
 1

Paper 077-2010

Evolution of Formatting “On The Fly”

Allen Blackburn & Mikhail Gruzdev
United States Bureau of Census, Foreign Trade Division, Washington, DC

ABSTRACT

PROC FORMAT procedure is a powerfully productive tool. It allows us to assign labels to values without having to
spend time combining data sets, changing values and molding the data to take on the look a user wants. Our SAS
program essentially puts a mask on the data. However, sometimes those masks need to change. By formatting ‘on the
fly’, our program saves on the maintenance of manually changing hard-coded PROC FORMAT statements, as well as
the computing time of formatting more than necessary when formatting from a data set. Using a PROC FORMAT
statement inside of a SAS program has its advantages, but in many cases, depending on how you use it, the statement
could be a ‘growing’ problem. Updating a small number of PROC FORMAT statements is simple, but complexity
‘expands’ as the number of elements grows larger, with hundreds or even thousands of elements. Through
‘evolutionary’ use of data sets and SAS formats and data manipulation, SAS programs can save time and resources by
creating formats from data sets “on the fly”.

INTRODUCTION

PROC FORMAT procedure is a powerfully productive tool. It allows us to assign labels to values without having to
spend time combining data sets, changing values and molding the data to take on the look a user wants. Our SAS
program essentially puts a mask on the data. However, sometimes those masks need to change. By formatting ‘on the
fly’, our program saves on the maintenance of manually changing hard-coded PROC FORMAT statements as well as
the computing time of formatting more than necessary when formatting from a data set.

FIRST EXAMPLE

Depending on how often data labels change, PROC FORMAT users may need to change SAS code every week or
every day.

For instance, with the following data set, we can use PROC FORMAT and PROC PRINT to display the category
variables COUNTRY, PRODUCT and DISTRICT with descriptions.

COUNTRY PRODUCT DISTRICT IMPORTS EXPORTS

4270 100 04 1300 0
4270 100 04 2300 0
4270 100 30 550 0
4270 100 30 5500 2000
4270 100 31 1150 0
4270 100 31 4150 0
4270 200 04 10000 4500
4270 200 04 11000 1500
4270 200 31 8000 6400
4270 300 31 5000 6000
5130 100 55 0 1000
5130 100 55 0 1500
5130 100 04 0 1000
5130 100 04 0 9000
5130 100 30 0 3000
5130 100 30 0 2000
5130 300 31 0 2000
5130 300 31 0 5000

Coders' CornerSAS Global Forum 2010

 2

proc format ;

value $country 4270 = ‘FRANCE’
 5130 = ‘KUWAIT’;
value $product 100 = ‘FOOD’
 200 = ‘METAL’;
 300 = ‘WOOD’;
value $district 04 = ‘BOSTON’
 30 = ‘SEATTLE’
 31 = ‘TAMPA’
 55 = ‘NEWYORK’;
run;

proc print data = One;

format country $country.
 product $product.

 district $district.;
run;

Exhibit Data Set One

Obs country product district imports exports
1 FRANCE FOOD BOSTON 1300 0
2 FRANCE FOOD BOSTON 2300 0
3 FRANCE FOOD SEATTLE 550 0
4 FRANCE FOOD SEATTLE 5500 2000
5 FRANCE FOOD TAMPA 1150 0
6 FRANCE FOOD TAMPA 4150 0
7 FRANCE METAL BOSTON 10000 4500
8 FRANCE METAL BOSTON 11000 1500
9 FRANCE METAL TAMPA 8000 6400
10 FRANCE WOOD TAMPA 5000 6000
11 KUWAIT FOOD NEWYORK 0 1000
12 KUWAIT FOOD NEWYORK 0 1500
13 KUWAIT FOOD BOSTON 0 1000
14 KUWAIT FOOD BOSTON 0 9000
15 KUWAIT FOOD SEATTLE 0 3300
16 KUWAIT FOOD SEATTLE 0 2000
17 KUWAIT WOOD TAMPA 0 2000
18 KUWAIT WOOD TAMPA 0 5000

Through PROC FORMAT, we have accomplished more than just making the data more descriptive, we have saved
time, effort and resources. SAS now displays meaningful names using numeric-coded values. Otherwise, the SAS
programmer would have to embed the descriptions into data sets, requiring more physical space on the hard drive.
Since we’re drawing our descriptions from one source, we know that the reports can dynamically change as the
descriptions change. As any of the descriptions change the programmer updates the PROC FORMAT statement and
simply reruns the code.

Coders' CornerSAS Global Forum 2010

 3

CAN THERE BE A PROBLEM?

Using a PROC FORMAT statement inside of a SAS program has its advantages, but in many cases, depending on how
you use it, the statement could be a ‘growing’ problem. Updating a few PROC FORMAT statements is simple, but
complexity ‘expands’ as the number of elements grows larger, with hundreds or even thousands of elements.

How does SAS format allow us to automate the creation and running of a PROC FORMAT statement with “always
current” information?

MORE EXAMPLES MOVING TO “FORMATTING ON THE FLY”

The place to start is with a data set. Given the formats we used in our previous example, let’s first create a data set with
country codes and their descriptions.

Data Set Country

CTRYCODE CTRYDESCRIPTION
4270 FRANCE
5130 KUWAIT
3210 RUSSIA
4010 CHINA
5850 CANADA

SECOND EXAMPLE

Emulate our previous procedure and still have the benefits of an automated system by writing the PROC FORMAT
statement to an external file and then including the file in our program.

First, the system must have a permanent place to write the file:

filename convimdc 'frmtimdc.sas';

Then create ‘header’ information of the PROC FORMAT statement in this file.

data _null_;
file convimdc;
set country end=eof;
if _n_ = 1 then do;

put "libname library 'c:\temp\frmt';";
put 'proc format library=library;';
put 'value $country';

end;

Now insert data into the file, including those country code and descriptions users want displayed in lieu of the actual
numeric country codes. Include a RUN statement at the end of the data set.

do;
put '"' ctrycode +(-1)'"' '=' '"'
 ctrydescription +(-1)'"';

end;

if eof then do;
put ';';
put 'run;';

end;
run;

Coders' CornerSAS Global Forum 2010

 4

Finally, after all this information is written to the FRMTIMDC.SAS file, “%include” it in our SAS code.

%include 'frmtimdc.sas';

SAS has automated the same process we did before. However, it is done in a way that’s different. Data is written to a
physical file. It’s not just a file in the temporary WORK area. It is a permanent file and must be accessible for write
and read ability. If this technique is unreasonable or questionable, then perhaps our third example is better.

THIRD EXAMPLE

PROC FORMAT can be fed values, labels and format names from a data set using the CNTLIN option. Our data set
must contain at least three fields:

1.) FMTNAME: The name of the format.
2.) START: The value you wish to format.
3.) LABEL: The label you want to associate with the value.

If you’re creating character formats, you must do one of two things:

1.) Begin the format name with a “$”
2.) Add a fourth field, TYPE, with a value of “c”

Given these rules, let’s take our original COUNTRY data set and transform it into a data set we can use with the
CNTLIN option.

data two;
length label $ 11;
set country(rename=(ctrycode=start ctrydesciption=label));
retain fmtname 'country' type 'c';
output;

run;

proc sort data=Two;

by start;
run;

Data Set Two
 Label start fmtname type
1 RUSSIA 3210 country c
2 CHINA 4010 country c
3 FRANCE 4270 country c
4 KUWAIT 5130 country c
5 CANADA 5850 country c

Once the data set is formatted correctly, there are only two lines that need to be run.

proc format library= work cntlin=two;
run;

Now, we’ve automated the production of the PROC FORMAT statement with current data. Also we’ve done it with
only one assumption: The program is able to read a data set with current information. If you’re running a business
critical application, it’s probably safe to assume that you can get access rights to current reference files.

Coders' CornerSAS Global Forum 2010

 5

FOURTH EXAMPLE “FORMATTING ON THE FLY”

What if the SAS needs only one tenth of the formats you’ve just produced? With just four formats, like Data set Two
above, that is not an issue. But what if you have 25,000 possible format items and an application needs a handful of
items? Should we go through all the mechanics of producing those formats even when they’re not needed?

For our example, our system needs to create formats for COUNTRY, PRODUCT and DISTRICT. In a U.S. Census
Bureau real world database, there are about 250 countries, about 50 districts and over 25,000 commodities. Of those
25,300 possible formats, an application might need to use less than 50 formats.

Again, we have three example data sets:

Data Set Country
CTRYCODE CTRYDESCRIPTION
3210 RUSSIA
4010 CHINA
4270 FRANCE
5130 KUWAIT
5850 CANADA

Data Set Product

PRODUCTCODE PRODUCTDESCRIPTION
100 FOOD
200 METAL
300 WOOD

Data Set District

DISTRICTCODE DISTRICTDESCRIPTION
04 BOSTON
30 SEATTLE
31 TAMPA
55 NEWYORK

Coders' CornerSAS Global Forum 2010

 6

Using PROC SQL, our program creates one data set but with three formats.

proc SQL;

create table formats as

/* Create the FMTNAME field with the value $COUNTRY. */

select distinct '$country' as fmtname label="fmtname",

/* Use CTRYCODE from database C as the value in */
/* the START field. */

c.ctrycode as start label="start",

/* Use CTRYDESCRIPTION from database C as the value */
/* in the LABEL field. */

upcase(c.CTRYDESCRIPTION) as label label = "label",

/* Use COUNTRY from database B as the value in */
/* the START field. */

b.country as start label="start"

/* Data set B is WORK.ONE and data set C is */
/* WORK.COUNTRY. */

from work.one b , work.country c

/* Combine the two data sets where CTRYCODE equals */
/* COUNTRY. */

where c.ctrycode = b.country

UNION

select distinct '$product' as fmtname label="fmtname",
e.productcode as start label="start", upcase(e.productDESCRIPTION)
as label label = "label", d.product as start label="start"
from work.one d , work.product e
where e.productcode = d.product

UNION

select distinct '$district' as fmtname label="fmtname",
f.districtcode as start label="start",
upcase(f.districtDESCRIPTION) as label label = "label", g.district
as start label="start"
from work.one g , district f
where f.districtcode = g.district ;

quit;

run;

Coders' CornerSAS Global Forum 2010

 7

The resultant data set FORMATS, contains required formats based totally on actual and variable data being analyzed.

Data Set FORMATS

fmtname start label
$country 4270 FRANCE
$country 5130 KUWAIT
$district 04 BOSTON
$district 30 SEATTLE
$district 31 TAMPA
$district 55 NEWYORK
$product 100 FOOD
$product 200 METAL
$product 300 WOOD

Now, run the PROC FORMAT and PROC PRINT.

proc format library= work cntlin=formats;
run;

proc print data=Two;

format country $country. product $product.
 district $district.;

run;

The resultant PROC PRINT looks very much like Exhibit Data Set One.

Exhibit Data Set Two
PROC PRINT

 Obs country product district imports exports
 1 FRANCE FOOD BOSTON 1300 0
 2 FRANCE FOOD BOSTON 2300 0
 3 FRANCE FOOD SEATTLE 550 0
 4 FRANCE FOOD SEATTLE 5500 2000
 5 FRANCE FOOD TAMPA 1150 0
 6 FRANCE FOOD TAMPA 4150 0
 7 FRANCE METAL BOSTON 10000 4500
 8 FRANCE METAL BOSTON 11000 1500
 9 FRANCE METAL TAMPA 8000 6400
 10 FRANCE WOOD TAMPA 5000 6000
 11 KUWAIT FOOD NEWYORK 0 1000
 12 KUWAIT FOOD NEWYORK 0 1500
 13 KUWAIT FOOD BOSTON 0 1000
 14 KUWAIT FOOD BOSTON 0 9000
 15 KUWAIT FOOD SEATTLE 0 3300
 16 KUWAIT FOOD SEATTLE 0 2000
 17 KUWAIT WOOD TAMPA 0 2000
 18 KUWAIT WOOD TAMPA 0 500

Coders' CornerSAS Global Forum 2010

 8

The underlying difference between Exhibit Data Set One and Exhibit Data Set Two is that Exhibit Two utilized much
less ‘hard-coded’ format code, and utilized formats from potentially vast data sets ‘on the fly’, thereby using fewer
resources.

CONCLUSION

Through ‘evolutionary’ use of data sets and SAS formats and data manipulation, SAS programs can save time and
resources by creating formats from data sets “on the fly”. This also ensures that formats are accurate and don’t use
unnecessary permanent storage.

CONTACT INFORMATION
Your comments and questions are valued and encouraged. Contact the authors at:

Mikhail Gruzdev
U.S. Census Bureau
Foreign Trade Division
Rm 6K502
Washington, D.C. 20233
Phone: 301-763-2206
E-mail: mikhail.g.gruzdev@census.gov

Allen Blackburn
U.S. Census Bureau
Foreign Trade Division
Rm 6K106
Washington, D.C. 20233
Phone: 301-763-6921
E-mail: allen.j.blackburn@census.gov

SAS and all other SAS Institute Inc. product or service names are registered trademarks or
trademarks of SAS Institute Inc. in the USA and other countries. ® indicates USA registration.
Other brand and product names are registered trademarks or trademarks of their respective
companies.

Coders' CornerSAS Global Forum 2010

	2010 Table of Contents

