect the filtering, namely the order of the
polynomial chosen and the offset of the left and right edge of the filter window from the point for which we are
calculating the filtered value. Any such filtering is inherently subjective, so rather than rely on batch-oriented
processing, there is some advantage in providing immediate feedback as the user manipulates the filtering
parameters. In other words, this is a natural usage pattern for JMP, but in the context of a specific, albeit small,
application.

Although small, the application serves to illustrate some further important features of JSL that enable:

 Building a user interface that allows one to assign columns in a table to specific roles in an
analysis.

 Using matrix manipulations in JSL.

 Building a custom graphics display that can be updated under user control.

The application was originally developed as a proof of capability and a learning exercise. It was never really
“designed” as such, and no special effort was made to optimise its performance. As with any language, there are
many possible approaches, and there is always the fundamental interplay between algorithms and data
structures. It has been said that “the only proof is working code,” and it is in this spirit that this final example is
presented. As mentioned previously, the full code is available for download, so we focus here on briefly
discussing code snippets that exemplify the three areas mentioned above that are of general interest. Before
doing this, we show briefly what the application does, and in rough terms, how this functionality maps to the
program.

Assuming the specimen data table SG_Data is active, running the script Simple_SG.jsl produces the dialog
shown in Figure 16. Apart from the first two columns (which can be ignored), each column in SG_Data is a
particular wave length, so the spectra are stored row-wise in the starting table. The dialog allows columns
selected in the left-hand list to be moved to the right-hand list for analysis (giving the means to use only selected
wave lengths). When the user hits the OK button, we will need to unload the dialog to find out what they actually
chose, and perhaps do some error checking. Note that SG_Data contains 392 columns (390 wave lengths) and
47 rows (spectra).

SAS PresentsSAS Global Forum 2010

Figure 16. UI to Assign Columns to a Role

Selecting all the columns apart from the first two and hitting OK gives three new windows, only two of which are
shown here as Figures 17 and 18. Figure 17 shows the measured values of each spectrum as a red line, while
the corresponding smoothed values are shown as a blue line. At the bottom of the window are slider bars that
allow the user to change the default filter parameters and see all three windows update. Figure 18 shows the first
derivative of the filtered values (which can also be used for analysis), and the third window generated shows the
values of the second derivative. The button at the bottom of each window allows the user to save the filtered
values into a new table for further analysis. Figure 19 shows the effect on the smoothed vales of changing the
filter parameters. Note that the regular JMP tools can still be used to manipulate the displays. For example, the
user can drag a rectangle with the magnifying glass to zoom in to a particular range of wavelengths.

SAS PresentsSAS Global Forum 2010

Figure 17. Raw Data and Filtered Spectra (Second Order, Window Size 21)

Figure 18. First Derivative of Filtered Spectra in Figure 17

SAS PresentsSAS Global Forum 2010

Figure 19. Raw Data and Filtered Spectra (Fourth Order, Window Size 12)

In Simple_SG.jsl:

Lines 1 to 95 contain some functions and an expression for later use. The Savitzky-Golay (SG) method itself is
implemented via the functions doSG and doSGCoeff, while matrixToTable is used when the user wants to save
the current filtered values, or those of the first or second derivative. The expression fixWindow is used to ensure
that there are no inconsistencies between the specified size of the filtering window and the polynomial order.

 Lines 98 to 136 produce the dialog shown in Figure 16 and are discussed below (Example
3A).

 Lines 142 to 316 are the expression OKScript that is invoked when the user hits OK in
Figure 16.

 After the dialog choices are unloaded, OKScript builds a matrix of the required data and
transposes this matrix for use with doSG and doSGCoeff (lines 157 to 161).

 Using the initial values of the filter parameters, we compute the smoothed values and those
of the first and second derivatives (lines 163 to 183).

 The three windows produced are referenced by nw0, nw1, nw2: The expression
refreshScript (lines 198 to 235) is called when one of the sliders for a filter parameter in nw0
is adjusted by the user. It interrogates the slider positions to get the new values, recomputes
the filtered values and redraws nw0, nw1 and nw2 accordingly.

 Lines 237 to 274 make the window nw0, which uses a graphics script to draw the unfiltered
and filtered values as lines (Figure 17). This is discussed further below (Example 3C).

 Similarly, lines 276 to 294 (296 to 314) make the window nw1 (nw2) that contains the plot of
first (second) derivative values shown in Figure 18.

SAS PresentsSAS Global Forum 2010

EXAMPLE 3A – ASSIGNING COLUMNS TO ROLES

Figure 20 shows the code that produces the dialog in Figure 16. There are some display boxes that should be
familiar (VListBox, PanelBox, TextBox) and some that are new, like BorderBox and ColListBox. BorderBox just
provides some visual spacing and ColListBox (with the use of the option All) lists all the columns in the current
data table (in this case referenced as dt1, and equal to DataTable(“SG_Data”) if SG_Data was selected when the

script was run).

Figure 20. Code to Produce Figure 16

As seen in Figure 16, we need to provide two lists, and the means to shift selected columns between them. In
this case the “source” list is called colListData (line 20), and the “destination” list is ColListX (line 25), which,
because of the options chosen, is initially empty. The button labelled „X, Wavelength or Frequency‟ is used to
move selected columns from the source to the destination list, (line 24) while the button labelled „Remove‟
removes selected columns from the destination list should the user make a mistake (line 33). Note that in line 24
the expression tied to the ButtonBox sends a << GetSelected message to the source list to see which columns
are currently selected (highlighted), then adds these to the destination list using an << Append() message. This

expression could be more sophisticated (for example, updating other UI elements to reflect the columns chosen),
but note that we do not need additional code to prevent the occurrence of duplicate entries in the destination list.

The Cancel button closes the dialog window referenced as win1 and terminates the script, whereas the OK
button calls OKScript, which does all the work when the user is happy with the selected columns. OKScript
closes win1, and unloads the display box ColListX into a list called lx by sending it a << GetItems() message. It
then checks to see that at least one wave length column was selected before continuing. Clearly, the error
checking could be made more meaningful, and it would be better to associate the corresponding logic with the UI
elements in win1, rather than dismissing this window first.

When building user interfaces via JSL, all of the visual elements that you see as you click around JMP are
available as so-called display boxes. For a listing see Help > Indices > DisplayBox Scripting. Each display box is

an object that you can manipulate by sending messages to, and display boxes can be arranged in more or less
any way to achieve the intended effect. For example, the JMP Scripting Guide contains an example showing how
you can build a facsimile of the launch dialog that is shown when you select Analyze > Multivariate Methods >
Cluster. Although at first glance complex, building a user interface in JMP is routine in the sense that there are

just a few design patterns that you will soon get used to if you need to do it for yourself.

SAS PresentsSAS Global Forum 2010

EXAMPLE 3B – USING MATRIX MANIPULATION IN JSL

JSL provides facilities to work with matrices with one subscript (row or column vectors) and two subscripts.
Subscripts start from 1 (not 0), and if there are multiple rows, „,‟ is used as a delimiter between them. Where it
makes sense, JSL functions operate with matrices as well as scalars, so if X is a matrix, Power(X, 3) takes the
cube of every element in X. There are also many functions that work specifically with matrices: For example
GInverse(X) gives the Moore-Penrose generalised inverse of X. Generally, if the algorithm of interest lends itself
to the use of matrices as data structures, then the efficiency gain can be considerable. Usually, if your code
contains lots of similar For() loops, it may be worth investigating the use of matrices.

Figure 21 shows a slightly modified version of doSGCoeff() which computes the SG coefficients used to smooth
the data and is one of the functions in Simple_SG.jsl involving matrices. As the figure shows, this function takes
the three filtering parameters (shown here as M, nL and nR) and order, which allows the function to also compute

the coefficients used in the calculation of the first or second derivative value. As mentioned before, these function
arguments are supplied as the items in a list, and in this case they are all scalars (assumed to be positive). Note
that the intention here is not necessarily that you understand how the SG smoothing has been implemented, but
rather that you appreciate some of the mechanics of how to work with matrices in JSL.

Figure 21. Compute SG Coefficients

Line 13 constructs a column vector, v, which has an integer element for each value in the filtering window (run

the code, and look in the JMP Log): The „`‟ operator forms the transpose of the row vector that the index function
„::‟ produces. Lines 16 and 24 show examples of the „J()‟ constructor used to build a matrix: The first (second)
argument is the required number of rows (columns), and the final argument is the value assigned (for the design
matrix A in line 16 this is „1‟, while for c, the vector of coefficients, this is the missing value „.‟).

Lines 17 to 19 loop to build the design matrix column wise (using the „||‟ operator to concatenate columns side by
side). And line 20 uses a matrix-specific function Inverse() to get a new matrix X. Lines 25 to 28 calculate the
actual coefficients c: The subscript „0‟ is used to mean a whole column or a whole row (recall that subscripts

indexing specific elements start at 1), and the „:*‟ means “multiply corresponding elements.” In conjunction with
Sum(), this gives each coefficient as the scalar or dot product of a column from X and a column from A.

Line 30 returns the vector of coefficients we need to the calling script, and line 34 asks for the coefficients
needed for a quadratic fit with a symmetric filtering window of size 5 (the Round() function just makes the output
in the JMP Log easier to read). Similarly line 35 (36) returns the coefficients used to calculate the first (second)
derivative from the raw data.

SAS PresentsSAS Global Forum 2010

EXAMPLE 3C – BUILDING A DYNAMIC CUSTOM GRAPHICS DISPLAY

Figure 22 shows the code in Simple_SG.jsl that makes the window nw0 (see Figure 17). Note that in this case it

is difficult to give code snippet that stands alone. There are some familiar display boxes, and two new ones,
GraphBox() and SliderBox(), which we deal with in turn.

Figure 22. Code to Produce Figure 17

GraphBox() makes the white graphics frame in Figure 17, with the associated axes. JSL provides many graphics
primitives that work wither in relation to the axes defined, or, if needed, at the pixel level. Here we just use Line()
to draw each spectrum and the corresponding filtered values. Note that spectraAsCols[] contains the unfiltered
data and sepctarAsCols0[] contains the filtered data (see line 180 in simple_SG.jsl). Furthermore, note that Line()
can work with matrices, and we use the „0‟ subscript to access a whole row of values. DoubleBuffer (line 253) is
used whenever we want a GraphicsBox() to update under user control.

SliderBox() (lines 258, 263, 266) allows the user to change the filtering parameters. The first (second) value is
the minimum (maximum) permitted value of the global variable in the third position). The expression refreshScript
(lines 198 to 235) associated with each SliderBox() is called whenever a slider is moved. As mentioned above,
refreshScript looks at the new values of the variables M, nL and nR, recomputes all the required values, then
updates the windows nw0, nw1 and nw2 by sending each a << ReShow() message (lines 224, 224 and 226 in
simple_SG.jsl). Note that we also use a TextBox() to the right of each SliderBox() to show the current position of
that slider.

The ButtonBox() in line 273 allows the user to save the smoothed values to a new table. The code that produces
nw1 (nw2), shown in lines 276 to 294 (lines 296 to 314) is very similar to that for nw0.

SAS PresentsSAS Global Forum 2010

CONCLUSION

The three examples here only scratch the surface of what is possible with JSL, but may motivate you to
investigate further. Although JMP is rightly held in high regard for its ability to support users in statistical
discovery, the use of JSL opens up many new possibilities. In some ways, the use of “S” in JSL is unfortunate,
since it can conjure up the idea of a weak language that does little more than capture and replay user actions. On
the contrary, JSL is very full-featured, with the additional advantage that it is intimately tied to a very functional
product. As a general rule, new functionality added to JMP is made scriptable, so the number of tools in the
toolbox is increasing with every release. Also, and as mentioned in connection with the second example, the
expression handling in JSL allows a natural way to express a high-level abstraction should you want to take
advantage of this in your coding

[2]
.

As well as building user interfaces, manipulating Platforms, Reports and Journals, or building whole new
Platforms, JSL can also, amongst other things, parse messy data using Snobol pattern matching

[3]
 and build

interactive three dimensional scenes using Open GL
[4]

. The JMP Editor provides a number of convenience
features (syntax highlighting, keyword completion and syntax reminders via tooltips) that make coding easier.
JMP version 9 (due September 2010) will have a much more extensive object-scripting index, provide
namespaces to support more robust development of an extensive codebase, and introduces an “add-in”
architecture that streamlines the deployment of repackaged or new functionality. Perhaps more significantly, JMP
9 will also allow one to submit R code from a JMP session and retrieve the results. This adds to the existing
capability of JMP to interoperate with other SAS technologies, and gives many options to distribute the data and
analysis tasks at hand in the way that is most suitable and effective in the given setting. Naturally, such
interoperation will be scriptable, providing further possibilities to use JMP as a “hub” for analytic applications in a
“best of breed” approach.

The general premise of this paper is that personalisation can be important in providing more value to more users.
Also, no matter who ultimately carries the cost, the concept of “time to value” is something that cannot be
ignored. So probably “more quickly” is required in the previous sentence too. If JMP already has, or can easily
access, capabilities “something like” those that are required, then with just a little knowledge, JSL provides the
ability to rapidly tap into these capabilities and surface them in a consistent and unified way, often with a high
level of interactivity.

REFERENCES

[1]. Expression Handling Functions – Part 1, JMPer Cable, Issue 26, Winter 2010.

 [2]. Concepts of Programming Languages, RM Sebesta, Addison Wesley 1999.

 [3]. http://en.wikipedia.org/wiki/Snobol.

 [4]. http://en.wikipedia.org/wiki/Computer_programming.

RECOMMENDED READING

Agile development -- http://en.wikipedia.org/wiki/Agile_development.

Mass customization -- http://en.wikipedia.org/wiki/Mass_customization.

OpenGL -- http://en.wikipedia.org/wiki/Open_gl.

(Web pages accessed February 2010)

ACKNOWLEDGEMENTS

Thanks are due to John Schroedel of JMP for the code in Figure 10, and to Russ Wolfinger of JMP Genomics for
the code leading to Figures 14 and 15. Finally, thanks also to Joseph Morgan of JMP for authoring the JMPer
Cable article in Reference [1] above, and for showing leadership in the use of JSL.

SAS PresentsSAS Global Forum 2010

http://en.wikipedia.org/wiki/Computer_programming#_note-0
http://en.wikipedia.org/wiki/Snobol
http://en.wikipedia.org/wiki/Computer_programming
http://en.wikipedia.org/wiki/Agile_development
http://en.wikipedia.org/wiki/Mass_customization
http://en.wikipedia.org/wiki/Open_gl

CONTACT INFORMATION

Your comments and questions are valued and encouraged. Contact the author at:

Name: Ian Cox, PhD

Enterprise: JMP Marketing Manager, SAS

Work Phone: +44 1628 4-86933

E-mail: Ian.Cox@jmp.com

Web: www.support.sas.com/visualsixsigma

SAS PresentsSAS Global Forum 2010

mailto:Ian.Cox@jmp.com

	2010 Table of Contents

