
Paper 101-2010

Using PROC SQL to Summarize and Transpose Data
Kevin Chung, Fannie Mae, Washington DC

ABSTRACT
Do you need to create a SAS data set using SUMMARY and TRANSPOSE procedures? Do you want to replace the
SUMMARY and TRANSPOSE procedures with a SQL script which is easy to maintain and extend? If your answer is
yes, then the PROC SQL tips provided in this paper would be very helpful to improve your data processing routine.
This paper demonstrates how to use one single SQL CREATE TABLE statement to perform the count, summarize,
and transpose data. The purpose of this paper is to provide an alternative way to manipulate data more efficiently
than using traditional methods such as data step, SUMMARY and TRANSPOSE procedures. By using PROC SQL,
you can eliminate the use of data steps, proc SUMMARY and TRANSPOSE steps. Since there is a pattern when you
use SQL method, you can convert the query to a macro easily. The intended audience is the intermediate SAS users
with good knowledge of Base SAS.

INTRODUCTION
The major strategy of the SQL procedure demonstrated here is to use SAS SUM function with logical expression to
determine which row to select. Suppose we need to check if the variable TYPE is 3. The expression 1-
abs(sign(TYPE-3)) used in reference [1] allows you to evaluate the condition as TRUE or FALSE. The nice thing
of the SAS logical expression is to simply use (TYPE=3) to evaluate the TRUE or FALSE; therefore, it’s very easy to
be plugged into the SQL statement. This functionality presents a convenient way to summarize data into specific
buckets. Most of the data as illustrated by the tables below can be created by REPORT procedure with OUT= option.
If you need to create a report with summary and transposition of the variables, the TABULATE and REPORT
procedures might be a convenient approach to simplify steps and improve efficiency. This paper is very useful for
those SAS users who need to create data sets using data steps as well as the SUMMARY and TRANSPOSE
procedures. Four examples are given below for different scenarios and each example has more than one way to
reach the same results.

EXAMPLE 1:
How to create a data set with the loan count and loan amount like the following output? You can use TABULATE
procedure to generate the following report easily. But we need to create an intermediate SAS data set which will be
used by subsequent steps.

aqsn_dt

DC_Count

DC_Sum

MD_Count

MD_Sum

VA_Count

VA_Sum

201001 4 890000 2 248000 1 118000

201002 1 153000 5 1078000 1 232000

201003 2 425000 1 86000 3 708000

Create the input data set.

data loans;
 input aqsn_dt :mmddyy10. state :$2. product :$1. upb @@;
 format aqsn_dt yymmn6.;
cards;
01/01/2010 MD A 124000 02/01/2010 DC A 153000 03/01/2010 VA B 159000
01/01/2010 DC B 182000 02/01/2010 MD A 92000 03/01/2010 VA A 133000
01/01/2010 VA A 118000 02/01/2010 MD B 160000 03/01/2010 DC A 203000
01/01/2010 DC A 219000 02/01/2010 MD A 255000 03/01/2010 MD B 86000
01/01/2010 DC B 227000 02/01/2010 MD A 319000 03/01/2010 VA A 416000
01/01/2010 MD A 124000 02/01/2010 VA A 232000 03/01/2010 DC A 222000
01/01/2010 DC B 262000 02/01/2010 MD B 252000
;

1

Coders' CornerSAS Global Forum 2010

Let’s start with the traditional method using SUMMARY procedure first.

/* Traditional method */
proc summary data=loans nway;
 class aqsn_dt state;
 var upb;
 output out=out1(drop=_:)
 N=Count sum=UPB;
 format aqsn_dt yymmn6.;
run;

Obs aqsn_dt state Count UPB

 1 201001 DC 4 890000
 2 201001 MD 2 248000
 3 201001 VA 1 118000
 4 201002 DC 1 153000
 5 201002 MD 5 1078000
 6 201002 VA 1 232000
 7 201003 DC 2 425000
 8 201003 MD 1 86000
 9 201003 VA 3 708000

The second step is to apply the TRANSPOSE procedure on the variable Count and UPB (UnPaid Balance). Since
two variables were transposed, two rows were generated with each aqsn_dt/state combination. The added variable
NAME can be used to identify which original variable in the input data set the value originates. An intermediate
data step is required to combine the state and _NAME_ as one new variable IDVAR, which will be used by the
second TRANSPOSE procedure as the variable name.

proc transpose data=out1
 out=out2;
 by aqsn_dt state;
 var Count upb;
run;

data out2;
 set out2;
 idvar=state||'_'||
 name;
 drop state _name_;
run;

Obs aqsn_dt state _NAME_ COL1

 1 201001 DC Count 4
 2 201001 DC UPB 890000
 3 201001 MD Count 2
 4 201001 MD UPB 248000
 5 201001 VA Count 1
 6 201001 VA UPB 118000
 7 201002 DC Count 1
 8 201002 DC UPB 153000
 9 201002 MD Count 5
 10 201002 MD UPB 1078000
 11 201002 VA Count 1
 12 201002 VA UPB 232000
 13 201003 DC Count 2
 14 201003 DC UPB 425000
 15 201003 MD Count 1
 16 201003 MD UPB 86000
 17 201003 VA Count 3
 18 201003 VA UPB 708000

Obs aqsn_dt COL1 idvar

 1 201001 4 DC_Count
 2 201001 890000 DC_UPB
 3 201001 2 MD_Count
 4 201001 248000 MD_UPB
 5 201001 1 VA_Count
 6 201001 118000 VA_UPB
 7 201002 1 DC_Count
 8 201002 153000 DC_UPB
 9 201002 5 MD_Count
 10 201002 1078000 MD_UPB
 11 201002 1 VA_Count
 12 201002 232000 VA_UPB
 13 201003 2 DC_Count
 14 201003 425000 DC_UPB
 15 201003 1 MD_Count
 16 201003 86000 MD_UPB
 17 201003 3 VA_Count
 18 201003 708000 VA_UPB

A second TRANSPOSE procedure was applied with the IDVAR value as the new variable name for each
corresponding COL1 and the output OUT3 is the data set we want.

proc transpose data=out2
 out=out3(drop=_name_);
 by aqsn_dt;
 id idvar;
 var col1;
run;

Obs aqsn_dt DC_Count DC_UPB MD_Count MD_UPB VA_Count VA_UPB

 1 201001 4 890000 2 248000 1 118000
 2 201002 1 153000 5 1078000 1 232000
 3 201003 2 425000 1 86000 3 708000

The alternative way is to use a data step with two dimentional array to perform the summary and transposition
operations and create the identical data set. The example below is a hard-coded version because it’s easy for
illustration. Since the BY-group processing will be used in the data step, the input data set LOANS must be sorted by
AQSN_DT and STATE. Let’s go over the process for AQSN_DT=201001 and see how the summary and
transposition operations are performed in the data step. At , the field r represents the nth state and it’s reset to 0 at
the first obs of the primary BY-variable AQSN_DT. Then r increased by 1 at the first obs of the secondary By-variable
STATE at . The summary operation is performed at  and . A 3x2 array A is declared at  to hold the cumulative
values from  and . Step  and  transpose a two dimentional array to a one dimentional array when the data
step reaches the last obs of the 201001 group. The value 3 in DO loop is the number of distinct STATE. The entire
process repeats for AQSN_DT=201002 and 201003.

2

Coders' CornerSAS Global Forum 2010

/* Data step method */
proc sort data=loans; by aqsn_dt state; run;
data one;
 set loans;
 by aqsn_dt state;
 array out(*) DC_Count DC_UPB MD_Count
 MD_UPB VA_Count VA_UPB;
 array a(3,2); 

 if first.aqsn_dt then do;
 r=0; 
 call missing(of a(*));
 end;
 if first.state then r+1; 
 a(r,1)+1; 
 a(r,2)+UPB; 

 if last.aqsn_dt then do;
 do i=1 to 3;
 out(2*i-1)=a(i,1); 
 out(2*i)=a(i,2); 
 end;
 output;
 end;
 keep aqsn_dt DC_Count DC_UPB MD_Count
 MD_UPB VA_Count VA_UPB;
run;

Partial output of LOANS data set

Obs aqsn_dt state upb

 1 201001 DC 182000
 2 201001 DC 219000
 3 201001 DC 227000
 4 201001 DC 262000
 5 201001 MD 124000
 6 201001 MD 124000
 7 201001 VA 118000

Values stored in array A at  and  for 201001

(1,1)
 4

(1,2)
 890000

(2,1)
 2

(2,2)
 248000

(3,1)
 1

(3,2)
 118000

 The step  and  transpose a two dimentional array to a one dimentional array.

DC_Count DC_UPB MD_Count MD_UPB VA_Count VA_UPB

(1,1)  (1)

 4

(1,2)  (2)

 890000

(2,1)  (3)

 2

(2,2)  (4)

 248000

(3,1)  (5)

 1

(3,2)  (6)

 118000

The above data step method might be difficult to understand for SAS beginners. Let’s take a look at the following
SQL method and see how easy the summary and transposition operations performed in a single SQL statement. The
SQL procedure does not require the input data set to be sorted. How does this SQL statement work? Suppose the
first obs is read with AQSN_DT=200901. The logical expression, state=’MD’ is evaluated as TRUE and returns 1
only if the obs contains the value ‘MD’ in variable STATE. So, 1 contributes to MD_Count and UPB is added to
MD_Sum at . Everything else gets 0, i.e., STATE=’DC’ and STATE=’VA’ at  and  are evaluated as FALSE and
returns 0. The next obs is read with AQSN_DT=201002 and STATE=’DC’, DC_Count is increased by 1 and UPB is
added to DC_Sum at . The process keeps adding 1 to XX_Count and UPB to XX_Sum if the logical expression is
evaluated as TRUE for STATE=’XX’. Since GROUP BY clause is specified, the data set is created with six fields for
each month. You might ask one question, since we always use select count(*) … SQL statement to count the
number of obs that meets a particular condition, why not COUNT(state=’DC’)? The answer is the SUM function is
used to add up each TRUE (1) value from those observations that meet the condition specified in the argument. If
COUNT function is used, the XX_Count is the same for each month because COUNT function adds up 1 for each
obs even a FALSE (0) value is evaluated.

/* SQL method */
proc sql;
 create table state_sum as
 select aqsn_dt format=yymmn6.,
 sum((state='DC')) as DC_Count, sum((state='DC')*upb) as DC_Sum, 
 sum((state='MD')) as MD_Count, sum((state='MD')*upb) as MD_Sum, 
 sum((state='VA')) as VA_Count, sum((state='VA')*upb) as VA_Sum 
 from loans
 group by aqsn_dt;
quit;

3

Coders' CornerSAS Global Forum 2010

How can I convert the SQL script to a macro?

%macro m1;
 proc sql noprint;
 select distinct state, count(distinct state)
 into :list separated by ' ',
 :n
 from loans;
 %let n=&n;
 %put list=&list n=&n;

 create table state_sum as
 select aqsn_dt format=yymmn6.
 %do i=1 %to &n;
 %let st=%scan(&list,&i);
 ,sum((state="&st")) as &st._Count, sum((state="&st")*upb) as &st._Sum
 %end;
 from loans
 group by aqsn_dt;
 quit;
%mend m1;
option mprint;
%m1

EXAMPLE 2:
Same input data as Example 1. How can I count the number of products under each state. This example
demonstrates the usage of more than one logical expression. The field DC_Prod_A stands for the count of
observations with STATE=’DC ’ and PRODUCT=’A ’.

DC_Prod_A

DC_Prod_B

MD_Prod_A

MD_Prod_B

VA_Prod_A

VA_Prod_B

201001 1 3 2 0 1 0

201002 1 0 3 2 1 0

201003 2 0 0 1 2 1

/* Traditional method */
proc summary data=loans nway completetypes;
 class aqsn_dt state product;
 var upb;
 output out=out1(drop=_:) N=Count;
 format aqsn_dt yymmn6.;
run;

proc transpose data=out1 out=out2;
 by aqsn_dt state product;
 var Count;
run;

data out2;
 set out2;
 idvar=state||'_Prod_'||product;
 drop state product _name_;
run;

proc transpose data=out2 out=out3(drop=_:);
 by aqsn_dt;
 var col1;
 id idvar;
run;

4

Coders' CornerSAS Global Forum 2010

/* SQL method */
proc sql;
 create table state_count as
 select aqsn_dt format=yymmn6.,
 sum((state='DC')*(product='A')) as DC_Prod_A, sum((state='DC')*(product='B')) as
DC_Prod_B,
 sum((state='MD')*(product='A')) as MD_Prod_A, sum((state='MD')*(product='B')) as
MD_Prod_B,
 sum((state='VA')*(product='A')) as VA_Prod_A, sum((state='VA')*(product='B')) as
VA_Prod_B
 from loans
 group by aqsn_dt;
quit;

How to convert the above statement to a macro?

%macro m2;
 proc sql noprint;
 select distinct state, count(distinct state)
 into :state_list separated by ' ',
 :n1
 from loans;

 select distinct product, count(distinct product)
 into :prdct_list separated by ' ',
 :n2
 from loans;
 %let n1=&n1;
 %let n2=&n2;

 create table state_sum as
 select aqsn_dt format=yymmn6.
 %do i=1 %to &n1;
 %let st=%scan(&state_list,&i);
 %do j=1 %to &n2;
 %let p=%scan(&prdct_list,&j);
 ,sum((state="&st")*(product="&p")*1) as &st._Prod_&p
 %end;
 %end;
 from loans
 group by aqsn_dt;
 quit;
%mend m2;
option mprint;
%m2

EXAMPLE 3:
A monthly report is created based on the sales amount and broken out by region. The report contains the total sales
amount for current month, previous month, quarter to date (QTD), and year to date (YTD). Assume the program is
run at the first day of the month. The hard-coded version below is used to illustrate the process.

Region

Curr

Prev

QTD

YTD

01 19200 29800 19200 119600

02 32200 31400 32200 107200

03 21500 41400 21500 109900

5

Coders' CornerSAS Global Forum 2010

Create the input data set.
The input data contains the sales data between January 2010 and April 2010.
data sales;
 dt0=mdy(1,1,2010);
 do id=101 to 300;
 date=dt0+ceil(ranuni(101)*120);
 n=ceil(ranuni(101)*3);
 if mod(n,3)=1 then region='01';
 else if mod(n,3)=2 then region='02';
 else region='03';
 amount=ceil(ranuni(101)*30)*100;;
 output;
 end;
 format date mmddyy10.;
 keep id date region amount;
run;

/* Traditional method */
data one;
 set sales;
 grp=4;
 output; /* YTD */

 if (month(date)=4) then do;
 grp=1;
 output; /* Current month */
 end;
 else if (month(date)=3) then do;
 grp=2;
 output; /* Previous month */
 end;

 if (qtr(date)=2) then do;
 grp=3;
 output; /* QTD */
 end;
run;

proc summary data=one nway;
 class region grp;
 var amount;
 output out=out1(drop=_:) sum=;
run;

proc transpose data=out1 out=out2(drop=_name_ rename=(_1=Curr _2=Prev _3=QTD _4=YTD));
 by region;
 var amount;
 id grp;
run;
proc print data=out2; run;

/* SQL method */
proc sql;
 create table monthly_rpt as
 select region,
 sum((month(date)=4)*amount) as Curr,
 sum((month(date)=3)*amount) as Prev,
 sum((qtr(date)=2)*amount) as QTD,
 sum(amount) as YTD
 from sales
 group by region;
quit;

6

Coders' CornerSAS Global Forum 2010

The following macro variables can be derived and used for all cases including the cross year case (current month is
January and previous month is December). For testing, the function TODAY() at  can be replaced with
mdy(5,1,2010).

/* Assume the program is run at 1st day of the month */
%let today=%sysfunc(today()); 
%let curr_month=%sysfunc(intnx(month,&today,-1),yymmn6.);
%let prev_month=%sysfunc(intnx(month,&today,-2),yymmn6.);
%let qtr=%sysfunc(ceil(%sysfunc(month(%sysfunc(intnx(month,&today,-1))))/3));

proc sql;
 select region,
 sum((put(date,yymmn6.)="&curr_month")*amount) as Curr,
 sum((put(date,yymmn6.)="&prev_month")*amount) as Prev,
 sum((qtr(date)=&qtr)*amount) as QTD,
 sum(amount) as YTD
 from sales
 group by region;
quit;

EXAMPLE 4:
How can I calculate the weighted average score with the credit as the weight. The purpose of this example is to
demonstrate the logical expression with missing checking. It’s nothing to do with the TRANSPOSE procedure. Let’s
create the test data first.

data scores;
 input ID @;
 do i=1 to 4;
 input score credit @@;
 output;
 end;
 drop i;
cards;
101 90 4 100 2 . 3 80 2
102 80 4 90 2 70 3 90 2
103 85 4 80 2 80 3 . 2
;

Obs ID score credit

 1 101 90 4
 2 101 100 2
 3 101 . 3
 4 101 80 2
 5 102 80 4
 6 102 90 2
 7 102 70 3
 8 102 90 2
 9 103 85 4
 10 103 80 2
 11 103 80 3
 12 103 . 2

 The values differ between _FREQ_ and Count for ID 101 and 103. This is because the missing analysis variable,
SCORE in this
 exampe, is ignored by SUMMARY procedure.

/* SUMMARY procedure */
proc summary data=scores nway;
 class ID;
 var score;
 weight credit;
 output out=wgt_score(drop=_type_)
 N=Count mean=;
run;

Obs ID _FREQ_ Count score

 1 101 4 3 90.0000
 2 102 4 4 80.9091
 3 103 4 3 82.2222

In order to get the same results as output wgt_score, the logical expression score ne . has to be applied to
exclude those observations with missing SCORE.

7

Coders' CornerSAS Global Forum 2010

8

/* SQL method */
proc sql;
 create table wgt_score2 as
 select ID, sum(score ne .) as Count, sum(score*credit)/sum((score ne .)*credit) as
score
 from scores
 group by ID;
quit;

CONCLUSION
Hope you have enjoyed the journey to the world of the SQL tip that deals with the summary and transposition.
Without understanding this tip, you still can use traditional ways to manipulate the data. Although data manipulation
can be a pain, using the SQL tip appropriately will make your life easier!

REFERENCES
[1] Optimizing Transact-SQL : Advanced Programming Techniques

by David Rozenshtein, Anatoly Abramovich, and Eugene Birger (October 1997)

[2] SAS OnlineDoc® 9.1.3, SAS Institute Inc. Cary, NC.
http://support.sas.com/onlinedoc/913/docMainpage.jsp

ACKNOWLEDGMENTS
I would like to thank my colleague Khaled Merhebi for his review and helpful comments on this paper.

Coders' Corner NESUG 2009

CONTACT INFORMATION
Your comments and questions are valued and encouraged. Feel free to contact the author at:

Kevin Chung
Fannie Mae
4000 Wisconsin Ave., NW
Mail Stop: 2H-4S/07
Washington, DC 20016
Work Phone: 202-752-1568
E-mail: kevin_chung@fanniemae.com
 kchung01@hotmail.com

You can download all source codes and presentation slides from www.kevin-chung.com/SGF2010

SAS and all other SAS Institute Inc. product or service names are registered trademarks or trademarks of SAS
Institute Inc. in the USA and other countries. ® indicates USA registration.
Other brand and product names are trademarks of their respective companies.

Coders' CornerSAS Global Forum 2010

http://support.sas.com/onlinedoc/913/docMainpage.jsp
mailto:kevin_chung@fanniemae.com
mailto:kchung01@hotmail.com
http://www.kevin-chung.com/SGF2010

	2010 Table of Contents

