SAS Global Forum 2010 Foundations and Fundamentals

Paper 134-2010

Working with SAS® Date and Time Functions:
Foundations & Fundamentals

Andrew H. Karp
Sierra Information Services
Sonoma, CA USA

Abstract

Many new users are confused about how to work with variables (columns) representing dates and time in
the SAS System. This paper provides an explanation of how to work with date and time variables, and
some of the key SAS tools (e.g., functions and formats) available to simplify your work with your date and
time data. Among the important concepts addressed in this paper are: 1) how the SAS System stores the
values of dates and times; 2) how to create SAS date, time and datetime variables, 3) how Formats are
used to control the “external representation,” or display of date, time and datetime variables, and, 4) how
to use SAS programming language tools, such as functions and constants, to accomplish your
programming goals.

Introduction

Most SAS Software users need to work with data sets containing one or more variables (columns)
containing the date and/or time on which an event occurred. You may, for example, need to:

o Determine the frequency with which an event occurs in time (e.g., how many patients were
admitted to the hospital in March 2010)

e Find the time interval which has elapsed between two events (e.g., what was the length of stay,
in days, from admission to discharge for patients admitted in March 2010)

e Select rows from a data set/table based on the values of a date or time variable (e.g.,
extract observations where the patient was admitted between midnight and 8 am on all Saturdays
and Sundays during March 2010).

e Count the number of events by a date or time interval (how many patients were admitted by
month during calendar year 2009, or how many patients were admitted by hour of the day during
March 2010

e Replace missing values in a historical time series of data with statistically “robust” estimates
of the missing values before going on to the next step in your reporting or analysis project

e Interpolate higher time frequency interval observations from historical data collected at a
lower time series frequency interval (estimate weekly number of admissions from an historical
series of monthly admission counts where the individual admission records are no longer
available for analysis/aggregation)

e Assign values to a SAS date, time or datetime variable from “raw data” or from the values of
other variables in an existing SAS data set

e Import columns with date or time values stored in another software product in to a SAS
data set using SAS/ACCESS® Software

e Determine the current date and/or time on your computer’s system clock at various points in
your program'’s execution.

The SAS System provides a wide range of resources you can use to address these and other
programming issues that often arise when working with date and/or time values. These tools include

SAS Global Forum 2010 Foundations and Fundamentals

o Informats: used to assign values to SAS data set variables when a data set is created in a Data
Step

e Formats: used to control the “external representation,” or “display” of the values of variable in
your SAS-generated output

e Functions: applied, typically, in a SAS data step to calculate and assign values to
variables/columns.

e SAS System Options: used to control various aspects of your SAS session

e Procedures: Pre-written “routines,” many of which are either written specifically for use with date
and time data or which include important resources when working with dates and times.

e Global Macro Symbol Table Variables: A data table containing text variables assigned either
automatically when you start your SAS session or whose values you can assign using SAS
Macro Language commands.

We will explore some of the tools in each of these categories throughout the paper. In order to take
advantage of them we first need to understand the core concepts about how the SAS System stores the
values of variables representing dates and times in our data sets.

Core Concepts
A SAS date, time or datetime variable is a special case of the numeric variable.

e Date variables: an integer representing the number of days before or after January 1, 1960. In
SAS, the number zero (0) represents January 1, 1960. If the event representing by the date
variable occurred BEFORE January 1, 1960 then the value of the variable is negative. If it
occurred AFTER January 1 1960 then its value is positive.

e Time variables: The number of seconds from midnight. Decimal values are permitted, and are
often calculated by SAS programming language functions (see below) that “return” the current
value of a time or datetime variable from your computer’s system clock.

e Datetime variables: A number representing the number of seconds the event represented by
the variable occurred before or after midnight, January 1, 1960. A datetime variable stores both
the date and the time in a single value. SAS programming language functions (see below) can
be used to “find” or “return” the date or time “part” from a datetime variable.

Storing the values of dates and times as numbers makes it easy for SAS to perform both simple and
complex operations on these data values. But, numeric date, time or datetime variables are hard, if not
impossible, for users to read or interpret. That's why we typically use a Format to display their values in
SAS generated output. More on Formats for date, time and datetime variables later in this paper.

Creating SAS Date, Time or Datetime Variables

Many SAS users work with data sets where their date, time or datetime variables are already created for
them. If you're not one of these lucky users then you need to understand how to assign values to these
variables when you create a SAS data set using SAS programming language statements in a SAS Data
Step. Here are some examples.

Informats

An informat contains instructions SAS follows when assigning values to SAS data set variables from “raw
data.” Appropriate use of informats for date, time or datetime variables can make it easy for you to
convert how dates values are stored in your “raw data” to numeric SAS date, time or datetime variables in
your SAS data set.

SAS Global Forum 2010 Foundations and Fundamentals

Here's an example. A text, or “raw data,” file has about 42,800 rows of data, each of which contains
information about the sale of a table to a customer. Columns 11 through 20 have the date the table was
ordered as a text string, with the first two values as the month, the next two as the day and the last four
as the year. And, in columns 21 through 30 we have the table shipment date as a text string with the first
four values as year, the next two as the month and the last two as the day of shipment. The screen
capture below shows the first few records from the table sales raw data file.

B table_sales_raw_data.txt - Notepad

31-data tables;

54
55

/* informat for HWMDDYYYY raw data values */
{* informat for YYMMDDDD raw data values */

titled4 'Using INFORMATS: First 20 Observations from the Tables Sales Data Set';

32 infile "C:\Dates_And_Times\table_sales_raw_data.txt";
33 input

34 @1 order_number $ 7.

35 @8 type 1.

36 @9 material 1.

37 @10 color 1.

38 @11 order_date mmddyy10.

39 @21 ship_date yymmddi10.

40 @32 height 2.

41 @34 price 8.;

42 run;

43

44 options nonumber nocenter nodate;
45:-proc print data=tables({obs=20);

46 title 'SAS Global Forum 2010';

47 Title2 'Foundations & Fundamentals';
48 title3d 'Working With SAS Date and Time Functions';
49

50 run;

51

52

53:-proc contents data=tables;

title4 'Descriptor Portion of Tables Sales Data Set';

run;

The problem is how to “tell” SAS that these text

Fie Edt Format Wisw Help strings are dates when a Data Step is used to create
3382?%2%825835%383%333_gg_g; gg %gg a SAS data set from these raw data. The solution is
000267234611 /03/20042004-12-01 19 1776 | to specify the appropriate informats in the INPUT
888%5;%%83/??/%883%883—gz—gg ig %;g Statement so that SAS “knows” how the date values
00048?634203501520052005:04:13 24 1886 are arranged and how to then convert them to
000842963207 /09/20052005-08-21 25 169 | numeric SAS date values.

000137741104 /28/20052005-05-07 28 200

000463262105/04/20052005-05-09 29 184

888?2?%333%85%382%332-gg-ié 3% %?g The SAS data step on the next page shows how the
000937022605/12/20052005-07-13 24 817 appropriate SAS date informats are specified in the
000230955407 /17/20042004-08-27 36 230 INPUT Statement to obtain the desired results. While
000702813711/28/20042004-11-30 17 661 .
000906243311710720042004-12-11 35 240 | there are other, more complex methods to accomplish
000364713305/30/20052005-07-31 18 641 | the same result, the easiest (and most efficient) wa
000700325310/20/20042004-12-12 ; o () way
000650232203711720042004 -03-18 is to use SAS date informats.

The SAS Program
Editor extract on
the left shows the
Data Step used to
create the
(temporary) tables
sales data set
(lines 31-42) along
with a PROC
PRINT step that
displays the first 20
rows of the data
set in the Output
Window and a
PROC
CONTENTS step
that displays the
data set’s
descriptor portion
in the Output
Window. Looking
at the output
generated by the
PRINT and

CONTENTS “steps” shows what SAS “did” when it took the rows of the raw table sales file and turn them
in to observations in our SAS data set: the variables ORDER_DATE and shipment_date are numeric SAS
date variables showing the number of days from January 1, 1960 that the table was ordered, and
subsequently, shipped.

SAS Global Forum 2010 Foundations and Fundamentals

SAS Global Forum 2010
Foundations & Fundamentals
Working With SAS Date and Time Functions
: he Tables Salec Data ; : ; ;
Using INFORMATS: First 20 Observations from t Set Alphabetlc List of Variables and Attributes
arder_ order ship_
Obs number type material color date date height price # Variable Type Len
1 0004682 5 1 1 16530 168581 35 244
2 0005571 6 5 & 168198 16229 25 169 4 color Num 8
3 0002672 3 4] 18378 16406 19 1726 7 hei
4 0004727 5 4 2 16565 16621 37 276 eight Num 8
5 0002889 1 3 [16141 18180 15 379 3 material Num 8
[:] 0004876 3 4 2 168456 16538 24 1886 5 order date Num 8
7 ooo08429 6 3 2 16626 16689 25 169 -
8 0001377 4 1 1 16554 16563 28 200 1 order_number Char 7
9 0004632 6 2 1 168560 16565 29 184 8 price Num 8
10 0009086 4 4 3 168521 16526 3 299 -
11 0005547 6 5 1 16505 16513 23 379 6 Shlp—date Num 8
12 0009370 2 2 6 16568 16630 24 817 2 type Num 8
13 0002308 5 5 4 16268 16310 36 230
14 0007028 1 3 7 16403 16405 17 661
15 0009062 4 3 3 16385 16416 35 240
16 0003647 1 3 3 16586 16648 18 641
17 0007003 2 5 3 18364 16417 17 1383
18 0008502 3 2 2 16141 16148 23 579
19 0001394 1 4 & 16447 16504 23 1231
20 0007348 5 5 2 18552 18604 35 312

As mentioned earlier in this paper, there are many good reasons why SAS stores the values of date (and,
as we will see later, times) as numbers. But, it's obviously very hard for us to understand the calendar
dates associated with these numbers. So, to get us started with the concept of using SAS Formats to
control the display of data values in our SAS output, here is a revised PROC PRINT step where the SAS-
supplied (or ‘internal’) Format MMDDYY10 has been applied, or ‘associated’ the variables ORDER_DATE
and SHIP_DATE in the TABLES sales data set. The output generated by this revised PROC PRINT step
is also shown below.

58-proc print data=tables(obs=20); The PR_OC PRINT step on
59 format order_date ship_date mmddyy10.; the left includes a FORMAT
60 title4 'First 20 Observations from the Tables Sales Data Set'; Statement that ‘associates’
81 title5 'Using SAS Formats to Control Display of Order and Shipment Dates';| the MMDDYY10 Format to
0Z Tun; the ORDER_DATE and
SAS Global Forus 2010 SHIP_DATE variables in our TABLES
Foundations & Fundamentals
Working With SAS Date and Time Functions sales data set.
l::;:: :25‘“;::::::1::BC::::Q;“;1:;::;30:.;::l:a::ds;:ipnnnt Dates The reSUIt IS Shown In the OUtpUt WlndOW
— screen capture which is also to the left.
obs number type material color order_date ship_date height price NOW the “formatted” or “dlsplayed" Values
1 0004682 5 1 1 04/04/2005 06/04/2005 as 24 | of these two variables are easy for us
2 0005571 (] 5] OF/08/2004 06/07 /2004 25 168 “ »
3 0002672 3 4 6 11/03/2004 12/01/2004 18 1726 mere mortals” to Comprehend, as we
4 0004727 5 4 2 05/09/2005 07/04/2005 a7 276
5 0002889 1 3] 0911112004 owmizum 15 a9 | C€an now see the month, day and year
6 0004876 3 4 2 03/01/2005 04 /13 /2005 24 1886 '
7 0008429 68 3 2 07/09/2005 uajawzrm& 25 169 that the table was first ordered and then
S ooz 2 | St oweeses| 2 1| Shippedout.
10 0009086 4 4 3 03262005 03/31/2005 3 209
1 0005547 L] 5 1 03/10/2005 03/18/2005 23 are
12 0008370 2 2) 0512 /2005 07 /12/2006 24 a7
13 0002309 5 5 4 a7 /17 /2004 0837 /2004 a6 230 . . .
14 0007028 1 3 7 11;2&}2904 maajmm 17 et | We will gointo further detail about SAS
o omser 1 3 2| iz | % 4| date, time, and datetime variables and
7 ilitv i
o ooesz 3 2 2 | oiitiens osimmes| 2 ae| the SAS Formatfacility in the next
19 0001394 1 4 6 01/11/2005 03/08/2005 23 1231 section this paper But, it's important at
20 0007348 s 5 2 04/26/2005 06/17/2005 as 312 L. T
e the outset of this discussion to

understand clearly the difference between the “actual” or “internal” value of a date, time or datetime
variable in a SAS data set (a number) and its “displayed” or “formatted” value in our SAS-generated
output. The Format we choose (and there are a lot of them for dates and times, as we will discuss below)
controls how we “see” these values “outside” of the data set but they do not change their “internal” or
“stored” value within the data set itself.

SAS Global Forum 2010 Foundations and Fundamentals

Assigning Values to Date, Time and Datetime Variables from Variable Variables that are “ Already”
in a SAS Data Set

In the previous example we used INFORMATS in an INPUT Statement to have SAS interpret values of
strings in a text file as numeric SAS date variables when the rows in the raw data file were made in to
observations in a SAS data set. Now, let's look some basic ways we can create SAS date, time or
datetime variables from values stored in the variables/columns of an existing SAS data set.

One common situation is to have a data set with separate columns with values for the month, day and
year that some event occurred. And, we might also have separate columns with the hour, minute and
seconds that something happened. From these columns (variables) we want to assign the value of a
SAS date variable, or a SAS time variable, or a SAS datetime variable to be used in another part of our
project. Here's an example: every time a vehicle passes through a bridge’s toll plaza the toll booth
attendant classifies the type of vehicle by pressing a button on a console in their booth. The classification
not only calculates the toll amount due for that vehicle, but also creates an electronic record of the
date/time the vehicle passed through the toll plaza and the type of vehicle (passenger car, truck, bus,
etc.).

The data set shown to the right, via a PROC PRINT step, has the year, month, day, hour minute, and

second that a vehicle displaying a hazardous materials Fownsstions & runsanentais
(HAZMAT) placard (sign) passed through the toll plaza. Hatardous Mateclats Placard Orcontids
These crossing are of particular interest to the bridge naznat_

obg yoar month day nour minute second placard

administration and local enforcement personnel, as extra
precautions must be taken to reduce the potential for an
accident which would result in release of these hazardous
materials in and around the bridge.

1998
1998
1998 1
1999
1999
1999
1999

19 & 11 2
12 10 20 a2
21 11 bl 46
18 L] Fid 30
22 e il 28
3 16 5 4“
14 11 17 Eal

OB -

2 1

a 1

2 1

1 1

& 1

9 1

1 1

2000 a 29 1 25 20 1

So, our challenge is to assign to new variables in our data set || o 3wo 1 = s s 2 i
values of SAS date, time and datetime variables from the 8 M 01 s o om ow o i
information in the data shown on the right. This can be easily |1 % : = & 2 = :
accomplished by the use of SAS programming language 2 i i = 05 % . 3
Functions designed for exactly this purpose. s @ 7 W 9 i b :
19 2001 8 13 14 24 ar 1

20 2001 = 26 19 10 fa 1

In a nutshell, Functions are used to assign values to 2 odm B a1z i :
1

23 2002 L] T 17 L] 15

variables and for other data-related tasks. There are a wide
range of Functions available in SAS Software, each of which provides a powerful data processing tool
that is probably impossible for you to carry out yourself by writing your own data step code. If you are not
already familiar with the concept or application of a SAS Function, see Cody (2004).

In our example, we will apply the MDY Function to assign a SAS date variable value from the values of
MONTH, DAY and YEAR, the HMS Function to assign a SAS time value variable from the values of
HOUR, MINUTE and SECOND, and the DHMS Function to assign a SAS datetime value variable from
the previous-created date variable, and the values of the HOUR MINUTE and SECOND variables.

Here is the Data SteP- _On line 104 * assign values to new vars using functions;
107 of the Program Editor screen | 105- data sgf2010.hazmat_date_and_time;

capture the MDY Function is used | 106 set sgf2010.hazmat_crossings;

to assign the value of 107 hazmat_cross_date = mdy(month,day,year);

HAZMAT_CROSS DATE, and on | 108 hazmat_cross_time = hms (hour,minute,second);

line 108 the HMS Function is 109 hazmat_cross_dt = dhms(hazmat_cross_date,hour,minute,second);
used to assign the value of 110 run;

HAZMAT_CROSS_TIME. Finally,
on line 109 the DHMS Function is to assign the value of a SAS datetime variable from the value of
HAZMAT_CROSS_DATE (assigned on line 107), and the variables HOUR, MINUTE and SECOND.

SAS Global Forum 2010 Foundations and Fundamentals

This example shows just how easy is it to apply SAS programming language functions to obtain the data
values you need for subsequent steps in your project. By using the MDY, HMS and DHMS Functions we
now have variables/columns in our data set with the SAS date, time, and datetime values for when the
hazmat-placarded vehicle crossed the bridge.

Here are two displays of the data set we just created. The one on the left shows the “actual,” or “internal”
values calculated for HAZMAT_CROSS_DATE, HAZMAT_CROSS_TIME and HAZMAT_CROSS_DT
while the output on the right shows their displayed values after the WORDDATE, TIMEAMPM and
DATETIME19 Formats are associated to them. (To save space, the PROC PRINT-generated output on
the right only shows the variables HAZMAT_PLACARD, HAZMAT_CROSS_DATE,
HAZMAT_CROSS_TIME and HAZMAT_CROSS_DT.

117 proc print data=sgf2010.hazmat_date_and time HOOBS;
118 var hazmat_placard hazmat_cross_date hazmat_cross_time hazmat_cross_dt;
112-proc primt data=sgf2010.hazmat_date_and time NOOBS; 119 format hazmat_cross_date worddate.
113 titled 'Hazardous Materials Placard Crossings'; 120 hazmat_cross_time timeanpm.
114 title5 'Assigning Values to Date, Time and Datetime Varimbles in a Data Step'; 121 haznat_crons_dt datetinetd.y
115 rem: 122 titleS 'Displaying Created Date, Time and Datetime Variable Values with Formats';
2 123 run;
Foundations @ Fundsmentals - e SAS Global Forum 2010
Working With SAS Date and Time Functions Foundations & Fundamentals
Hazardous Matorials Placard Crossings Working with SAS Date and Time Functions
lassigning values to Date, Time and Datetime variables in a Data Step Hazardous Materials Placard Crossings
Displaying Created Date, Time and Datetime Variable Values with Formats
hazmat_ hazmat_
hazmat_ cross_ Cross_ hazmat_
lyear month day hour minute socond placard date time cross_dt pazmat., ATRAt_
= placard | hazmat_cross_date cross_time hazmat_cross_dt
1998 2 19 & 1 2 1 13929 22262 1203487862
1998 3 12 10 20 32 1 13950 37232 1205317232 1 February 19, 1998 6:11:02 AM 19FEB1998:06:11:02
1998 12 21 11 E a5 1 14234 40186 1229857786 1 Warch 12, 1998 10:20:32 AN 12MAR1998:10:20: 32
1999 1 18 & 26 20 1 14262 23190 1292259990 1 December 21, 1998 11:09:46 AN 21DEC1998:11:09: 46
:::: : 2: ‘: 3’5 i:’ : :::;: ::‘;:? ::;15:::::? 1 January 18, 1999 6:26:30 AM 18JAN1999: 06:26:30
1999 1" 14 " 17 kil 1 14562 40651 1258197451 1 Line 22, 1asy g 51 EZB s 22"”"1999339581 525
500 5 i i i 55 1 e S50 Edsaieesh 1 september 3, 1999 4:05:41 PH 03SEP1999:16:05:41
2000 a T 23 33 15 1 14707 94795 1270769595 1 Hovember 14, 1899 11:17:31 AW 14NOV1999:11:17:31
2000 12 28 s 24 20 1 14972 19480 1293600260 1 Warch 29, 2000 1:25:20 AW 26MAR2000: 01 : 25: 20
2000 12 29 15 6 41 1 14973 54401 1293721601 1 April 7, 2000 11:33:15 PH O7APR2000:23:33:15
2001 1 8 21 11 21 1 14983 76281 1294607481 1 December 28, 2000 5:24:20 AW 28DEC2000: 05:24: 20
oot i 24 22 3 9 1 14089 il 1295957131 1 December 29, 2000 3:06:41 PH 29DEC2000:15:06:41
feo 2 2 5l 2 a 1 i i R i 1 January 8, 2001 9:11:21 PR 08JANZ001:21:11:21
oo . p % 5 3 5 {8323 sroe et 1 January 24, 2001 12:05:31 PN 24JAN2001:12:05: 31
Liooi = o = 3 p 5 Sy s pypiEimiioy 1 April 28, 2001 1:28:21 AR 28APR2001:01:28:21
2001 7 29 7 14 20 1 15185 26060 1312010060 1 Way 18, 2001 9:23:16 PH 16MAY2001:21:23:16
2001 8 13 14 24 a7 1 15200 51877 1313331877 1 Way 27, 2001 9:05:08 AW 27MAY2001:09:05:08
2001 8 26 19 10 LA 1 15213 69031 131447223 1 July 28, 2001 11:08:47 PH 28JUL2001: H
2001 12 4 7 17 12 1 15313 26232 1323069432 1 July 29, 2001 7:14:20 AW 29JUL2001: 114:20
oo 4 bt) 2 a3 1 13924 e 132908 4nes 1 August 13, 2001 2:24:37 PH 13AUG2001:14:24:37
[n0= & g T 8 2 1 it BI7 2320059 17Y 1 August 26, 2001 7:10:31 PH 26AUG2001:19:10:31
1 December 4, 2001 T:17:12 aM O4DEC2001:07:17:12
1 December 15, 2001 12:20:25 AW 15DEC2001:00:20:25
1 June 7, 2002 5:06:15 PH O7JUN2002:17:06:15

Appendix A to this paper offers several other, “beyond the basics,” examples of assigning SAS date
values to variables from date “strings” in an existing SAS data set.

Formats

In the previous examples we saw how SAS Formats are applied to control the display of date values in
our output. Taking the time to understand the power of the SAS Format facility, especially with respect to
dates and times, will pay off in improving your ability to complete data processing and analysis tasks in
less time, and with less frustration, than if you did not know how the Format facility can work for you.

We've already seen several examples of using an internal, or SAS-supplied, Format that comes with your
SAS Software installation to control the “external representation” or displayed values of the dates on
which the table was purchased and subsequently shipped. The important thing to remember at this stage
of our discussion is that the Format changes the display of the variable to which it is associated, but it
does not change the “internal,” or “actual” value of the variable. Here is an example:

This paper is scheduled for presentation on April 12, 2010 at SAS Global Forum in Seattle, Washington
(USA). The SAS date value for April 12, 2010 is 18364. Here is a table that shows how some of the
internal SAS date Formats will display that value. Remember, the Format changes how we “see” the
value, NOT the value of the variable itself. The table shows just some of the SAS-supplied date values;
the SAS documentation has a complete list of all Formats that are included in your SAS installation.

SAS Global Forum 2010 Foundations and Fundamentals

PROC FORMAT can be used to create “customized” VALUE and PICTURE formats for ranges of date
values. I've included several brief examples of how to do this in Appendix B of the paper. Please see the
PROC FORMAT documentation chapter in the BASE SAS Procedures documentation manual and my
downloads “My Friend the SAS Format,” “Getting in to the PICTURE Format,” and “SAS Formats: Beyond
the Basics,” which are available for free download as PDF’s from the “Free Downloads” link at
http://www.sierrainformation.com .

Format Applied Displayed Value Comments

None 18365 This is the “actual,” or internal value of the a SAS
date variable for April 10, 2010

MMDDYY10. 04/12/2010 Month, Day, Year. Slash is default separator

DDMMYY10. 12/04/2010 Day, Month, Year Slash is default separator

WORDDATE. April 12, 2010 Text for month name, followed by day and year

WEEKDATX. Monday, 12 April 2010 Text for day of week, day, text for month, year

MONYY. APR10 Month and two-digit year

MONYY?7. APR2010 Month and four-digit year

WORDDATE. Monday Date of week as text

MONTH. 4 Month

QTR. 2 Calendar Quarter

YYQ. 201002 Four-digit year, the letter “Q” followed by the
calendar quarter

YEAR. 2010 Four digit year

Using Formats to Group, Summarize and Analyze Date by Dates

One of the many powerful tools we get from combining SAS formats for dates with SAS analytical
procedures (PROCS) is that we can group or summarize the PROCSs results by the formatted value of a
SAS date, time or datetime variable. For example, from our tables sales data set, we want to generate a
report that shows the number of sales in each month and year. We can do this very easily using a PROC
FREQ step to count the frequency of sales date and associate (for example) the above-described
MONYY7 format to the sales date variable. This approach is both easy to implement and very easy to
modify, if necessary. Here’s an example:

In the PROC FREQ “task” to the
left, we are asking for a frequency
table of the values of the variable
ORDER_DATE formatted with the
MONYY7. format (see above). So,
what SAS will do is count the

97=proc freq data=sgf2010.tables;

98 tables order_date;

99 format order_date monyy7.;

100 title 'SAS Global Forum 2010';

101 Title2 'Foundations & Fundamentals';

102 title3 'Working With SAS Date and Time Functions';
103 title4 'Grouping Data by the Values of a SAS Date Variable'; number of observations in the data
104 run; set within the formatted values of
ORDER_DATE. The results are shown on the next page. In just a few lines of code we have exactly the
report we've been asked to create.

SAS Global Forum 2010

Foundations & Fundamentals

Working with SAS Date and Time Functiens

Grouping Data by the Values of a SAS Date Variable

The Format association on line 99 of the PROC
FREQ step on the previous page shows just how
easy it is to group/summarize your data by the
values of a date variable just by selecting the
appropriate format for the results you need.

Cumulative
Percent

Cumulative

order_date Fregquency Percent Fregquency

NAR2004
APR2004
MAY2004
JUN2004
JuL2004
AUG2004
SEP2004
0CT2004
HOV2004
DEC2004
JAN200S
FEB2005
MNAR2005
APR2005
MAY2005 2647
JUN2005 2604
JUL2005 764

2497
2546
2682
2576
2690
2742
2611
2701
264
2705
2705
2419
2712
2601

2497

5043

7725
10301
12991
15733
18344
21045
23686
26391
29096
31515
34227
36828
39475
42079
42843

5.83
11.77
18.03
24.04
30.32
36.72
42.82
49.12
55.29
61.60
67.91
73.56
79.89
85.96
92.14
98.22

100.00

5.83
5.94
6.26
6.01
6.28
6.40
6.09
6.30
6.16
6.31
6.3
5.65
6.33
6.07
6.18
6.08
1.78

Using the Format meant we avoided an otherwise
unnecessary Data Step to create a new variable
which would then be supplied to a PROC FREQ step

SAS Global Forum 2010 Foundations and Fundamentals

for analysis. Instead, SAS does all the work for us in one step, via the Format association we applied
directly in the PROC FREQ step.

Of course, bosses and clients like to frequently change their minds, so when you're asked “how hard
would it be to show me the number of tables ordered grouped by calendar quarter within each year, you
can easily create the new report just by changing the Format association. To satisfy this request, all we
need to do is associate the YYQ. Format in the PROC FREQ step and re-run it. Here's an example:

SAS Global Forum 2010

Foundations & Fundamentals

Working With SAS Date and Time Functions

Grouping Data by the Values of a SAS Date Variable
Order Count by Year and Calendar Quarter

106- proc freq data=sgf2010.tables;
107 tables order_date;

108 format order_date yyq.;

109 title 'SAS Global Forum 2010';

. . Cumulative
110 Title2 'Foundations & Fundamentals';

Cumulative

order_date Frequency Percent Frequency Percent

111 title3 'Working With SAS Date and Time Functions'j;
112 title4 'Grouping Data by the Values of a SAS Date Variable'; 200401 2497 5.83 2497 5.83
. \ . 200402 7804 18.22 10301 24.04
113 title5 'Order Gount by Year and Calendar Quarter'; 200403 8043 18.77 18344 42.82
114 run; 200404 8047 18.78 26391 61.60
200501 7836 18.29 34227 79.89
200502 7852 18.33 42079 98.22
200503 764 1.78 42843 100.00

Here’s another example of using the formatted value of a date variable to group or classify the results
generated by a SAS analytical procedure. Again using the Tables sales data set, let's use PROC
MEANS to calculate the average of PRICE (in dollars) and HEIGHT (in inches) of tables sold, by calendar
year, for all the observations in the data set. In this example PROC MEANS will display the results of the
analyses we request in the Output Window, rounded to the nearest hundredth. (For more information
about PROC MEANS, please download free PDFs of my presentations “Steps to Success with PROC
MEANS" and “Getting the Most from PROC MEANS” from the “Free Downloads” link at
http://www.Sierralnformation.com)

SAS Global Forum 2010

79-proc means data=sgf2010.tables maxdec = 2 mean;

80 var price height;

81 class order_date;

82 format order_date year.;

83 title5 'Hean Price and Height by Year of Order Date';
84 run;

Using a SAS Format on the value of our CLASS statement

variable made it very easy to obtain the analyses we
wanted of the numeric variables PRICE and HEIGHT
“grouped,” or “classified” by calendar year.

Calculating Time Elapsed Between Two Events

Foundations & Fundamentals

Working With SAS Date and Time Functions
Hazardous Materials Placard Crossings

Mean Price and Height by Year of Order Date

The MEANS Procedure

order_

date N Obs Variable Mean
2004 26391 price 513.10
height 24.81
2005 16452 price 511.67
height 24.86

Another common task is to determine the number of time periods between two events. With our Tables

sales data set, an obvious requirements would be to figure out how many days elapsed between when

the customer ordered the table and when it was shipped out. Since SAS stores the values of date
variables as numbers, it's very easy to compute this value in a Data Step. All we need to do is subtract
shipment_date from ORDER_DATE and we obtain a useful result. Here’'s an example, from the first 15

rows/observations in the tables sales SAS data set.

SAS Global Forum 2010 Foundations and Fundamentals

132-data examplel; SAS Global Forum 2010
Foundations & Fundamentals

133 set sgf2010.tables (obs=15); Working With SAS Date and Time Functions
134 * calculate the number of days between Example 1:

135 order and shipment; Calculating Time Periods Between Two Events

136 days = ship date - order_date; Days Betwesn

137 run; order_ order and
138 Obs number order_date ship_date shipment
139-proc print data=examplel label split = '/';
. 1 0004682 04/04/2005 06/04/2005 61
140 var order_number order_date ship_date days; 2 0005571 05/08/2004 067072004 a0
141 label days = 'Days Between/Order and/Shipment'; 3 0002672 11/03/2004 12/01/2004 28
142 format order_date ship_date mmddyy10.; 4 0004727 05/09/2005 07/04/2005 56
143 title4 'Example 1:'; 5 0002889 03/11/2004 04/19/2004 39
. . . i 5 0004876 03/01/2005 04/13/2005 43
144 title5 'Calculating Time Periods Between Two Events'; 7 0008429 07/09/2005 0821 /2005 43
145 run; 8 0001377 04/28/2005 05/07/2005 9
9 0004632 05/04/2005 05/09/2005 5
10 0009086 03/26/2005 03/31/2005 5
[” 3 ”
Remember, the “internal,” or “stored” value of 11 0005547 03/10/2005 03/18/2005 8
12 0009370 05/12/2005 07/13/2005 62
SHIP_DA_TE and ORDER_DATE are numbers 13 0002309 07/17/2004 08/27/2004 M
representing the number of days from January 1, 14 0007028 11/28/2004 11/30/2004 2
15 0009062 1171072004 12711 /2004 31

2010 to the date the table was ordered, and, later,
shipped out to the customer. So, in the Data Step above, all we needed to do to find the number of
calendar days between the two events was to subtract the value of SHIP_DATE from the value of
ORDER_DATE in each row/observation of the data set (or, for our testing purposes, just the first 15 rows
using the OBS= SAS Data Set Option).

In some analytical situations we may want to give “credit” for the “day” on which the first of the two events
being compared in the calculation. This is often the case in analyzing hospital patient discharge data. If
the patient is admitted to, and then discharged from, the hospital on the same day (perhaps because they
had a ‘same day’ procedure performed or only spent a short time in the emergency room), their discharge
and admission dates are equal. So, if we subtracted one from the other we’'d have zero (0) as the result,
which is not very useful. In these situations, analysts often add the constant one (1) to the result of the
subtraction when computed the number of calendar days between two days.

This approach is shown in the Data Step code and PROC PRINT and PROC PRINT output below. If the
customer orders a table that is shipped out on the same day, we want our computed value of DAYS to be
one (1) and not zero (0).

[]/sas Global Forum 2010
1isanta exnmplad) | [Foundations & Fundamentals
148 set sgf2010.tables(obs=15); Working wWith SAS Date and Time Functions
148 * calculate the number of days between Example 2:
150 order and shipment, add one day for same Calculating Time Periocds Between Two Events
151 day shipments;
152 days = (ship_date - order_date) + 13 Days Between
153 run; order_) Orqer and
154 obs number order_date ship_date Shipment
155-proc print data=example2 label split='/'; 1 0004682 04/04/2005 06/04/2005 62
156 var order_number order_date ship_date days; 2 0005571 05/08/2004 06/07/2004 31
157 label days = 'Days Between/Order and/Shipment'; 3 0002672 11/03/2004 12/01/2004 29
158 format order_date ship_date mmddyy10.; 4 0004727 05/09/2005 07/04/2005 57
100 I RN N o ovosre 03/01/s005 04/13/2005 aa
160 title5 'Calculating Time Periods Between Two Events'; 7 0008429 07/09/2005 08/ 2172005 44
161 rum; 8 0001377 04/28/2005 05/07/2005 10
9 0004632 05/04/2005 05/09/2005 6

There is no “one right way” to perform this 10 0000086 03/26/2005 08/31/2005 6

. . 11 0005547 03/10/2005 03/18/2005 9
calculation. Choose the one that's “right” for the 1 s oo a ey e oa
SpeCIfIC data you are analyzmg. Either approach IS 13 0002309 07/17/2004 08/27/2004 42

. . 14 0007028 11/28/2004 11/30/2004 3
easy to lmp|€‘ment In your Data StepS- 15 0009062 11/10/2004 12/11/2004 32

SAS Global Forum 2010 Foundations and Fundamentals

Another common calculation we may need to perform is to determine the number of weekdays between
two dates. For example, the manufacturing process Tables Company may be closed on Saturdays
and/or Sundays (but the order and shipping departments are still open), so we want to exclude any
Saturdays or Sundays that fall between ORDER_DATE and SHIP_DATE to obtain a more accurate
understanding of how long it takes to complete order processing.

Fortunately, there is a very powerful SAS Programming Language Function, INTCK, (“Interval Check”)
that can do this calculation for us very quickly and easily. Calculating this value without it would be very
difficult!

Counting the Number of “Interval Boundaries” Between Two Dates with the INTCK Function

The INTCK Function is a very handy tool for counting the number of “interval boundaries” between two
SAS date, time and datetime variables. While it is very easy to use, you must clearly understand what it
does—and does not do—in order to obtain the results you need from it. This function as three “required
arguments,” or three pieces of information you have to give it in order to have it give you back (or “return”)
the value you want from it. The three arguments are: interval, from, and to, where:
e Interval is the time interval (e.g., WEEKDAY, MONTH, YEAR,HOUR) you want it to count
e From is a SAS date, time or datetime variable name, or a date, time or datetime constant (see
below) that is the start of the period
e To is a SAS date, time or datetime variable name, or a date, time or datetime constant (see
below) that is the end of the period

Here are some examples:

e Counting Weekday Intervals (Default Exclusion of Saturday and Sundays): Number of weekdays
between ORDER_DATE and SHIP_DATE for the first 15 observations in the Tables data set.

163- data weekdaysi; BAS Global Forum 2010
164 set sgf2010.tables(obs=15); Foundations & Fundamentals
= A A = . Working With SAS Date and Time Functions
165 weekdays1 = intck('weekdays',order_date,ship_date); Example 1: Using the INTCK Function
166 run; Numbar of Weekdays Betwean Table Order and Shipment
167 Excluding Saturdays and Sundays (Default)
168-proc print data=weekdaysi label split='/'; Nusber of
169 var order_number order_date ship_date weekdaysi; Wook Days
H order_ Botween
170 format order_date ship_date weekdate.j obs number order_date ship_date order & Shipment
171 label weekdays1 = 'Number of /Week Days/Between/Order & Shipment's
172 titled 'Example 1: Using the INTCK Function'; 1 0004682 Monday, April 4, 2005 gaturday, Junc 4, 2005 a4
B A i & . " - 2 0OOS5T1 saturday, May 8, 2004 Honday, June 7, 2004 21
173 title5 'Number of Weekdays Between Table Order and Shipment’; 3 0002672 Wednesday, Wovember 3, 2004 Wednosday, December 1, 2004 20
174 title6 'Excluding Saturdays and Sundays (Default)'; a 0004727 Wonday, WMay 9, 2008 Monday, July 4, 2005 a0
175 run: 5 ocozssg Thursday, March 11, 2004 Wenday, April 13, 2004 27
6 0004876 Tuesday, March 1, 2005 Wodnosday, April 13, 2005 Ell
7 0008429 Saturday, July 9, 2005 Sunday, August 21, 2005 EL]
. . 8 0001377 Thursday, April 28, 2005 saturday, May 7, 2005 [
In this example, the INTCK function counted the s oopdssz Wodnosday, May 4, 2005 Monday, Hay 9, 2005 3
. 10 0009086 saturday, March 26, 20085 Thursday, March 31, 2005 4
number of WEEKDAY intervals between order and 11 ooossar Thursday, marcn 10, 2005 Frigay, Narch 18, 2008 p
. . 12 o008aTo Thursday, May 12, 2005 Wednesday, July 13, 2005 44
shipment, that is, the number of days between the 13 oon2a0e saturday, wuly 17, 2004 Friday, August 27, 2008 a0
14 0007028 sunday, November 28, 2004 Tuesday, Hovember 30, 2004 2
two events EXCLUDING any day that was a 15 Wodnosdy. 10, 2004 Gaturday, Docombor 11, 2004 2

Saturday or a Sunday.

e Counting Weekday Intervals (Exclude Sundays ONLY): Number of weekdays between
ORDER_DATE and SHIP_DATE, excluding Sundays, for the first 15 observations in the Table
data set.

In this example the “interval argument” to the INTCK Function has been modified to read “weekdaylw,”
which instructs SAS to only exclude Sundays when calculating the number of weekdays between the
dates supplied in the FROM and TO arguments. Please read more about the WEEKDAY SAS
Programming Language Function, below, to understand why the number one (1) in SAS refers to Sunday.

SAS Global Forum 2010 Foundations and Fundamentals

177- data weekdays2;
178 set 5qT2010.tables (obs=15)3
179 weekdays2 = intck('weekdaysiw',order_date,ship date);
180 FmR; e e e
Days Botwoon
181 arser_ Grasr & Snipsent
182-proc print data=weekdays2 label split='/'; obs mumbar ordor_gate ship_date Excluding Sundays
s
183 label weekdays2 = 'Nunber of /Days Between/Order & Shipment/Excluding Sundays'j 1
184 format order_date ship date weekdate.; a
185 var order_number order_date ship_date weekdays2; Pl ereind
?
L]

r 8hipment

53
8
24
48
Er]

0004882
0005871
0002672

186 titled 'Example 1: Using the INTCK Function'j o004BTE

0008420 EL
187 title5 'Mumber of Weekdays Between Table and Order Shipment'j

0001377
o oooassz

188 titled 'Excluding Sundays OHLY'j 10 oO0CEOTE
189 run; 11 000SSAT

ay 4, 2008
+ 2008
n 10, 2008
12, 2008 Wednezaay, July 13, 2008 5

17, 2004 Friday, Auguat 27, 2004 £
20, 2004 Tussday, Novesber 30, 2004 2
mber 10, 2004 Baturday, Decesber 11, 2004 £

Understanding the Difference Between What INTCK Calculates and What Is Obtained Via
Subtraction of Date, Time or Datetime Variable Values

One common “gotcha moment” experienced by newer users of SAS’ date and time processing tools
occurs when they fail to understand the important difference between what the INTCK function “returns”
and the results they receive when subtracting the value of one date, time or datetime variable from
another. Let's look at a couple of examples so that you can hopefully avoid misunderstanding these
important differences when you apply these tools in your own projects and programs.

INTCK counts the number of specified “interval boundaries” (that is, what you supply in the first argument)
between the date, time or datetime variables provided in the second and third arguments to the function.
A very obvious example is when you are trying to calculate the age of an infant when it is discharged from
the hospital. If the baby was born (and therefore ‘admitted’ on December 30, 2009) and discharged on
January 2, 2010), it's easy to agree that the little bundle of joy is four days old, assuming we agree that
we are counting the number of “whole days” starting on the birth day and ending on the discharge day.

If, however, we tried to calculate age using an INTCK Function call with the YEAR interval boundary as
the first argument, the value returned by the function would be “1” (one). The baby is really only four days
old, not one year “old,” as suggested by what the INTCK Function is telling us. Is the INTCK Function
“wrong™? No. What the INTCK Function is telling us is that one instance of the YEAR “interval boundary”
has been “crossed” between the baby’s day of birth and its subsequent day of discharge.

This is one reason why we need to be very careful in using SAS programming language and other tools to
accurately calculate ages and other differences between two dates. An excellent resource for more
details on various approaches to this problem is Billy Kreuter's 1998 SAS Communications article
“Accurately Calculating Age in One Line,” which is available online as a PDF at
http://staff.washington.edu/billyk/TechTips SC4Q98.pdf .

e Using the INTCK Function with Datetime Variables

The following examples expand on the hazardous materials vehicle crossing example data set used
above, and show how to accurately use the INTCK Function to calculate time intervals between two
datetime variables. Let's assume that a truck with a hazardous materials placard, after paying the
computed toll, is then diverted to an inspection area where bridge police check the driver's paperwork, the
rigging of the load, and for other safety factors. Then, two police cars are detailed to provide a “front and
back escort” of the truck as it crosses the bridge. We have another data set that has three datetime
variables in it: 1) date and time the truck crossed the toll both; 2) date and time the truck inspection
started; and 3) date and time the truck inspection ended and the escort has been arranged. The bridge
district’s directors have been receiving complains from hazardous materials shippers alleging excessive
inspection time delays, so we need to analyze the data in SGF2010.HAZMAT _INSPECTION_TIMES to
get understand the problem. Here is a PROC-PRINT generated display of the data set’s observations
and variables:

SAS Global Forum 2010 Foundations and Fundamentals

Foundatiens & Fundamentals .
Working with SAS Date and Time Functions We mlght be tempted to use
ore on the INTCK Function :
Hazmat Inspection Start/End Times the INTCK FUNCTION Wlth
[1H
the DAY or HOUR “interval
Date & Time Date & Time Date & Time
Crossing hazmat_ Toll Booth Inspection Inspection boundary arguments tO
D placard crossed START END analyze these data. If we
1 1 19FEB1998:06:11:02 19FEE1998:06:24:00 19FEB1998:06:29: 35 did, SAS would gladly
2 1 12MAR1998:10: 20: 32 12MAR1998:10: 27:36 12MAR1993:10: 33: 38 calculate values for us and
3 1 21DEC1998:11:09: 46 21DEC1998:11:21:07 21DEC1998:11:30: 49
4 1 18JAN1999:06: 26: 30 18JAN1999:06:33:46 18JAN1999:06:40:15 e)_(eCUte our Data Steps
5 1 22JUN1999: 09:31:28 22JUN1999:09:43:52 22JUN1999: 09:57:44 without errors (assuming, of
6 1 03SEP1999:16:05: 41 03SEP1999:16:14:00 03SEP1999:16:24: 32 course, we didn’t make any
7 1 14N0V1999:11:17: 31 14H0V1999:11:26:32 14NOV1999:11:32: 05
8 1 20MAR2000: 01: 25: 20 20MAR2000: 01126227 20MAR2000: 01 : 48: 56 syntax or other
9 1 07APR2000:23:33:15 07APR2000:23:38:54 OBAPR2000:00: 28: 07 programming mistakes.
10 1 28DEC2000:05: 24: 20 28DEC2000:05:37:28 2BDEC2000:05: 46: 34
1 1 29DEC2000:15: 06: 41 29DEC2000:15:15:49 29DEC2000:15: 26: 27
12 1 08JAN2001:21:14: 24 0BJAN2001 :21:27:57 0BJAN2001:21:51: 24 Here’s an examp|e_
13 1 24JAN2001:12:05: 31 24JAN2001:12:10:45 24JAN2001:12:16: 50 .
14 1 28APR2001:01:28: 21 28APR2001:01:43:11 28APR2001:02:03: 01 Suppose we want to find out
L1 Swmeanswmesosssjewseiais | the umber of HOURS and
17 1 28JUL2001 : 23: 08: 47 28JUL2001 : 23:13:29 29JUL2001:00:01: 38 DAYS that E|apsed between
o1 mmsewes museconme s | ol booth crossing and end
20 1 26AUG2001:19:10: 31 26AUG2001:19:24:37 26AUG2001:19:47:37 of the inspection. Let's
21 1 04DEC2001:07:17:12 04DEC2001:07:23:12 04DEC2001:07:31:17 execute the data Step below
22 1 15DEC2001 : 00: 20: 25 15DEC2001 : 00228236 15DEC2001 : 00: 46: 58 L.
23 1 07JUN2002:17:06:15 07JUN2002:17:15:45 07JUN2002:17:23: 25 and see what it it does for
us.

Take a look at line 214 of the

211=-data days_and_hours;

212 set sgf2010.hazmat_inspection_times; Data Step shown on the left.

213 hours = intck('hours',hazmat_cross_dt,hazmat_inspect_end_dt); The DATEPART function has
214 days = intck('day',datepart(hazmat_cross_dt),datepart(hazmat_inspect_end dt));

215 rum; been used Eo ex“tract the SAS
216 date value “part” from the SAS
217=proc print data=days_and hours(firstobs=7 obs=18) label split = '/'j datetime variable’s value before
218 title5 'Days and Hours Between Toll Booth Crossing and Hazmat Inspection End'; having the INTCK funCtion

219 title6 'Via the INTCK Function'; .

220 runj| determine the number of DAY

interval boundaries between
when the truck crossed the toll plaza and when inspection ends. We’'ll take a deeper look at using SAS
Functions to “find” or “extract” the “parts” of a SAS date, time or datetime variable in the next section of
this paper. In the meantime, here is the PROC PRINT output generated by the step on lines 217-220 in
the above SAS Enhanced Program Editor screen capture:

Using the FIRSTOBS and OBS options in the PROC PRINT step (see line 217 of the Program Editor
screen capture) we can focus in on the problematic results generated by trying to use the INTCK function
to solve our problem. It looks as if Observations 9 and 17 “waiting a day” until inspection completed and
Observation 14 “waited an hour” for its inspection to conclude. While these are accurate values as
computed by the INTCK Function, the do not tell the “whole story.”

For example, for Observation 9, the truck crossed the toll plaza at 11:33:15 pm and its inspection started
less than seven minutes later, at 11:38:54 pm. Inspection completed at 12:28:07 AM (or “zero-hundred
hours, 28 minutes, seven seconds”). Two INTCK Function “boundaries” were “crossed” between these
two events: HOUR and DAY. So, in the first INTCK Function call on line 213, the Function accurately
returned the value one (“1") as the number of interval boundaries “crossed” between the two events. And,
since the DAY interval boundary was also “crossed” between the two events, the second INTCK Function
call, on line 218, correctly returned the value one (“1”) as the number of day interval boundaries between
the two events. But, less than an hour of time elapsed between toll booth crossing and end of inspection.

In my opinion, a more accurate representation of the delay time between toll booth crossing and
inspection start, between inspection start and inspection end, and between toll booth crossing and

SAS Global Forum 2010 Foundations and Fundamentals

inspection end is obtained by: 1) remembering that SAS datetime variables are store the number of
second before/after midnight January 1, 1960 as integers; and 2) subtracting the value of one datetime
variable from another gives to obtain the number of seconds between the two events. With that value “in
hand,” (or more accurately, “in the SAS Program Data Vector,”) we can then add some more code to our
data step to calculate the number of minutes between these events. Here’s how | did it:

239-data days_and_hours3; In the Data Step tO the |eft, I
240 set sgf2010.hazmat_inspection_times; .
241 between_cross_and _start = round(({hazmat_inspect_start_dt - hazmat_cross_dt)/60),.01); SUbtraCted One datetlme Value from

242 between_start_and_end = round(((hazmat_inspect_end_dt - hazmat_inspect_start_dt)/G60),.01); the next and then divided the result
243 between_cross_and_end = round(((hazmat_inspect_end dt - hazmat_cross_dt) /60),.01);

244 label between_cross_and_start = 'Mins Betwn/Toll Booth/Cross and/Insp. Start’ by 60 to go from Seconds Of

245 between_start_and_end = 'Mins Betwn/Insp. Start/and/Insp. End’ elapsed time to minutes. Then, the
246 between_cross_and_end = 'Mins Btwn/Tell Booth/Cross and/Insp. End'; .

Sz s ROUND Function was used to

248 round the results to the nearest

249 options orientation = landscape; .
250-proc print data=days_and_hours3(firstobs=7 obs=18 drop=hazmat_placard) label split = */'; hundredth' The reSUItlng data Set

251 title5 'Days and Hours Between Toll Booth Crossing and Hazmat Inspection End'j |00ks iS ShOWn belOW:

252 title6 'Via Direct Calculation';

253 run;

sAS Global Forum 2010 The results shown
Foundations & Fundamentals on the |eft offer a
Working with SAS Date and Time Functions

More on the INTCK Function more accurate and
Days and Hours Between Toll Booth Crossing and Hazmat Inspection End informative

Via Direct Calculation

analysis of delay
Mins Betwn Mins Betwn Mins Btwn times for the

Date & Time Date & Time Date & Time Toll Booth Insp. Start Teoll Booth hazardous
Toll Booth Inspection Inspection Cross and and cross and . .
Obs crossed START END Insp. Start Insp. End Insp. End materials crossing
our bridge than we
7 14NOV1999:11:17:31 14NOV1999:11:26:32 14NOV1999:11:32:05 9.02 5.55 14.57 obtained from
8 29MAR2000:01:25:20 29MAR2000:01:26:27 29MAR2000:01:48:56 1.12 22.48 23.60 A
9 O07APR2000:28:33:15 O7APR2000:23:38:54 OBAPR2000:00:28:07 5.65 49.22 54.87 using the INTCK
10 28DEC2000:05:24:20 28DEC2000:05:87:28 28DEC2000:05:46:34 13.13 9.10 22.23 Function
11 20DEC2000:15:06:41 20DEC2000:15:15:40 20DEC2000:15:26:27 9.13 10.63 19.77
12 08JAN2001:21:11:21 08JAN2001:21:27:57 O08JAN2001:21:51:21 16.60 23.40 40.00
13 24JAN2001:12:05:31 24JAN2001:12:10:45 24JAN2001:12:16:50 5.23 6.08 11.382 Observation #9,
14 28APR2001:01:28:21 28APR2001:01:43:11 28APR2001:02:03:01 14.83 19.83 34.67 . L
15 16MAY2001:21:23:16 16MAY2001:21:39:55 16MAY2001:21:56:45 16.65 16.83 33.48 which originally
16 27MAY2001:09:05:08 27MAY2001:09:15:41 27MAY2001:09:20:47 10.55 5.10 15.65 “seemed” to have
17 28JUL2001:23:08:47 28JUL2001:23:13:20 29JUL2001:00:01:38 4.70 48.15 52.85 :
18 29JUL2001:07:14:20 20JUL2001:07:15:31 29JUL2001:07:38:38 1.18 23.12 24.30 a delay time of one

“day,” in fact had a
total elapsed delay time of 54.87 minutes. And, Observation #17’'s delay time was “only” 52.85 minutes,
not one “day.” By carefully understanding the benefits, and limitations of the INTCK Function we can
make appropriate use of it under the right circumstances and apply other methods, such as direct
calculation of the differences between the values of two SAS date, time or datetime variables, as in the
previous example, when doing so gives us both the “right” and “correct” answer.

Working with SAS Date Functions

In the previous example the DATEPART Function was used to extract the “date part”, or the number of
days before or after January 1, 1960, from a datetime variable. Now, let's take a deeper look at this, and
other programming language Functions we can use to “return the parts” of a SAS date, time or datetime
variable. Here’s a list of some of the most common functions, and a brief description of what they can do
for us:

e Functions that “extract the parts” from a SAS date, time or datetime variable

SAS Global Forum 2010 Foundations and Fundamentals

Function Name Applied to.... What It Returns....

DATEPART Datetime Variables SAS date value from a SAS datetime
variable

TIMEPART Datetime Variables SAS time value from a SAS datetime
variable

MONTH Date Variables Month of year (1=Jan.) from a SAS date
variable

DAY Date Variables Day of month from a SAS date variable

YEAR Date Variables Four-digit year from a SAS date variable

QTR Date Variables Calendar quarter from a SAS date variable

HOUR Time Variables Hour (24-hour clock) from a SAS time
variable

MINUTE Time Variables Minute from a SAS time variable

SECOND Time Variables Second from a SAS time variable

WEEKDAY Date Variables Day of the Week (1=Monday) from a SAS
date variable

WEEK (new to Date Variables Returns the week number. See BASE SAS

SAS 9.1) Language: Reference for default and
optional calculations for this Function

Selecting Observations/Rows from an Existing Data Set Using SAS Functions Extracting the
“parts” from a SAS Date, Time or Datetime Variable

The Functions listed above are often used to select, or “pull,” rows in a data set in to a new data set
based on the values of date, time or datetime variables. Of these, extra should be taken with the
WEEKDAY Function to ensure that you obtain the desired results. Most SAS users apply these functions
in either a Data Step “Subsetting IF” Statement, in a WHERE Statement or in a WHERE Clause Data Set
Option, which can be applied in both Data and Procedure Steps that read rows/observations from a SAS
data set. Here are some examples:

e From the TABLES Data Set, Select Observations Where the ORDER_DATE Occurred in the
Fourth Quarter of 2004 and Place Them in a Temporary SAS Data Set

2178 Data 01_2004;

2179 sot sgr2010.tables;
260=Data Q1 2004; 2180 if year(order_date) = 2004 and qtr{order_date) = 4;
- 2181 run;i
261 set sgf2010.tables; :
262 if year (order date) = 2004 and qtr(order date) = 4; NOTE: There were 42843 obzervationz read from the data set SGF2010.TABLES.
- - NOTE: The data set WORK.O1_2004 has B047 cbservationz and 8 variables.
263 rum; NOTE: DATA statement used (Total process time):

real time 0.70 seconds
cpu time 0.07 seconds

e Using PROC FREQ on the TABLES Data Set, determine the frequency of the values of COLOR
for tables ordered in Fourth Quarter of 2004. Select rows/observations to be analyzed using a
WHERE Clause Data Set Option in the PROC FREQ “step.”

AS Global Forum 2010

founuations & Fundamentals

26T :sslsl:ting Rows for Analysis Using the WHERE Statement and
Date Functions

265- proc Treq data=sgrz010.tables; [

L

266 where year(order_date) = 2004 and qtr{order_date) = 4; Frequency of Celer fer Tables Ordered in the 4th Quarter of 2004
267 tables color;
268 title3 'Selecting Rows for Analysis Using the WHERE Statement and'j

269 titled 'Date Functions'; cumulative cumulative
270 111195 Thdkddd! ; color Frequency Percent Frequency Percent

The FREQ Procedurs

271 title6 'Frequency of Color for Tables Ordered in the 4th Quarter of 2004°;

1 1183 14.70 1183 14.70
272 run; 2 1121 13.93 2304 28.63
3 1146 14.24 3450 42.87
4 1164 14.47 48614 57.34
5 1141 14.18 5755 71.52
6 1116 13.87 6871 85.39
7 1176 14.61 8047 100.00

SAS Global Forum 2010 Foundations and Fundamentals

e From the BYHOUR?2 Data Set (bridge crossings by hour starting midnight January 1, 1998 and
ending at 11 pm on December 31, 2002), put in a temporary SAS data set hourly observations
that meet the following conditions: January 2001, between 6 am and 10 am (i.e., the “rush hour”)
on a Monday, Tuesday, Wednesday, Thursday or Friday.

274=data rush_hour_dJan_2001; SO
275 set sgf2010.byhour2; 2305 * note: date is a sas datetime variable;
A . . 2306 it year(datopart(date)) = 2001
276 * note: date is a sas datetime variable; 2307 and month{datepart{date)) = 1
277 if year(datepart(date)) = 2001 2505 "and (6 < nour(tinepart(date) <= 10)3
278 and month(datepart(date)) = 1 2310 run;

279 and (2 <= weekday(datepart(date)) <= 6) NOTE: There wero 43824 observations read from the data set SGF2010.BYHOURZ,
280 and (5 <= hour (tinepart (date)) <= 10)3| 11 1e\ e A Tty 1,11 oo e dvarioien
. real time 0.10 seconds

— run; cpu time 0.06 soconds

e Repeat the analysis above, but use a WHERE Clause Data Set Option in the PROC MEANS
Step rather than first creating a subset SAS data set with the observations needed to conduct the

analysis.
284 proc means data=sgf2010.byhour2(where=(year(datepart(date)) = 2001 SAS Global Forum 2010
285 and month(datepart(date)) = 1 Foundations & Fundamentals
286 and (2 <= weekday(datepart(date)) <= 6) Selecting Observations for Analysis by PROC MEANS Using a
287 and (6 <= hour{timepart(date)) <= 10))) WHERE Clause SAS Data Set Option
g lAnalysis of Vehicle Crossings During All Weekday Rush Hours
288 n sum max mean min maxdec=0; : :
onday Through Friday in January 2001
289 var car_count;
290 title3 'Selecting Observations for Analysis by PROC MEANS Using a'; The MEANS Procedure
291 titled 'WHERE Clause SAS Data Set Option';
292 title5 'Analysis of Vehicle Crossings During All Weekday Rush Hours'; Analysis variable : car_count
293 title6 'Nonday Through Friday in January 2001';
294 runj N sum Maximum Mean Minimum
115 11753 128 102 74

Selecting Observations/Rows with a SAS Date Constant

The examples above give you a idea of the power and flexibility of SAS Functions that return “parts” of
values to date, time and datetime variables. But, what do we do when we need to give SAS a specific
date, or just a few dates, to select the observations/rows we want to analyze. As we've seen in previous
examples, SAS stores the values of date, time and datetime variables as humeric variables. So, if we
have a specific date we need to have SAS test for us, we need to know the numeric value of the date (or
time, or datetime) value we want it to test...or, do we?

For example, suppose several customers at the Table Company whose orders were shipped on July 28,
2005 have called to complain about the quality of their table. Management is concerned that all tables
that were shipped on that date might need to be recalled, at company expense, and replaced with new
tables. How many tables were shipped on July 28, 2005 and what was the sum (total) of prices for these
tables? With this information in hand management can start to assess the costs of implementing a return
and replacement of all tables shipped to customers on that date, if need be.

In order to do this we have to select rows from the SGF2010.TABLES SAS data set for which the value of
the SAS date variable SHIP_DATE is July 28, 2005. Can we do this WITHOUT somehow trying to figure
out ourselves what the actual SAS date value (that is, the number of days from January 1, 1960 to July
29, 2006) is for that variable? As it turns out, we can specify a SAS Date Constant in a Data Step,
WHERE Statement or WHERE Clause SAS Data Set Option and avoid the otherwise tedious task of
calculating a SAS date, time or datetime value ourselves.

Here’s an example of how a SAS Date Constant would be used in 1) in a Data Step “Subsetting IF
Statement;” 2) in a WHERE Statement in a PROC MEANS Step; and, 3) in a WHERE Clause SAS Data

SAS Global Forum 2010 Foundations and Fundamentals

Set Option in PROC MEANS Step. Note that when specifying our Date Constant we have to use a two
digit year, three-character month abbreviation and then the year as either a two- or four-digit value. Using
a four-digit year value is recommended (see our discussion of the YEARCUTOFF SAS System Option

below for more details).

e Supplying a SAS Date Constant in a Data Step “Subsetting IF” Statement

302 * using a SAS Date Constant in a Data Step 'Subsetting If'j;
303=data july 28 2005;

304 set sgf2010.tables;
305 if ship_date = '28jul2005°'D;
306 rum;

¥ using a SAS Date Constant in a Data Step 'subsetting IT ;
data july_28_2005;
set sg2010.tables;
if ship_date = '28jul2005'D;
run;

: There were 42843 observations read from the data set SGF2010.TABLES.
: The data set WORK.JULY_28_2005 has 77 observations and 8 variables.
: DATA statement used (Total process time):

real time 0.09 seconds

cpu time 0.06 seconds

e Using a SAS Date Constant in a WHERE Statement

308-proc means data=sgf2010.tables

309 n mean sum max min maxdec=0;
310 where ship_date = '28jul2005'D;

311 var price;

SAS Global Forum 2010

Foundations & Fundamentals

Freq of Ship Date

Using a SAS Date Constant

Number of Tables Sold and Total Sale Price
For Tables Shipped on July 28, 2005

The MEANS Procedure

312 title4 'Using a SAS Date Constant';
313 title5 'Number of Tables Sold and Total Sale Price'; analysis variable : price
314 title6 'For Tables Shipped on July 28, 2005';
315 run; N Mean sum Maximum Minimum
77 563 43343 1764 169
e Using a SAS Date Constant in a WHERE Clause SAS Data Set Option
317=proc means data=sgf2010.tables(where=(ship_date = '28jul2005'D)) S$AS Global Forum 2010
318 n mean sum max min maxdec=0; Foundations & Fundamentals
319 var price: Freq of Ship Date
. p ’ Using a SAS Date Constant
320 title4 'Using a SAS Date Constant'; Number of Tables Sold and Total Sale Price
321 title5 'Number of Tables Sold and Total Sale Price'; For Tables Shipped on July 28, 2005
322 title6 'For Tables Shipped on July 28, 2005';
323 run; The MEANS Procedure
Analysis variable : price
N Mean sum Maximum Minimum
77 563 43343 1764 169

Notice that we obtained the same results from both PROC MEANS steps. The only difference was how

we chose the rows we wanted the PROC to analyze for us.

You can use either a WHERE Statement or

WHERE Clause SAS Data Set option. With extremely large files, using it as a Data Set Option tends to
be more resource-efficient and reduce processing time that applying it in a WHERE Statement

SAS System Options for Date Processing

System Options control various aspects of how the SAS System runs your programs and displays your
output. For newer users of SAS, understanding three of these Options can help address common issues
and problems with dates. See the chapter in the SAS Language: Reference documentation manual
(bibliographic citation below) for more information on all System Options and BASE SAS Procedures
documentation manual (bibliographic citation below) for details on PROC OPTIONS.

The three options we will discuss in this paper are: DATE/NODATE, NODTRESET/DTRESET and

YEARCUTOFF. Here's a bit about each of them:

SAS Global Forum 2010 Foundations and Fundamentals

o DATE: By default, the value of this option is DATE, which means SAS will display the date and
time of you started your SAS session in the upper right-hand corner of your output. Using an
OPTIONS statement to change this Option value to NODATE suppresses display of the date and
time of session initialization in your output. All the SAS output examples in this paper were
generated with the NODATE option in effect.

e NODTRESET: The default value of this Option is NODTRESET, which means that the date and
time value displayed in the upper right-hand corner of your output will always be the date and
time of SAS System initialization. Changing this to DTRESET (new in SAS 9.0 and above)
instructs SAS to re-set the date and time displayed in your output immediately before a page is
displayed. This option is very useful if you have very jobs that run for very long times, especially
those which run overnight.

e YEARCUTOFF: This option assigns to a century the value of two-digit years. The default value,
starting in SAS Version 8, is 1920. This means that any two-digit year values from “00” to “19”
will be interpreted as 2000 to 2019 and all two-digit year values from “20” to “99” will be
interpreted as 1920 to 1999. You can change the default value of the Option via an OPTIONS
Statement, but extreme caution is suggested in doing so. One easy way to avoid any potential
problems with two-digit year values and SAS Software is to take the time to code all four digits of
your year values. Otherwise, you should become very good friends with the YEARCUTOFF SAS
System Option.

Summary and Conclusions

The SAS System offers a wide range of tools to work effectively with the values of date and time
variables. Since SAS stores these values as numeric variables in your data sets, the use of Formats with
your date, time and datetime variables is usually required, By mastering a few key concepts of how SAS
works with dates and times you can successfully use these tools in your own projects and programs. This
paper has identified some of the core concepts and tools for the working with dates and times in SAS; as
you become more proficient with what has been discussed in this paper you will want to learn about other
SAS System tools for dates and times by reading other papers on this topic and by consulting Morgan
(2006) and the SAS documentation manuals.

Acknowledgments and Thanks:

Attendees at previous presentations | have given on this topic at SGF and other events for SAS users
have made excellent suggestions and posed helpful questions that have hopefully helped me improve it
over time. Also, I'd like to thank David Dickey, Ph.D., Professor of Statistics at NC State University, for
the insights he has shared with me over the years on time series analysis and SAS’ implementation of
time series analytic tools. And, Philip W. Wirtz, Ph.D., Professor of Decision Sciences and of Psychology
at The George Washington University deserves special thanks for exposing me to the SAS System while |
was a graduate student at GWU more years ago than either of us care to admit!

Copyright Acknowledgement:

SAS® and all other SAS Institute Inc. product or service names are registered trademarks or trademarks
of SAS Institute, Inc. in the USA and other countries. ® indicates USA registration. Other brand or
product names are registered trademarks or trademarks of their respective companies.

Author contact:

Andrew H. Karp

Principal Consultant

Sierra Information Services
19229 Sonoma Hwy #264
Sonoma, CA 95476 USA
andrew@sierrainformation.com
www.Sierralnformation.com

SAS Global Forum 2010 Foundations and Fundamentals

APPENDIX A:
Creating SAS Date Values from Text or Number Strings in a SAS Data Set

At the outset of this paper | discussed using SAS Informats in an INPUT Statement to convert text strings
in a raw data file in to the values of SAS date variables during a Data Step. Here is a “beyond the basics”
set of examples of how to convert text or number “strings” that are “already” in a SAS data set in to SAS
date and time variables. We'll use a small example from the TABLES data set.

First, let's create an example data set with two observations. The table order and ship dates are
CHARACTER variables in temporary SAS data set DATES2.

&

325-data dates;

326 input order_date $ ship_date $; Working with SAS Date and Time Functions
327 datalines; Dates as Character Strings in a SAS Data Set
328 4/28/2005 2005/05/10 orderdate |shipdate

329 05-06-2006 2006.08.09 04/28/2005|2005/05/10

330 ; 05-06-2006|2006.08.29

331 run;

In our example data set ORDER_DATE is a string with month, day and year separated by the slash (or
stroke) mark in the first observation and by the hyphen (or dash) mark in the second. SHIP_DATE is a
string with year, month and day separated by the slash in the first observation and a period in the second
observation. Since these are character variables in our SAS data set, we need to convert them to
numeric SAS date values in a Data Step.

The solution is to use an INPUT Function call to convert the text strings to numeric date values. The
second required argument to the INPUT Function is an Informat that “tells” SAS how the month, day and
year values are ordered in the text string. In the Data Step shown below, the MMDDYY10. Informat is
used for ORDER_DATE and the YYMMDD10. Informat is used for SHIP_DATE. Notice that both
Informats accept a wide range of separator characters (slash, hyphen, period, and a few others
documented in the BASE SAS Language: Reference text). Combining the INPUT Function with the right
Informat makes this task easy to accomplish!

42-data dates3;

43 set dates2; Working with SAS Date and Time Functions

44 orderdate_new = input(orderdate,mmddyy10.); Using the INPUT Function to Convert Text Strings
45 shipdate_new = input(shipdate,yymmdd10.); to Numeric SAS Data Values

46 run;

47

48-proc print data=dates3;

49 title2 'Using the INPUT Function to Convert Text Strings';
50 title3 'to Numeric SAS Data Values';

51 run;

orderdate |shipdate |orderdate_new|shipdate_new
04/28/2005|2005/05/10 16554 16566

05-06-2006|2006.08.29 16927 17042

Now that we have SAS date values in our data set we can easily apply many of the tools and features
discussed elsewhere on them!

Next, let's look at a situation where the dates in our SAS data set are a string of numbers. How can we
convert those to values of numeric SAS date variables? Now things are a bit trickier. In the data set
shown below we have numbers, not text strings with a separator character between the month, day and
year, as we had in the previous example. And, if the month value is between January and September,
(and assuming a four-digit year) the length of the string of numbers will be seven, and eight for October,
November and December.

SAS Global Forum 2010 Foundations and Fundamentals

First, let's look at the made-up Data Set we're going to work with:

bb=data dates4;
56 input orderdate shipdate;

57 datalines; Working with SAS Date and Time Functions
58 04282005 20050510 Numeric Date Strings

59 05062006 20060829

60 ; orderdate| shipdate

61 run; 4282005|20050510

62 5062006(20060829

63=proc print data=dates4;
64 title2 'Numeric Date Strings';
65 run;

Even though we had “leading zeros” for the values of ORDERDATE in the “raw data,” we “lost” them
when the numeric strings were created in SAS Data Set DATES4. If the number “string” for
ORDERDATE is the month, day and year the table was ordered, the length of that string will be seven (7)
if the order occurred in January through September and eight (8) if the order was taken in October,
November or December. So, whatever solution we come up with has to accommodate number “strings”
of both lengths.

The Data Step below shows how a combination of the INPUT and PUT Functions are used, along with
the “Z” Informat to accomplish the desired outcome.

70-data dates5;

L i pombi) . , . Working with SAS Date and Time Functions
FLARCIRENS i SERTH Wi A Cc rting Numeric Date Strings to SAS Date Values

73 orderdate_new = input(put(orderdate,z8.),mmddyy10.); onve g g

74 shipdate_new = input(put(shipdate,$10.),yymmdd10.); - -

75 run; orderdate| shipdate|orderdate_new|shipdate_new

76 4282005|20050510 16554 16566

77-proc print data=dates5; 5062006|20060829 16927 17042

78 title2 'Converting Numeric Date Strings to SAS Date Values';

79 run;

In this example the PUT Function calls on lines 73 and 74 of the Enhanced Program Editor screen
capture convert the existing numeric values of ORDERDATE an SHIPDATE to character strings. For
ORDERDATE, the Z Informat with a length of 8 is used. That Informat will “pad” the string it assigns with
leading zeros. So, if the date of order occurred in January through September, we “automatically” get a
text string with the leading zero we need to “pad out” its length. Then, the INPUT Function is used to
convert the text string value assigned by the PUT Function to a numeric SAS date value. Combining both
Function calls in a single assignment statement, plus use of the appropriate Informats makes this an easy
problem to solve!

Appendix B
Creating SAS Value Formats for “Non-Standard” Date Ranges

Here are two examples of creating customized Value Formats for “non-standard” date ranges. Notice
how SAS Date Constants, discussed above, are used to supply to PROC FORMAT the start and end of
the date ranges to which we want the Format labels assigned. For more information on the SAS Format
facility see Bilenas (2005) or my presentations “My Friend the SAS Format,” and “SAS Formats: Beyond
the Basics” available as PDFs from the “Free Downloads” link at www.Sierralnformation.com .The PROC
FORMAT step on the left aggregates dates by the United States government’s fiscal year and the

SAS Global Forum 2010 Foundations and Fundamentals

The PROC FORMAT step on the leftcreates labels corresponding the start and end dates of the US
federal government'’s fiscal year while the one on the right carries out the same task for the State of
California fiscal year

12 * create Tormat for us Tederal Tiscal year; =

13 * starts oct 1, ends sept 30; n Libraty Process Flowl] | %8 HTML-Code | {8 HTML - Summary Statisties | |%] Codeto Create Format for CA Fiscal Years 2003-2008
14zproc format; 1

15 value Ted_Ty_Tmt 2 * create customized format for California $tate Fiscal Year;
16 '0O1oct2003'd - '30sep2004'd = 'Fed FY 2004' 3=proc format library = calworks;

17 '010ct2004'd - '30sep2005'd = 'Fed FY 2005° 4 value ca_fy_fmt

18 '010ct2005'd - '30sep2006'd = 'Fed FY 2006" 5 '01jul2002'd - '30jun2003'd = 'CA FY 2003

19 '0O1oct2006'd - '30sep2007'd = 'Fed FY 2007'; 6 '01jul2003'd - '30jun2004'd = 'CA FY 2004’

20 run; 7 '01jul2004'd - '30jun2005'd = 'CA FY 2005'

2 8 '01jul2005'd - '30jun2006'd = 'CA FY 2006'

22eproc freq data=sasclass.tables_sales_Tinal; 9 '01jul2006'd - '30jun2007'd = 'CA FY 2007

23 tables ship_date/nocum; 10 '01jul2007'd - '30jun2008'd = 'CA FY 2008';

24 Tormat ship_date Ted_Ty_ftmt.; 11 run;

25 title3 'Using Customized Date Format';

26

Finally, a MUTILABEL Format is created that aggregates data by the quarters in the State of California
fiscal year, as well as by Fiscal Year, and then across all data values to which the Format is associated.

4cproc Tormat library = calworks; 24 '01jul2005'd - '30Sep2005'd = FY 2006 O 1'
5 value ca_fy_fq_fTmt (multilabel notsorted) 25 '010ct2005'd - '31dec2005'd = FY 2006 @ 2'
6 '01jul2002'd - 'S0sep2002'd = ' FY 2003 Q 1' 26 '01jan2006'd - '31mar2006'd = FY 2006 @ 3'
7 'Oloct2002'd - '31dec2002'd = FY 2003 @ 2' 27 '01apr2006'd - '30jun2006'd = FY 2006 0 4'
g '01jan2003'd - '3imar2003'd = FY 2003 Q 3' 28 '01jul2005'd - '30jun2006'd = 'CA FY 2006’
9 '01apr2003'd - '30jun2003'd = FY 2003 Q 4' 29
10 '01jul2002'd '30jun2003'd = 'CA FY 2003’ 30 '01jul2006'd - '30sep2006'd = FY 2007 Q@ 1'
11 31 '01oct2006'd - '31dec2006'd = FY 2007 Q 2'
12 '01jul2003'd - '30sep2003'd = FY 2004 @ 1' 32 '01jan2007'd - '31mar2007'd = FY 2007 0 3'
13 '010ct2003'd - '31dec2003'd = FY 2004 @ 2' 33 '01aprz2007'd - '30jun2007'd = FY 2007 @ 4'
14 '01jan2004'd - '31mar2004'd = FY 2004 @ 3' 34 '01jul2006'd - '30jun2007'd = 'CA FY 2007’
15 '01apr2004'd - '30jun2004'd = FY 2004 Q 4' 35
16 '01jul2003'd - '30jun2004'd = 'CA FY 2004’ 36 '01jul2007'd - '30sep2007'd = FY 2008 0 1’
17 37 '01oct2007'd - '31dec2007'd = FY 2008 Q 2'
18 '01jul2004'd - '30sep2004'd = FY 2005 G 1' 38 '01jan2008'd - '31marz2008'd = FY 2008 @ 3'
19 '01oct2004'd - '31dec2004'd = FY 2005 O 2 39 '01apr2008'd - '30junz008'd = FY 2008 Q 4'
20 '01jan2005'd - '31mar2005'd = FY 2005 G 3' 40 '01jul2007'd - '30junz2008'd = 'CA FY 2008’
21 '01apr2005'd - '30jun2005'd = FY 2005 O 4' 41 '01jul2002'd - '30jun2008'd = '** CA FY 2002 - CA FY 2008 **';
22 '01jul2004'd - '30jun2005'd = 'CA FY 2005’ 42 run;
23

Bibliography

Bilenas, Jonas V. 2006. The Power of PROC Format. Cary, NC: SAS Institute, Inc.

Cody, Ron. 2004. SAS® Functions by Example. Cary, NC: SAS Institute, Inc.

Morgan, Derek. 2006. The Essential Guide to SAS® Dates and Times. Cary, NC: SAS Institute, Inc.
SAS Institute Inc. 2009 SAS 9.2 Language Reference: Dictionary. Cary, NC: SAS Institute, Inc.

	2010 Table of Contents

