
1 
 

Paper 075-2010 
 

Automating Report Dates and Formats Using SAS®9 Software 
John Simeoni and Dikki Coy, Defense Logistics Agency Office of Operations Research 

and Resource Analysis (DORRA), Richmond, VA 
 

ABSTRACT  
In many organizations, analysts manually change the SAS® code that is used to run routine reports so that it uses 
current dates. However, analysts can use SAS date functions and formats to create automated macro variables that 
update all of the dates in a report script. Using macro date variables eliminates the need to manually edit scripts, and 
these variables can even be used to find current external files without searching for them. Date macro variables 
enable an analyst to execute report scripts at pre-designated times without ever having to edit the file. This ability can 
greatly reduce processing time and can also eliminate user error. 

INTRODUCTION  
Do you run routine monthly reports?   Many analysts run regular periodic reports.  Typically, these are produced 
monthly, but they can be scheduled for any time interval.  In many organizations, analysts manually change the dates 
in the SAS code before running the reports.  For example, a programmer will open the code, change Aug09 to 
Sep09, save the code, and run the program.  The code often contains many instances where dates need updating, 
and may even have date references in several different formats.  For example, here is a macro call from a piece of 
code that I recently inherited: 
 
       %getdata(‘2009aug01’d’, 20090801, ‘01-AUG-2009’, ‘31AUG2009’, 200908) 
 
Manual date changes are often unnecessary.  We can usually automate all date references in any SAS report script.  
This can be accomplished by using SAS date functions, followed by proper formatting, to read the date into a macro 
variable.  The macro variable will only depend on the run date to set all of the dates in the program.  The use of 
automatic date macro variables alleviates the need to manually change dates (which, of course, may suffer from fat 
fingers), and allows the analyst to schedule the exact same script to execute month after month.  With “auto-run” 
jobs, it is even possible to completely eliminate the need to touch the program.  Automating SAS dates decreases 
user interface time and reduces the probability of user error. 
 
This paper will address the following: 
 

1. Establishing a standard nomenclature for date macro variables 
2. Creating and formatting data macro variables 
3. Common uses for date macro variables 
4. Using date macro variables in non-owned data sets 

Coders' CornerSAS Global Forum 2010

 



2 
 

ESTABLISHING A STANDARD NOMENCLATURE FOR DATE MACRO VARIABLES 
In most organizations, code is shared and passed on to new owners. How many times have you inherited code with 
macro variables named “&date1”, “&date2”, etc., but have no idea what they are until you see how they’re resolved in 
the log? The definition may be buried deep in the script, or may even be pulled from another program via a 
“%INCLUDE” statement.  Wouldn’t it be great if you could determine everything about a date just from its name?  
Then why not have a standard naming convention for date macro variables?   
 
A standard naming convention can be anything that is logical and documented.  Once an organization creates a 
standard, any analyst can look at any date macro variable in any program and easily determine what it means.  For 
example, in monthly reports, code often refers to the beginning or end of a month prior to the current one.  A standard 
naming convention needs to clearly define the macro variable date.  The macro date will be variable and based only 
on the run date of the program.  Here is an example: 
 
Macro Variable Date Name = M X X D X 
 
Where    
             Digit #1 = M (to represent “month”) 
             Digit #2 = X (integer designating past, current, future) 
             Digit #3 = X (integer designating the specific month) 
             Digit #4 = D (to represent “day”) 
             Digit #5 = X (integer or letter designating the specific day) 
 
Digit #2 can contain the following codes: 
 
             P = Prior (to designate a past month) 
             C = Current Month  
             F = Future Month (to designate a future month) 
 
Digit #3 can contain the following: 
 
             X = Any integer to denote the number of months prior to the current month if Digit #2 = P                   
             X = 0 if Digit #2 = “C”  
             X = Any integer to denote the number of months in the future if Digit #2 = F 
                  
 
Digit #5 can contain the following codes: 
 
             B = Beginning (the first day of the month) 
             M = Middle (mid-month)  
             E = End (the last day of the month) 
             S = Same Day 
             X = Any integer to denote a specific month date 
 
NOTE:  In this format, Digit #1 is always “M” and Digit #4 is always “D”.  Although redundant, they help convey the 
meaning of the date translation. 
 
 
 
 
 
 
 
 
  

Coders' CornerSAS Global Forum 2010

 



3 
 

Example 1: 
 
Assume today’s date is 10 September 2009 and you want to reference 01 July 2009 in a SAS program. 
   
The example date variable format to identify 01 July 2009 is:  MP2DB 
 
This defines a date equal to the first day of the month two months prior to the current month. 
 
 
 
 
 
 

 
 

 
 
 
                                 M P 2 D B 
 
 
 
 
 
 
 
 
 

 
Figure 1.  Macro Variable Definition 

 
Example 2: 
 
Again, assume today is 10 September 2009.  Here are some dates and their definitions using the sample standard 
nomenclature: 
  

a) 31 July 2009:      MP2DE  (2 months prior, last day of the month) 
b) 1 September 2009:  MC0DB  (Current month, first day of the month) 
c) 10 August 2009:    MP1DS  (1 month prior, same day of the month) 

 
Although a standard naming convention is not necessary, it will promote better understanding of the macro dates by 
all users. 
  

Two months prior to 
current month 
(based on program 
run date) 

First day of the 
month defined by 
the first three 
digits  

Coders' CornerSAS Global Forum 2010

 



4 
 

CREATING AND FORMATTING DATE MACRO VARIABLES 
           

CREATING THE DATES 
SAS has built in date functions to perform date arithmetic.  One of the most useful is the INTNX function, which has 
the following syntax: 
 
INTNX(interval, start-from, increment, alignment) 
 
Interval defines the time interval for date arithmetic (month, week, etc.) 
 
Start From (for automating reports) will typically be the date the program is run, because the other dates will depend 
on that date.   
 
Increment is the number of intervals being evaluated 
 
Alignment is the specific part of the interval needed 
  
       B = Beginning 
 E = End 
 M = Middle 
 S = Same Day 
 
Example:   
 
Consider the date variables created in Examples 1 & 2 above.  These would be created as follows: 
 
 
      DATA TEMP; 

   MP2DB = INTNX('month',today(),-2,'B'); 
   MP2DE = INTNX('month',today(),-2,'E'); 
   MC0DB = INTNX(‘month’,today(), 0,’B’); 
   MP1DS = INTNX(‘month’,today(),-1,’S’); 

      RUN; 
 

The values created by these variables on 10 September 2009 will be the same on 11 September 2009 except for the 
last one, which will change to 11 August 2009.  The first three won’t change values until 1 October 2009.  All of these 
variable values will remain unchanged until the first day of the next month.   
 
NOTE:  I have used the “today” function, but this can just as easily be created using the “SYSDATE” macro variable. 
 
  

Coders' CornerSAS Global Forum 2010

 



5 
 

FORMATTING THE DATES 
The automated dates are defined above.  However, you may need to format them.  The dates as defined are simply 
SAS dates (i.e., stored as a number) that depend on the date a script is run.  Any date can be formatted each time a 
format is required, or you can create separate macro variables for each format.  We’ll take the latter approach.  Let’s 
consider our variable MP2DB created above.  Now, assume the following are needed: 
 

01Jul2009 
20090701 
200907 

 
We will base the macro on the standard date definition defined earlier.  The macro variable will be created adding an 
extension to the date definition to denote the format.  The actual extension can reflect the formatting explicitly (e.g., 
format=YYYYMMDD), although that will create long variables.  An alternate approach would be to develop a template 
of standard formats commonly used, and add extensions to reflect them (e.g., F1, F2 to denote “format 1”, “format 
2”).  Here, we will take the former approach.  For the date formats above, we will need the following SAS formats: 
 

date9. 
yymmddn8. 
yymmn6. 

 
Thus, we want to create the following macro variables for our program: 
 

MP2DB_date9     =  01JUL2009 
MP2DB_yymmddn8  =  20090701  
MP2DB_yymmn6  =  200907  

 
 
 

CREATING THE DATE MACRO VARIABLES 
To create the macro variables, we will need to use the date definition, a put function to convert it to a character value, 
and a “call symput” to create the macro variable. We will create these in a _NULL_ data step.  Thus, we have the 
following: 
 
 

DATA _NULL_; 
  MP2DB = INTNX('month',today(),-2,'B'); 
  CALL SYMPUT('MP2DB', MP2DB); /* IF NEEDED. THIS WILL BE A NUMBER */ 
  CALL SYMPUT('MP2DB_date9', CATS(PUT(MP2DB,date9.)));  
  CALL SYMPUT('MP2DB_yymmddn8', CATS(PUT(MP2DB,yymmddn8.)));  
  CALL SYMPUT('MP2DB_yymmn6', CATS(PUT(MP2DB,yymmn6.))); 
RUN; 

 
Verify the macro variables by submitting the %PUT _USER_ Statement: 
 

MP2DB 18079 
MP2DB_date9 01JUL2009 
MP2DB_yymmddn8 20090701 
MP2DB_yymmn6 200907  

Coders' CornerSAS Global Forum 2010

 



6 
 

Sometimes, the macro variable must be in quotes.  If so, we can add a “Q” at the end of the formatting extension, and 
add the quote to the CATS function.  (Note:  If the quotes can be double quotes, then this can be accomplished with 
the BQUOTE function.)  Thus, ‘20090701’ would be represented by CATS(“ ’ ”, PUT(MP2DB,yymmddn8.), “ ’ ”); 
 
The following would be added to the data step: 
 

DATA _NULL_; 
 MP2DB = INTNX('month',today(),-2,'B'); 
  CALL SYMPUT('MP2DB_yymmddn8q', CATS(“’”, PUT(MP2DB,yymmddn8.), “’”); 
RUN; 
 
%PUT _USER_; 
 
Output of %PUT _USER_ Statement: 
 
MP2DB_yymmddn8q ‘20090701’ 

 
 
The “CATS” function concatenates the text strings and compresses the variable by removing blanks.  If using a 
version prior to SAS 9.2, the previous statement can be created using CONCATENATE and TRIM functions. 
  

Coders' CornerSAS Global Forum 2010

 



7 
 

COMMON USES FOR DATE MACRO VARIABLES 

USING THE DATE MACRO VARIABLES 
After creating the macro variables, they can be used in many ways in the program.  A benefit of using a standard 
methodology is that anyone that reads your code will know exactly what date you are referring to and what format you 
want. 
 
Macro inputs:   Dates in specific formats are often called in macros.  If you inherit code, you may need to pass a date 
in a specific format or rewrite the code.  
 
Data set file extensions: It is common to produce data sets used by others in the organization.  If these data sets 
have an extension (in a particular data format), the file extension will need to be produced the same way because 
others’ code depends on it. 
 
Example:  
          
       DATA teamdir.myreport_&MP2DB_yymmddn8; 
           SET monthlycrunch; 
       RUN; 
 
This produces a file in the teamdir directory named myreport_20090701 
 
Output file extensions: As above, files may have been produced historically in a specific standard format with a date 
extension. 
 
Example:  
 

PROC EXPORT DATA = monthlycrunch  
    outfile = “myreport_&MP2DB_yymmddn8..csv” 
  dbms=csv 
  replace; 

RUN; 
 

This produces a file named myreport_20090701.csv 
 
 

EXTENDING TO RUN PRIOR MONTHS’ REPORTS 
Could you use the date macro variables if you had to rerun a prior month?  For example, suppose in September 2009 
you have a need to rerun the report from February 2009.  A simple modification will enable you to make one variable 
change, and all other variables will update as needed.  Assume you have the following macro variable data set in 
your “normal” report, which runs data for the previous month (i.e., runs August’s report in September). 
 

DATA _NULL_; 
  MP1DB = INTNX('month',today(),-1,'B'); 
  CALL SYMPUT('MP1DB_date9', CATS(PUT(MP1DB,date9.)));  
  CALL SYMPUT('MP21B_yymmn6', CATS(PUT(MP1DB,yymmn6.))); 
RUN; 

 
 
 
  

Coders' CornerSAS Global Forum 2010

 



8 
 

Now, define a new macro variable named “rptdiff” that replaces the “-1” in the MP1DB definition.  The following is 
identical to the original definition: 
 
 

%LET rptdiff = 1; 
 
DATA _NULL_; 
  MP1DB = INTNX('month',today(),0-&rptdiff,'B'); 
  CALL SYMPUT('MP1DB_date9', CATS(PUT(MP1DB,date9.)));  
  CALL SYMPUT('MP21B_yymmn6', CATS(PUT(MP1DB,yymmn6.))); 
RUN; 

 
If you want to run February’s report, you’ll need to go back six months, so simply add 6 to &rptdiff and the macro 
variables will update accordingly.  Be sure to define all date macro variables in the program to &rptdiff.  The following 
data set would establish dates for a February 2009 report: 
 
 

%LET rptdiff = 7; 
 
DATA _NULL_; 
  MP1DB = INTNX('month',today(),0-&rptdiff,'B'); 
  CALL SYMPUT('MP1DB_date9', CATS(PUT(MP1DB,date9.)));  
  CALL SYMPUT('MP21B_yymmn6', CATS(PUT(MP1DB,yymmn6.))); 
RUN; 

 
 
NOTE:  If you need to rerun several months of reports, you can put your entire program in a macro, then run it by 
changing the value of &rptdiff and using a DO loop. 
 
 

%LET begmonth = 1; 
%LET endmonth = 6; 
%LET rptdiff = &begmonth; 

 
%MACRO runmany; 

     %DO I = &begmonth %TO &endmonth; 
 
         DATA TEMP; 
            MPXDB = INTNX('month',today(),0-&rptdiff,'B'); 
            CALL SYMPUT('MPXDB', PUT(MPXDB, yymmn6.)); 
         RUN; 
 
          %LET rptdiff=%EVAL(&rptdiff+1); 
 
         /**** BEGIN ALL OF YOU PROGRAM HERE ***/ 
          DATA temp_&MPXDB; /* THIS HERE JUST TO SHOW MACRO VARIABLE USE */ 
            junk+1; 
          RUN; 
          /**** END YOUR PROGRAM ****/ 
 
     %END; 
   %MEND; 
 
      %runmany 
 
  

Coders' CornerSAS Global Forum 2010

 



9 
 

USING DATE MACRO VARIABLES IN NON-OWNED DATA SETS 
FINDING CURRENT NON-OWNED DATA SETS 
 
It is difficult to fully automate a script if you don’t control all of the input data sets.  For example, what if your SAS 
script uses a file created by another user, and you typically don’t know the most current version of the file? For 
example, assume someone creates a file called prices_MMMYY.sas7bdat, but the file is updated irregularly.  Even if 
you run the automated program, you must first check the appropriate directory to determine the latest version of the 
pricing data file, and then go in and manually change the file reference in your program.  However, you can automate 
this procedure also by using the SAS macro date variable methodology combined with a SYSFUNC(exist) function.   
 
Let’s say that the data set you need is in a folder named “pricing” and you’re running a report in September, 2009.  
We will first check to see if there is a data set named prices_sep09.  If we can’t find that, we’ll look for prices_aug09, 
then prices_jul09, etc., until we find the latest one.  Here is how we can do that: 
 
Recall the macro variable technique used.  We will produce a series of macro variables going as far in the past as we 
believe we need to (in this example, 6 months).  These macro variables will be named AUG09, JUL09, etc.  The 
program sets up an indicator variable named “tester”, that increments by 1 as soon as it finds a file, and thus stops 
the data loop. 
 
 

/* THIS WILL CREATE A SERIES OF VARIABLES */ 
DATA junk;  
 DO count = 0 TO 6; 
   p_date=PUT(intnx('month',today(),0-count,'B'), monyy5.); 
   OUTPUT; 
 END; 
RUN; 
 
/* READ INTO MACRO VARIABLES */ 
DATA _NULL_; 
 SET junk; 
 cnt=CATS(PUT(count,$2.)); 
 CALL SYMPUT('getdate'|| cnt, p_date); 
RUN; 
 
 
/* FIND THE MOST RECENT ONE */ 
%MACRO getpricefile; 
 %GLOBAL myfile; 
 DATA _NULL_; 
 tester=0; /*an indicator variable*/ 
  %DO i = 0 %TO 6; 
    IF tester=0 THEN DO; 
      IF %SYSFUNC(exist(pricing.prices_&&getdate&i)) THEN DO; 
         CALL SYMPUT('myfile', “&&getdate&i”); 
         tester+1; 
     END; 
   END;  
  %END;   
 RUN;  
%MEND;  
   
%getpricefile   
 

   /* DELETE MACRO VARIABLES & CHECK THE LOG TO SEE THE CURRENT PRICE FILE */ 
%SYMDEL getdate6 getdate5 
        getdate4 getdate3  
        getdate2 getdate1  
        getdate0; 
 
%PUT _user_; 

Coders' CornerSAS Global Forum 2010

 



10 
 

Once the need for the macro variables has passed, it’s best to eliminate them and clean up the global macro table.  
The macro variable we need, &myfile, will be the only one that remains. 

 
 
Contents of “Junk”: 
 
COUNT      p_date 

0   SEP09 
1   AUG09 
2   JUL09 
3   JUN09 
4   MAY09 
5   APR09 
6   MAR09 

 
 
Contents of log from %PUT _USER after _NULL_ data step: 
 
MACRO VARIABLE  VALUE 
getdate0   SEP09 
getdate1   AUG09 
getdate2   JUL09 
getdate3   JUN09 
getdate4   MAY09 
getdate5   APR09 
getdate6   MAR09 
 
 
Contents of log from %PUT _USER after macro getpricefile: 
 
MACRO VARIABLE  VALUE 
myfile   JUL09 /* (the most recent file) */ 
 
 
  

Coders' CornerSAS Global Forum 2010

 



11 
 

CONCLUSION 
Automated date macro variables can greatly simplify running routine reports.  By creating a standard naming 
convention, the specific date references and date formats will be easily understood by everyone that uses the scripts.  
Automating the scripts will reduce errors and require less maintenance time.  Automated dates can be used to find 
files created by other users, and simplify running reports of multiple months of data.  Fully automated scripts can be 
kicked off remotely at pre-designated times each month, eliminating the need to even touch the program.             
     

REFERENCES 

• SAS Institute Inc. 2009. SAS® 9.2 Language Reference: Dictionary, Second Edition.  Cary, NC:  SAS 
Institute Inc. 

• SAS Institute inc. 2009.  Base SAS® 9.2 Procedures Guide.  Cary, NC:  SAS Institute Inc. 

• SAS Institute inc. 2009.  SAS® Macro Programming:  Advanced Topics.  Cary, NC:  SAS Institute Inc. 

 

ACKNOWLEDGMENTS  
Our thanks go out to Rob McAfee and Mark Jordan from SAS, who helped us on how to use macros to find files and 
directories. 

CONTACT INFORMATION 
Your comments and questions are valued and encouraged. Contact the authors at: 

Name: John Simeoni 
Enterprise: Defense Logistics Agency; J3/4-DORRA 
Address: 8000 Jefferson Davis Hwy 
City, State ZIP: Richmond, VA 23474 
Work Phone: (804) 279-2474 
Fax: (804) 279-2292 
E-mail: john.simeoni@dla.mil 
 
Name: Dikki Coy 
Enterprise: Defense Logistics Agency; J3/4-DORRA 
Address: 8000 Jefferson Davis Hwy 
City, State ZIP: Richmond, VA 23474 
Work Phone: (804) 279-5491 
Fax: (804) 279-2292 
E-mail: dikki.coy@dla.mil 
 
 
 
 

SAS and all other SAS Institute Inc. product or service names are registered trademarks or trademarks of SAS 
Institute Inc. in the USA and other countries. ® indicates USA registration.  

Other brand and product names are trademarks of their respective companies.  

Coders' CornerSAS Global Forum 2010

 

mailto:john.simeoni@dla.mil�
mailto:dikki.coy@dla.mil�

	2010 Table of Contents



