SAS Global Forum 2010 Business Intelligence/Analytics

Paper 045-2010
Interactive Dashboards: Powered by Flash and the SAS® Programmer
Michael Thomas and Gordon Hirsch, SAS Institute Inc., Cary, NC

ABSTRACT

SAS® BI Dashboard 4.3 introduces a new feature: a stored process can act as a data source for a dashboard
indicator. This paper explores how SAS® programmers can use this new feature to provide highly interactive
dashboards based on targeted analytics that only SAS can provide. Two examples are explored. First, a stored
process is used to trigger an alert based on the shape of example time series data, instead of just a simple threshold.
This approach uses SAS to go far beyond basic exception reporting in to analytics-based exception processing that
can achieve excellent signal-to-noise ratios and be a credible tool for busy decision makers. Secondly, parameterized
stored processes are used as the data sources for a parameterized dashboard. The parameterized dashboard takes
advantage of Flash to give the end user a highly interactive experience, while the stored processes deliver real
analytical insight and therefore real value.

INTRODUCTION

SAS® Bl Dashboard 4.3 introduces the power of Adobe Flash to SAS® Business Analytics. Flash provides a high
level of interactivity that makes the presentation of key metrics more intuitive to business users. Bl Dashboard 4.3
also introduces new ways of leveraging SAS® Stored Processes, and makes it easy to express the power of SAS
through an engaging and easy-to-use user interface. This paper introduces Adobe Flash and explains how BI
Dashboard 4.3 makes use of this technology to create highly interactive and responsive dashboards. Then, the SAS
Stored Process Data Provider is examined. The SAS Stored Process Data Provider enables stored processes to feed
data into a dashboard in such a way that Flash can be used for presentation and interactivity. This paper concludes
by examining how stored processes can be used with the alerting functionality of Bl Dashboard so that key users
know when to examine their dashboards or other presentation of data. Finalized names of new components and
features in the production version of Bl Dashboard might differ from those in this paper.

ADOBE FLASH AND BUSINESS DATA PRESENTATION

Adobe Flash has been part of the Internet ecosystem for some time. The technology underlies the YouTube video
player as well as much Web site content, including games and advertisements. The Flash player is pervasive enough
that it can generally be assumed to be on a browser. With the introduction by Adobe of the Flex APIs and Flex
Builder, the development of business applications for the Flash player became more reasonable and cost-effective.
Many business software vendors have delivered or plan to deliver products that use Flash, and SAS is incorporating
Flash technology in many of its products, including Bl Dashboard 4.3.

Like many other business software products, Bl Dashboard 4.3 leverages Flash in the rich Internet application (RIA)
architecture. The RIA architecture has been named and described by Adobe, though the basic principles can and
have been realized with other client technologies other than Flash, including AJAX and Java applets. The key value
of RIAs is that, unlike a Web page model, the browser has embedded client logic that enhances responsiveness and
interactivity while maintaining the administrative advantages of a thin-client architecture. Each of these concepts
should be considered separately to understand how they work together to provide the value added by RIAs:

e Interactivity. The ability to interact with visual objects on the display in meaningful ways, including hyperlinking
and drill-down. Web applications are interactive, even if the response might be slow. PDF documents that are
meant to closely emulate paper documents, such as legal contracts, are minimally interactive.

e Responsiveness. The speed of interactions in an application. Traditional Web applications typically require a
Web page load for interactivity. For example, the user fills out a form and hits submit, the browser waits for a
response from the server, and then the response HTML is displayed. All of this could take several seconds, even
for relatively trivial interactions. The RIA approach leverages client-side modules to respond to interactions much
more quickly.

e Thin-client architecture. Responsiveness and interactivity are hallmarks of client/server applications, but the
desktop clients are difficult to administer and deploy across the enterprise. Though Flash RIAs aren’t strictly zero
download — the Flash player is a download to the browser — the Flash player is pervasive enough that Flash
RIAs have the characteristics of thin-client architecture.

SAS Global Forum 2010 Business Intelligence/Analytics

These concepts combine together to yield rich and responsive applications that express centralized data and can be
easily deployed and maintained in a thin-client architecture across the enterprise.

Bl DASHBOARD 4.3 & FLASH

Bl Dashboard 4.3 uses Flash and the RIA model to create a rich, cutting-edge experience for both dashboard users
and dashboard designers. Bl Dashboard 4.3 has a Flash Dashboard Display Environment as well as a Dashboard
Builder for dashboard designers. The Dashboard Builder is shown in Figure 1 below. It is a what you see is what you
get (WYSIWYG) dashboard builder that embeds the Dashboard Display Environment. As with all of Bl Dashboard
4.3, the highly interactive environment is available in the context of thin-client architecture. This means that it is easy
for any user in the enterprise to build dashboards without application-specific deployment and maintenance — any
user with a browser that can watch YouTube videos is also capable of building dashboards.

[/ bt/ s
Fio [t Wew Favotes Tock Heb
Liks § EIDwhboord @ Portal G MyDefects G fewDefet @ PTE g RFC G sww g Bcmam G @iisa

SEN [T —

i, Darshboardtuntine 1, DunbboordBulder

S hplfcsth.duee 65

SAS* Bl Dashboard

Fil Edt View ERs rah| ==
o Objects B A Spark Table [~ = Propanies
Dashboard Library -9 al -
Indicator Library e
Range Library Country Start Sales Sales by End Sales Average Profit by Max Profit Total Profit Average Mamit | ASpark Tabie
Quary Library Month Cost of Sale Month Profit Margin | w000
3. Dashboards -
£ indicaions AU $10,048 ___ $30238 $35008 ____ $31,835 $106,264 68%[i v
i Rangas BE §2,830 $19,186 526550 __—_/ $15,920 $81,630 67% =X S
& Quaties DE $22,767 —S 564,313 8908 __—_/ $52.490 $275.588 68% =X
[| DK $2647 S $8.594 $822@ ./ $7.047 $24.,844 6T% Zilegmeanes
ES $22.637 —— S $54.253 $8.673 in® i 44 6540 $267.492 68% Sohm
=il FR 528,174 S $61.854 39,1678 _——_/ $52.406 F281.745 65BN MEME Bales by Mant
GB $25.362| "\~ $53.693 5104038 -~ $56.685 $329.811 68%E=I o
IT $29.512 — $50.590 5048080 _— 6559 $287.246 GE% I =
ML $17.230 ——/ $43.581 $5.227180 _—_/ $36.27T1 $172.073 TO% =X =
us $35492 $82,937 $139438 _——_~ 367,134 3414261 A% T

d

Code hterval

Gereral Informreation

Bblow Taiget

HEme WE Progects Range

Fatbation

Lowel Vahie

Helation

U Wikt

Corb

| — A

Priest

mx

=] and«

- » » 10 = ang
)l Dynamic Dials and Gauges | #tor Tarusl _!x
il Dynamic Graphs

89 Layout/Static Cantent 1 Add Interval

Torm W Local rrarmt

Figure 1 Dashboard Builder

The Dashboard Builder embeds the Flash Dashboard Display Environment. There are different Dashboard Display
Environments for different devices with different capabilities. Dashboards for all of the Dashboard Display
Environments are all built from the Flash Dashboard Builder.

Dashboard designers view dashboards as they are developing them. While an important part of designing
dashboards is the visual layout, dashboard designers do a lot more than just layout. They also build the
visualizations, describe business rules and map data presentation to data queries, which can include the execution of
SAS code in the form of stored processes. So while the discussion of stored processes and Bl Dashboard is left for
the next section, it's worth noting at this point that designers engage with stored processes via the Dashboard Builder
at least as much as dashboard consumers. As the user builds dashboards, they experience the benefits of the Flash
RIA platform, including drag-and-drop functionality, desktop feel in editing objects and easy deployment.

The Flash Dashboard Display Environment leverages the Flash RIA platform in many ways, including:

e Bird’s-eye view. Bird’s-eye view allows the designer to stuff the dashboard with more content than can be
seen at normal sizes, but still large enough to attract the eye to the most relevant items.

SAS Global Forum 2010 Business Intelligence/Analytics

e Data brushing. When the user interacts with data values in one visualization or table, the analogous data
values in another visualization or table are highlighted, allowing the user to interactively see relationships.

e Loosely coupled eventing. No commonality between different interactive elements in a dashboard is
required. Data can be from different data sources and different types of data sources. For example, In a
single interactive dashboard, different indicators could be from SQL queries against an operational system,
SAS Information Maps against a data mart and stored processes that provide analytic data. They all tie
together at the dashboard level via the Dashboard Builder, and the designer maps how parameters are
passed. For example, region_id from one indicator can be mapped to SalesRegionld in another indicator.

e Data caching for responsiveness. The Flash Dashboard Display Environment has an embedded data
cache so that the dashboard can be more responsive to interactions.

The screenshot in Figure 2 shows a dashboard that uses data brushing, bird’s-eye view and loosely coupled
eventing.

$Sas Bl Dashboard EEERER RSN Demo - Lending History |-- Manags Daahtsards I

{Z) My Bookmarks
Bl Dashboard El

Lending by Sector Lending by Theme

[COUmmy TR Aoc T 308 5 FeApTatan
: Lundog Since 1199040 $4,04517
[Abewe Targes

IDA Cumulative Lending by Sector A Q

—

Figure 2 Example Flash Dashboard

STORED PROCESSES AND Bl DASHBOARD

Stored processes are a way to invoke SAS code in a manner that fits in with Web application and n-tier architectures.
Stored processes can be generated by many products, including SAS® Enterprise Guide®. Itis beyond the scope of
this paper to fully discuss stored processes, but for the purposes of this paper they can be thought of as a way to
wrap SAS code so that it can be invoked by various components and products, including Bl Dashboard.

Stored processes have many different types of output. Bl Dashboard consumes two different types of stored process
output:

e data, in the form of a data set contained in a package
e visualizations, in the form of images in common image formats (png, jpg, gif, and so on)

The next two sections discuss how stored processes can generate these two different types of output. Each different
output provides value in different ways. With data output, Bl Dashboard can take analytic output and handle all the
aspects of presentation, including integration with other visual objects in the dashboards, such as other graphs and
prompts. With visualization output, the breadth of visualizations that can be created by SAS can be included in a
Flash dashboard.

SAS Global Forum 2010 Business Intelligence/Analytics

STORED PROCESSES AS DATA SOURCES

The following two segments of SAS code shows the basics of populating a package from a stored process. This
section of code is only for reference — it sets up the stored process and a macro that is used later.

%global ARCHIVE PATH ARCHIVE NAME;
*ProcessBody;

%$macro checkrc (text);
if rc ne 0 then do;
msg=sysmsqg () ;

put msg=;
end;
else put "&text succeeded";

$mend;

For the following code, assume that you have two data sets named work.emp and work.regionalsales. This code
creates the package and inserts the data sets.

data null ;

rc = 0;
pid = 0;
desc = "Two data sets in a package";

putlog "&foo";
desc = trim(desc);

Call package begin(pid, desc, nameV, rc);
%checkrc (Package init);

Call insert dataset (pid, "WORK", "emp", "22 persons",
', rc);
%checkrc (Sample dataset);

Call insert dataset (pid, "WORK", "regionalsales", "Regional Sales",
"', rc);
%checkrc (Sample dataset);

length fullpath $4096;

Call package publish(pid, "TO ARCHIVE", rc,
"archive path, archive name, archive fullpath",
"& ARCHIVE PATH", "& ARCHIVE NAME", fullpath);
%$checkrc (Publish to archive);
call symput (' ARCHIVE FULLPATH', fullpath);

Call package end(pid, rc);
%checkrc (Package term);

runy

In Bl Dashboard, the dashboard designer creates a data query based on the stored process. The designer creates a
new query, picks the Stored Process Data Provider as the data source, and then picks the stored process by
navigating the SAS folders to find it. Since this stored process has multiple data sets in the package, the designer
chooses the data set. From there, the user can configure different settings of the query. Since the designer can
reasonably accept the defaults, the discussion of the settings is left to Bl Dashboard documentation.

SAS Global Forum 2010 Business Intelligence/Analytics

SAS* Bl Dashboard
File Edt Vew Help

Dashboards
[— Name: # my query

Queries Data Source: | SAS Stored Process

&IBW o
[~ SAS Stored Process

Name
abed SAS Stored Process Location: # | SBIP/METASERVER/Users/sasdemoilly Folder/G | Browse...

AnnualRevenue Published Data Set Name *l regionalsales | J

AP Invoicing regionalsales
APMew emp

Canada Invoicing

CountryDetail = Apply Changes

Currency AUD

Currency CAD

Currency DKK
Currency EUR

tegory Label Label Hyperlink Property Alias

Gurrency.GBE SALES YEAR TO_DATE | <ygne= | v || saes verr ro o | v || <none> | v || SALES_YEAR_TO_DATE
- B — L

Currency JPY

RELATIVE_TO_LAST YEAR | <pione> | v || RELATIVE TO_LAST. | v || <tone= | v || RELATIVE_TO_LAST_YEAR
Defect Count I —— = .

Defect Detail RELATIVE TO_FOREGAST | <None= | || RELATE TO_FORE | v || <hone- | v || RELATIVE_TO_FORECAST

Defects REGION_NANE | <tione> | »)| REGION NAWE | v || <Nonex | v | REGION_NANE
— L

Education Students ¥| REGION_REPORT_CODE | jone- | v || REGioN REPORT c | v || <tione> | v | REGION_REPORT_CODE
- - L
EMEA Invoicing

LAEEL_FOR_REL'\T\VE_TCl <Nones | v || LABEL_FOR_RELATI B2 || sNonex | v || LABEL_FOR_RELATIVE_TO_FOF

Employee Survey

Employees By GED

IDA Cumulative Lending by Ses
IDA Cumnulative Lending by The
Latin America Invoicing

Load Times

= * Layout/Static Content

Figure 3 Query Based on Stored Process

With the query built, the designer can move on to create an indicator such as the one shown in Figure 4 below: The
process for creating an indicator after creating a query is the same regardless of data source — the designer would
go through the same steps for stored process output as they would for SQL query or information map output. The
details of how to create the indicators and then put them in to dashboards is left to the product documentation of Bl
Dashboard 4.3. But briefly, the designer assigns data columns to the roles needed by the visualization. If applicable,
the designer selects a range to apply to gauge displays. A range is a set of intervals where each interval has some
business classification, such as Below Target or Above Quota, and a color, such as red, yellow or green.

SAS Global Forum 2010 Business Intelligence/Analytics

Sales by Month >
—
$150-
-
'O |
v
an]
£ $100-
i
=
P
@
[an]
¢ g50-
$O' T T T

Figure 4 Targeted Bar Indicator

The screenshot in Figure 5 shows another type of indicator display possible with Bl Dashboard. It uses sparklines as
well as gauges to convey different insight in a compact form. As with any indicator, this indicator can source its data
from a stored process.

-]

.hE;IP;ﬁlwﬁmﬂumnﬂr
Total Country Sales by Profit by Total Cost of Average

Month Month Sale Profit Margin
AU o | D $43.187 DEEm_——
BE o R e 4 $31.861 06T .
DE e S e $107.082 0GB
O e Tl] P Ay | 59870 DETH It
Es T N NS $104,074 0GEM—]
FR —_— S $110.004 0GB
GE e, S PR 5124836 0.68E=
IT ——T N NS $113.796 D68
L P ol I e S $62.722 0,70 m—
us — NS $167.314 D.6oM_——)

Figure 5 Tabular Indicator with Sparklines and Gauges

The next stored process, generated originally by Enterprise Guide but edited for brevity, takes parameters and can be
used in conjunction with Bl Dashboard loosely coupled eventing. The stored process takes a parameter, Country, and
uses it in the WHERE clause of a PROC SQL statement:

*ProcessBody;

$macro checkrc (text);
if rc ne 0 then do;
msg=sysmsqg () ;
put msg=;
end;

SAS Global Forum 2010 Business Intelligence/Analytics

else put "&text succeeded";
smend;

%global COUNTRY _ARCHIVE PATH ARCHIVE NAME;
/*$STPBEGIN; */

OPTIONS VALIDVARNAME=ANY;

/*Libname WORLDBNK META 1ibid=A5976BVY.AY000005;*/
* End EG generated code (do not edit this line);
/* --- Start of shared macro functions. --- */

/* Conditionally delete set of tables or views, if they exist */
/* If the member does not exist, then no action is performed */
$macro _eg conditional dropds /parmbuff;

(The code for this macro isn’t included in order to keep the code brief. It is code generated by Enterprise Guide and is
easily recreated.)

smend eg conditional dropds;

smacro _eg WhereParam(COLUMN, PARM, OPERATOR, TYPE=S, MATCHALL= ALL VALUES ,
MATCHALL CLAUSE=1, MAX=);

(The code for this macro isn’t included in order to keep the code brief. It is code generated by Enterprise Guide and is
easily recreated.)

smend;
% _eg _conditional dropds (WORK.QUERY FOR COUNTRYDETAIL) ;

The PROC SQL statement uses the Country parameter to select only rows for the particular country. If there is no
value for Country, then the SQL statement will return no rows. The Dashboard Builder will work better for the
dashboard designer when the queries return rows, because the designer can see changes to visuals as they design.
To help the dashboard design experience, it's best to set default values for any parameters as part of the stored
process set up in metadata.

PROC SQL;
CREATE TABLE WORK.QUERY_FOR_COUNTRYDETAIL AS
SELECT *
FROM SASDATA.COUNTRYDETAIL AS tl
WHERE % eg WhereParam(tl.country, Country, EQ, TYPE=S);
QUIT;

The remaining code takes the data set and adds it to the package.

data null ;

rc = 0;
pid = 0;
desc = "";

call package begin(pid, desc, nameV, rc);

SAS Global Forum 2010 Business Intelligence/Analytics

%$checkrc (Package init);

call insert dataset (pid, "WORK", "QUERY FOR COUNTRYDETAIL", "Country Detail",
"', ore);
%checkrc (Package data set);

length fullpath $4096;

call package publish(pid, "TO ARCHIVE", rc,
"archive path, archive name, archive fullpath",
"s& ARCHIVE PATH", "& ARCHIVE NAME", fullpath);

%checkrc (Package publish);
call symput (' ARCHIVE FULLPATH', fullpath);

call package end(pid, rc);
scheckrc (Package term);
run;

/* --- End of code for "Query Builder". --- */

* Begin EG generated code (do not edit this line);
PxUiEty /i quit;
/*%$STPEND; */

* End EG generated code (do not edit this line);

This stored process only publishes a single data set to the package. The dashboard designer sets up the query to the
stored process as before, and then sets up the indicator based on the query. From here, the designer sets up
interactions at the dashboard level. The designer has a couple of options with an indicator based on a parameterized
stored process:

e Set up an event linkage between one or more prompts and the indicator, so that the indicator content is
filtered. For the dashboard consumer, this means that changing a prompt value will immediately trigger a re-
query of the indicator, which re-runs the stored process with new values for its parameters.

e Set up a pop-up link from another indicator object to the stored process indicator. When the user clicks on
an item in another indicator, such as a bar in a bar chart or a particular gauge, then the stored process
indicator is displayed in a pop-up window, based on the relevant parameter. This is shown in Figure 6 below,
where the pop-up table is based on the stored process above. The table is displayed after selecting on the
bar of the indicator. That indicator was driven by parameters from the two drop-down prompts, which are
also considered indicators because they can visualize business rules just like any other type of indicator.
The screenshot shows a total of four different indicators, all of which are decoupled from each other. They
could all be based on stored processes, or they might all be based on different %/pes of data sources,
including SQL queries, information maps or other SAS products, including SAS™ Strategy Management and
SAS® Human Capital Management. They could all be drawing from the same database, or from entirely
different data locations.

SAS Global Forum 2010 Business Intelligence/Analytics

My Bookmarks
| World Bank Projects
World Bank Entity s a Region
Project Detail for Country
World Bank Projects by Country ' Project Name Project Sector
Cost (M)
$250 i i ; T
Shashe Engineering Project $3 Water, sanitation and flood
Shashe Construction and Supplementary $32 Water, sanitation and flood |
$200 Highway Reconstruction Project $20 Transportation
o Gaborone - Losatse Water Supply Projec $3 Water, sanitation and flood .
é Livestock Project $2 Agriculture, fishing, and fore:
E $150 Highway Project (02) $2 Transportation
% Botswana Development Corporation Proji $4 Finance
E SHASHE SUPPLEMENT $6 (Historic)Mining
3 $100 Francistown Urban Development Project $3 (Historic)Urban Developmen
QE_) Roads and VWater Project $4 Transporation
$50 Education Project $11 Education
Highway Project (03) $6 Transportation
Botswana National HIV/AIDS Prevention § $50 Health and other social servi
$0 —— Integrated Transpori $385 Transporation
M Botswana - Morupule B Generation and 1 $1,682 Energy and mining
Country

Figure 6 Parameterized Dashboard with Table Pop-up Sourced from Stored Process

STORED PROCESSES AS VISUALIZATION SOURCES

In addition to outputting data, stored processes can output visual content in the form of images in common formats
such as png, jpg and gif. Via the stored process APIs these images can be addressed via URL just like any other
images, as long as the user-agent has a current session with the SAS Stored Process Web Application. Bl
Dashboard has always been able to access any image via URL. For images outputted by stored processes, which
require an authenticated session, Bl Dashboard brokers a new session with the Stored Process Web Application via
standard SAS Web application practices, so that the images can be viewed as part of a dashboard without requiring a
second authentication within the dashboard.

When the image is brought into the dashboard, it is brought in as a flat image. Several of the types of interactivity that
the Flash Dashboard Display Environment provides require that the indicators have data associated with relevant
visualizations. Since only the image is provided and not the underlying data, indicators that display stored processes’
visualizations can’t participate in local filtering or data brushing.

The principle advantages of using stored processes as visualization sources include:
e reuse of existing stored processes
e availability of more types of visualizations

This approach depends on the stored process streaming back an image in response to the request. To perform this
properly, the stored process should not have the stpbegin and stpend macros. The following code creates a chart and
streams it back as a png.

goptions gsfname= webout gsfmode=replace;
goptions device=png;
proc gchart data=sashelp.class; vbar age / discrete; run; quit;

SAS Global Forum 2010 Business Intelligence/Analytics

The URL for such a stored process can be captured by going to the SAS Stored Process Web Application and
executing the stored process. Then, right-click on the image and get the URL from the image properties. It should be
a URL like this:

http://sasbi.demo.sas.com:8080/SASStoredProcess/do? _action=form,properties,execute,nobanner,newwi
ndowé& program=%2FUsers%2Fsasdemo%2FMy+Folder%2Fstp _image_test&

If the URL of the image itself includes program=_replay, then it will not work with Bl Dashboard.

With the URL in hand, simply paste it in to the URL field of either a graph indicator or an image decorator.

STORED PROCESSES AND ANALYTIC-BASED ALERTING

Stored processes and alerting are a powerful combination. While many Bl systems can send alerts based on queries
against relational or OLAP sources, the power of the SAS language can be used to generate alerts based on
predictive analytics, optimization models and other types of analytics. While it is relatively easy to use alerts to
convey bad news that has already occurred, SAS can produce alerts that, if acted upon, can keep bad news from
happening. Instead of alerts that only tell of today’s problems, SAS can produce alerts that tell of tomorrow’s
opportunities.

But when designing alerts that are based on analytics, signal-to-noise ratio is a key aspect of creating a system that
the human decision-makers will heed. The signal-to-noise ratio problem is discussed after reviewing the basics of
configuring alerts in Bl Dashboard. Following those discussions, the role of stored processes in alerting is reviewed.

Bl DASHBOARD ALERTING

Starting with Bl Dashboard 4.2, Bl Dashboard is able to send alert messages to either e-mail or to the Stored Process
Alerts portlet. The Event Generator component of Bl Dashboard uses a polling mechanism to invoke an indicator, and
then generates an event when a change of interval is detected, where intervals are like below target, on target and
above target. The best example of a change of state is when the single gauge of an indicator changes from on target
to below target. As soon as Event Generator observes the change to below target, it generates an event that is
passed to Alert Services. If an alert registration exists for below target for that particular indicator, then an alert is
created, resulting in an e-mail or other communication. An example of such an e-mail alert is shown below in Figure
6, on the right.

Ba) A 0 > BAGHD) T Wikt rd - =
= Mg Deviope w
22 =x to s cme J e ey
(g B S A I I FE R - J
59 From * machisel, Fomas G55, com Sent: Tue 84/2005 1045 M
=" Mriage Dewleger L Tee Michiael Thomas
Vo dnaarced this meriage 5 AITLO008 ET ML =
(Msrcm J ban 0 Subjeet S5 Mleit et prafit -
From * mxchad, Boses faes toe. Sentt Tows T/I3008 530 b —
- Supsriar soewrs tat ohes oo
e e Gsas
ce AT s v Sipidig it s " RS _). THE POWER TO KNOW.
Susjert L84, 2aart Sains D e
(jSaS | Sapario allware Tl phves g LTS] Jaseony
THE POWER TO KNCHW. iem LT]
T e i Hello SAS Dema User,
pae MR An alert from the SAS BI Dashboard has been generated
Hello SAS Demo U Lopares weftwarn fu gy
, S OSAS | Harowmre oo
my message
An alen froes the 5AS Bl Daihbosrd has been genemted
Sales are dewn. Giet om it! Hello SAS Beme User Net Profit Margin

Az shert firoes the SAS B] Duahboard ks been generated

Ragiomal Sales Vr Ta Date Vo Target

Sales Ve To Dt g
m

Nod Profit By Channel And Counry Vo Goal

Cranrs Pres wegn

'.IEI'"_EEEIEE-.-'-;I' ml=m=niRa EEAN

S [] [e i

o Cligk here 1o launch SAS BI Daghboard snd view the glen

launch 345 B Dushboard and siee the alert

Figure 7 Alert E-mail Examples

10

http://sasbi.demo.sas.com:8080/SASStoredProcess/do?_action=form,properties,execute,nobanner,newwindow&_program=%2FUsers%2Fsasdemo%2FMy+Folder%2Fstp_image_test&
http://sasbi.demo.sas.com:8080/SASStoredProcess/do?_action=form,properties,execute,nobanner,newwindow&_program=%2FUsers%2Fsasdemo%2FMy+Folder%2Fstp_image_test&

SAS Global Forum 2010 Business Intelligence/Analytics

This simple case is also the most intuitive, because there is a single data value that triggers the alert. Bl Dashboard
also supports the concept of percentage of gauges in a particular interval. Those alerts are shown in the two other
screenshots in Figure 6. If an indicator is a bar chart, where each bar in the bar chart is either below target, on target
or above target, then an alert can be triggered if (for example) 30% or more of the bars are below target. Likewise, for
a KPl indicator based on a result that has 10 rows of data and thus shows 10 gauges, an alert can be triggered if a
given percentage of gauges is in a particular interval. A common request is that the alert should only trigger if one of
the gauges of a given indicator is in a particular interval. For that case, a new indicator should be set up where the
underlying data query only returns a row for the particular data value of interest.

The details of setting up alerts in Bl Dashboard are left to the product documentation because the user interface was
not finalized at the time of this writing.

ALERTING AND SIGNAL-TO-NOISE RATIO

After getting past the basics of raising an alert in response to an event, the real value in alerting is in having a good
signal-to-noise ratio. With historical data, it is possible to get a perfect signal-to-noise ratio for some particular criteria.
For example, the data says that sales were down at a store last week. It is easy to set up an alert that triggers
because sales were down at that store last week. The signal-to-noise ratio is perfect. If sales were down 20 weeks in
a year, then it is easy to achieve 0% noise and 100% signal — the alert just has to be triggered for each of those 20
weeks.

The more difficult problem is sending an alert because sales are likely to be down next week. One approach would be
to always send an alert, since there is usually some probability that sales are going to be down. The e-mail alert could
link to a detailed treatment of the probabilities for next week. But from the perspective of the recipient of the e-mail,
who might not be inclined to absorb the statistical detail, the signal to noise ratio is 20/52 = .38. Another approach
would be to never send an e-mail unless it is almost certain that sales will be down. This approach tends to eliminate
noise, but also eliminates signal.

To illustrate further, consider a type of alerting with a bad signal-to-noise ratio: the car alarm. When a car alarm goes
off, it's usually a false alarm, and most people are annoyed at the car owner. Few if any people actually react to a car
alarm by assuming that a crime is being committed and calling the police. In this case, there is too much noise and
not enough signal. The car alarm has no credibility.

On the other side, consider the “lap watch dog.” Lots of people joke about their supposed watch dogs that would
more likely wag their tails and kiss a burglar than bark. Such a lap watch dog might be more tolerable than a dog that
barks all night at the slightest disturbance, but the dog lacks not only credibility but purpose. At least, such a dog
doesn’t serve the purpose of protecting the house from burglars.

Another very real world example is faced routinely by the National Weather Service and local authorities — to
evacuate or not to evacuate, to cancel school to keep people off early-morning icy roads, or not. Regardless of the
sophistication of the underlying statistical models, the decision to evacuate is largely binary. Either the alarm is
sounded or it is not. Failure to sound the alarm leads to casualties very directly, but sounding the alarm too often
leads to a loss of credibility that can also lead to casualties.

Like a lot of examples in alerting, these examples consider events of negative impact. But analytical models could
also be brought to bear on divining opportunity as well. For example, alerts could be sent because it is likely that
particular items should sell well in a particular geography next week. Such upside alerts face the same signal-to-noise
ratio issues of credibility and purpose as downside alerts.

Most analytical models that can produce an alert of any value also have a lot of nuance and fuzziness. For example,
a model that only says yes or no to whether sales will be down next week is inferior to a model that provides
probabilities that can be traced through to root assumptions. But when it comes to alerting on such a model, the
decision the system must make about whether to trigger a particular alert is always yes or no.

For a given organization, a given set of recipients and a given model, it might make the most sense to always send all
of the detail. But such a detailed communication is more like a daily or weekly report on the model than really being
an alert. The consumers farther away from both the domain and from analytics in general are less likely to engage
such a report every time it comes across the in-box. While sending a detailed report might be safer in some ways, it
might also limit the potential impact of the underlying analytical model on the organization.

Regardless of how much precision the underlying model is capable of in determining probabilities of events, the
decision of sending out any particular alert is binary — the alert is either sent or not sent to a particular user or group
of users. The underlying detail is more likely to be studied, and the overall model is more likely to be heeded, if
credibility and purpose are enhanced by achieving an optimal signal-to-noise ratio over time.

11

SAS Global Forum 2010 Business Intelligence/Analytics

STORED PROCESSES AND Bl DASHBOARD ALERTING

As described above, Bl Dashboard 4.3 can source data from a stored process. Also, Bl Dashboard alerts are driven
by the Event Generator component, which polls Bl Dashboard repeatedly and fetches the indicator. An indicator used
for an alert can be displayed as part of a regular dashboard, but it doesn’t have to be. When it isn’t, the indicator can
differ from display indicators in both responsiveness and complexity.

A stored process used for an alert doesn’t need to be particularly fast. When an indicator is based on a stored
process, then either the stored process is executed or the result of a previous execution is fetched from a cache.
Unlike a user’s request for an indicator, the Event Generator’s request isn’t particularly time sensitive. The stored
process could take a comparatively long time to execute, such as a minute, and no one would know because it
occurs on a background thread. The recipient of the alert doesn’t know how long it took to run, whereas the
dashboard consumer knows very well how responsive the live dashboard is.

Also, an indicator used for alerting can benefit from simplicity. As discussed above, an alert must either be triggered
or not. As such, a simple indicator that displays a stoplight functions well as an alerting indicator. While a red and
green stoplight isn’t particularly interesting visually, it is highly analogous to alerting itself. In addition to modeling the
simple yes/no behavior that an alert must exhibit, a simple stoplight benefits from being purely qualitative and not
quantitative. With a stoplight, the stored process code can distill the output down to 0 and 1 — red or green, on or off,
trigger or don'’t trigger. Freed from the burden of communicating any numeric information, such as a quantification of
risk, the underlying stored process can combine different inputs synthetically to the single quantity of being either
interesting or not. On the other hand, a gauge like a slider, dial or speedometer can communicate more numeric
information along with the quality of relevance. If the underlying model can be boiled down to a single dimension,
then this might be useful.

In any of these cases, the gauge itself is just the lead-in to the main story. The gauge arrives in the e-mail and
interests the user, who then clicks on it. Upon clicking, the user can be led to detail of any level of richness. One
option is to open a Flash dashboard that provides both advanced visualization and interactivity. But the alert could
also go to a simple departmentally hosted Web page that explains why the alert was sent and what to do about it.

CONCLUSION

Stored processes can provide great value, but the output needs to be presented in a compelling way to the right
audience to realize that value. Interactive Flash dashboards can be very enticing, but without solid insight from the
data the dashboards are just pretty eye candy. When Bl Dashboard 4.3 and stored processes are used with the
techniques described in this paper, the power of analytics can reach deeper in to the enterprise with exciting,
interactive Flash interfaces.

ACKNOWLEDGEMENTS

Thanks to Vincent DelGobbo for help with the technical content of this paper.

CONTACT INFORMATION

Your comments and questions are valued and encouraged. Contact the author at:

Name: Michael Thomas
Enterprise: SAS

E-mail: michael.thomas@sas.com
Web: http://www.sas.com

SAS and all other SAS Institute Inc. product or service names are registered trademarks or trademarks of SAS
Institute Inc. in the USA and other countries. ® indicates USA registration.

Other brand and product names are trademarks of their respective companies.

12

	2010 Table of Contents

