
1

Paper 098-2010

SAS® State of Mind: A Guide to Learning SAS

for the Stata User
Sara Beck, Fred Hutchinson Cancer Research Center, Seattle, WA

ABSTRACT

This paper is meant to assist those already familiar with Stata with a goal of learning
SAS®. Due to the wealth of macros already available and support for SAS there are
many advantages to learning SAS over other analysis tools. Because SAS and Stata are
very similar, if one is already familiar with Stata and can adjust their mindset around the
conceptual differences, learning SAS can be done with relative ease. This paper
contains the following:

• A comparison between the way SAS and Stata store and modify data.

• Important differences in basic SAS and Stata syntax.

• Coded examples of simple tasks in both SAS and Stata.

• A brief introduction to the SAS windows interface.

The goal is to help the Stata user rely on their existing knowledge to more quickly and
easily learn SAS. This document is intended to cover only basic principles. Because
SAS and Stata do share so many similarities, this paper strives to highlight their
differences.

INTRODUCTION

SAS and Stata are fairly similar. On their basic levels everything that can be done in
Stata can be done in SAS. Once many of SAS’s nuances are learned, ‘programming’ in
SAS should be very intuitive to the Stata user.

DATA AND MEMORY

SAS and Stata treat datasets very differently. The three biggest differences are the
following:

• With Stata one is required to estimate how much memory will be used
when a data set is loaded. In SAS there is no such requirement.

• A single Stata command modifies the entire data set at one time, whereas
a SAS statement modifies a single observation or row at one time.

• Very much unlike Stata, SAS only keeps one observation in its memory at
any given moment of time. Because only one observation is in memory at
once, certain SAS algorithms will not produce the desired result without a
RETAIN statement.

Coders' CornerSAS Global Forum 2010

2

THE RETAIN STATEMENT

The RETAIN statement keeps information from the previous observation alive in SAS’s

memory. Because Stata has the entire dataset in memory, there is no need to use such
a RETAIN statement. The following example is a simple one where we sum the number

of cups of brewed coffee each coffee shop serves.

Example 1. Consider the data set CoffeeSales. Each observation is an entire

drink order made by a customer. A few observations might look something like
this:

ShopName Brew Mocha Latte Cappuccino Americano
Jitters 2 0 1 0 0
Jitters 1 0 0 0 0
Jitters 0 4 0 0 0
Jitters 0 0 1 0 0
Solid Grounds 0 0 0 1 0
Solid Grounds 0 0 0 0 1
Solid Grounds 0 0 0 0 1
Caffeine Cafe 0 1 0 0 0
Caffeine Cafe 1 0 0 0 0
Caffeine Cafe 1 0 0 0 0
Caffeine Cafe 0 0 1 0 0

We would like to calculate the cumulative total number of cups of brewed coffee sold at
all coffee shops in the data set. We will assume the datasets are already in memory.

First, to emphasize the importance of the RETAIN statement, lets examine SAS results

without its use. The code might look something like:

SAS without the RETAIN Statement

DATA CoffeeSalesNoRETAIN;

 SET CoffeeSales;

 TotalBrew=0;

 TotalBrew=SUM(TotalBrew,Brew);

RUN;

An approach like this may work in other software, but in SAS it does not. SAS does not
remember what value total brew had in the previous observation. Because SAS
processes each observation at a time, every time it sees a new row, SAS sets
TotalBrew to zero, and then adds that row’s value of Brew to it. The code above will

not yield the desired results as it has no memory of TotalBrew’s value before it.

Coders' CornerSAS Global Forum 2010

3

Coffee Sales No RETAIN

Total

 Obs ShopName Brew Mocha Latte Cappuccino Americano Brew

 1 Jitters 2 0 1 0 0 2

 2 Jitters 1 0 0 0 0 1

 3 Jitters 0 4 0 0 0 0

 4 Jitters 0 0 1 0 0 0

 5 Solid Grounds 0 0 0 1 0 0

 6 Solid Grounds 0 0 0 0 1 0

 7 Solid Grounds 0 0 0 0 1 0

 8 Caffeine Cafe 0 1 0 0 0 0

 9 Caffeine Cafe 1 0 0 0 0 1

 10 Caffeine Cafe 1 0 0 0 0 1

 11 Caffeine Cafe 0 0 1 0 0 0

As we can see from our results, as we expected, TotalBrew has the exact same

values as Brew. We’ll try again, but now with the RETAIN statement. Our code should

resemble the following:

SAS Stata

DATA CoffeeSales;

 SET CoffeeSales;

 RETAIN TotalBrew 0;

 TotalBrew=SUM(TotalBrew,Brew);

RUN;

gen TotalBrew=sum(Brew)

Our results are also much more favorable, as TotalBrew is now the cumulative sum of

Brew:

Coffee Sales

Total

 Obs ShopName Brew Mocha Latte Cappuccino Americano Brew

 1 Jitters 2 0 1 0 0 2

 2 Jitters 1 0 0 0 0 3

 3 Jitters 0 4 0 0 0 3

 4 Jitters 0 0 1 0 0 3

 5 Solid Grounds 0 0 0 1 0 3

 6 Solid Grounds 0 0 0 0 1 3

 7 Solid Grounds 0 0 0 0 1 3

 8 Caffeine Cafe 0 1 0 0 0 3

 9 Caffeine Cafe 1 0 0 0 0 4

 10 Caffeine Cafe 1 0 0 0 0 5

 11 Caffeine Cafe 0 0 1 0 0 5

In both SAS and Stata commands, TotalBrew for the jth observation represents the
sum of brewed cups of coffee for the 1 to jth observations. The very last observation in
both datasets would be the total number of brewed coffee cups sold.

Coders' CornerSAS Global Forum 2010

4

A LITTLE BIT OF SYNTAX

The syntax differences between SAS and Stata aren’t terribly different from syntax
differences between SAS and other mathematical software packages. Some of the more
common differences between SAS and Stata include the following:

NAMING

In Stata, variable names are case sensitive; variable names in SAS are not. Where
VaRiAbLe, variable and VARIABLE are all different variable names in Stata, in SAS
they are the same. SAS and Stata have similar naming rules otherwise:

• No blanks can appear within a SAS name.

• The underscore is the only special punctuation character permitted.

• Names can start with either _ or any letter A-Z, each following digit can

contain numbers, letters or the underscore.

• The allowed name length in SAS varies based on what is being named.
For variables, the maximum SAS name length is 32.

As in Stata, it’s good practice to avoid using the underscore as the first character in a
variable name, as there are many built in SAS variables starting with the underscore
(_ALL_, _N_, _ERROR_, etc.).

STARTING A NEW LINE

Semicolons delimit lines of code in SAS, whereas the invisible carriage return delimits
lines in Stata. This isn’t a shocking difference or anything remotely difficult to do;
however, one can easily avoid many future headaches and errors by being sure to
always include the semicolon at the end of the statement or line.

MISSING VALUES

Very much like Stata, missing values in SAS are denoted as a period (“.”) when numeric
and as a blank space (“ ”) when character. SAS and Stata have the same missing
character expression. SAS and Stata are drastically different in how values of missing
values are evaluated. A missing numeric values in SAS represents the smallest number
possible, whereas in Stata it represented the largest possible value. There are options
for extended missing values in both software packages. SAS has a few additional
options for extended variables over Stata. The following table illustrates the differences
in the comparative values of missing numeric values.

Coders' CornerSAS Global Forum 2010

5

Table 1. Represented values of missing numbers

 SAS Stata
._ All non-missing numeric

values

Smallest

.

.

 .A (smallest)- .Z (largest)

Largest All non=missing numeric

values (including negative)

.A (smallest)- .Z

(largest)

Most of the time the representation of a missing value will make no difference. However,
when sorting or ordering a data set a certain way, it is wise to pay attention to the
represented value as that could impact the final sorted order. Another situation where
beginning programmers are prone to missing value related errors is with comparison
signs. It is easy to forget that missing values are still included by expressions like X<0,

as SAS considers missing values less than zero. When using statistical procedures it is
important to be aware of how SAS is handling the missing values.

OPERATORS

SAS has a bit more flexibility with operator syntax than Stata. Certain words can be used
in place of symbolic operators in SAS, whereas this is not the case in Stata. For example
in SAS, OR and | can be used to represent “or” in a line of code. In Stata, | is the only

valid way to do this. Another striking difference between the two packages is that in SAS
order does not matter when typing an operator. >=, => and gt all mean “greater than or

equal to” to SAS. SAS and Stata are also different in the way they reference groups of
variables. In SAS, date1-date5 is equivalent to:

date1 date2 date3 date4 date5.

In Stata, date1-date5 refers to all variables physically located between date1 and

date5 in the data set. When coding in Stata, blue* could be any of the following:

blue bluebook blueberry bluebird blue1.

The equivalent to this in SAS would be blue:. Any character or numeric can follow the
colon, or in the Stata case, the asterisk.

Coders' CornerSAS Global Forum 2010

6

Table 2. Differing Operators in SAS and Stata

SAS Meaning Stata

&, AND and &

^=, NE not equal to !=, ~=

|, or or |

=>,>=,ge greater than or equal to >=

=<,<=, le less than or equal to <=

>, gt greater than >

< less than <

** exponent ^

prefix: varying characters after
prefix

prefix*

CONDITIONAL LOGIC

The most marked difference between SAS and Stata in terms of conditional statements
is order. In SAS we have a conditional, and then a statement, whereas the order is the
other way around for Stata conditional lines. An example of the difference between how
conditional statements are written in SAS and Stata follows. When making a conditional
equality comparison Stata requires two equals signs (==). SAS only requires one equal
sign.

When writing code, it can be easy to forget that SAS processes commands one
observation at a time. Conditional statements can be especially prone to this error in
thinking.

Example 2. Consider the data from the example above with the coffee shops. This time,
we’d like to identify and create a new variable that indicates whether or not a customer
ordered any espresso beverages at all. We’ll construct a new variable called Espresso,
which will have a value of 1 when at least one espresso beverage was purchased and 0
otherwise. We will again assume that both datasets are already in memory.

Stata

gen Espresso=0

replace Espresso=1 if Mocha >= 1 | Latte >= 1 | Capuccino >=1 | Americano>=1

SAS

DATA CoffeeSales;

 SET CoffeeSales;

 Espresso=0;

 IF Mocha ge 1 OR Latte ge 1 OR Americano ge 1 THEN Espresso=1;

RUN;

Coders' CornerSAS Global Forum 2010

7

Figure 1. SAS interface upon opening.

Also unlike Stata, SAS does not require replace or generate commands to set

variables. In SAS variables can be set or changed by writing a simple statement stating
what a variable will now be equal to.

SAS VERSUS STATA WINDOWS INTERFACE

When initially opening SAS, a window similar to Figure 1 should appear. Although this
may look quite a bit different than Stata’s interface, it is not so conceptually different. The
initial SAS interface contains the following five windows: Explorer, Results, Log, Editor,
and Output. Upon opening Stata, you may remember the windows interface has four
windows: Review, Variables, Results and Command.

EXPLORER WINDOW

Rather than list the variables in memory, the SAS explorer window helps explore the
data set environments. Here you can open the libraries to see the organization of data
sets. Additional permanent libraries can be set by the user. Data sets in the work library
are temporary and will no longer exist once the current SAS session ends. In Figure 1,
SAS explorer window is the tall rectangular window furthest to the left.

Coders' CornerSAS Global Forum 2010

8

RESULTS WINDOW

Whenever a SAS procedure creates output, an entry is added to the results window. The
results window is simply an indexed list of SAS output.The results window is under the
explorer window in Figure 1, and can be accessed by clicking the tab on the bottom of
the explorer window.

EDITOR WINDOW

The SAS Editor window is similar to the Command window in Stata. Frequently Stata do-
files are executed in the command window. Do-files are text files that contain many Stata
commands. In this sense, macro statements in SAS are comparable to do-files in Stata.
SAS Macro language is much too large of a topic to be touched in this paper. Multiple
data steps, procedures, or macros can be written and processed after running the code
once. In Figure 1, the editor window is located at the bottom right.

OUTPUT WINDOW

The SAS output window is really no different that the Stata results window. The output
window simple displays results from SAS code run in the editor. The output window does
not always display results after running code. The output window is layered behind the
log and editor windows in Figure 1. Information is not always displayed in the output
window after code is run. For instance, if a program simply modifies a data set, nothing
will appear in the output window. Information will appear in the output window after
running commands that return values.1

LOG WINDOW

The log in SAS provides important information about the current SAS session. Using the
log is incredibly important in quality control and ensuring SAS code works the way it is
intended. Most messages in the SAS log come in the following forms: ERROR,
WARNING and NOTE.

ERRORS
When there’s an error message in the log it should be very obvious, because
your code probably didn’t run a data step or procedure due to the nature of the
error. SAS errors appear in a dark red color in the log.

WARNINGS
SAS will still complete a job despite warnings. Many times warnings are very
harmless, but fairly often something strange or unexpected happened. Because
there is great potential for the thing that triggered the warning to wreck havoc on

1
 The listing ODS destination must also be turned on (as per the default setting) for results to appear in the output

window. This is not important to the beginning SAS programmer, but it is something to be aware of.

Coders' CornerSAS Global Forum 2010

9

your data, it is important to confirm that the warning’s message says something
expected and appropriate. The default color for warnings in the SAS log is green.

NOTES
Notes usually contain information about what SAS procedure was used, or
information about the dataset being manipulated or how long it took. More simply
put, notes inform the uses of their job’s status. Some of the information found in
notes -- such as the number of variables or observations read from a data set
can be very useful in quality control and debugging programs. In the SAS log the
default color for notes is medium blue.

CONCLUSION

SAS and Stata are really not that different. SAS is an incredibly useful tool for analysis
and data management. Once one already knows how to use Stata, one only needs to
devote a little time to practice SAS, and one will be able to ‘program’ in SAS everything
they knew how to ‘do’ in Stata.

REFERENCE

SAS Institute Inc. SAS 9.2 Language Reference: Concepts, Order of Missing Values
Cary, NC: SAS Institute Inc. 2010.

ACKNOWLEDGEMENTS

The author would like to thank Nate Derby for his valuable advice and guidance that
contributed to quality of this paper. Additional thanks to Stata users at Fred Hutchinson
Cancer Research Center for their input regarding difficulties learning SAS.

CONTACT INFORMATION

Your comments and questions are valued and encouraged. Contact the author at:

Sara Beck
Fred Hutchinson Cancer Research Center
sarjbeck@gmail.com

SAS and all other SAS Institute Inc. product or service names are registered trademarks
or trademarks of SAS Institute Inc. in the USA and other countries. ® indicates USA
registration.

Other brand and product names are trademarks of their respective companies.

Coders' CornerSAS Global Forum 2010

	2010 Table of Contents

