
Paper 150-2010

Get the Scoop on the Loop: How Best to Write a Loop in the DATA Step
Arthur X. Li, City of Hope Comprehensive Cancer Center, Duarte, CA

ABSTRACT
During the execution of the DATA step processing, the DATA step works like a loop, repetitively reading the
data and creating observations one at a time. We call this type of loop the implicit loop. Sometimes we need
to execute certain SAS® statements repeatedly. In this situation, we need to construct an explicit loop by
using the DO, DO WHILE, or DO UNTIL statements. There is a wide range of applications for explicit loops,
such as generating random samples, reading multiple external data files, and so forth. However, in some
scenarios, creating an explicit loop can be very tricky, even for seasoned programmers. Constructing a
successful loop is dependent upon grasping SAS programming fundamentals, such as understanding that
the SAS data set is created one observation at a time in the program data vector (PDV). In this paper, you
will learn how to create loops with various applications and what happens in the PDV when creating the
explicit loop.

INTRODUCTION
A loop is one of the basic logic programming language structures that allows us to execute one or a group of
statements repetitively until it reaches a predefined condition. This type of programming language
construction is widely used in all computer languages. Compared to other programming languages,
understanding the necessities of creating loops is more complex for the SAS language since there are
implicit and explicit loops and sometimes beginning programmers can’t distinguish clearly between them.
Knowing when the time is right to create an explicit loop is one of the challenges that face all beginning
programmers.

IMPLICIT AND EXPLICIT LOOPS

COMPILATION AND EXECUTION PHASES
A DATA step is processed in a two-phase sequence: compilation and execution phases. In the compilation
phase, each statement is scanned for syntax errors. The Program Data Vector (PDV) is created according
to the descriptor portion of the input dataset.

The execution phase starts after the compilation phase. In the execution phase, SAS uses the PDV to build
the new dataset. Not all of the variables in the PDV are outputted to the final dataset. The variables in the
PDV that are flagged with “K” (which stands for “kept”) will be written to the output dataset; on the other
hand, the variables flagged with “D” (which stands for “dropped”) will not.

During the execution phase, the DATA step works like a loop, repetitively reading data values from the input
dataset, executing statements, and creating observations for the output dataset one at a time. This is the
implicit loop. SAS stops reading the input file when it reaches the end-of-file marker, which is located at the
end of the input data file. At this point, the implicit loop ends.

IMPLICIT LOOPS
The following example shows how the implicit loop is processed. Suppose that you would like to assign
each subject in a group of patients in a clinical trial where each patient has a 50% chance of receiving either
the drug or a placebo. For illustration purposes, only four patients from the trial are used in the example.
The dataset is similar to the one below. The solution is shown in program 1.

 Patient.sas7bdat

 ID
1 M2390

2 F2390

3 F2340

4 M1240

 1

Foundations and FundamentalsSAS Global Forum 2010

Program 1:
data example1 (drop=rannum);
 set patient;
 rannum = ranuni(2);
 if rannum> 0.5 then group = 'D';
 else group ='P';
run ;
proc print data=example1;
run;

Output:

ANNUM (D) GROUP(K)
 •

s initialized to 0. The variables ID, GROUP,

ANNUM (D) GROUP(K)
 •

servation from patient to the PDV.

ANNUM (D) GROUP(K)
699251396

I function.

p ='P';
ANNUM (D) GROUP(K)
699251396 P

5, GROUP is assigned with value ‘P.’

 end of the DATA step tells SAS to write
end-of-file marker, it returns to the beginning

F

A
i
s
s

Foundations and FundamentalsSAS Global Forum 2010

 FIRST ITERATION:
 Patient.sas7bdat:

 ID
 1 M2390 Reading
 2 F2390
 3 F2340

4 M1240
 End-of-file marker

data example1 (drop=rannum);

 N (D) _ERROR_ (D) ID (K) R
PDV: 1 0

EXPLANATION: _N_ is initialized to 1 and _ERROR_ i
and RANNUM are set to missing.

set patient;

 N (D) _ERROR_ (D) ID (K) R
PDV: 1 0 M2390

EXPLANATION: The SET statement copies the first ob

rannum = ranuni(2);

 N (D) _ERROR_ (D) ID (K) R
PDV: 1 0 M2390 0.3

EXPLANATION: RANNUM is generated by the RANUN

if rannum> 0.5 then group = 'D'; else grou

 N (D) _ERROR_ (D) ID (K) R
PDV: 1 0 M2390 0.3

EXPLANATION: Since RANNUM is not greater than 0.

run;

Example1:
ID GROUP

M2390 P

EXPLANATION: The implicit OUTPUT statement at the
observations to the dataset. Since SAS didn’t read the
of the DATA step to begin the 2nd iteration.
igure 1. The first iteration of Program 1.

t the beginning of the execution phase, the automatic variab
nitialized to 0. _N_ is used to indicate the current observatio
ignal the data entry error. The non-automatic variables are s
tatement copies the first observation from the dataset patien

2

Obs ID group

 1 M2390 P
 2 F2390 D
 3 F2340 D
 4 M1240 D
le _N_ is initialized to 1 and _ERROR_ is
n number. _ERROR_ is more often used to
et to missing (See Figure 1). Next, the SET
t to the PDV. Then the variable RANNUM is

generated by the RANUNI1 function. Since RANNUM is not greater than 0.5, GROUP is assigned with
value ‘P’. The implicit OUTPUT statement at the end of the DATA step tells SAS to write the contents from
the PDV that is marked with “K” to the dataset example1. The SAS system returns to the beginning of the
DATA step to begin the second iteration.

At the beginning of the second iteration, since data is read from an existing SAS dataset, value in the PDV
for the ID variable is retained from the previous iteration. The newly created variables RANNUM and
GROUP are initialized to missing2. The automatic variable _N_ is incremented to 2. Next, RANNUM is
generated and GROUP is assigned to ‘D’. The implicit OUTPUT statement tells SAS to write the contents
from the PDV to the output dataset example1. The SAS system returns to the beginning of the DATA step to
begin the third iteration.

The entire process for the third and fourth iterations is similar to the previous iterations. Once the fourth
iteration is completed, SAS returns to the beginning of the DATA step again. At this time, when SAS
attempts to read an observation from the input dataset, it reaches the end-of-file-marker, which means that
there are no more observations to read. Thus, the execution phase is completed.

EXPLICIT LOOP
In the previous example, the patient ID is stored in an input dataset. Suppose you don’t have a dataset
containing the patient IDs. You are asked to assign four patients with a 50% chance of receiving either the
drug or the placebo. Instead of creating an input dataset that stores ID, you can create the ID and assign
each ID to a group in the DATA step at the same time. For example

Program 2:
data example2(drop = rannum);
 id = 'M2390';
 rannum = ranuni(2);
 if rannum> 0.5 then group = 'D';
 else group ='P';
 output;

 id = 'F2390';
 rannum = ranuni(2);
 if rannum> 0.5 then group = 'D';
 else group ='P';
 output;

 id = 'F2340';
 rannum = ranuni(2);
 if rannum> 0.5 then group = 'D';
 else group ='P';
 output;

 id = 'M1240';
 rannum = ranuni(2);
 if rannum> 0.5 then group = 'D';
 else group ='P';
 output;
run;
The DATA step in Program 2 begins with assigning ID numbers and then assigns the group value based on

1 The RANUNI function generates a number following uniform distribution between 0 and 1. The general form is
RANUNI(seed), where seed is a nonnegative integer. The RANUNI function generates a stream of numbers based on
seed. When seed is set to 0, which is the computer clock, the generated number cannot be reproduced. However, when
seed is a non-zero number, the generated number can be produced.
2 When creating a SAS dataset based on a raw dataset, SAS sets each variable value in the PDV to missing at the
beginning of each iteration of execution, except for the automatic variables, variables that are named in the RETAIN
statement, variables created by the SUM statement, data elements in a _TEMPORARY_ array, and variables created in
the options of the FILE/INFILE statement. When creating a SAS dataset based on a SAS dataset, SAS sets each
variable to missing in the PDV only before the first iteration of the execution. Variables will retain their values in the PDV
until they are replaced by the new values from the input dataset. These variables exist in both the input and output
datasets. However, the newly created variable, which only exists in the output dataset, will be set to missing in the PDV
at the beginning of every iteration of the execution.

 3

Foundations and FundamentalsSAS Global Forum 2010

a generated random number. There are four explicit OUTPUT statements3 that tells SAS to write the current
observation from the PDV to the SAS dataset immediately, not at the end of the DATA step. This is what we
intended to do. However, without using the explicit OUTPUT statement, we will only create one observation
for ID =M1240. Notice that most of the statements above are identical. To reduce the amount of coding,
you can simply rewrite the program by placing repetitive statements in a DO loop. Following is the general
form for an iterative DO loop:

DO INDEX-VARIABLE = VALUE1, VALUE2, …, VALUEN;
SAS STATEMENTS
END;

In the iterative DO loop, you must specify an INDEX-VARIABLE that contains the value of the current
iteration. The loop will execute along VALUE1 through VALUEN and the VALUES can be either character
or numeric. Here’s the improved version of Program 2

Program 3:
data example3 (drop = rannum);
 do id = 'M2390', 'F2390', 'F2340', 'M1240';
 rannum = ranuni(2);
 if rannum> 0.5 then group = 'D';
 else group ='P';
 output;
 end;
run;
proc print data=example3;
run;

Output:

Obs id group

 1 M2390 P
 2 F2390 D
 3 F2340 D
 4 M1240 D

THE ITERATIVE DO LOOP ALONG A SEQUENCE OF INTEGERS
More often the iterative DO loop along a sequence of integers is used.

DO INDEX-VARIABLE = START TO STOP <BY INCREMENT>;
SAS STATEMENTS
END;

The loop will execute from the START value to the END value. The optional BY clause specifies an
increment between START and END. The default value for the INCREMENT is 1. START, STOP, and
INCREMENT can be numbers, variables, or SAS expressions. These values are set upon entry into the DO
loop and cannot be modified during the processing of the DO loop. However, the INDEX-VARIABLE can be
changed within the loop.

Suppose that you are using a sequence of number, say 1 to 4, as patient IDs; you can rewrite the previous
program as below:

Program 4:
data example4 (drop = rannum);
 do id = 1 to 4;
 rannum = ranuni(2);
 if rannum> 0.5 then group = 'D';
 else group ='P';
 output;
 end;
run;
proc print data=example4;
run;

Output:

Obs id group

 1 1 P
 2 2 D
 3 3 D
 4 4 D

Program 4 didn’t specify the INCREMENT value, thus the default value 1 is used. You can also decrement
a DO loop by using a negative value, such as -1. The execution phase is illustrated in figure 2a and 2b.

3 By default, every DATA step contains an implicit OUTPUT statement at the end of the DATA step that tells the SAS
system to write observations to the dataset. Placing an explicit OUTPUT statement in a DATA step overrides the implicit
output; in other words, the SAS system adds an observation to a dataset only when an explicit OUTPUT statement is
executed. Once an explicit OUTPUT statement is used to write an observation to a dataset, there is no longer an implicit
OUTPUT statement at the end of the DATA step

 4

Foundations and FundamentalsSAS Global Forum 2010

F

Foundations and FundamentalsSAS Global Forum 2010

data example4 (drop=rannum);
 N (D) _ERROR_ (D) ID (K) RANNUM (D) GROUP(K)
PDV: 1 0 • •

EXPLANATION: _N_ is initialized to 1 and _ERROR_ is initialized to 0. The variables ID, GROUP,
and RANNUM are set to missing.

FIRST ITERATION OF THE DO LOOP:
do id = 1 to 4;

 N (D) _ERROR_ (D) ID (K) RANNUM (D) GROUP(K)
PDV: 1 0 1 •

EXPLANATION: ID is assigned to 1 at the beginning of the first DO loop.

rannum = ranuni(2);

 N (D) _ERROR_ (D) ID (K) RANNUM (D) GROUP(K)
PDV: 1 0 1 0.3699251396

EXPLANATION: RANNUM is generated by the RANUNI function.

If rannum> 0.5 then group = 'D'; else group ='P';

 N (D) _ERROR_ (D) ID (K) RANNUM (D) GROUP(K)
PDV: 1 0 1 0.3699251396 P

EXPLANATION: Since RANNUM is not greater than 0.5, GROUP is assigned with value ‘P.’

output;

Example3:
ID GROUP
1 P

EXPLANATION: The OUTPUT statement tells SAS to write
observations to Example3. SAS reaches the end of the DO loop.

SECOND ITERATION OF THE DO LOOP:
do id = 1 to 4;

 N (D) _ERROR_ (D) ID (K) RANNUM (D) GROUP(K)
PDV: 1 0 2 0.3699251396 P

EXPLANATION: ID is incremented to 2; SINCE 2 IS ≤ 4, the 2nd iteration continues.

rannum = ranuni(2);

 N (D) _ERROR_ (D) ID (K) RANNUM (D) GROUP(K)
PDV: 1 0 2 0.9401774313 P

EXPLANATION: RANNUM is generated by the RANUNI function.

if rannum> 0.5 then group = 'D'; else group ='P';

 N (D) _ERROR_ (D) ID (K) RANNUM (D) GROUP(K)
PDV: 1 0 2 0.9401774313 D

EXPLANATION: Since RANNUM is greater than 0.5, GROUP is assigned with value ‘D.’

output;

Example3:
ID GROUP
1 P
2 D

EXPLANATION: The OUTPUT statement tells SAS to write
observations to Example3. SAS reaches the end of the DO
loop.

igure 2a. The first two iterations of the DO loop in Program 4.

5

F

Foundations and FundamentalsSAS Global Forum 2010

THIRD ITERATION OF THE DO LOOP:
do id = 1 to 4;

 N (D) _ERROR_ (D) ID (K) RANNUM (D) GROUP(K)
PDV: 1 0 3 0.9401774313 D

EXPLANATION: ID is incremented to 3; since 3 is ≤ 4, the 3rd iteration continues.

rannum = ranuni(2);
 N (D) _ERROR_ (D) ID (K) RANNUM (D) GROUP(K)
PDV: 1 0 3 0.7996486122 D

EXPLANATION: RANNUM is generated by the RANUNI function.

if rannum> 0.5 then group = 'D'; else group ='P';
 N (D) _ERROR_ (D) ID (K) RANNUM (D) GROUP(K)
PDV: 1 0 3 0.7996486122 D

EXPLANATION: Since RANNUM is greater than 0.5, GROUP is assigned with value ‘D.’

output;
Example3:

ID GROUP
1 P
2 D
3 D

EXPLANATION: The OUTPUT statement tells SAS to write
observations to Example3. SAS reaches the end of DO loop.

FOURTH ITERATION OF THE DO LOOP:
do id = 1 to 4;

 N (D) _ERROR_ (D) ID (K) RANNUM (D) GROUP(K)
PDV: 1 0 4 0.7996486122 D

EXPLANATION: ID is incremented to 4; since 4 is ≤ 4, the 4th iteration continues.

rannum = ranuni(2);
 N (D) _ERROR_ (D) ID (K) RANNUM (D) GROUP(K)
PDV: 1 0 4 0.5187972908 D

EXPLANATION: RANNUM is generated by the RANUNI function.

if rannum> 0.5 then group = 'D'; else group ='P';
 N (D) _ERROR_ (D) ID (K) RANNUM (D) GROUP(K)
PDV: 1 0 4 0.5187972908 D

EXPLANATION: Since RANNUM is greater than 0.5, GROUP is assigned with value ‘D.’

output;
Example3:

ID GROUP
1 P
2 D
3 D
4 D

EXPLANATION: The OUTPUT statement tells SAS to write
observations to Example3. SAS reaches the end of DO loop.

end;
 N (D) _ERROR_ (D) ID (K) RANNUM (D) GROUP(K)
PDV: 1 0 5 0.5187972908 D

EXPLANATION: ID is incremented to 5; since 5 is > 4, the loop ends.

run;

EXPLANATION: There will be no explicit OUTPUT statement. Since we didn’t read an input
dataset, the DATA step execution ends.
igure 2b. The last two iterations of the DO loop in Program 4.

6

EXECUTING DO LOOPS CONDITIONALLY
Program 4 used an iterative DO loop, which requires that you specify the number of iterations for the DO
loop. Sometimes you will need to execute statements repetitively until a condition is met. In this situation,
you need to use either the DO WHILE or DO UNTIL statements. Following is the syntax for the DO WHILE
statement:

DO WHILE (EXPRESSION);
SAS STATEMENTS
END;

In the DO WHILE loop, the EXPRESSION is evaluated at the top of the DO loop. The DO loop will not
execute if the EXPRESSION is false. We can rewrite program 4 by using the DO WHILE loop.

Program 5:
data example5 (drop=rannum);
 do while (id <4);
 id + 1;
 rannum = ranuni(2);
 if rannum> 0.5 then group = 'D';
 else group ='P';
 output;
 end;
run;

In program 5, the ID variable is created inside the loop by using the SUM statement4. Thus, the variable ID
is initialized to 0 in the PDV at the beginning of the DATA step execution, which is before the DO WHILE
statement. At the beginning of the loop, the condition is being checked. Since ID equals 0, which satisfies
the condition (ID < 4), the first iteration begins. For each iteration, the ID variable is accumulated from the
SUM statement. The iteration will be processed until the condition is not met.

Alternatively, you can also use the DO UNTIL loop to execute the statements conditionally. Unlike DO
WHILE loops, the DO UNTIL loop evaluates the condition at the end of the loop. That means the DO UNTIL
loop always executes at least once. The DO UNTIL loop follows the form below:

DO UNTIL (EXPRESSION);
SAS STATEMENTS
END;

The following program is based on program 4 by using the DO UNTIL loop.

Program 6:
data example6 (drop=rannum);
 do until (id >=4);
 id +1;
 rannum = ranuni(2);
 if rannum > 0.5 then group = 'D';
 else group ='P';
 output;
 end;
run;

NESTED LOOPS
You can place a loop within another loop. To continue with the previous example, suppose that you would
like to assign 12 subjects from 3 cancer centers (“COH”, “UCLA”, and “USC”) with 4 subjects per center,
where each patient has a 50% chance of receiving either the drug or a placebo. A nested loop can be used
to solve this problem. In the outer loop, the INDEX-VARIABLE, CENTER, is assigned to the values with the
name of the three cancer centers. For each iteration of the outer loop, there is an inner loop that is used to
assign each patient to a group.

4 The variable that is created by the SUM statement is automatically set to 0 at the beginning of the first iteration of the
DATA step execution and it is retained in following iterations.

 7

Foundations and FundamentalsSAS Global Forum 2010

Program 7:
data example7 (drop=rannum);
 length center $4;
 do center = "COH", "UCLA", "USC";
 do id = 1 to 4;
 if ranuni(2) > 0.5 then group = 'D';
 else group ='P';
 output;
 end;
 end;
run;
proc print data=example7;
run;

Output:

COMBINING IMPLICIT AND EXPLICIT LOOPS
In example 7, all the observations were created from one DATA s
Sometimes it is necessary to use an explicit loop to create multipl
read from an input dataset. In example 7, we used an outer loop
the values for CENTER is stored in a SAS dataset. For each cen
each patient has a 50% chance of receiving either the drug or a p
this problem:

 Cancer_center.sas7bdat

 CENTER
1 COH

2 UCLA

3 USC

Program 8:
data example8 (drop=rannum);
 set cancer_center;
 do id = 1 to 4;
 if ranuni(2)> 0.5 then group = 'D';
 else group ='P';
 output;
 end;
run;

Program 8 is an example of using both implicit and explicit loops.
used to read observations from the input dataset, Cancer_center.
there is an explicit loop to assign patients to either ‘D’ or ‘P.’

UTILIZING LOOPS TO CREATE SAMPLES
In some situations, you may want to draw samples from a datase
schemes: systematic and random samples.

DIRECT-ACCESS MODE
Usually when reading the entire SAS dataset, by default, SAS rea
one observation for each iteration of the DATA step. This proces
marker. Instead of reading data sequentially, SAS can also acce
mode.

There are three important components for using the direct-access
observation you would like to select. The step is done by using th
has the following form:

 8

Foundations and FundamentalsSAS Global Forum 2010

Obs center id grou

 1 COH 1 P
 2 COH 2 D
 3 COH 3 D
 4 COH 4 D
 5 UCLA 1 D
 6 UCLA 2 D
 7 UCLA 3 P
 8 UCLA 4 P
 9 USC 1 P
 10 USC 2 P
 11 USC 3 D

tep since we didn’t read any input data.
e observations for each observation that is
to create a CENTER variable. Suppose
ter, you need to assign 4 patients where
lacebo. Following is the program to solve

 The DATA step is an implicit loop that is
 For each CENTER that is being read,

t. There are two kinds of sampling

ds the dataset sequentially. SAS reads
s will stop once it reaches the end-of-file
ss an observation directly via direct-access

 mode. First, you need to tell SAS which
e POINT = in the SET statement, which

SET SAS-DATA-SET POINT = VARIABLE;

The VARIABLE specified by the POINT = option is a temporary variable and it is not outputted to the output
dataset. This variable is set to 0 in the PDV at the very beginning of the DATA step. Then it must be
assigned to an observation number before the SET statement.

When using direct-access mode, SAS will not be able to detect the end-of-file marker. Without telling SAS
explicitly when to stop processing, it will cause infinite looping. Therefore, in order to utilize the direct-
access mode, you need to use the STOP statement at the end of the DATA step. Here’s the general form:

STOP;

Recall that SAS writes observations from the PDV to the output dataset at the end of the DATA step if there
is no explicit OUTPUT statement in the DATA step. However, if you use the STOP statement, the DATA
step processing will stop before the end of the DATA step. Thus, the last step to use direct-access mode is
to write an explicit OUTPUT statement before the STOP statement.

Suppose you have the following dataset and you would like to create a dataset which only contains the fifth
observation of this data. You can write the following code.

 sbp.sas7bdat

 id sbp
1 01 145
2 02 119
3 03 126
4 04 106
5 05 151
6 06 112
7 07 127
8 08 119
9 09 113

Program 9:
data example9;
 obs_n = 5;
 set sbp point= obs_n;
 output;
 stop;
run;

CREATING A SYSTEMATIC SAMPLE
A systematic sample is created by selecting every kth observation from an original dataset. In other words,
the systematic sample cannot be created sequentially; hence, a direct-access mode must be used. You can
create a systematic sample by using an iterative DO loop, which requires providing START, STOP, and
INCREMENT values. Normally, START is set to 1, STOP is set to the total number of observations from the
input dataset, and INCREMENT is set to k that indicates every kth observation that you want to select.

You can determine the total number of observations by running the CONTENTS procedure. Instead of
running a separate procedure, you can also provide the total number of observations by using the NOBS =
option in the SET statement. Here’s the general form for the NOBS = option:

SET SAS-DATA-SET NOBS = VARIABLE;

The VARIABLE specified by the NOBS = option is a temporary variable that contains the number of
observations of the SAS-DATA-SET. It will not be outputted to the final dataset. The VARIABLE is created
automatically based on the descriptor portion of the SAS-DATA-SET during the compilation phase. It will
retain its value throughout the execution phase. For example, to create a systematic sample that contains
every 3rd observation from the sbp.sas7bdat, you can write the following code. Figure 3a and 3b illustrate

 9

Foundations and FundamentalsSAS Global Forum 2010

the execution process in detail. To simplify the illustration, the automatic variable _ERROR_ is not
presented in the figures.

Notice that the automatic variable _N_ is 1 throughout the execution phase because SAS didn’t read the
input data sequentially. For each iteration of the DO loop, SAS uses the direct-access mode to read
observations based on the observation number given from the CHOOSE variable.

Program 10:
data example10;
 do choose = 1 to total by 3;
 set sbp point=choose nobs=total;
 output;
 end;
 stop;
run;
proc print data=example10;
run;

Output:

Figure 3a. The first iteration of the DO loop in Program 10.

 10

Foundations and FundamentalsSAS Global Forum 2010

Obs id sbp

 1 01 145
 2 04 106
 3 07 127

data example10;
 N (D) CHOOSE (D) TOTAL (D) ID (K) SBP(K)
PDV: 1 0 9 •

EXPLANATION: _N_ is initialized to 1. CHOOSE is set to 0. TOTAL, the total number of
observations, is set to 9. ID and SBP are set to missing.

FIRST ITERATION OF THE DO LOOP:
do choose = 1 to total by 3;

 N (D) CHOOSE (D) TOTAL (D) ID (K) SBP(K)
PDV: 1 1 9 •

EXPLANATION: CHOOSE is assigned to 1 at the beginning of the first DO loop.

set sbp point=choose nobs=total;

 N (D) CHOOSE (D) TOTAL (D) ID (K) SBP(K)
PDV: 1 1 9 01 145

EXPLANATION: SAS reads the first observation via direct-access mode.

output;

Example9:
ID SBP
01 145

EXPLANATION: The OUTPUT statement tells SAS to write
observations to Example9. SAS reaches the end of the DO loop.

F

C
A
r
a
o

Foundations and FundamentalsSAS Global Forum 2010

SECOND ITERATION OF THE DO LOOP:
do choose = 1 to total by 3;

 N (D) CHOOSE (D) TOTAL (D) ID (K) SBP(K)
PDV: 1 4 9 01 145

EXPLANATION: CHOOSE is incremented to 4; since 4 ≤ TOTAL, which is 9, the 2nd iteration
continues.

set sbp point=choose nobs=total;

 N (D) CHOOSE (D) TOTAL (D) ID (K) SBP(K)
PDV: 1 4 9 04 106

EXPLANATION: SAS reads the 4th observation via direct-access mode.

output;

Example9:
ID SBP
01 145
04 106

EXPLANATION: The OUTPUT statement tells SAS to write
observations to Example9. SAS reaches the end of the DO loop.

THIRD ITERATION OF THE DO LOOP:
do choose = 1 to total by 3;

 N (D) CHOOSE (D) TOTAL (D) ID (K) SBP(K)
PDV: 1 7 9 04 106

EXPLANATION: CHOOSE is incremented to 7; since 7 ≤ TOTAL, which is 9, the 3rd iteration
continues.

set sbp point=choose nobs=total;

 N (D) CHOOSE (D) TOTAL (D) ID (K) SBP(K)
PDV: 1 7 9 07 127

EXPLANATION: SAS reads the 7th observation via direct-access mode.

output;

Example9:
ID SBP
01 145
04 106
07 127

EXPLANATION: The OUTPUT statement tells SAS to write
observations to Example9. SAS reaches the end of the DO loop.

end;

 N (D) CHOOSE (D) TOTAL (D) ID (K) SBP(K)
PDV: 1 11 9 07 127

EXPLANATION: CHOOSE is incremented to 11; since 11 > TOTAL, the loop ends.

stop;
run;

EXPLANATION: The STOP statement stops the DATA step processing.
igure 3b. The last two iterations of the DO loop in Program 10.

REATING A RANDOM SAMPLE WITH REPLACEMENT
 random sample is created from an original dataset on a random basis. A random sample with

eplacement means that an observation is replaced back into the original dataset after it is chosen. Hence,
ny observations can be chosen more than once. Suppose you would like to create a sample of 3
bservations with replacement from sbp.sas7bdat.

11

Program 11:
data example11 (drop= i);

do i =1 to 3;
 choose = ceil(ranuni(5)*total);
 set sbp point=choose nobs=total;
 output;
end;

 stop;
run;
proc print data=example11;
run;

Output:

An important step in creating a random sample with replacem
indicates which observation needs to be selected. In program
integer between 1 and the total number of observations need
loop. Since the RANUNI function generates a number betwe
number, ranuni(5) with the total number of observations (TO
and the number of observations. Since you need an integer
returns the smallest integer that is greater than or equal to its

CREATING A RANDOM SAMPLE WITHOUT REPLACEMENT
A random sample without replacement means that once an o
replaced back into the original dataset. Thus, any observatio
algorithm to generate a random sample without replacement
replacement. The following example is adapted from “SAS PR
Step”.

The algorithm is summarized in Table 1. RANNUM is the ran
observation. SIZE is the sample size which is decremented b
for the final sample. LEFT is used to keep track of the total n
once an observation has been processed. PCT is calculated
RANNUM that is less than PCT will be chosen for the final sa
DO WHILE loop will be suitable for this problem.

 id sbp randnum size left Pct =
size/left

1 01 145 0.22 3 9 0.33
2 02 119 0.64 2 8 0.25
3 03 126 0.79 2 7 0.29
4 04 106 0.11 2 6 0.33
5 05 151 0.06 1 5 0.2
6 06 112 Loop Stop
7 07 127
8 08 119
9 09 113

 Table1: Algorithm for program 12.

 12

Foundations and FundamentalsSAS Global Forum 2010

Obs id sbp

 1 09 113
 2 08 119
 3 09 113

ent is generating a random number that
 11, to select observations randomly, an

s to be generated within each iteration of the
en 0 and 1, when multiplying this generated
TAL), the resulting number will be between 0
value, you can use the CEIL function, which
 argument.

bservation is randomly selected, it cannot be
ns cannot be chosen more than once. The
is more complicated than the one with
OGRAMMING II: Manipulating Data in the Data

dom number that is generated for each
y 1 for each observation that is being selected

umber of observations and decremented by 1
 by SIZE divided by LEFT. An observation with
mple. The loop stops when SIZE reaches 0. A

Rannum
< Pct? Choose

YES 1
NO NO
NO NO
YES 4
YES 5

!

Program 12:
data example12 (drop=size left randnum);
 size = 3;
 left = total;
 do while (size > 0);
 choose + 1;
 randnum = ranuni(12);
 pct = size / left;
 if randnum < pct then do;
 set sbp point=choose nobs=total;
 output;
 size = size - 1;
 end;
 left = left - 1;

end;
 stop;
run ;
proc print data=example12;
run;

Output:

UTILIZING LOOP TO READ A LIST OF EXTERNAL FILES

THE INFILE STATEMENT WITH THE END= OPTION
To read an external file, you can use the INFILE statement. In this p
data or the text file. For example, to read the following external file,
can write the following code:

text1.txt:

01 145
02 119

Program 13:
data example13;
 infile "C:\text1.txt";
 input id $ sbp;
run;

Since there are two observations in the external file, SAS will use tw
to read the data. Like a SAS dataset, the external file also contains
reaches the end-of-file marker, it stops reading.

Alternatively, you can use an explicit loop to read the external file. I
need to either specify the number of iterations for the iterative DO lo
the DO WHILE or DO UNTIL loops. One way to specify a condition
observations until it reads the last record. In order for SAS to detec
a temporary variable by using the END = option in the INFILE statem

INFILE FILE-SPECIFICATION END = VARIABLE;

The VARIABLE specified by the END = option is set to 1 when SAS
otherwise it sets to 0. The following program uses the DO UNTIL lo

 13

Foundations and FundamentalsSAS Global Forum 2010

Obs id sbp

 1 01 145
 2 04 106
 3 05 151

aper, the external file refers to the raw
 text1.txt, which is located in “C:\”, you

o DATA step iterations (the implicit loop)
 an end-of-file marker. When SAS

n order to construct an explicit loop, you
op or you need to specify a condition for
 is by telling SAS to read the
t reading the last record, you can create

ent. Here’s the general form:

 reads the last record of the external file;
op to read the external file.

Program 14:
data example14;
 infile "C:\text1.txt" end = last;
 do until (last = 1);
 input id $ sbp;
 output;
 end;
run;

In program 14, the DATA step iteration only goes through once. Within this iteration, the DO UNTIL loop
iterates twice to read the two observations in text1.txt. During the DATA step iteration, the automatic
variable _N_ is set to 1. Once the DATA step iteration is over, SAS starts the second iteration of the DATA
step and _N_ is incremented to 2. At this point, SAS reaches the end-of-file marker and it stops processing.
The end-of-file marker is detected by the DATA step, not by the DO UNTIL loop.

THE INFILE STATEMENT WITH THE FILEVAR = OPTION
In the INFILE statement, you generally specify the name and the location of the external file immediately
after the key word INFILE. Alternatively, you can use the FILEVAR = option in the INFILE statement to read
an external file that is specified by the FILEVAR = option. It has the following form:

INFILE FILE-SPECIFICATION FILEVAR = VARIABLE;

Like the automatic variable, the VARIABLE specified in the FILEVAR = option is not outputted into the final
dataset. This VARIABLE contains the name of the external file and must be created before the INFILE
statement. When you use the FILEVAR= option, the file-specification is just a placeholder, not an actual
filename. For example, program 13 can be re-written as below:

Program 15:
data example15;
 filename = "C:\text1.txt";
 infile dummy filevar = filename;
 input id $ sbp;
run;

Log:
167 data example14;
168 filename = "C:\text1.txt";
169 infile dummy filevar = filename;
170 input id $ sbp;
171 run;

NOTE: The infile DUMMY is:
 File Name=C:\text1.txt,
 RECFM=V,LRECL=256

NOTE: 2 records were read from the infile DUMMY.
 The minimum record length was 6.
 The maximum record length was 6.
NOTE: The data set WORK.EXAMPLE13 has 2 observations and 2 variables.

Notice that in the SAS log, SAS uses the placeholder, dummy, to report the name of the external file that is
being read.

READING MULTIPLE EXTERNAL FILES
There are situations when you may want to read a group of external files into SAS and concatenate them
into one dataset. Each of the external files has identical formats. Instead of reading them individually by
using separate DATA steps, you can read them all by using the FILEVAR = option in the INFILE statement
in one single DATA step. The FILEVAR = option will cause the INFILE statement to close the current input
file and open a new one which is the FILEVAR = option. For example, suppose that there are three external
files, text1.txt, text2.txt, and text3.txt.

 14

Foundations and FundamentalsSAS Global Forum 2010

text1.txt:

01 145
02 119

text2.txt:

03 126
04 106

text3.txt:

05 140
06 118

To read these files by using only one single DATA step, a few things need to be considered before creating
the SAS code. In program 15, three statements were used to read the external file: the first statement
created the temporary variable that contained the external file name, immediately followed by the INFILE
and INPUT statements. In order to read a group of external files, these three statements needed to be
placed inside of a loop. Notice that the names of the external files are text1.txt, text2.txt, and text3.txt, which
suggests that you create an iterative DO loop and iterate between 1 and 3. Within the DO loop, create the
variable, NEXT, to contain the name of the external file by concatenating the “C:\text”, loop index, and “.txt”
via the via || operator. If you use the index variable that contains numeric values between 1 and 3, then
you can use the PUT function to convert the numeric values into character values. For example,

next = "C:\text" || put(i, 1.) || ".txt";

An explicit OUTPUT statement is also necessary to write the current contents from the PDV to the output
dataset within the loop. Since you are using the FILEVAR = option to control closing the current input file
and opening a new file, SAS will not be able to detect the end-of-file marker. Thus, you also need to place a
STOP statement outside the loop. In order to see which observation is read from which file, a FILENAME
variable is also created in the following program:

Program 16:
data example16 (drop=i);
 do i = 1 to 3;
 next = "C:\text" || put(i, 1.) || ".txt";
 infile temp filevar = next;
 fileName = next;
 input id $ sbp;
 output;
 end;
 stop;
run;
proc print data=example16;
run;

Output:

Program 16 didn’t create the output that we expected; only the first observation from each external file was
outputted to the dataset. The INPUT statement within the loop only read one line of the external file. Once
one iteration of the DO loop has completed, the following iteration starts to read a new file that is specified
by the NEXT variable. In order to read all the observations of each file, you can utilize the END = option
and include a DO UNTIL loop within the iterated DO loop. The modified program is listed below and a
detailed explanation of the program is illustrated in figure 4a – 4c.

Program 17:
data example17 (drop=i);

do i = 1 to 3;
 next = "C:\text" || put(i, 1.)|| ".txt";
 do until (last);
 infile dummy filevar = next end=last;
 input id $ sbp;
 output;
 end;
end;

 stop;
run ;
proc print data=example17;
run;

Output:

Obs id sbp

 1 01 145
 2 02 119
 3 03 126
 4 04 106
 5 05 140
 6 06 118

Obs fileName id sbp

 1 C:\text1.txt 01 145
 2 C:\text2.txt 03 126
 3 C:\text3.txt 05 140

 15

Foundations and FundamentalsSAS Global Forum 2010

Figure 4a. The first iteration of the DO loop in Program 17.

data example17 (drop=i);
 N(D) I (D) NEXT (D) LAST (D) ID (K) SBP(K)
PDV: 1 • 0 •

EXPLANATION: _N_ is initialized to 1 and LAST is initialized to 0. Other variables are set to missing.

FIRST ITERATION OF THE DO LOOP (OUTER LOOP):
do i = 1 to 3;

 N(D) I (D) NEXT (D) LAST (D) ID (K) SBP(K)
PDV: 1 1 0 •

EXPLANATION: I is assigned to 1 at the beginning of the first DO loop.
next = "C:\text" || put(i, 1.) || ".txt";

 N(D) I (D) NEXT (D) LAST (D) ID (K) SBP(K)
PDV: 1 1 C:\text1.txt 0 •

EXPLANATION: The NEXT variable is assigned with the value ‘C:\text1.txt’.

FIRST ITERATION OF THE DO UNTIL LOOP (INNER LOOP):
do until (last);

EXPLANATION: The DO UNTIL loop evaluates the condition at the end of the loop.

infile temp filevar = next end=last;

 1 2 3 4 5 6 7 …
Input buffer: 0 1 1 4 5 …

EXPLANATION: The INFILE statement reads the
first data line from ‘text1.txt’ into the input buffer.

input id $ sbp;
 N(D) I (D) NEXT (D) LAST (D) ID (K) SBP(K)
PDV: 1 1 C:\text1.txt 0 01 145

EXPLANATION: : The INPUT statement reads data values from the record in the input buffer according
to instructions from the INPUT statement and writes them to the PDV.

output;

Example16:
ID SBP
01 145

EXPLANATION: The OUTPUT statement tells SAS to write observations to
Example12. SAS reaches the end of the DO UNTIL loop.

SECOND ITERATION OF THE DO UNTIL LOOP (INNER LOOP):
do until (last); infile temp filevar = next end=last;

 1 2 3 4 5 6 7 …
Input buffer: 0 2 1 1 9 …

EXPLANATION: INFILE reads the second data line
into the input buffer. Since this is the last record of
the ‘text1.txt’, LAST is set to 1 in the PDV.

input id $ sbp;
 N(D) I (D) NEXT (D) LAST (D) ID (K) SBP(K)
PDV: 1 1 C:\text1.txt 1 02 119

EXPLANATION: : INPUT reads data values from the input buffer and writes them to the PDV.

output;

Example16:
ID SBP
01 145
02 119

EXPLANATION: The OUTPUT statement tells SAS to write observations to
Example12. SAS reaches the end of the DO UNTIL loop.

end; EXPLANATION: Since LAST = 1, the inner loop ends.

 16

Foundations and FundamentalsSAS Global Forum 2010

F

Foundations and FundamentalsSAS Global Forum 2010

SECOND ITERATION OF THE DO LOOP (OUTER LOOP):
do i = 1 to 3;

 N(D) I (D) NEXT (D) LAST (D) ID (K) SBP(K)
PDV: 1 2 C:\text1.txt 1 02 119

EXPLANATION: I is assigned to 2; since I ≤ 3, the second iteration of the outer loop continues.
next = "C:\text" || put(i, 1.) || ".txt";

 N(D) I (D) NEXT (D) LAST (D) ID (K) SBP(K)
PDV: 1 2 C:\text2.txt 1 02 119

EXPLANATION: The NEXT variable is assigned with the value ‘C:\text2.txt’.

FIRST ITERATION OF THE DO UNTIL LOOP (INNER LOOP):
do until (last);

EXPLANATION: The DO UNTIL loop evaluates the condition at the end of the loop.

infile temp filevar = next end=last;

 1 2 3 4 5 6 7 …
Input buffer: 0 3 1 2 6 …

EXPLANATION: INFILE reads first data line from
‘text2.txt’ into the input buffer. Since this is not the last
record of ‘text2.txt’, LAST is set to 0 in the PDV.

input id $ sbp;
 N(D) I (D) NEXT (D) LAST (D) ID (K) SBP(K)
PDV: 1 2 C:\text2.txt 0 03 126

EXPLANATION: : The INPUT statement reads data values from the input buffer to the PDV.

output;

Example16:
ID SBP
01 145
02 119
03 126

EXPLANATION: The OUTPUT statement tells SAS to write observations to
Example12. SAS reaches the end of the DO UNTIL loop.

SECOND ITERATION OF THE DO UNTIL LOOP (INNER LOOP):
do until (last);
infile temp filevar = next end=last;

 1 2 3 4 5 6 7 …
Input buffer: 0 4 1 0 6 …

EXPLANATION: INFILE statement reads the second
data line into the input buffer. Since this is the last
record of ‘text2.txt’, LAST is set to 1 in the PDV.

input id $ sbp;
 N(D) I (D) NEXT (D) LAST (D) ID (K) SBP(K)
PDV: 1 2 C:\text2.txt 1 04 106

EXPLANATION: INPUT statement reads data values from the input buffer and writes them to the PDV.

output;

Example16:
ID SBP
01 145
02 119
03 126
04 106

EXPLANATION: The OUTPUT statement tells SAS to write observations to
Example12. SAS reaches the end of the DO UNTIL loop.

end;

EXPLANATION: : Since LAST =1, the inner loop ends.
igure 4b. The second iteration of the DO loop in Program 17.

17

F

Foundations and FundamentalsSAS Global Forum 2010

TRIRD ITERATION OF THE DO LOOP (OUTER LOOP):
do i = 1 to 3;

 N(D) I (D) NEXT (D) LAST (D) ID (K) SBP(K)
PDV: 1 3 C:\text2.txt 1 04 106

EXPLANATION: I is assigned to 3; since I ≤ 3, the third iteration of the outer loop continues.
next = "C:\text" || put(i, 1.) || ".txt";

 N(D) I (D) NEXT (D) LAST (D) ID (K) SBP(K)
PDV: 1 3 C:\text3.txt 1 04 106
EXPLANATION: The NEXT variable is assigned with the value ‘C:\text3.txt’.

FIRST ITERATION OF THE DO UNTIL LOOP (INNER LOOP):
do until (last); infile temp filevar = next end=last;

 1 2 3 4 5 6 7 …
Input buffer: 0 5 1 4 0 …

EXPLANATION: INFILE reads the first data line from
‘text2.txt’ into the input buffer. Since this is not the last
record of ‘text3.txt’, LAST is set to 0 in the PDV.

input id $ sbp;
 N(D) I (D) NEXT (D) LAST (D) ID (K) SBP(K)
PDV: 1 3 C:\text3.txt 0 05 140
EXPLANATION: : The INPUT statement reads data values from the input buffer to the PDV.

output;

Example16:
ID SBP
01 145
02 119
03 126
04 106
05 140

EXPLANATION: The OUTPUT statement tells SAS to write observations
to Example12. SAS reaches the end of the DO UNTIL loop.

SECOND ITERATION OF THE DO UNTIL LOOP (INNER LOOP):
do until (last); infile temp filevar = next end=last;

 1 2 3 4 5 6 7 …
Input buffer: 0 6 1 1 8 …

EXPLANATION: The INFILE statement reads the
second data line into the input buffer. Since this is the
last record of ‘text3.txt’, LAST is set to 1 in the PDV.

input id $ sbp;
 N(D) I (D) NEXT (D) LAST (D) ID (K) SBP(K)
PDV: 1 3 C:\text3.txt 1 06 118
EXPLANATION: INPUT statement reads data values from the input buffer and writes them to the PDV.

output;

Example16:
ID SBP
01 145
02 119
03 126
04 106
05 140
06 118

EXPLANATION: The OUTPUT statement tells SAS to write observations
to Example12. SAS reaches the end of the DO UNTIL loop.

end; EXPLANATION: Since LAST = 1, the inner loop ends.

end;
 N(D) I (D) NEXT (D) LAST (D) ID (K) SBP(K)
PDV: 1 4 C:\text3.txt 1 06 118

EXPLANATION: I is incremented to 4; since I > 3, the outer loop ends.

stop; EXPLANATION: The STOP statement stops the DATA step processing.
run;
igure 4c. The third iteration of the DO loop in Program 17.

18

ARRAY
There is a wide range of applications in using loop structures with ARRAY processing. Since ARRAY is a
large and different topic, we are not covering ARRAY in this talk.

CONCLUSION
Loops are important programming language structures that allow us to create more simplified and efficient
programming codes. There are wide ranges of applications in utilizing loop structures. However, in order to
use loop structures correctly, we need to understand how DATA steps are processed. Even for experienced
programmers, when trying to debug our programming errors, we often realize that most of the errors are
closely related to programming fundamentals, which is understanding how the PDV works.

REFERENCES
SAS Institute Inc. 2006. SAS OnlineDoc® 9.1.3. Cary, NC: SAS Institute Inc.
SAS Institute Inc. (2000b) SAS Programming II: Manipulating Data with the Data Step Course Notes, Cary,
NC SAS Institute Inc.

CONTACT INFORMATION
Arthur X. Li
City of Hope Comprehensive Cancer Center
Department of Information Science
1500 East Duarte Road
Duarte, CA 91010 - 3000
Work Phone: (626) 256-4673 ext. 65121
Fax: (626) 471-7106
E-mail: xueli@coh.org

SAS and all other SAS Institute Inc. product or service names are registered trademarks or trademarks of
SAS Institute Inc. in the USA and other countries. ® indicates USA registration.

 19

Foundations and FundamentalsSAS Global Forum 2010

	2010 Table of Contents

