
 1

Paper 085-2010

Tabular Reporting Data Standard

Frederick Cieri, FACtotum Data Consulting, LLC., Wynnewood, PA, USA

ABSTRACT
This paper demonstrates a reporting data standard to map a tabular output table to a single standardized data set.
This process can significantly standardize program code, increase readability, help reduce validation work, help
facilitate future revisions, and provide a data standard to build a reporting application. Due to different table output
formats, report programs usually contain many different temporary data sets structures to convert the raw extracted
data into a form usable to macros and procedures to create tabular output tables. This complicates future revisions
and validation as different coding styles and temporary data set formats make reading program code from various
programmers difficult. In most cases, the raw data comes from an administered database with formatting standards,
but the data step transformations to produce report output differ from programmer to programmer. Summarized data
sets can be transformed into a single standardized reporting data standard to be fed into a reporting application.
Examples are given mapping three output tables to the reporting data standard termed the Table data set. SAS®
code intended for those familiar with DATA steps, PROC SORT, and PROC TRANSPOSE is presented to show the
ease in converting a Table data set to an output table format. A program diagram will be displayed to demonstrate
how the tabular reporting standard can standardize a majority of the report code.

INTRODUCTION
In order to reduce the time to develop and maintain reports in a large programming group, a new design to
standardize the code in a group of standard reports was needed. The task was difficult as the existing reports varied
in style and syntax. Some reports were mostly hard coded while others used a large amount of macros. Some
reports were done in house while other reports were outsourced. Department programming standards, standard
operating procedures, and a large macro library were in place, but this did not solve the problem of standardizing the
report code. Since a programming studio type application was not a possibility due to the cost, a solution using only
BASE SAS was needed. The solution was to standardize the transaction data structures within a program by
mapping the tabular output report to a data set. Standardizing the temporary data sets gave the benefits of a
predictable data format, variable names, and variable types. The solution grew from the report application where
the parameters and the input data were in databases. Using the same database framework on the temporary data sets
within the report gave similar benefits of data uniformity, data edit checks, and utility creation. The tabular report
output defined the tabular reporting data structure of the temporary data sets in a uniform way. Once the tabular
reporting data structure was adopted then utilities were developed to aid with counts, percents, descriptive statistics,
tabular reports, and many other derivations.

TABLE DATA SET CONCEPT AND EXAMPLES
To understand where to apply the Table data set process, let us look at the following generalized report table
program flow with estimated percentages of the make up of each step.

1. (10%) Load parameters.
2. (20%) Extract and manipulate raw data .
3. (30%) Summarize data.
4. (20%) Data set transformations in preparation for output table.
5. (20%) Output table.

This paper concerns step 4 or the work involved to transform the summarized data based on the report requirements
to a form ready for the output table code. Step 1 of load parameters consists of numerous options from the less
complicated %let macro variables, macro parameters, and %window to the more complicated graphical user
interfaces. Steps 2 of extraction and 3 of summarized data are difficult to standardize because of changing database
structures and report requirements. Step 5 concerning the output table changes as well over time based on the
format (doc, rtf, Word, etc.) of the output and the procedures (DATA _NULL_, PROC CONTENTS, ods, etc.) used
to create the output. Spending the time to standardize step 4 can yield significant savings in resources and increase
productivity because this code can more easily be reused as the database, requirements, and output procedures
change.

Coders' CornerSAS Global Forum 2010

 2

The following examples give an introductory sampling of
the transformations needed to map a tabular output table
to a standardized data set. Please look at Figure 1 with
Output Table 1 with 3 columns. To transform this into a
standardized data set, think of each cell in the body of the
table as a multi-dimensional mapping of the header of
‘Group A’ and ‘Group B’ and the fixed column of
‘Ages:’. The mapping in the body of the table of cell
‘123’ would be (‘0-30’, ’Group A’, ‘123’), and of cell
‘567’ would be (‘Over 60, ’Group B’, ‘567’).

To further demonstrate this idea, the Table data set for Output Table 1 below in figure 2 maps all nine entries in the
body of the table into the cell column. The coordinate mapping system is expanded now to have numerical ordering
columns row_order_1 to preserve the row ordering of the left most fixed column and coded_1 to preserve the header
ordering. The cell coordinates are in the form of row order, fixed text, coded header order, decode header text, cell
value. Now the cell ‘123’ has the coordinates (2,’0-30’, 1,’Group A’,’123’) where 2 is a numerical row ordering
value from variable row_order_1, ’0-30’ is the fixed term from variable fixed_1, 1 is the numerical header ordering
value from variable coded_1, ’Group A’ is the text to decode the header variable from variable decode_1, and ‘123’
is the cell value in the cell variable. Note the columns ‘Group A’ and ‘Group B’ from Table 1 are now stacked upon
each other. There are nine rows in the data set for the eight body cell entries and one entry for the 'Ages: ' header

text above the fixed_1 column. The
‘_header_’ term in the fixed_1 and cell
column is to flag the entry for the header
above the fixed column. To perform the
standardization, the programmer is to
write code to take the summarized data
and make the Table data set for Output
Table 1. Using data steps, macros and
procedures, the Table data set would then
be used to construct the Output Table.

Expanding upon Table 1 in figure 1, figure 3 with
Output Table 2 adds a ‘Group C’ column. The data set
built from this table should now have 13 rows with 12
rows for the body of the table and one row for the
header above the fixed column. The column ‘Ages:’ is
termed fixed because with the output table design
displayed the number of ‘Group’ columns are expected
to change, but the ‘Ages:’ column is fixed to one
column.

 fixed_1
 Figure 1: Output Table 1
coded_1, decode_1

Ages: Group A Group B

0-30 123 690
31-60 400 1290
Over 60 230 567

Figure 2: Table Data set for Output Table 1
Obs. row_order_1 fixed_1 coded_1 decode_1 cell
1 . _header_ 0 Ages: _header_
2 1 1 Group A
3 2 0-30 1 Group A 123
4 3 31-60 1 Group A 400
5 4 Over 60 1 Group A 230
6 1 2 Group B
7 2 0-30 2 Group B 690
8 3 31-60 2 Group B 1290
9 4 Over 60 2 Group B 567

row_order_1, fixed_1 coded_1, decode_1
 Figure 3: Output Table 2
Ages: Group A Group B Group C

0-30 123 690 30
31-60 400 1290 52
Over 60 230 567 400

Coders' CornerSAS Global Forum 2010

 3

In Figure 4, the Table data set for
Output Table 2 has the same nine rows
as in the data set for Output Table 1.
Rows 10-13 reflect the additions due
to the new ‘Group C’ column. By
stacking entries with a vertical data set
design, the Table data set design is
flexible and can easily accommodate
new columns added to the output table.
This further demonstrates how a single
standardized data set can map different
tabular output tables.

Building upon Output Table 2 in figure 3, figure 5 with Output Table 3 shown below has a more complex three row
header where each ‘Group’ has an overall count in header row 2 as well as counts and percents in header row 3. The
data set mapped to this table will have 25 rows for the 24 entries in the body of the table and one row to capture the
‘Ages:’ header column. Output Tables 1 and 2 had a one row header with variables coded_1 and decode_1 to map
the header. Since Output Table 3 has a three row header, three pairs of coded and decode variables displayed in blue
below will be needed to map the header entries.

 row_order_1, fixed_1
 Figure 5: Output Table 3

coded_1, decode_1→ Group A Group B Group C

coded_2, decode_2→ (N=753) (N=2547) (N=482)

coded_3, decode_3→ Ages: n (%) n (%) n (%)

 0-30 123 (16.3) 690 (27.1) 30 (6.2)

 31-60 400 (53.1) 1290 (50.6) 52 (10.8)

 Over 60 230 (30.5) 567 (22.3) 400 (83)

The Table data set for Output Table 3 is shown below in figure 6. The coded_1 decode_1 pair for header row 1 has
the same values as the data sets for Output Tables 1 and 2. For header row 2, coded_2 always equals 1 because
there is a one to one match with the ‘Group’ entries. For header row 3, coded_3 has values 1 and 2 to map the
decode_3 values of ‘n’ and ‘%’. To create the column ordering to transform the Data set in Table 3 to the Output
Table 3 table format, the trans_id column is derived by the programmer from the ascending order of the unique
values of the coded variables. Please review the Output Table 3 data set below to further understand the mapping.

 Figure 4: Table Data set for Output Table 2
Obs. row_order_1 fixed_1 coded_1 decode_1 cell
1 . _header_ 0 Ages: _header_
2 1 1 Group A
3 2 0-30 1 Group A 123
4 3 31-60 1 Group A 400
5 4 Over 60 1 Group A 230
6 1 2 Group B
7 2 0-30 2 Group B 690
8 3 31-60 2 Group B 1290
9 4 Over 60 2 Group B 567
10 1 3 Group C
11 2 0-30 3 Group C 30
12 3 31-60 3 Group C 52
13 4 Over 60 3 Group C 400

Coders' CornerSAS Global Forum 2010

 4

Figure 6: Table Data set for Output Table 3
Obs. row_order_1 fixed_1 coded_1 decode_1 coded_2 decode_2 coded_3 decode_3 cell trans_id

1 . _header_ 0 0 0 Ages: _header_ 1

 1 1 Group A 1 (N=753) 1 n 2

3 2 0-30 1 Group A 1 (N=753) 1 n 123 2

4 3 31-60 1 Group A 1 (N=753) 1 n 400 2

5 4 Over 60 1 Group A 1 (N=753) 1 n 230 2

6 1 1 Group A 1 (N=753) 2 (%) 3

7 2 0-30 1 Group A 1 (N=753) 2 (%) (16.3) 3

8 3 31-60 1 Group A 1 (N=753) 2 (%) (53.1) 3

9 4 Over 60 1 Group A 1 (N=753) 2 (%) (30.5) 3

10 1 2 Group B 1 (N=2547) 1 n 4

11 2 0-30 2 Group B 1 (N=2547) 1 n 690 4

12 3 31-60 2 Group B 1 (N=2547) 1 n 1290 4

13 4 Over 60 2 Group B 1 (N=2547) 1 n 567 4

14 1 2 Group B 1 (N=2547) 2 (%) 5

15 2 0-30 2 Group B 1 (N=2547) 2 (%) (27.1) 5

16 3 31-60 2 Group B 1 (N=2547) 2 (%) (50.6) 5

17 4 Over 60 2 Group B 1 (N=2547) 2 (%) (22.3) 5

18 1 3 Group C 1 (N=482) 1 n 6

19 2 0-30 3 Group C 1 (N=482) 1 n 30 6

20 3 31-60 3 Group C 1 (N=482) 1 n 52 6

21 4 Over 60 3 Group C 1 (N=482) 1 n 400 6

22 1 3 Group C 1 (N=482) 2 (%) 7

23 2 0-30 3 Group C 1 (N=482) 2 (%) (6.2) 7

24 3 31-60 3 Group C 1 (N=482) 2 (%) (10.8) 7

25 4 Over 60 3 Group C 1 (N=482) 2 (%) (83) 7

SAS CODE TO CONVERT THE TABLE DATA SET
Since a single standardized data structure holds all of the information to map the three different tabular outputs
above, the SAS code to transform the Table data set to a tabular output has a similar generalized format. The
programming code and print outs to transform the Table data set for Output Table 3 to Output Table 3 are presented
below.

 %*** Transform the headers. ****;

proc sort data=table_3 out=table_3_pre_header nodupkey;
 by coded_1 coded_2 coded_3;
run;

Proc print of Data= table_3_pre_header
Obs coded_1 decode_1 coded_2 decode_2 coded_3 decode_3

 1 0 0 0 Ages:
 2 1 Group A 1 (753) 1 n
 3 1 Group A 1 (753) 2 (%)
 4 2 Group B 1 (2547) 1 n
 5 2 Group B 1 (2547) 2 (%)
 6 3 Group C 1 (482) 1 n
 7 3 Group C 1 (482) 2 (%)

Proc transpose data=table_3_pre_header out=table_3_header(drop=_name_) prefix=col_;
 var decode_1 decode_2 decode_3;
run;

Coders' CornerSAS Global Forum 2010

 5

Proc print of data=table_3_header
Obs col_1 col_2 col_3 col_4 col_5 col_6 col_7

 1 Group A Group A Group B Group B Group C Group C
 2 (753) (753) (2547) (2547) (482) (482)
 3 Ages: n (%) n (%) n (%)

%*** Transform the body. ****;
proc sort data=table_3 out=table_3_body_pre2;
 by row_order_1 trans_id;
 where cell ne '_header_';
run;

Proc transpose data=table_3_body_pre2 out=table_3_body(drop=_name_) prefix=col_;
 by row_order_1 fixed_1;
 var cell;
 id trans_id;
run;

Proc print of data=table_3_body
 row_
 Obs order_1 fixed_1 col_2 col_3 col_4 col_5 col_6 col_7

 1 1
 2 2 0-30 123 (16.3) 690 (27.1) 30 (6.2)
 3 3 31-60 400 (53.1) 1290 (50.6) 52 (10.8)
 4 4 over 60 230 (30.5) 567 (22.3) 400 (83.0)

 %*** Combine the header and body ****;

 data table_data_set_table_3;
 attrib row_order_1 length=8.
 col_1-col_7 length=$15.;
 set table_3_header
 table_3_body(rename=(fixed_1=col_1))
 ;
 run;

Proc print of data=table_data_set_table_3
 row_
 Obs order_1 col_1 col_2 col_3 col_4 col_5 col_6 col_7

 1 . Group A Group A Group B Group B Group C Group C
 2 . (753) (753) (2547) (2547) (482) (482)
 3 . Ages: n (%) n (%) n (%)
 4 1
 5 2 0-30 123 (16.3) 690 (27.1) 30 (6.2)
 6 3 31-60 400 (53.1) 1290 (50.6) 52 (10.8)
 7 4 over 60 230 (30.5) 567 (22.3) 400 (83.0)

With the Table data set properly defined, the code above can be generalized into a macro to handle numerous
dynamic cases for an unknown number of columns. For example, to transform the header, the key variables were
coded_1, coded_2 and coded_3 for the proc sort and decode_1, decode_2 and decode_3 for the PROC
TRANSPOSE. If a new table is to be created with a two row header then the table data set would have variables
coded_1, coded_2, decode_1 and decode_2. The macro would have to figure out the variable names in the table data
set with code using proc contents, data step functions, or sql dictionary. This derivation is not complicated because
the prefixes of the variables are predefined to 'coded_' and 'decode_'. To end the derivation, the macro substitutes
variables coded_1 and coded_2 for the proc sort and decode_1 and decode_2 for the proc transpose.

Coders' CornerSAS Global Forum 2010

 6

The three examples displayed are a starting point to demonstrate the Table data set approach. To map different table
output formats, additional row ordering, fixed, coded and decode columns would be added. If fixed columns or
header rows are added then the Table data set design expands horizontally. If new cell entries are added to the body
of the table or the header then the Table data set design expands vertically. Additional columns for formatting such
as alignment, formatting, page breaking, and other cases could also be required as well. The figure 7 example is
displayed below with columns for alignment, formatting, and page breaks.

Figure 7: Table Data set for Output Table 2 with formatting and row added for pagebreaking
Obs. row_order_1 fixed_1 coded_1 decode_1 cell align format pagebreak
1 . _header_ 0 Ages: _header_ L $25 1
2 1 1 Group A C $12. 1
3 2 0-30 1 Group A 123 C $12. 1
4 3 31-60 1 Group A 400 C $12. 1
5 4 Over 60 1 Group A 230 C $12. 1
6 1 2 Group B C $12. 1
7 2 0-30 2 Group B 690 C $12. 1
8 3 31-60 2 Group B 1290 C $12. 1
9 4 Over 60 2 Group B 567 C $12. 1
10 1 3 Group C C $12. 1
11 2 0-30 3 Group C 30 C $12. 1
12 3 31-60 3 Group C 52 C $12. 1
13 4 Over 60 3 Group C 400 C $12. 1
15 1 1 Group D C $12. 2
16 2 0-30 1 Group D 2 C $12. 2
17 3 31-60 2 Group D 8 C $12. 2

Additional work would also be needed on the transposed data set from the header and body as needed. All of these
additions are noted as foreseeable work that needs to done by the programmer. Even with the additional columns,
the core idea to define a single standardized Table data set structure to hold the tabular output is still maintained.

REPORT PROGRAM APPLICATION DIAGRAM
From the concepts section, the five steps of programming a report and are repeated below.

1. (10%) Load parameters.
2. (20%) Extract and manipulate raw data .
3. (30%) Summarize data.
4. (20%) Data set transformations in preparation for output table.
5. (20%) Output table.

Using the same steps, the standardization of the code can be maximized by using the tabular reporting data structure
in step 4 to create utilities for steps 3 and 5. The new five steps of programming would now look like the following:

1. (10%) Load parameters.
2. (20%) Extract and manipulate raw data .
3. (5%) Summarize data.
4. (60%) Data set transformations in preparation for output table.
5. (5%) Output table.

Using the steps to maximize the use of the tabular reporting data structure, Figure 8 below is a report application
diagram to explain the process to create the Output Table 2 example.

Coders' CornerSAS Global Forum 2010

 7

Figure 8: Report Application Diagram
Step 1: Load parameters
Use %let statements to initialize paths to the data and select a
report. A front end user interface could also be used.

Step 2: Extract and manipulate raw data
 2.1) Read in the raw data. The data could be from an
administered data base or adhoc input data sets.

Step 2: Extract and manipulate raw data
 2.2) Rename and create variables into tabular
reporting data standard form. Data
standardization starts at this point.

Step 3: Summarize data.
 3.1) Using the standard variable names from the data in step
2.2, create a utility macro to perform counts and summarize
into tabular reporting data standard form.

Step 3: Summarize data
3.2) The output of the macro would summarize
into tabular reporting data standard form.

Step 4: Data set transformations in
preparation for output table
Derive the cell variable from count and add
the header text above the fixed column in
the row where cell='_header_'.

Step 5: Output table.
 Use the tabular reporting data standard to create a utility macro
to create tabular output.

%let path=\\globaldrive\shareaccess;
%let project=projectXX;
%let case =caseYY;
%let report=agegroup;

id group_name group_order age
00001 Group A 1 6
00012 Group B 2 34
00345 Group C 3 5

id decode_1 coded_1 age row_order_1 fixed_1

00001 Group A 1 6 1 0-30
00012 Group B 2 34 2 31-60
00345 Group C 3 5 1 0-30

Counts Utility Macro

decode_1 coded_1 row_order_1 fixed_1 count

Group A 1 1 0-30 123
Group B 2 2 31-60 1290
Group C 3 1 0-30 30

decode_1 coded_1 row_order_1 fixed_1 cell
Ages: 0 . _header_ _header_

Group A 1 1 0-30 123
Group B 2 2 31-60 1290
Group C 3 1 0-30 30

Tabular Table Utility Macro

Coders' CornerSAS Global Forum 2010

 8

6. Output table.
7. Output table.

Step 5: Output table
Final Output.

Instead of starting the standardization at step 4, the diagram above shows data standardization starting in step 2 and
going through step 5. This approach maximizes the use of the tabular reporting data standard. With proper planning
and design, the tabular reporting data standard could encompass 60% to 80% of the program code.

BENEFITS
After programmers get beyond the learning curve of understanding the Table data set design, enhanced productivity
should be attained. Due to the single standardized data set design of the Table data set, the programming code and
data sets created should be more readable in the data transformation section prior to creating the output table. The
Table data set design can be rigorously documented leading to improved training materials. The Table data set
design is standardized which allows for fool proofing, edit checks, and data integrity checks. This means variable
names and types can be checked as well as the overall data structure. For example, the first row header text variable
or decode_1 must be present and must be character. Highly reusable macros can be developed to assist the
programmer in creating the Table data set transformations and in performing fool proof or edit checks. Likewise,
global macros can be developed to take the Table data set and create a data set or sets needed for the output table
section. As the output table section or step 5 of the previously presented program flow changes to handle output
table file format changes (doc, rtf, html, etc.), macro changes, or procedure changes, the Table data set section or
step 4 can for the most part stay the same. Since the Table data set is standardized with a predictable uniform
format, only the global macro that transforms the Table data set into a form readable to output table macros and
procedures needs to change. This saves time because instead of changing every report program only a global macro
needs to be updated. Implementing the tabular reporting data standard gives the benefit of programmers speaking
the same language when developing reports. For example, if two fixed columns are to be present in a report then the
character variables fixed_1 and fixed_2 must be present in the table data set. If a programmer views a Table data set
with the variable decode_4 then this means a four row header is present in the output table with decode_4 holding
the text for the fourth row of the header.

CONCLUSION
In three examples, this paper outlined a tabular reporting data standard to map a tabular output table into a data set.
This brings order and standardization to a signification amount of the data sets and code used to prepare the tabular
output table. Highly uniform code should improve validation efforts because reviewers will not have to understand
many different programming styles. Improving the readability of a report program, the Table data set design gives
the programmer a definable endpoint for the format of the data set prior to the output table code. The design
emphasized a highly viewable and uniform data set structure as opposed to heavy macro code. Leading to even more
standardization and productivity gains, the Table data set structure can be further extended to earlier steps of the
report program such as summarizing the extracted data into descriptive statistics, counts, and percentages. In order
to meet more advanced formatting needs, add additional columns to the design as needed to meet your programming
requirements.

row_order_1, fixed_1 coded_1, decode_1
 Output Table 2
Ages: Group A Group B Group C

0-30 123 690 30
31-60 400 1290 52
Over 60 230 567 400

Coders' CornerSAS Global Forum 2010

 9

ACKNOWLEDGEMENTS
The author would like to thank the following people who tested, vetted, and gave feedback on the Tabular Reporting
Data Standard. Barry Cohen, Girishanthy Krishnarajah, Mark Tumelty, Carl Herremans, Mary Varughese, Anil
Golla, Mei Dey, Jacek Krolikowski, and Eunice Ndungu.

CONTACT INFORMATION
Your comments and questions are valued and encouraged. Contact the author at:

Frederick Cieri
FACtotum Data Consulting, LLC
SAS Consultant, MS Statistics
304 Hathaway Lane
Wynnewood, PA 19096-1905
USA
610-658-2940
fecieri@yahoo.com

Please send an email to the author or go to sasCommunity.org in order to receive a detailed SAS program for the Output Table 3
example.

SAS and all other SAS Institute Inc. product or service names are registered trademarks or trademarks of SAS
Institute Inc. in the USA and other countries. ® indicates USA registration.
Other brand and product names are trademarks of their respective companies.

Coders' CornerSAS Global Forum 2010

	2010 Table of Contents

