SAS Global Forum 2010 Coders' Corner

Paper 103-2010

Look Before You Leap — A Technique to Simulate a Look-Ahead Function
Leonard Landry, Statistics Canada, Ottawa, Ontario, Canada

ABSTRACT
In base SAS® programming there is a very useful function called LAG which allows a SAS program to reference
previous values of a SAS program variable. Wouldn't it be wonderful if a similar function were available to look ahead
at the value of a dataset field in the next observation. There is no such function available but with some simple
programming logic a “look ahead” functionality can be achieved. This paper will describe a technique that can be used
to achieve this.

INTRODUCTION

Most SAS programmers are familiar with the LAG function. It is a simple and easy to use function that can be used in
a SAS data step to return the value of the argument for a previous observation. By specifying LAGn the function can
return the value lagged by n observations. Unfortunately there is no corresponding function to look ahead at the value
of a dataset field in the next or subsequent observations. There are many practical cases where this functionality
would be a useful feature.

The purpose of this paper is to describe two variations of a programming technique that can be used to achieve a “look
ahead” functionality. The paper will explain how and why the technique works along with a simple example of each
technique. This will be followed by a more practical example where the author used this technique in a real
programming situation.

THEORY

When SAS reads a dataset sequentially it maintains a pointer within the dataset which it moves ahead by one on each
read. The same dataset may be referenced more than once in a SAS data step and for each reference SAS will
maintain a separate pointer to the dataset. If we read the same dataset twice using two SET statements with the
pointer for the second read maintained one observation ahead of the first read then we are able to simulate a “look
ahead” function. This is achieved by using the FIRSTOBS option on the second SET statement and specifying a value
of FIRSTOBS=2.

Other factors must be considered. On the “look ahead” read we must only read the fields that we want to look ahead
at and we must rename these fields so that they are brought into the program data vector as unique fields. Also the
“look ahead” read will trigger the EOF indicator when it reads the last record in the dataset so some special coding is
required to read the last record.

Another alternative to using two SET statements is to perform a one to one merge of the dataset with itself and use the
FIRSTOBS option on one of the dataset names to maintain that pointer one record ahead of the other. This technique
has the advantage of not requiring any special processing to read the last record.

EXAMPLES

The objective of the first two examples is to read a SAS dataset and output a new dataset with one additional field
added. The new field will be the value of one of the fields in the next observation. It follows logically that the value of
this new field for the last observation will be missing since there is not another observation to look ahead to. The two
examples use the same dataset as input and both produce the expected results.

EXAMPLE 1 — Using two SET Statements

In this example we are using two SET statements to read the same dataset twice with each iteration of the data step.
On the second read we will maintain the pointer one record ahead of the first. We only want to look ahead at the value
of the field VAR2 so we will specify this field in a KEEP option and we will rename the field to NEXTVAR2 with a
RENAME option. Below is the sample data and program code.

SAS Global Forum 2010 Coders' Corner

DATA
OBS VAR1 VAR2
1 1 A
2 2 B
3 3 C
4 4 D
5 5 E
Program 1
AEAEAIAAAXAAAXAAAAXAAAXAAAXAXAAAXAXAAXAXAAXAXAAXAXAAAXAXAAXAXAAXAXAXAAXAXAAAXAXAAAXAAAXXAKXKX
* This is the first technique — using two SET statements
AEAEAXAXAAAAXAAXAAXAAAXAAXAAXAAXAAXAAAAAXAAIAAAAXAAXAAXAXAAIAAIAIAAAXAAXAAXAAAAdhhdhhix -
data test2;
iT eof=0 then set test(firstobs=2 keep=var2
rename=(var2=nextvar2))end=eof;
else nextvar2=" *;
set test;
run;
Results
OBS VARL1 VAR2 NEXTVAR2
1 1 A B
2 2 B C
3 3 Cc D
4 4 D E
5 5 E

This program works but notice that we must be careful not to execute the SET statement that is pointing ahead once it
has reached end of file. We must put this SET statement in a conditional IF and execute it only when EOF=0. Also we
must manually set the NEXTVAR2 to missing for the last record.

EXAMPLE 2 — Merging to itself

This is perhaps a simpler solution as we do not have to worry about the end of file problem. With a merge the end of
file condition is reached only when the last record is read from all files being merged. We also do not have to manually
set the NEXTVARZ2 to missing for the last record. The code for this option and the results are shown below.

SAS Global Forum 2010 Coders' Corner

Program 2

LR R S R e S e S R e R e R e e S e

* This is the second technique - merging a file to itself

R o o o e o R A R R AR R AR R R AR R SR AR R AR R R o R R R R R R AR R R R e R S R AR A R R e e o e]
7

Data test2;
merge test test(firstobs=2 keep=var2 rename=(var2=nextvar2));

run;
Results
OBS VAR1 VAR2 NEXTVAR2
1 1 A B
2 2 B C
3 3 C D
4 4 D E
5 5 E

EXAMPLE 3 — A Practical Application
This example will describe a situation in which the author was able to use this “look ahead “ technique to solve a
routine request in his day to day work.

The author works with a group of research analysts who do research work in the Canadian Labour Market. One of the
files that is often used by these researchers is a longitudinal file spanning 1983 to 2007 that contains information on
workers and their earnings. The researcher wanted to know the number of workers in this file in each year who had
income in that year and none in the next year. The file was consistent across all years for the included group of
workers and maintained their consistent identifiers. Data would be in the file for a given worker in a given year if and
only if he had earnings in that year. The file could contain multiple records for the same worker in a given year if the
worker had multiple sources of income. Also some filtering of the data would be required to satisfy other constraints
asked for by the researcher.

The solution was to sort the file using the NODUPKEY option by WORKER_ID and YEAR. This would eliminate
duplicate records for a given worker in a given year. The required filtering was also performed in the SORT by
including a WHERE clause. Next, the sorted file was read sequentially while using a “look ahead” technique to look at
the values for the WORKER_ID and YEAR fields in the next observation. If the next observation was for the same
worker and the year was not the next sequential year then this represented a wage gap. Also if the next observation
was for a different worker and the current year was not 2007 then this also indicated a wage gap. The counts of wage
gaps for each year were stored in an array and the appropriate array member was incremented each time a wage gap
was encountered. After all records were read the counts stored in the array were written to a SAS dataset and then
exported to an EXCEL spreadsheet.

Below are the program code and the results.

SAS Global Forum 2010 Coders' Corner

Program 3

AAAXAAAAAAXXAAAXAAAXAAAAAAAKAAAAAAAXAAAAAAAAAAdhhk

* sort file by casenum, year. Also apply some filtering
AEEEXAAAAAA A LI A A AAAA A A A A A AAAAA AR A A A AARAAA AR A A AAAAARARAAAAAARAAAAAAAAAAAA A, -

proc sort nodupkey data=Iwf.lwF8307(keep=rectype casenum year age sex)
out=wagegap;
where rectype<3 & sex>0 & age>0;
by casenum year;
run;

* find all workers with a wage gap from LWF file
AEAEIEXAAAAAA A A A A A AAAA A A A A A AAAA AR A A AAAARAA A AR A A AAARAAAARAAAAARAAAARAAAAAAAAA K, -

DATA wagegap2(keep=year count_of wagegaps);
array counts(1983:2006) 8. _temporary_;

merge wagegap wagegap(firstobs=2 keep=casenum year
rename=(casenum=nextcasenum year=nextyear)) end=endl;

if year < 2007 & ((nextcasenum = casenum & nextyear ne year + 1)
| nextcasenum ne casenum)
then counts(year)+1;

if endl
then do year=1983 to 2006;
count_of _wagegaps = counts(year);
output;
end;
run;

xxxxxxxxxxxx

R o

PROC EXPORT DATA=wagegaps?2
OUTFILE= "h:\sastests\data\wagegaps_by year™
DBMS=EXCEL2000 REPLACE;
SHEET=""'wagegaps"';
run;

SAS Global Forum 2010 Coders' Corner

Results
year count_of wagegaps
1983 94735
1984 90315
1985 92683
1986 90393
1987 92207
1988 93155
1989 106048
1990 124425
1991 128399
1992 122040
1993 112479
1994 107832
1995 112360
1996 105056
1997 104910
1998 97789
1999 93840
2000 104369
2001 108626
2002 102389
2003 113653
2004 104981
2005 105808
2006 103755

CONCLUSIONS

The examples presented in this paper show that the techniques described for achieving a “look ahead” functionality are
simple, easy to use, and work successfully in these types of applications where a file is read sequentially. Of the two
techniques presented the author feels that the second one, performing a one to one merge of a file to itself, is the
simpler and easier to use. Although the examples shown here only look ahead one observation it should be obvious
that the “look ahead” can be any number of observations based on the value used in the FIRSTOBS option.

REFERENCES
e Erik W. Tilanus 2008. “SET, MERGE and Beyond” Proceedings of SAS Global Forum 2008, Paper 167-2008
e SAS Institute Inc. , Combining and Modifying SAS DataSets: Examples, Version 6, First Edition, Cary, NC

CONTACT INFORMATION
Your comments and questions are valued and encouraged. Please contact the author at:

Leonard Landry

Database Manager,

Social Analysis Division,
Statistics Canada
leonard.landry@statcan.gc.ca

SAS and all other SAS Institute Inc. product or service names are registered trademarks or trademarks of SAS Institute
Inc. in the USA and other countries. ® indicates USA registration.

Other brand and product names are trademarks of their respective companies.

mailto:leonard.landry@statcan.gc.ca

	2010 Table of Contents

