SAS Global Forum 2010 Coders' Corner

Paper 054-2010

SAS 1-liners
Stephen Hunt, ICON Clinical Research, Redwood City, CA

ABSTRACT

In virtually all programming languages, code efficiency is a perpetual, though occasionally implicit, aspiration.
Terms used to describe programs or sections of programs as ‘elegant’, ‘slick’ or ‘'smooth’ insinuate an uncertain
boundary between art and science in programming. Code that performs correctly is one thing. Code that performs
correctly and manages to do so in a highly-efficient or unique manner ‘ups the ante’ by promoting interest and the
sharing of ideas in a way that ‘mundane’ code cannot. Those enamoured by code efficiency often find themselves
unable to resist approaching a programming problem by, paradoxically, using as little programming as is feasible.
To that end, this paper seeks to challenge both the beginning and experienced programmer alike to look for new
ways to accomplish routine SAS programming tasks as stylistically as is only humanly possible.

INTRODUCTION

SAS courses and texts on programming efficiency highlight at least 2 aspects: Code efficiency and processing
efficiency. Although these two are frequently complimentary of one another, this paper will focus on the former,
even if in some cases this appears in opposition to the latter. The concepts and examples in this paper generally
emphasize one criteria above all else in accomplishing a programming task: The fewest number of keystrokes
possible to complete the programming requirement. This isn’t at all however meant to suggest that such simplifying
criteria is optimal in all circumstances. Programmer discretion is advised.

DYNAMIC DENOMINATORS

Conditional clauses likely represent the single greatest inefficiency area in programming. Efficient programming
requires avoiding if/then/else statements at all cost. Our first example involves determining denominators as macro-
variables to be used in summary tables. A ‘condition-less’ technique is as follows:

proc freqg data=sasdata.adsl;
table trtlpn / out=trttots;
run;

data null ;
set trttots;

if trtlpn>.z then call symput(‘'n’ | |compress (trtlpn) ,compress (count)) ;
run;

In the above symput call, it doesn’t matter how many levels of trt1pn exist, as macro variables for n1, n2, ny... will
all be created driven by the available treatment levels in the data.

Once you're ready to use your treatment count macro variables to actually calculate percentages, a corresponding
one-line statement deploying a ‘resolve’ function can return your totals to you just as quickly and cleanly:

proc freq data=sasdata.adsl noprint;
table trtlpn*agegrpl / out=agecats;
run;

data agecats;
set agecats;

if trtlpn>.z then denom=resolve('&n'| |compress (trtlpn)) ;

percent=count/denom*100;
run;

Of course, if our denominator is used exclusively to create a percentage, the additional variable ‘denom’ above is
superfluous; thus, an even better approach would be...

if trtlpn>.z then percent=count/resolve('&n'| |compress (trtlpn))*100;

SAS Global Forum 2010 Coders' Corner

‘DUMMY’ TREATMENT CODE ASSIGNMENTS

Most of the time in clinical trials, programmers are ‘blinded’ to the actual treatment to be given to subjects. This
‘blinding’ persists during most of the tasks of TLG (table, listing, and graph) development. As such, it's useful to
create artificial treatment values to be used prior to unblinding. This can be accomplished relatively simply with the
following:

trtlpn=ceil (ranuni (0) *x) ; *** WHERE X CREATES X LEVELS OF TRTI1PN.

The only adjustment to the above necessary to create different treatment levels is the multiplier (x) itself (e.g., *2 for
2 levels, *3 for 3 levels, etc... Note that the above distribution provides approximately equal (50% each for 2, 33%
each for 3, etc..) dummy-treatment assignments. For studies with non-equal randomization schemes, variations on
the above will be required. For example, the code below distributes 3 groups at approximately 25%/50%/25%.

trtlpn=ceil (ranuni (0) *2) +ceil (ranuni (0) *2) -1;

REVERSING OR RE-ARRANGING VALUES

One of my favorite types of 1-liner conditional replacements involves reverse-coding. On many clinical
questionaires, some individual results are often required to contribute to a total scored in the opposite direction from
which they are collected (theoretically, this strategy helps to ensure internal validity through the voluminous
questionaire documents). As such, a common value reversal might look like this:

4->1
32>2
223
1>4

In applying this to programming, not only is a set of if-then statements a deplorable waste of keystrokes, if used
carelessly, it can produce results that are just plain wrong. Consider the following, which will not succeed in the
task of reverse coding:

if var=4 then var=1l;
if var=3 then var=2;
if var=2 then var=3;
if var=1 then var=4;

Of course, most programmers wouldn’t be foolish enough to leave an ‘else’ off the last 3 lines, but why not go with
a simple one-liner instead:

if var>.z then var=abs(5-var);

In this instance, the data-step may be at a disadvantage relative to PROC SQL (something I’'m never happy to
admit), because the number of levels of a variable can’t be determlned in a single line dynamically outside of SQL
(at least not to my knowledge), thus the above ‘5’ would require adjustment to ‘4’ (i.e., number of levels + 1) for a
question containing only 3 levels that requires reverse coding, etc... Fortunately, taking it further with SQL’s ‘distinct’
operator can allow the programmer to ignore the number of levels (carefully, to some extent... more below):

proc sql noprint;
create table d2 as select abs((count(distinct wvar)+1l)-var) as var from dl;
quit;

The shortcoming of the ‘dynamic’ SQL approach is that if any 1 level is entirely missing, the appropriate number of
levels won’t be passed into the count(distinct) statement. Thus, adding in an additional safeguard of the maximum
value of the levels can help out (assuming the maximum level isn’t one that is all missing, and that your levels are
all ordered, fixed-interval integers, the later of which is usual, the former of which is certainly not guaranteed):

proc sql noprint;

create table d2 as select abs{ceil ((max{var)+count(distinct wvar))/2+1)-var) as
var from dil;
quit;

SAS Global Forum 2010 Coders' Corner

Of course, code ‘switching’ can involve more intricate re-assemblies than mere reversal. In some cases, repeated
DMC deliverables require ‘shuffling’ of partially-unblinded (e.g., A, B, C, D) treatment codes in a different form for
each deliverable. For example:

*** RE-CODING TREATMENT IN THE FOLLOWING MANNER FOR JUN2009 DMC: (4=1, 3=2, 1=3,
2=4) .;
newtrt=abs (trtlpn- ((trtlpn<3) *-2) - ((trtlpn>2)*5));

STUDY ‘DAY’ CALCULATION

One of the most common calculations used across all types of programming is determining a relative ‘day’ based
on 2 date fields. In clinical trials, the initial ‘study day’ is generally considered to begin at either randomization or
dosing, thus assessments made prior to this starting point require a slight variation in the calculation in order to
preserve the typical ‘no day 0’ concept:

Study Day
-1 1 2 3 4
I I I I I

When it comes to calculating such, some programmers opt to bother with evalulating whether a visit date occurred
prior to or on/after randomization:

if visdt>=randdt>.z then stydy=visdt-randdt+1;
else stydy=visdt-randdt;

However, this is unnecessary, since a 1-liner will suffice:

if visdt>.z & randdt>.z then stydy=visdt-randdt+ (visdt>=randdt) ;

USING FORMATS INSTEAD OF CONDITIONAL CLAUSES

This is more a general suggestion than a specific one-liner, but still applies because it can contribute significantly to
trimming keystrokes from your code. Applying formats instead of conditionals allows for code re-use with minimal
overhead (e.g., a single format or informat used in either multiple programs or multiple sections of the same
program can be controlled in a single location). In the following example, an informat is set up with various age
category ranges corresponding to aribrary numeric categories (1 — 5).

proc format library=work;
invalue incat
0 -7
8 -18
19-35
36-65
65-high=

run;

1
2
3
4
5;

data adsl;
set adsl;

age cat=input(age,incat.);
run;

TRANSPOSING MULTIPLE VARIABLES IN A SINGLE PROC STEP

In numerous situations, transposition on more than 1 variable is necessary in order to derive header and sub-
header columns for summaries in a particular table. Many programmers opt for either 2 separate PROC
TRANSPOSE steps or 1 transpose and an additional data step with a merge in order to accomplish this. However,
it's actually easiest to accomplish this in a dataset plus a single transpose. In the following example, the work
dataset SCORE contains binary treatment and 5-level race category variables to be presented as column headers
when summarizing a total score.

data score;
set score;

trt _race=(10*trtlpn)+race;

SAS Global Forum 2010 Coders' Corner

runy

proc sort data=demog;
by trt race;
run;

proc univariate data=demog noprint;

by trt race;

var score;

output out=univout mean=mean_score;
run;

proc transpose data=univout out=univout;
id trt_race;
var mean score;

run;

This results in columns of _11, _12, 13, _14, _15, 21, 22, 23, 24, & _25 containing mean values for SCORE
for each treatment/race category. Naturally, this technique stays the same for 3, 4, or however many columnar
variables/levels are required (and that you can fit on a page). Any new field values added into the single
transposition variable merely need to be included such that the components can still be distinguished [e.g.,
trt_sex_race= (100*trt1pn) + (10*gender) + race].

DATETIME CALCULATION

When creating date/time variables, if the time component is sporatically missing, the entire date/time field will end
up missing for that record. Obviously this is undesirable, but there’s no need to waste keystrokes with an if/then
statement to evalulate for presence of time:

labdttm=dhms (labdate ,max {(0,hour {(labtime)) ,max (0, minute (labtime)) ,0) ;

IDENTIFYING SPECIAL CHARACTERS

On occasion, characters from sets not recognized by SAS make their way into SAS datasets (especially in cases
where the source is Excel/CSV files). One specific example is line-feed characters. When SAS reads these, it
attaches them to the last variable/column in each row. Since many special characters won’t show up ‘visually’ in
printed renderings of the data, programmers must rely on code to figure out when one of these fields appears. The
following code searches through all character fields in a dataset and removes special characters when/if they're
encountered:

data random csv(drop=i);
set random csv;

$macro repair;
$do i=1 %to 255;
if indexc(byte(&i), ':;=1234567830-~!@#3%"&* () _+}{[I\I/><.,
ABCDEFGHIJKLMNOPQRSTUVWXYZ

abcdefghijklmnopgrstuvwxyz ')=0 then do;
if chars (i) “=compress (chars(i),byte(&i)) then do;
put "WAR" "NING: Special Character Found at byte=&i for variable "
chars (i)= "Fixing!";
chars (i) =compress (chars (i) ,byte(&i)) ;
end;
end;
$end;
$mend repair;
array chars (*) _character ;

do i=1 to dim(chars):;
$repair;
end;
run

DATASET SOURCE FLAG IDENTIFICATION
When merging or setting together several similar datasets, it's often useful to create a flag using an (in=) variable.

4

SAS Global Forum 2010 Coders' Corner

One way to create a single ‘source’ variable from multiple ‘in’ variables is as follows:

data one;

do i=1 to 6;
output;
end;
run;

data two;

do i=7 to 12,16;
output;
end;
run;

data three;

do i=13 to 15;
output;
end;
run;

data all;
set one(in=in_1)
two (in=in_2)
three(in=in_3);

source=sum({(in_1=1), (in_2=1)*2, (in_3=1)*3);
run;

In the example above, the ‘source’ variable is derived from the sum of three evaluation statements, with each one
‘weighted’ with the appropriate multiplier to reflect the appropriate dataset source.

DATE IMPUTATIONS

Occasionally, date imputation rules require imputing to the end of the month when the day is unknown and the end
of the year when the both day & month are unknown. This one’s actually a 2-liner, but given that the year
imputation always goes to 31Dec, maybe we won’t count that one:

data test;
date="00/000/2008"; output;
date="00/DEC/1996"; output;
date="00/JAN/1996"; output;

date="00/FEB/2000"; output;
date="00/FEB/1999"; output;
run;
data test;

set test;

if index(date, '00/000/'")>0 then do;
dateI=tranwrd (date, '00/000/', '31/DEC/");
end;
else 1f index(date, '00/')>0 then do;
dateI=upcase (put(day (input ("01" | |
trim(left (put (month (input (compress (tranwrd(date, '00/','01/"'),'/") ,date7.))+1-
((index (upcase (date) , 'DEC')>0) *12) ,z2.))) | |
trim(left (put(year (input(compress (tranwrd(date,'00/','01/"),'/"), date7.))+
(index (upcase (date) ,'DEC')>0) ,4.))) ,ddmmyy8.) -

1) ,z2.) ||
substr (trim(left{date)),b3));
put "NOTE: Imputing start date day to beginning of month! " date= datel=;
end;
run;
Results in...
date datel

00/000/2008 31/DEC/2008

SAS Global Forum 2010 Coders' Corner

00/DEC/1996 31/DEC/199%6
00/JAN/1996 31/JAN/1996
00/FEB/2000 29/FEB/2000
00/FEB/1999 28/FEB/1999

Essentially, what the above code accomplishes is creating an actual SAS date derived as the beginning of the
month (day 01) for the month that follows the month given in the partial date being imputed. Once this date has
been created, subtracting 1 from the SAS date value always returns the last day of the preceeding month (the
month of the partial date) without having to evaluate which month has how many days or whether a leap year (and
thus 29Feb) is involved.

CONVERTING LETTERS TO NUMBERS
And finally, for entertainment value only (i.e., | can’t recall where | used this, but I'm sure it was no more than once),
you can convert any letter in the alphabet into it's ranked number (1 — 26) with a simple 1-liner:

data test;
do letter='A','B','C','D','E','F','2";
output;
end;
run;

data test;
set test;

letternum=indexc (tranwrd (' ABCDEFGHIJKLMNOPQRSTUVWXYZ' , trim(left (upcase (letter))), '*’'
)Y, TxN) S

runy

The trick in this example involves 2 steps: The first is replacement of the letter value within the entire alphabetic
string with a star *” (though any non-alphabetic character will suffice). Afterwards, indexc is used to identify the
location within the alphabetic string of this arbitrary ** character that has been used to replace the particular letter
being derived as a number.

CONCLUSION

When it comes to ‘code-slinging’, less is indeed more. Finding a programming solution using as few keystrokes as
possible isn’t necessarily something that will earn you a bigger bonus or a promotion. But rather, much like a
particularly good Chess move or Sudoku game, the inherent satisfaction is truly reward in itself.

ACKNOWLEDGMENTS

The author would like to thank the myriad of talented programmers that he’s had to good fortune to work with over
the years who have introduced him to numerous ‘slick’ coding concepts & strategies. Thanks especially to Jackie
Lane for the encouragement and suggestions and to David Carr for the helpful review and comments.

CONTACT INFORMATION

Your comments and questions are valued and encouraged. Contact the author at:

Stephen Hunt

ICON Clinical Research

Suite 500, 303 Twin Dolphin Rd.
Redwood City, CA 94065

Email: stephen.hunt@iconplc.com

SAS and all other SAS Institute Inc. product or service names are registered trademarks or trademarks of SAS
Institute Inc. in the USA and other countries. ® indicates USA registration.

Other brand and product names are trademarks of their respective companies.

	2010 Table of Contents

