
Paper 105-2010

Using SAS® to Report Data in XML Format

Qin Wang, PhD
District of Columbia Courts, Washington, D.C.

ABSTRACT

XML (Extensible Markup Language) has become increasingly important as a
required format for data reporting because of its textual nature and Unicode
support. However, converting data into XML format is quite challenging for
many data analysts. We are familiar with data in rectangular row and
column format created via programs such as Excel, SQL, or SAS®.
Converting a big sum of data from the row and column structure to a
hierarchical or tree structure which XML accepts can be difficult conceptually
and technologically to us. In addition, XML reporting often comes with very
strict format requirements for data elements.

This paper introduces methods to use SAS software (SAS®8.2 or SAS ®9.1
on Windows@ platform) to perform the following tasks.
1. Use put command to write an output data file in XML format;
2. Use WHERE statement and VERIFY, SUBSTR, RXPARSE, RXCHANGE

functions to scan data elements and make necessary corrections.

INTRODUCTION

The targeted readers of this paper are those who have the mid-level SAS
programming skills, but no IT background (do not know JavaScript). The
data amount you are required to report should be large and complicated
enough to make manual input unrealistic. The input data source can be
various such as Oracle database, Excel or any format accepted by SAS via
Import Procedure. The output file contains data in XML format and is ready
to submit.

TRANSFORMING DATA FROM RECTANGULAR DATA STRUCTURE TO
XML FORMAT

There are three major requirements associated with XML format

• Requirement 1. Output data in hierarchical structure with pre-determined

tag names and tag structure.

 1

Coders' CornerSAS Global Forum 2010

• Requirement 2. Pre-determined blocking tags should be inserted into the
output document. For example, every record should start with “Award”
and ended with “Award”. The information about current year award such
as phase, dollar amount will be nested between a tag call “Solicitation” at
the beginning and the end of this group of information.

• Requirement 3. If one variable in one record has missing information,
that variable name and value for that particular variable of that record
should be excluded (in a relational database, we keep the variable name,
but put a missing value or blank in that field).

Most data analysts are familiar with data in a rectangular structure like
this:

A g e ncy
T ra ck ing
N u m b e r P ro g ra m

P hase
Nu m b e r Ag e ncy Y ea r N u m b e r

C M 000 028 S B IR 1 H H S 200 7 P HS 2007 -1
C M 000 036 S B IR 1 H H S 200 7 P HS 2007 -1

However, in a hierarchical data structure like MXL, these two records will
be written like this:

- <Award>
 <AgencyTrackingNumber>CM000028</AgencyTrackingNumber>
 <Program>SBIR</Program>
- <Phase action="insert">
 <phaseNumber>1</phaseNumber>
 <Agency>HHS</Agency>
- <Solicitation>
 <Year>2007</Year>
 <Number>PHS2007-1</Number>
 </Solicitation>
 </Award>
- <Award>
 <AgencyTrackingNumber>CM000036</AgencyTrackingNumber>
 <Program>SBIR</Program>
- <Phase action="insert">
 <phaseNumber>1</phaseNumber>

 <Agency>HHS</Agency>
- <Solicitation>
 <Year>2007</Year>
 <Number>PHS2007-1</Number>

 </Solicitation>
 </Award>

While many software programs are able to save files in XML format (e.g.
Excel) and there are many software programs created just to handle
XML conversion (e.g. XML editor), they are not able to meet reporting
requirement easily. For example, if we save the above 2 records to XML
format via Excel, we will get something like that showing below. Variable
names are replaced by data types.

 2

Coders' CornerSAS Global Forum 2010

<Row>
 <Cell ss:StyleID="s34"><Data ss:Type="String">CM000028</Data></Cell>
 <Cell ss:StyleID="s34"><Data ss:Type="String">SBIR</Data></Cell>
 <Cell ss:StyleID="s35"><Data ss:Type="Number">1</Data></Cell>
 <Cell ss:StyleID="s35"><Data ss:Type="String">HHS</Data></Cell>
 <Cell ss:StyleID="s35"><Data ss:Type="Number">2007</Data></Cell>
 <Cell ss:StyleID="s34"><Data ss:Type="String">PHS2007-1</Data></Cell>
 </Row>
 <Row>
 <Cell ss:StyleID="s34"><Data ss:Type="String">CM000036</Data></Cell>
 <Cell ss:StyleID="s34"><Data ss:Type="String">SBIR</Data></Cell>
 <Cell ss:StyleID="s35"><Data ss:Type="Number">1</Data></Cell>
 <Cell ss:StyleID="s35"><Data ss:Type="String">HHS</Data></Cell>
 <Cell ss:StyleID="s35"><Data ss:Type="Number">2007</Data></Cell>
 <Cell ss:StyleID="s34"><Data ss:Type="String">PHS2007-1</Data></Cell>
 </Row>

 After studying several alternatives (SQL, EXCEL and XML Editor) and
weighing cost consideration, I decided to use SAS for conversion. The
SAS “put” command has the power to produce a perfect XML output file.
SAS also allows me to query data; combine data from different resources;
and manipulate data all in one program. The entire procedure is therefore
automated.

• By pointing to first and last record (N position), the required text can

be easily inserted at the beginning and end of the file. For example, at
the beginning of the file (N=1), I added text such as <?xml
version="1.0"?> and '<SBA_TECHNet_Transfer version="1.0" >. At
the end of the file (N=LST), I also added text
'</SBA_TECHNet_Transfer>' to close the tag.

• The “BY” statement after “SET” brings in records from the input file
one by one and writes one by one to output file (phase2notfound).

• In order to exclude variables with missing value, I used an “if then”
statement before each variable.

 3

Coders' CornerSAS Global Forum 2010

Filename outxml "I:\Annual_ Reports\SBIR\phase2notfound.xml";

data _null_;
 file outxml; /*XML Output File */
 set one NOBS=Lst; /* SAS File with input data */
 by AgencyTrackingNumber;
 %let tab=" ";
 if _n_=1 then do;
 put '<?xml version="1.0"?>';
 put '<SBA_TECHNet_Transfer version="1.0" >';
 end;
 put &tab' <Award action="update" awardNumber="'awardNumber'">' ;
 if AgencyTrackingNumber ne ' ' then
 put &tab' <AgencyTrackingNumber>'AgencyTrackingNumber'</AgencyTrackingNumber>';
 if program ne ' ' then put &tab' <Program>'program'</Program>';

 if _n_=lst then do;
 put '</SBA_TECHNet_Transfer>';
 end;
run;

CORRECTING DATA TO COMPLY WITH DATA FIELD FORMAT
REQUIREMENTS

The data in XML format needs to be uploaded via recipient’s website. This
process enables the party who requested data to enforce very strict rules on
data quality and automatically prevent any invalid data submission. Mainly,
there are two data issues which we need to solve in order to pass validation.

• Issue 1. Data is not standard. For example, in the email field, some

entries has no “@” sign. Some put two email addresses, therefore with
two “@” sign. Some people put extension on their telephone number and,
therefore telephone field has more than 10 digits.

• Issue 2. Some mandatory data fields contain embedded characters like

carriage returns, line feeds, tabs, page breaks. Those embedded
characters need to be removed. For example, the abstract of a grant
application was saved as a word document and was scanned and stored
into an Oracle database. Those characters are accepted by Oracle as
CLOB data type. However, those special characters cannot be accepted
by XML because XML, by definition, accepts textual contents only. We
have to remove them in order to submit data.

a) In order to solve the first issue, I used “Where” statement to

identify and set missing value for the wrong fields. I also used
“length” and “substr” statement to treat irregular telephone
numbers.

 4

Coders' CornerSAS Global Forum 2010

Data Wrongemail;
 Set a;
 Where email not contains (‘@’) ;
Run;
Data Rightemail;
 Set a;
 Where email contains (‘@’) ;
Run;
Data B;
 /* records in wrongemail will missing value at email field */
 Set wrongemail(drop=email) Rightemail;
Run;

b) It is much more difficult to solve issue 2. Firstly, I used Rxparse

function to find invalid characters and replace them with acceptable
values. Rxparse scans a field, finds restricted signs and replaces
them with words and give the new field a new variable name. In the
following example, we replaced “&” with ‘and’ and saved it as a
new variable name (abstract2); replaced “<” with ‘lt’ and saved as
abstract3. We also replaced “>” with ‘gt’ and saved it as abstract.

length abstract2 $12000.;
rx=rxparse("'&' to 'and'");
call rxchange(rx,10000, abstract_text, abstract2);

length abstract3 $12000.;
rx=rxparse("'<' to 'lt'");
call rxchange(rx,10000, abstract2, abstract3);

length abstract $12000.;
rx=rxparse("'>' to 'gt'");
call rxchange(rx,10000, abstract3, abstract);

Drop abstract_test abstract2 abstract3;

c) Using the VERIFY function to exclude embedded characters. Verify

(character-value, verify string) will check if a string contains any
unwanted values.

VERIFY function is opposite to COMPRESS function. When the
COMPRESS function compresses the characters we want to exclude,
VERIFY function verifies and passes the characters we want to keep
(" ABCDEFGHIJKLMNOPQRSTUVWXYZ,.-
/+%;:1234567890()[]?*&'~><_=#").

Test2 returns a numerical value to indicate the position of un-
wanted characters (embedded characters) when it is greater than
0.

SUBSTR(left of =) function finishes up the job by finding the
position indicated by Test2 and replacing the embedded characters
with a blank.

 5

Coders' CornerSAS Global Forum 2010

data abstract_b;
 set abstract(keep=appl_id abstract_text);
 do until (test2=0);
 test2=verify(abstract_text,
 " ABCDEFGHIJKLMNOPQRSTUVWXYZ,.-
/+%;:1234567890()[]?*&'~><_=#");

 if test2>0 then do;
 substr(abstract_text,test2,1)=' ';
 end;
 end
run;

CONCLUSION

Most papers about using SAS to do XML conversion are quite complicated to
non-IT people. They also do not address the data issues. Content and
format, although sounding like different issues, have to be solved together
to complete the task. After much experimentation of other methods, I
concluded that PUT command is a simple way to perform XML conversion.
Furthermore, the functions introduced in this paper are effective ways to
clean up the data. My final SAS program combined these two steps together
and is automated to the degree that junior level analysts can understand
and use it for routine data submission.

ACKNOWLEDGEMENT
Thanks to NIH/OD, my former employer, for challenging me with this XML
conversion task. Thanks also to DC Courts, my current employer, for the
time and budget to prepare this presentation. My special thanks and
appreciation go to Terry McCormack for, among all other things, editing my
final draft as a non-SAS user.

DISCLAIMER
The views expressed in this paper are solely those of the author and do not
represent the views of the District of Columbia Courts and National Institute
of Health.

AUTHOR CONTACT INFORMATION

Qin Wang, PhD
Statistical Associate
District of Columbia Courts*
500 Indiana Avenue, N.W.
(202) 879-2862
Qin.Wang@DCSC.GOV

 6

Coders' CornerSAS Global Forum 2010

mailto:Qin.Wang@DCSC.GOV

 7

TRADEMARKS

SAS and all other SAS Institute Inc. product or service names are registered
trademarks or trademarks of SAS Institute Inc. in the USA and other
countries. ® indicates USA registration.

Other brand and product names are trademarks of their respective
companies.

Coders' CornerSAS Global Forum 2010

	2010 Table of Contents

