
1

Paper 119-2010

Blistering ETL Performance using the

 Intelligent, Dynamic and Parallel Capabilities of SAS®

David Logan, PBT Group, Johannesburg, South Africa

ABSTRACT

ETL from billion-record+ databases is a non-trivial task. By using the unique capabilities of SAS® to analyze the
database in advance and then dynamically generating parallel SAS® jobs based on this interrogation, SAS® can
effectively performance-tune itself each run for maximum benefit. Get in, get out, get the results. The net effect is to
get the fastest possible results with the minimum window of ETL load on the source system. Scalable, efficient, and
easy to develop. An added benefit is the data visualization possible post-analysis and pre-ETL to aid data quality
checks.

Improving your ETL time (in the case study, by 92%), using existing resources, postponing expensive hardware
upgrades, dynamically adjusting for ever increasing data volumes and, improving information productivity are
powerful arguments for considering the adoption of this approach, where feasible, in your own environment.

INTRODUCTION

Initially the purpose of this paper was to communicate the huge performance benefits of running your SAS® ETL
system with an intelligent, dynamic, parallel approach in a specific case study at a telco client. The approach has
since been used with a variety of source databases with similar benefits, so I will explain from a conceptual point of
view the principles and then finish with a brief overview of the initial case study. We start with some basic parallel
principles and then follow the logic through into the Intelligent, Dynamic and Parallel phases of this paper. Then the
case study will be used as an example of applying these principles.

Going at length into the exact detail of implementation as per the case study became an increasingly lengthy paper
and the main thing to gain from reading this is an understanding of how to apply the principles for your own specific
environment, so the intention is to keep it at a high-level conceptual explanation whereby you can possibly see a
scenario in your own environment where it can be applies successfully, too.

Data IntegrationSAS Global Forum 2010

2

PARALLEL PRINCIPLES

With multi-processor machines and partitioned databases with billions of rows there is frequently a requirement to
extract a specific subset of data from the database on a regular basis. See figure 1 below for an example of 2
approaches to this task using parallel processes.

Figure 1. Comparison of different approaches to working in parallel

100 Items of work of varying effort to

complete

25 items of work

25

25

25

25% of effort

Start Time

End Time

25% of effort

25% of effort

25% of effort

End Time

Approach 1

Parallel by units of

work

Approach 2

Parallel by effort of

work

Note the difference in end time.

In Figure 1 above, you start with 100 “items” of work to perform.

 In the real world, as in the IT world, each of these items of work could require a varying degree of effort (and time) to
accomplish. An example would an extract from a single database partition of 100 rows and another extract which
return 1 Million rows. The effort involved is quite different! Simply splitting the work up into for e.g. 4 parallel
processes would not necessarily take ¼ of the time as the completion time would be the length of the longest process
(Approach 1 in diagram).

If there was a way we could “guesstimate” the amount of effort required for each item of work we could try and split
the workload into 4 parallel processes with each having, ideally, 25% of the overall effort and elapsed time.
Fortunately in SAS® we have at our disposal the ability to interrogate a wide variety of databases and the analytical
power to turn this “guesstimate” into a reasonably accurate estimate.

Data IntegrationSAS Global Forum 2010

3

STEP 1: GATHER THE INTELLIGENCE

Ideally the processes to interrogate the database should be “light” processes, i.e. fairly fast and quick to return
results. An example would be a simple count of the numbers of rows in each partition in a source database. However,
depending on the intelligence “requirements” needed in order to be able to do workload estimates, this should be
tailored to the specific problem at hand. See figure 2 below

Figure 2. Example of “Intelligence Gathering” on source database

SAS

“Metadatabase”

dataset

Source

Database

“Light” Queries,

Many in Parallel

To Step 2

1
2

3
4

5

Data Visualisation/Data Quality

In the Figure 2 above we run many “light” queries in parallel and then consolidate the results into a single SAS®
metadata data set. From this data set we can then build the SAS® parallel processes (programs) with as equal a
workload effort as possible, as opposed to an equal number of work items as explained in the parallel principles
section previously. A major added benefit is the ability to generated data visualization and data quality graphs as
early as possible in the process, prior to ETL. See Figure 3 below.

Figure 3. Example of Data Quality/Visualisation

Figure 3 (above) essentially gives you a visual representation of the physical data in the source database. Note that
adding “slideshow” functionality to SAS® ActiveX Graphs really enhances the presentation of the information. I am
indebted to Nisha Inarman of MTN South Africa for developing the SAS® macro functionality which inserts the
necessary HTML lines into the HTML files produced by SAS® Graph. Now that we have the required “meta-
database” information in a SAS® data set and visually, it should be easy to see that, depending on the extract to be
undertaken, intelligent decisions can be made around how to structure the extract dynamically and load balance the
parallel extract streams according to a work effort estimate.

SAS® Graph ActiveX Control
used to generate HTML pages

Once HTML has been generated
a SAS® macro runs which
inserts “slideshow” buttons which
mean that the html pages can be
displayed on a large plasma
screen, looping through the
graphs with pause, previous
slide and next slide functionality.

The horizontal axis represents
the date on which the transaction
(call) occurred and is a database
partition

The Vertical axis represents the
number of rows found within the
source database and where

The colors represent which
database sub-partition the rows
are stored in

Data IntegrationSAS Global Forum 2010

4

STEP 2: DYNAMICALLY CONSTRUCT THE PARALLEL EXTRACTS

In this step we have already gathered the necessary information from the database itself which we require in order to
construct the SAS® extract programs which will be run in parallel. The optimal solution would be

Total effort (est time) = Effort (Est time) per process

No of Parallel Processes

Figure 4. Construction of <n> parallel, load-balanced extracts

SAS Extract 1

Cumulative Extract “Weight” > Threshold

SAS Extract 2

SAS Extract 3

SAS Extract n-1

SAS Extract n

Cumulative Extract “Weight” > Threshold

Cumulative Extract “Weight” > Threshold

Cumulative Extract “Weight” > Threshold

Cumulative Extract “Weight” > Threshold

SAS

“Metadatabase”

dataset

Darker rows indicate

a “heavier” extract

requirement

Each extract program

should contain SQL

“tuned” where

possible to the

characteristics of the

extract i.e. use an

index where optimal

In Figure 4 above, a “master” SAS®program is used to scan through the data set which was created in Step 1. Using
for e.g. the no. of records to be extracted for each unit of extract work to be done, we can assign a relative “effort”
number to the unit of work. For E.g. if we were extracting 100 Million rows contained in 10 partitions (units of work)
with 4 parallel processes then we would try and divide up the work as close to 25 Million rows each as possible. In
practice, it depends on what the key factors are in determining the length of time a single extract will take, which is
why it is crucial to get the right metadata from the database in the first place.

In the diagram above the relative job weights are indicated by the shade of the rows in the SAS® “Meta-database”
data set and a relatively large number of low job weights are incorporated into a single extract whereas a single
extract with a large job weight may have a process of its own.

Note that the programs have not yet been submitted for processing, basically what happens is that SAS® programs
are dynamically written as the normal “*.sas” text files, each of which %includes a pre-written SAS® program/macro
which performs a parameter-driven unit of extract work. In the case where we are extracting from various partitions

the parameters can be the name of a SAS® data set which contains the parameters for multiple units of work or the
parameters themselves. E.g. extract_sample_<job number>.sas is created and contains the code below

%include “<program directory>/unit_of_work.sas”;

*Calls the macro in the above program with parameters;

%unit_of_work(<parmameter1=X>,<parameter2=Y>;

In this way the single unit of work program can be individually tested on small volumes and with various parameters
to tune the job weighting algorithms. Now that we have performed the “intelligent” and “dynamic” steps without
actually doing any extract work as yet, we can now run the SAS® programs created in parallel.

Data IntegrationSAS Global Forum 2010

5

STEP 3: PARALLEL PROCESSING

In the previous 2 steps we spent a fair amount of time thinking about the optimal way to perform our ETL. Now we
need to see if the benefits have been worth the effort. (Hint, They are!)

Figure 4. Execute the programs in parallel

SAS Extract 1

SAS Extract 2

SAS Extract 3

SAS Extract n-1

SAS Extract n

End Time

Consolidate Results if required

Depending on the

nature of the data the

datasets can be

consolidated into

views or left as

individuals

Unfortunately the client has only a small number of SAS® products licensed, and there was no SAS® Data
Integration Studio, LSF Scheduler or any tool driven way to submit these programs once we had created them. Note
Opportunity to incorporate this into a SAS® Data Integration Studio environment?

The result was the creation of a %subjob macro which could submit SAS®code which does the following steps

- Create .bat/.sh script depending on whether Windows/Unix

- Execute program passed as a parameter

- Write results to <yyyymmdd>_<program_name>.log.<ok/error>

- Email status to submitting user upon completion, attaching log if error

In Figure 4 above each SAS® program generated in the previous step is now submitted as an independent/parallel
process. Checking for a *.log.ok program for each of these programs would then signify that the complete batch has
finished successfully at which time any integration/post-extract dependancies could be completed.

Now that we have explained how to implement each of the intelligent, dynamic and parallel concepts let’s review the
actual case study which drove this design. Initially the case study was the main focus of this paper but I’ve re-used
the concepts repeatedly for a variety of ETL issues and the concept is more important than the specific approach.
The case study itself demonstrate the huge benefit of this approach in a real-world situation

Data IntegrationSAS Global Forum 2010

6

CASE STUDY: 200 MILLION+ROWS FROM 18 BILLION ROW DATABASE (TELCO)

PROBLEM STATEMENT

See Figure 5 (below). The source database contains approx 3 Billion call detail records and 3 Billion equivalent call
charge records per month. (See A and B within database icon in diagram.) We need to extract the approx 200 Million
rows which were added to the database on a particular day. Call records can be delayed and are added into the
relevant call date partition and call type sub-partition i.e. they are deposited anywhere amongst approx 3 months
worth of data and partitions (around 18 Billion records and 3000 partitions). The call detail and call charge
components have to be joined to derive a composite record for EDW purposes. It’s a non-trivial problem to resolve.

Figure 5. Case Study Overview

CALL DETAILS

CALL CHARGES

BILLING SYSTEM

TIME

N Day Partitions

16 Partitions TIME

N Day Partitions

16 Partitions

Approx 3 Billion Records /

480 partitions per Month

Sequential Extract

Sequential Extract

Join

All records processed on a

specific day

100 Million Records

A

A

B

B

A

1

METADATA

64 Parallel Processes

(See Graph)

N Parallel Processes (up

to max)

2

3

64

1

2

3

N

Analysis

Selective Use

of Indexes

Intelligent Job

Weighting

All records processed on a

specific day

100 Million Records

OPTION 1 – SEQUENTIAL PROCESSING

A

B

Extract and

Join

OPTION 2 – INTELLIGENT DYNAMIC PARALLEL

PROCESSING

APPROACH

The Intelligent, Dynamic and Parallel appeared to be a worthwhile option to explore. Based on the first, sequential
approach, we had some useful statistics (from the SAS® logs and data sets) around the types of queries which
worked better and at which volumes (especially in regard to using indexes). The sequential approach was taking up
to 12 hours from midnight to run and varied quite widely. (The longer a process runs the more inconsistent it gets as
the contention on the hardware varies, particularly as the online day approaches)

STEP 1: GATHER THE INTELLIGENCE

64 Parallel processes were submitted which took approx 15 min to run. These processes would count the number of
rows by fileid, where fileid was a column which could be used to identify when a record was processed on the
database. As fileid was an indexed column on the source database this would prove to be an added advantage later.
Immediately after this scan the ETL work to be done would be reduced to only those partitions where we know data

to exist for a particular process date. In addition should be know we will only return a relatively small number of
records, the SQL query can be constructed with exactly those fileids which we know to exist.

Relative performance times. The
Intelligent, Dynamic, Parallel
process provided a 92%
reduction in processing time.

Data IntegrationSAS Global Forum 2010

7

STEP 2: DYNAMICALLY CONSTRUCT THE PARALLEL JOBS

Based on the intelligence gathered above, we now use this data to split up the work into <n> parallel jobs with as
close to an equal share of the work as possible assigned to each job. The number of rows to be returned (more
rows=”heavier” work) and whether or not the fileid index column can be used (index used=”lighter” work) would give a
reasonable estimate of the workload involved in a single extract process from a single partition. The total work is then
divided up into the <n>umber of processes to be submitted.

Hint: It might be best to get friendly with your DBA at this point as this can take the concept of “sweating your

resources” to extremes. It helps to point out to your DBA that although you are doing a fair amount of work, you are
doing the minimum amount of work in a smaller time window.

STEP 3: PARALLEL PROCESSING

Now that you have done everything you can to be as intelligent and dynamic as possible, execute the parallel jobs
and review the results. In this case study processing time went from anything up to 12 hours to around 1 hour (15 min
metadata/45min extract) so it improved the completion time by around 92%. In addition the time was extremely stable

as, effectively it was re-calculating the optimal ETL characteristics every day before running.

CUSTOMER COMMENTS ON CASE STUDY

“The complete replacement of our wholesale billing system called for a thorough audit of the new solution. This was
achieved by comparing the sunset and sunrise systems on all aspects of charging and billing; with specific focus on
the usage revenue line of the company: call data record rating. The tight window for audit and sign-off demanded
daily dashboard publications based on previous day rating output. The improved completion time with regard to call
data records extracts made it possible to meet the SLA requirement. Less time spent on extracting data, and more
time on analysing the output, resulted in critical audit findings, which in turn, caused the sunrise system to implement
with enhanced data integrity.”

“Blistering ETL performance, in the end, played a pivotal role in the successful implementation of our new
wholesale billing solution.”

Alet Smith, on behalf of MTN Powerbill Programme.

Data IntegrationSAS Global Forum 2010

8

BENEFITS

The development effort for the code involved in the case study was 1 person (myself) for 2 weeks. The ability of

SAS® to access and analyze a wide variety of database information and, using SAS® macros to dynamically
calculate, build and execute an optimal ETL approach make SAS® almost uniquely suited to an approach of this
nature.

The scalability of this solution is fantastic, adding more hardware resources simply allows you to scale up the

“parallelism” of the approach, splitting the same amount of work into more chunks. Alternatively large scale increases
in volume result in a lesser increase in processing time for the same number of processes.

The performance in the case study speaks for itself, a 92% improvement in ETL processing time from a multi-billion

row database created a positive “buzz” around SAS® at the client.

The portability of the concept has been extremely good, I have re-used this approach with multiple large-volume

databases with varying characteristics, performance criteria and problem statements and each time it requires less
development effort with similar results. The more often you do it, the easier it gets.

Cost-effectiveness has to be one of the major benefits of this approach, quick development time and making full-use

of what are sometimes idle hardware resources, gets you the most “bang for your buck” from the hardware
investment.

CONCLUSION

If performing the same task in 8% of the time, with existing resources, postponing expensive hardware upgrades,
reducing time to business delivery and doing all of this in a relatively short period of time is of interest to you then I
hope you have enjoyed the paper and can see an application in your own environment.

Having worked in SAS® for around 15 years now, I would have to say that having conceptualized, designed and
implemented the Intelligent, Dynamic, Parallel ETL process at a client, I am now wondering why I haven’t always
done it like this. It just seems like a natural fit with the unique capabilities and features of SAS®. I look forward to
more opportunities to implement this approach and would be particularly be interested in anyone who would like to
explore making this more of an easily customizable add-in/feature in the SAS®9.2. Data Integration Studio world.

Thanks for reading!

REFERENCES

ACKNOWLEDGMENTS

Many thanks to Nisha Inarman of MTN SA for the SAS® macro which incorporates slideshow functionality into the
ActiveX graphs produced by SAS® Graph .

RECOMMENDED READING

CONTACT INFORMATION

Your comments and questions are valued and encouraged. Contact the author at:

Name :David Logan
Enterprise :PBT Group
Address :Unit 3, Knowledge Park 3, Century Boulevard , Century City
City: Cape Town, South Africa
E-mail: :davidl@pbt.co.za
Web: :www.pbt.co.za

SAS and all other SAS Institute Inc. product or service names are registered trademarks or trademarks of SAS
Institute Inc. in the USA and other countries. ® indicates USA registration. Other brand and product names are
trademarks of their respective companies.

Data IntegrationSAS Global Forum 2010

	2010 Table of Contents

