

 1

Paper 107-2010

Challenge! Reading Mainframe Hex Delimited Flat File Where Each Line Has
Different Layout

Anjan Matlapudi and Knapp, J. Daniel

Pharmacy Informatics, PerformRx, The Next Generation PBM,
Philadelphia, PA

ABSTRACT

This paper illustrates how to design an appropriate input program to handle a complex file layout using data collected
from pharmacy and health insurance information about individuals. Various INFILE and INPUT options are illustrated
in the process, and some related functions are considered.

The input file is the output of a COBOL program pulling data from a DB2 database which is then brought to the PC
via FTP. Each record contains 6 types of information, called segments, for a person. The segments and the fields
within are divided by unprintable hexadecimal codes, which SAS represents with notations like the hexadecimal
numbers 1E (Segment separator) and 1C (Field separator) respectively. A further complication is the use of 1D which
is the group separator to separate repeating segments. There are also groups of repeating fields within a segment.
Since the fields do not have a fixed length and they may be missing on some records, there is no fixed record layout
for the file.

Although the program was written for the PC, the technique is applicable for any system. All the tools discussed are
in BASE SAS®. The typical attendee or reader will have some experience in SAS, but not a lot of experience dealing
with the input of external data.

INTRODUCTION

The SAS® System has excellent facilities for importing and manipulating data between platforms. This presentation is
designed to review how to convert a hierarchical EBCDIC (Extended Binary Coded Decimal Interchange Code) text
file from an IBM mainframe source into a set of SAS datasets on an ASCII (American Standard Code for Information
Interchange) system. The examples in this paper explain where and how to use the INFILE and INPUT statements.
Alternative approaches using character handling functions are also discussed.

THE FILE STRUCTURE

The file begins with a header record and ends with a trailer that we will exclude. The remaining records are divided
into segments of related fields. Each record starts with ‘02’ and ends with ‘03’. Below we have shown two data
records.1

The first segment, known as G1, is exceptional and will be eliminated from our discussion. The other segments begin
with 1E (Dec 30), but may be preceded by 1D (Dec 29) indicating that that segment may repeat within one record
(see segment ‘AM07’). Segments are further divided into fields that begin with 1C (Dec 28). Each field is divided into
a two character identifier followed by the value of the field. For example, ‘AM’ is the identifier and ‘04’ is the value for
segment ‘AM04’. The next field in ‘AM04’ has the identifier, C2 (in dark red) and value, ‘3424342355’, which is the
identifier of the person whose information is on this record. CC gives the first name and CD the last.

RULE: ----+----1----+----2----+----3----+----4----+----5----+----6----+----7----+----8----+---
1 CHAR .00T4454831521009339070001 0648558201008020648P11622760 . 58
 ZONE 0335333333333333333333333322333333333333333333353333333320
 NUMR 2004445483152100933907000100064855820100802064801162276003

2 CHAR .G1608191393160076051B1445483152 1011487752192 20090727PAN00104 ..AM04.C23424342355
 ZONE 0433333333333333333334333333333323333333333333222223333333354433333221144331433333333333
 NUMR 2716081913931600760512144548315201011487752192000002009072701E0010400EC01D0C323424342355

1 The real data files contained 5 to 10 million data records.

Segment
Identifiers

Start of Text

Header Segment

Line 1

Coders' CornerSAS Global Forum 2010

 2

filename inp "C:\path\Input files\mainframe.txt";
filename temp "C:\path\Datasets\segments.dat";

 89 .CCKAMBLE.CDRICHARD.C90.C10100...AM07.EM1.D20202029.E103.D750458058701.E70000030033.D300
 ZONE 1444444441445444452143314333331114433144314333333331433314333333333333143333333333314333
 NUMR C33B1D2C5C342938124C390C310100DEC1D07C5D1C420202029C5103C4750458058701C570000030033C4300

 177 .D5030.D61.D80.DE20090724.DK09.C802.28EA..AM03.EZ01.DB1063421121..AM05.4C2.5C01.6C99.7C1
 ZONE 1433331433143314433333333144331433313344114433145331443333333333114433134313433134331343
 NUMR C45030C461C480C4520090724C4B09C3802C2851EC1D03C5A01C421063421121EC1D05C432C5301C6399C731

 265 00933907.E820090727.HB1.HC99.DV0000164H.5E01.6EAF.5C99.E820090727.HB1.HC99.DV0001013D.5E
 ZONE 3333333314333333333144314433145333333341343313444134331433333333314431443314533333334134
 NUMR 00933907C5820090727C821C8399C4600001648C5501C6516C5399C5820090727C821C8399C4600010134C55

 353 01.6E41..AM11.D90000164H.DX0000000{.DQ0001529I.DU0000164H.DN00. 415
 ZONE 331343311443314333333334145333333371453333333414533333334144330
 NUMR 01C6541EC1D11C4900001648C480000000BC4100015299C4500001648C4E003

3 CHAR .G1611682560160076051B1445483152 1011487752192 20090727PAN00104 ..AM04.C24545456666
 ZONE 0433333333333333333334333333333323333333333333222223333333354433333221144331433333333333
 NUMR 2716116825601600760512144548315201011487752192000002009072701E0010400EC1D04C324545456666

 89 .CCANJAN.CDMAT.C90.C10100A...AM07.EM1.D233020222.E103.D755111019401.E70000033300.D300.D5
 ZONE 1444444414444514331433333411144331443143333333331433314333333333333143333333333314333143
 NUMR C331EA1EC34D14C390C3101001DEC1D07C5D1C4233020222C5103C4755111019401C570000033300C4300C45

 177 030.D61.D80.DE20090729.DK09.C802.28EA..AM03.EZ01.DB1487668901..AM05.4C1.5C01.6C99.7C1009
 ZONE 3331433143314433333333144331433313344114433145331443333333333114433134313433134331343333
 NUMR 030C461C480C4520090729C4B09C3802C2851EC1D03C5A01C421487668901EC1D05C431C5301C6399C731009

 265 33907.E820090729.HB1.HC99.DV0000454{.5E01.6EAF..AM11.D90000439{.DC0000025{.DX0000010{.DQ
 ZONE 3333314333333333144314433145333333371343313444114433143333333371443333333714533333337145
 NUMR 33907C5820090729C821C8399C460000454BC5501C6516EC1D11C490000439BC430000025BC480000010BC41

 353 0000845I.DU0000454{.DN00. 377
 ZONE 3333333414533333337144330
 NUMR 00008459C450000454BC4E003

 CHAR .9906485580000084088. 49
 ZONE 03333333333333333333022222222222222222222222222220
 NUMR 29906485580000084088300000000000000000000000000003

MAIN LOGIC OF THE PROGRAM:

How can the file, described in the preceding section, be read? How should the separating fields be used?. Since the
file is very hierarchical in structure it is easiest to preprocess the file to a segment structure before trying to read the
fields. Without doing this one cannot take advantage of the DELIMITER (DLM) option of the INFILE statement. The
variable length of fields and the delimiter, 1C, suggest that LIST INPUT is most appropriate. The problem is that one
must first identify the segments which are separated by the hex number 1E. Consequently, we are led to a two-step
process – 1) change the physical organization so that each record is a segment and several records are needed to
get all the information for one person, and 2) read each record and send the information to the appropriate output
dataset.

STEP 1 – CHANGE PHYSICAL STRUCTURE OF THE FILE

Here is the program:

End of the Text

Overpunch signs in dollar fields

Line 2

Trailer Segment

Two Character
Name of the Field 1D Group Separator, IE Segment Separators, 1C Field Separators

Coders' CornerSAS Global Forum 2010

 3

The FILENAME statement ties the FILEREF, INP, to the input physical file location. It separates this information from
the DATA step; hence it is easier to modify. In addition it provides various options to provide the flexibility to handle
many different data sources. The second FILENAME statement does the same for the output file.

The following DATA step creates the new file with segment structure. It illustrates handling external file I/O. No SAS
datasets are output in this step. One should not create SAS datasets when none are needed because this activity
takes up a significant portion of the execution time for a DATA step.

 ----break up record into segments discarding unused segments----;
 data _null_ ;
 length seg $200 segnm $4 ;
 infile inp dlm='1E'x truncover lrecl=400 firstobs=2 ;
 do i = 1 to 6 ;
 input seg :$char200. @ ;
 segnm = substr (seg , 2, 4) ;
 ----segments are skipped to simplify the code for this paper.----;
 if segnm in: ("G1" "99" "AM07" "AM11") then ;
 else
 do ;
 seg = translate(seg, " " , "1D"x) ;
 file temp ;
 put seg ;
 end ;
 end ;
 run;

The INFILE statement associates the FILEREF, INP, with an input buffer. In addition, it provides options for flexibility.
The DLM option, which specifies the "field" separator2, is most important to our task, since the segments are
separated by 1E3. Otherwise one must use character handling functions to manipulate the data.

TRUNCOVER is the contemporary way to handle variable length files. It accepts that data that is there without going
to the next record looking for a field that is short. The default value is FLOWOVER.4

When records are longer than the default length, 256 bytes, then the LRECL option is required. It determines the
longest length that the buffer should need to hold a complete record.

FIRSTOBS was set to 2 in order to skip over the header record.

The FILE statement does for output what the INFILE statement does for input.

In addition to providing a place to specify options, the INFILE and FILE statements are executable. They set the
current buffer. In the above program, INPUT applies to FILEREF INP and its associated buffer instead of the default
FILEREF DATALINES. Similarly PUT applies to TEMP instead of the default LOG. The concept is important
because it means that you can read from multiple input buffers and write to multiple output buffers.

The INPUT statement does the actual reading, in this case, from the INP file because of the preceding INFILE
statement. There are three types of input, LIST INPUT, COLUMN INPUT, and FORMATTED INPUT. Usually
formatted input is the most appropriate choice for complex reading, but in this case we have a modified form of list
input because the separator 1E determines the length of the segment. The use of a format is a direct command to
read the specified number of byte, i.e. ignoring separators when required. The colon in front of $CHAR200. says to
respect the separator, i.e. stop reading when the separator is encountered. It provides a handy way to have the
correct combination of formatted input with list input.

The trailing @-signs says to hold the input record until either the next INPUT statement applied to that buffer or the
bottom of the implied loop of the DATA step (whichever comes first). Consequently the same record is read in the
DO-loop 6 times. The limit is 6 because there are always exactly 6 segments in the files that this program reads.

2 For the purposes of this step, the whole segment is a field.
3 SAS uses an “X” to refer to hexadecimal numbers. For example, 1CX indicates the decimal 28. In character form
this is “1C”X.
4 FLOWOVER goes to the next record when a field is short. MISSOVER throws away short the short field and does
not go to the next record. It is important for historical reasons, but usually TRUNOVER is the option of choice.

Coders' CornerSAS Global Forum 2010

 4

There is also a double trailing @ which holds a record over the iteration of the DATA step. In all but the simplest of
situations it is probably best to avoid the double trailing @ because it leaves dirty messages in the log.

The special segments G1 and '99' are skipped in this program. G1 occurs at the beginning of every data record as a
sort of header to a record, and '99' is the trailer at the end of the file.

The TRANSLATE function is used to eliminate the code 1D. No segment was repeated within an input record, so the
code was just a nuisance and this was a good time to get rid of it since this simplifies the next step.

In this step both the reading and writing are done in an explicit loop. The common idiom in SAS is one record in one
out with no explicit loop. Why is this different? We want to change the structure of the data. Although one could
force the SAS idiom, it would make the code more error prone and harder to read. One should learn to write DATA
steps that differ from the natural rhythm of SAS when the data structure calls for it.

STEP2 – OUTPUT A SAS DATA SET FOR EACH SEGMENT

The DATA step is organized by subroutines – one for each segment. This helps to make the step easier to read and
modify since the code associated with a segment is in one place. The function of the main routine is to control the
whole process.

The main routine consists of the DATA statement with the list of output datasets, a LENGTH statement including all
the variables, and a SELECT block to decide which subroutine to call for current segment. If an unknown code is
encountered, the program aborts.

The subroutines consist of INPUT and OUTPUT statements for that segment plus any special code needed to handle
that segment. For example, segment AM05 can have repeating fields. The INPUT statement assumes one repeat
and a CHECK field to prove there are no more. When CHECK is not missing, the step aborts. The TRUNCOVER
option allows including the repeat variables in the AM05 routine, since they will be made blank if they aren’t there and
will be filled in if they are. This subroutine structure makes the program easy to read and modify.

The two preceding paragraphs illustrate one technique for checking the input assumptions to preserve the integrity of
the program and the programmer.

The hex number 1C is the field separator and the first two bytes are the field identifier.
We use +2 to skip over this portion of the field and the colon modified INFORMAT to preserve the LIST INPUT nature
of the file as explained in the previous DATA step.

----write out wanted segments ----;
 data am04 (keep = seq_num CardH_Id fname lname Ec1_code Group_num)
 am07 (keep = seq_num Rx_Service_RefNum_Quali Rx_Service_refNum
 Product_Service_ID_Qualifier Product_Service
 Quantity_Despensed Fill_Number Days_Supply
 Compound_Code DAW_Code Date_Prescription_Written
 Submission_Clarif_Code Submission_Clarif_Code
 Other_Coverage_Code Unit_of_Measure)
 am03 (keep = seq_num Prescriber_ID_Qualifier Prescriber_ID)
 am05 (keep = seq_num COBCount CoverageType IDQualifier PayerID
 PayerDate CoverageType PaidQual AmountPaid1 RejectCount
 RejectCode PaidCount PayerDate2 PaidCount2
 PaidQual2 AmountPaid2 RejectCount2 RejectCode2)
 am11 (keep = seq_num Ingredient_CostDispensing_Fee Patient_Paid_Amount
 Sales_Tax_Amount Usual_Customary_Charge
 Basis_Cost_Determination)

 ;

 Length segnm $ 4
 seq_num 8
 /* am04 */
 CardH_Id $ 20
 fname $ 12
 lname $ 15

Coders' CornerSAS Global Forum 2010

 5

 Ec1_code 8
 Group_num $ 8
 /* am03 */
 Prescriber_ID_Qualifier $ 2
 Prescriber_ID $ 15
 /* am05 */
 COBCount $ 1
 CoverageType $ 2
 IDQualifier $ 2
 PayerID $ 10
 PayerDate $ 8
 PaidCount 8
 PaidQual 8
 Amount_Paid1 $ 8
 RejectCount 8
 RejectCode $ 2
 /* other repeated fields */
 CoverageType2 $ 2
 PayerDate2 $ 8
 PaidCount2 8
 PaidQual2 8
 Amount_Paid2 $ 8
 RejectCount2 8
 RejectCode2 $ 2
 ;
 infile temp dlm = "021C"x truncover ;
 input segnm :$char4. @ ;
 select (segnm) ;
 when ("AM04")do; link am04 ;end ;
 when ("AM03")do; link am03 ;end ;
 when ("AM05")do; link am05 ;end ;
 when ("AM04", "AM03", "AM05") /* skip for now */
 otherwise error "Bad segment name" ;
 end ;
 return ;

 ----routine for each segment----;

 AM04:
 input
 +2 CardH_Id :$char20.
 +2 fname :$char12.
 +2 lname :$char15.
 +2 Ec1_code :1.
 +2 Group_num :$char8.
 ;
 output am04 ;
 seq_num + 1 ;
 return ;

 AM03:
 Input
 +2 Prescriber_ID_Qualifier :$char2.
 +2 Prescriber_ID :$char15.
 ;

 Output am03 ;
 seq_num + 1 ;
 return ;

 AM05:
 input
 +2 COBCount :$Char1.

Coders' CornerSAS Global Forum 2010

 6

 +2 CoverageType :$char2.
 +2 IDQualifier :$char20.
 +2 PayerID :$char10.
 +2 PayerDate :$char8.
 +2 PaidCount :1.
 +2 PaidQual :1.
 +2 Amount_Paid1 :$char8.
 +2 RejectCount :1.
 +2 RejectCode :$char2.
 /* possible repeat */
 +2 CoverageType2 :$char2.
 +2 PayerDate2 :$char8.
 +2 PaidCount2 :1.
 +2 PaidQual2 :1.
 +2 Amount_Paid2 :$char8.
 +2 RejectCount2 :1.
 +2 RejectCode2 :$char2.
 /*Convert Over punch sings to dollar ammount*/;
 AmountPaid1 = put(input(Amount_Paid1, ZD8.2), 8.2);
 AmountPaid2 = put(input(Amount_Paid2, ZD8.2), 8.2)
 ;
 if missing(COBCount) then abort ;
 output am05 ;
 seq_num + 1 ;
 return ;
 ;

 *** routines for AM07 and AM11 are similar but not shown here ***;
 run ;

CONCLUSION

We have illustrated how to make the reading of fairly complex external data into a simple program by separating it
into two well structured steps. The key here is to recognize the structure of the separators requires introducing two
steps instead of trying to do the reading in one step. Steps not mentioned carry out analysis of the data and move it
into other systems for use by doctors and pharmacists.

REFERENCES

Zirbel, Doug. Functioning JCL Into a SAS® Relational Database Table: Your Portable Tutorial On Character
Functions, Plus an MVS™ Batch Bonus, Coders’ Corner Paper 96-25.

Kuligowski, T. Andew. Datalines, Sequential Files, CVS, HTML and More – Using INFILE and INPUT Statements to
Introduce External Data into the SAS System, SUGI 31 Tutorials Paper 228-31.

ACKNOWLEDGMENTS

We like to acknowledge Ian Whitlock for helping us in preparing this paper. We also like to thank Marian Whitlock for
sharing her ideas to put all things together.

We did like to acknowledge Mr.Shimels Afework, The Sr. Director of our company. The PerformRx was formed in
1999 as a division of the AmeriHealth Mercy Family of Companies. We provide specialized pharmacy benefit
management services (PBM) through proactively managing escalating pharmacy costs while focusing on clinical and
financial results.

Coders' CornerSAS Global Forum 2010

 7

CONTACT INFORMATION:
Your comments and questions are valued and encouraged. Contact the author at

Name Anjan Matlapudi
 Senior Pharmacy Analyst
Address PerformRx, The Next Generation PBM

 200 Stevens Drive
 Philadelphia, PA 19113

Work Phone: (215)937-7252
Fax: (215)863-5100
E-mail: anjan.matlapudi@performrx.com
 matanjan@hotmail.com

Name Knapp, J. Daniel
 Senior Manager
Address PerformRx, The Next Generation PBM

 200 Stevens Drive
 Philadelphia, PA 19113

Work Phone: (215-937-7251
Fax: (215)863-5100
E-mail: Daniel.Knapp@performrx.com

SAS® is a registered trademark or trademark of SAS® Institute, Inc. in the USA and other countries. IBM, OS/390,
and MVS are registered trademarks of International Business Machines Inc.

Coders' CornerSAS Global Forum 2010

	2010 Table of Contents

