
Paper 031-2010

ODS ExcelXP: Tag Attr Is It! Using and Understanding the TAGATTR= Style
Attribute with the ExcelXP Tagset

Eric Gebhart, SAS Institute Inc., Cary, NC

ABSTRACT
The ODS ExcelXP tagset has many options to change its behavior. Many are set with the options in the ODS
statement. There are others that must be set through the style. Most of these are set in the TAGATTR= style attribute,
an unused, leftover attribute from SAS® Release 7.01. This paper will show how to use the TAGATTR= style attribute
to control the ExcelXP tagset in order to change the type, format, formula rotation, hiding, merging, and wrapping of
cells, rows, and columns. This paper will also go behind the scenes to show how the tagset handles these settings
and manages the problems presented by the XML that the tagset must create.

INTRODUCTION
The ODS style attribute TAGATTR= was born in the early days of ODS when the only Web browsers were Mosaic,
Netscape Navigator, Internet Explorer, and Opera. The browser wars were underway, and the HTML specification
was changing rapidly. The releases of SAS were still spaced widely apart, and with the first release of ODS HTML
we, the developers of ODS, wanted to be sure we could continue to take advantage of new developments in HTML
between the SAS releases. TAGATTR= got its name from tag attribute, and our thinking was that it would enable
new attributes to be added into various parts of the HTML, even if they were completely new attributes that someone
had just invented. That never came true. TAGATTR= was never used. Then came tagsets, and TAGATTR= was
suddenly useful. It could hold anything, and a tagset could do anything with it. The ExcelXP tagset has made the
greatest use of the TAGATTR= style attribute. This paper will explore the various uses for TAGATTR= and also
explain how it actually works. There are several reasons TAGATTR= might be used: the first is its ease of use for the
SAS programmer, the second is the way ODS works and the XML it has to create. Last is the way Excel interacts
with its own XML. The attribute must be user-friendly, but the other relationships are adversarial at best. This paper
will give some insight into the way the ODS ExcelXP tagset uses TAGATTR=. TAGATTR= is it when it comes
programmatically accessing the special Excel abilities within cells. But TAGATTR= passes the “it” to the tagset,
which then has to pass it on to the XML, which then passes the tag on to Excel.

The ODS Tagsets.Excelxp statement has many options, but those options are usually general in nature, and apply to
the entire spreadsheet. When it comes to adding special control to specific cells or rows those options do not work
so well. That is when TAGATTR= comes into play. By specifying values on the TAGATTR= style attribute it is
possible to precisely change just one cell or row within a spreadsheet. Within the XML these controls manifest in two
different ways. They either cause a new style definition to be created, or they add an XML attribute to the cell or row
being written at that moment.

Since TAGATTR= is an ODS style attribute, it is possible to specify its value with a style element definition or as a
style override. There will be examples of both methods in this paper. How you decide to do it is your choice.

TAG: FORMAT IS IT!
The first uses for TAGATTR= had to do with assigning Excel formats to various cells. Excel does not understand
SAS formats, and there was no way to convert them internally, so if there was a special format that was desired
beyond currency, percentage, string, or number then a format had to be provided. It was not long after that when we
realized that type was also sometimes necessary. The original TAGATTR= processing took only a format. But when
it became necessary to add type there had to be another way. That is when the new syntax was added. Each value
had to be labeled so the tagset could pull it all apart and use it. Instead of just TAGATTR="###,###,###.00" the value
was now TAGATTR="format:###,###,###.00 type:numeric".

ods tagsets.excelxp

 options(
 frozen_headers='Yes' autofilter='All'
 embedded_titles='No'
)

1

Beyond the BasicsSAS Global Forum 2010

 file="example1.xls" style=journal;

 ods noproctitle;
 proc print data=sashelp.class
 contents="sashelp.class";

 id Name;
 var Sex;
 var Age Height Weight / style={tagattr='format:##0.0'};
 sum Age Height Weight;
 run;

ods tagsets.excelxp close;

The effect of the Excel format can be seen in that all the number

fields have preserved a decimal place with a 0.

THE XML
This first example was the first TAGATTR= option that was added to the Excel tagset. It is not the most
straightforward value to process, but it is one of the more common types. For the most part, anything specified by
TAGATTR= either goes into a style definition or into the XML code that defines the cell. The options that go directly
into the definition of the cell are the easiest, but the type that go into the style are not too awful. There is already

2

Beyond the BasicsSAS Global Forum 2010

processing in place for style attribute overrides of other types, so processing formats and other TAGATTR= attributes
that go into the style was just a matter of taking advantage of the style attribute override processing that was already
in place.

The XML that causes this format to be applied is in two places. First a new style definition must be created.

<Style ss:ID="data__r1" ss:Parent="data__r">
<Protection ss:Protected="1" />
<NumberFormat ss:Format="##0.0" />
</Style>

Then that style must be referenced by the cell that wants to use that format. In this case it is Age, Height and Weight.

The entire row of cells looks like this.

<Row ss:AutoFitHeight="1" ss:Height="15">
<Cell ss:StyleID="rowheader__l" ss:Index="1"><Data ss:Type="String">Alfred</Data></
Cell>
<Cell ss:StyleID="data__l" ss:Index="2"><Data ss:Type="String">M</Data></Cell>
<Cell ss:StyleID="data__r1" ss:Index="3"><Data ss:Type="Number">14</Data></Cell>
<Cell ss:StyleID="data__r1" ss:Index="4"><Data ss:Type="Number">69.0</Data></Cell>
<Cell ss:StyleID="data__r1" ss:Index="5"><Data ss:Type="Number">112.5</Data></Cell>
</Row>

TAG: FORMAT AND TYPE, STUCK IN THE MUD!
“Stuck in the mud”—it's like tag, but once tagged, you have stay put until a free person frees you by crawling between
your legs.

The type is rarely used by its self. This example uses a SAS format and an Excel format and type to get the proper
results for a date.

Setting the type on a value is not required most of the time, It is sometimes good for fields that look like numbers but
you would rather have them as strings. The other most common use is to set up a datetime field. This example
shows how that is done. The first part is to make sure the date is actually a date time and to multiply that value by
the number of seconds in a day, 86400. The second part is tell SAS to use the ISO Date format, e8601dt, which is
the format Excel expects the datetime to be in. This is the way that Excel stores dates. After that it is necessary to tell
Excel that this column is a datetime and to also give it the format that it should use for the datetime.

ods tagsets.excelxp file='example2.xls' style=analysis;

/* create a new DateTime column from the date column */
data buy;
 set sashelp.buy;
 datetime=date*86400;
run;

/* Pre-9.2, the format/informat name was IS8601DT . That name is still */
/* allowed in 9.2, although we are */
/* now using the name E8601DT (E=Extended vs. B=Basic). */

/* set the format for the DateTime coming from SAS */
/* and set the Excel type and format so Excel knows what to do with it */
proc print data=buy;
 format datetime e8601dt.;

3

Beyond the BasicsSAS Global Forum 2010

 var datetime / style(data)={tagattr='type:DateTime format:YYYY-MM-DD'};
 var date;
 var amount;
run;

ods tagsets.excelxp close;

This example creates a table with two date columns: one is an actual Excel datetime and the other is a SAS date

represented as a string in Excel. The datetime field can be used in formulas and displayed in various formats, while

the SAS date column is just text that cannot do much of anything.

THE XML
Here the format goes into the style, and the date and time is readily visible within the cell. In this row, notice the
difference between the two date fields. One is actually an Excel datetime, and the other is just a string.

<Style ss:ID="data__r1" ss:Parent="data__r">
<Protection ss:Protected="1" />
<NumberFormat ss:Format="YYYY-MM-DD" />
</Style>

<Row ss:AutoFitHeight="1" ss:Height="15">
<Cell ss:StyleID="rowheader__r" ss:Index="1"><Data ss:Type="Number">1</Data></Cell>
<Cell ss:StyleID="data__r1" ss:Index="2"><Data
ss:Type="DateTime">1996-01-01T00:00:00</Data></Cell>
<Cell ss:StyleID="data__r" ss:Index="3"><Data ss:Type="String">01JAN1996</Data></
Cell>
<Cell ss:StyleID="data__r" ss:Index="4"><Data ss:Type="Number">-110000</Data></
Cell>
</Row>

4

Beyond the BasicsSAS Global Forum 2010

HIDE & SEEK, FORMULAS

Formulas are nice to have, but you can't necessarily see them until you change something or go looking for them.

This example shows some simple examples of formulas.

The need for formulas followed quickly on the heels of formats, so another possible attribute was added to the
TAGATTR= processing. Formulas are quite useful, but they must be specified using the relative cell syntax rather
than the absolute syntax commonly used by Excel. SpreadSheetML does not provide for absolute cell addressing
like A1 or B4.

ods listing close;

data test;
length camp_code comm_code $5
 product $3
 outbound_channel $11
 outbound_team
 inbound_channel inbound_team $1
 offer_group $3
 offer_subgroup time_period $6
 offers obj_value roi_profit roi_cost roi_value 8;
input @1 camp_code
 @9 comm_code
 @17 product
 @23 outbound_channel $char11.
 @37 offer_group
 @43 offer_subgroup
 @52 time_period
 @61 offers
 @69 obj_value;
roi_profit = obj_value;
roi_cost = roi_profit*0.25;
roi_value = roi_profit/roi_cost;
label camp_code = 'Campaign*Code'
 comm_code = 'Comm*Code'
 product = '*Product'
 outbound_channel = 'Outbound*Channel'
 outbound_team = 'Outbound*Team'
 inbound_channel = 'Inbound*Channel'
 inbound_team = 'Inbound*Team'
 offer_group = 'Offer*Group'
 offer_subgroup = 'Offer*Subgroup'
 time_period = 'Time*Period'
 offers = '*Offers'
 obj_value = 'Obj*Value'
 roi_profit = 'ROI*Profit'
 roi_cost = 'ROI*Cost'
 roi_value = 'ROI*Value';
format offers comma8. obj_value roi_profit roi_cost
 dollar9.2 roi_value percent.;
cards;
CAMP1 ADB_1 ADB Direct Mail ADB Jan_04 Jan_04 22420 891.634432
CAMP1 ADB_2 ADB Direct Mail ADB Feb_04 Feb_04 22420 891.634432
CAMP1 ADB_3 ADB Direct Mail ADB Mar_04 Mar_04 22420 891.634432
CAMP1 GBL_1 GBL Direct Mail GBL Jan_04 Jan_04 22420 891.634432
CAMP1 GBL_2 GBL Direct Mail GBL Feb_04 Feb_04 22420 891.634432
CAMP1 GBL_3 GBL Direct Mail GBL Mar_04 Mar_04 22420 891.634432
CAMP1 T70_1 T70 Direct Mail T70 Jan_04 Jan_04 24785 304.082208
CAMP1 T70_2 T70 Direct Mail T70 Feb_04 Feb_04 22420 891.634432
CAMP1 T70_3 T70 Direct Mail T70 Mar_04 Mar_04 24785 304.082208
;

5

Beyond the BasicsSAS Global Forum 2010

run;

 /*-- Modify the Statistical style to fix --*/
 /*-- missing border lines. --*/
 /*---*/
proc template;
 define style styles.XLStatistical;
 parent = styles.Statistical;
 style Header from Header /
 borderwidth=2;
 style RowHeader from RowHeader /
 borderwidth=2;
 style Data from Data /
 borderwidth=2;
 end;
run;
quit;

ods tagsets.excelxp file="example3.xls" style=xlstatistical
 options(autofilter='all' frozen_headers='yes' auto_subtotals='yes');

 /*-- Use Excel formulas to represent computed cells, and use an --*/
 /*-- Excel format (0%) to force Excel to report the percentage --*/
 /*-- as 400% instead of 400.00%. In the formulas below, the RC --*/
 /*-- value corresponds to the cell relative to the current cell.--*/
 /*-- For example, RC[-2] means "2 cells to the left of the --*/
 /*-- current cell." Any valid Excel formula can be used, and --*/
 /*-- the formulas used here match the computations performed in --*/
 /*-- the DATA step that created the columns. --*/
 /*--*/

title2 'Proc print of data using style statement with tagattr';
proc print data=test noobs label split='*';
 var camp_code comm_code product outbound_channel outbound_team
 inbound_channel inbound_team offer_group offer_subgroup
 time_period offers obj_value roi_profit;
 var roi_cost / style={tagattr='formula:RC[-1]*0.25'};
 var roi_value / style={tagattr='format:0% formula:RC[-2]/RC[-1]'};
 sum offers / style={tagattr='format:#,###'};
 sum obj_value roi_profit roi_cost;
run;

ods tagsets.excelxp close;

The only way to really see what is going on here is to highlight one of the calculated cells and look at the formula
window.

6

Beyond the BasicsSAS Global Forum 2010

THE XML
Since formulas are more of an interactive feature it is hard to show them on paper or slides. I can show the XML. In
this case, unlike most of the other features, formulas are actually specified as part of the XML that defines the cell.
This is the easiest type of TAGATTR= value to process. If it goes directly in the cell the tagset just has to print it along
with everything else when the cell is written out.

<Cell ss:StyleID="data__r_1" ss:Formula="rc[-1]*0.25" ss:Index="14"><Data
ss:Type="Number">222.91</Data></Cell>
<Cell ss:StyleID="data__r_2" ss:Formula="RC[-2]/RC[-1]" ss:Index="15"><Data
ss:Type="Number">4</Data></Cell>

TAG, ROTATION IS IT!

Rotation came about not because we absolutely needed it, but because it would be nice to have and it can make
tables look quite nice. It is a value that still applies to a single cell and, like format and formula, also goes into the
style definition used by that cell. So the internal processing for rotation was very much the same as that for format
and formula.

proc template;
 define style styles.myjournal;
 parent = styles.Journal;
 style angle_header from header /
 tagattr = 'rotate:45'
 ;
 end;
 run;

 ods tagsets.ExcelXP file="example4.xls"
 style=myjournal;

 proc sort data=sashelp.class out=foo;
 by sex;

 proc tabulate data=foo
 order=data missing format=8.0 noseps
 formchar=', ';
 by sex;
 class age sex name;
 classlev name /s=angle_header;

7

Beyond the BasicsSAS Global Forum 2010

 var height weight;
 title;
 table age, name=' '*(height=' '*median=' '*F=5.3);

 run;

 ods tagsets.ExcelXP close;

Rotation is one of the TAGATTR= values that adds to the style definition. This could be difficult, but because the
tagset already has to accommodate all the normal style overrides like font, color, font weight, and so on, the
processing required is not so difficult. Especially in this case, the processing is brought to a minimum because this is
not even a style attribute override—it is just a new style, and the name of the style is the override. There is no special
handling required like there would be if TAGATTR="Rotate:45" were specified down in the PROC Tabulate code
where we set the style equal to angle_header.

The output from this program looks quite nice with angled headers.

THE XML
The XML for rotation is part of the style definition.

<Style ss:ID="angle_header" ss:Parent="table">
<Alignment ss:WrapText="1" ss:Rotate="45"/>
<Font ss:FontName="Arial, Helvetica, Helv" ss:Size="10" ss:Italic="1"
ss:Color="#000000" />
<Interior ss:Color="#FFFFFF" ss:Pattern="Solid" />
<Protection ss:Protected="1" />
</Style>

5,10,15,20,25,30,35,40,... HIDDEN

As a kid, home base for hide and seek was a telephone pole, and we usually counted by fives to 500.

When looking at usability, hiding columns seemed easiest with the ODS statement options. But hiding a row is not so
easy because it's frequently data driven, and who knows which rows should be hidden ahead of time?

There were many requests for the ability to hide rows or columns, but it took a while before these features were
actually added to the tagset. The difficulty came from how hiding works. Hiding a column requires that the column
definition know that it is hidden, and that definition is the first thing in the table, long before any cells come along. A

8

Beyond the BasicsSAS Global Forum 2010

row must be defined as hidden, and that definition comes before any of the cells that it contains. The solution was to
add column hiding as an option on the ODS statement and add row hiding to TAGATTR=. The only real problem is
that then the row definition and all the cells the row contains had to be delayed until all the cells in the row were done.
This required different processing than any of the other attribute on TAGATTR, so it took longer to implement.

proc template;
 define style styles.mymeadow;
 parent=styles.meadow;

 style hidden from data/
 tagattr="hidden:yes"
 ;
end;
run;

ods tagsets.excelxp file="example5.xls" style=mymeadow;

proc report data=sashelp.class nowd;
 column Name Sex Age Weight Height;
 define Weight / display;

 compute Weight;
 if (Weight > 100) then do;
 CALL DEFINE(_ROW_, "STYLE",
 "STYLE=hidden");
 end;
 endcomp;
run;

proc report data=sashelp.class nowd;
 column Name Sex Age Weight Height;
 define Weight / display;

run;

ods _all_ close;

The output created by this program looks fine, but notice there are no rows where the weight is over 100. The clue
lies in the row numbers. Rows 2, 5, 9 and 15-18 are all hidden.

9

Beyond the BasicsSAS Global Forum 2010

THE XML
This is a little bit sneaky—TAGATTR= is given the hidden option in a style definition. But hidden is not part of Excel
style definition. The goal is to hide a row where there is a cell that uses the hidden style. The hidden attribute
actually goes on the row tag.

Here is what a hidden row looks like.

<Row ss:AutoFitHeight="1" ss:Hidden="1" ss:Height="15">
<Cell ss:StyleID="hidden" ss:Index="1"><Data ss:Type="String">William</Data></Cell>
<Cell ss:StyleID="hidden" ss:Index="2"><Data ss:Type="String">M</Data></Cell>
<Cell ss:StyleID="hidden" ss:Index="3"><Data ss:Type="Number">15</Data></Cell>
<Cell ss:StyleID="hidden" ss:Index="4"><Data ss:Type="Number">112</Data></Cell>
<Cell ss:StyleID="hidden" ss:Index="5"><Data ss:Type="Number">66.5</Data></Cell>
</Row>

The processing for TAGATTR= in this case is a bit tricky. The row has to be stashed away until all the cells have
been processed, and if any of those cells have a TAGATTR= with hidden:yes then the row has to specify
ss:Hidden="1".

TAG, MERGING IS IT
The MERGEACROSS option becomes useful only rarely, it enables longer data elements to span across the width of
the current table or even the title width if that was given on the ODS statement. This example is a very simplistic
example of how this option works. The most common use for this is when there is string data, like comments, that
can vary greatly in length. This feature can be used to enable the data to span as far as it needs to past the edge of
the table.

ods listing close;

data test;
 d1 = '1st data row of stuff'; output;
 d1 = '2nd data row of stuff'; output;
run;

ods tagsets.excelxp file="example6.xls" style=journal ;

title ;

proc report data=test nowd;
 columns d1;
 define d1 / '' style={tagattr="mergeAcross:yes"};
run;

proc report data=test nowd;
 columns d1;
 define d1 / '';
run;

ods tagsets.excelxp close;
ods listing;

The easiest way to see the effects of this is to look at the row numbers in the spreadsheet and to compare it against a
spreadsheet that has no hidden rows. The first PRINT procedure creates a table with merged cells that show their
entire contents. The second PRINT procedure creates a table without merged cells where their contents are partially
hidden.

10

Beyond the BasicsSAS Global Forum 2010

THE XML
The MERGEACROSS attribute appears in the cell tag, and is therefore one of the easier options to process.
Everything is right there when the cell is created, and nothing has to go anywhere else.

In this test, the cells in the first table have an additional MERGEACROSS attribute, whereas the cells in the second
table do not.

<Cell ss:StyleID="data__l" ss:MergeAcross="1" ss:Index="1"><Data
ss:Type="String">1st data row of stuff</Data></Cell>

<Cell ss:StyleID="data__l" ss:Index="1"><Data ss:Type="String">1st data row of
stuff</Data></Cell>

The difference between them is easily visible.

11

Beyond the BasicsSAS Global Forum 2010

HIDE & SEEK, WRAP IS QUIETLY HIDDEN UNTIL IT IS UNCOVERED

Wrapping text is a real problem in Excel. Whether wrapping is specified or not, Excel behaves the same way until
you try to manipulate the worksheet. OpenOffice works the way any of us would expect, and is therefore better in its
rendering of the spreadsheet. Nonetheless, wrapping has an effect in Excel once you try to change the worksheet
after it is created. There are two interactive options that control wrapping. Wrapping is on by default but it can be
turned off with the WRAPTEXT option. There have been many requests for the ability to turn off wrapping.
wraptext='no' does that. Setting wrap on TAGATTR= can counter either behavior for a given cell. In this
example the default behavior is being turned off but wrapping is being turned on for a specific cell.

proc template;
 define style styles.mymeadow;
 parent=styles.meadow;

 style hidden from data/
 tagattr="wrap:no"
 ;
end;
run;

ods tagsets.excelxp file="example7.xls" style=mymeadow options(wraptext='no'
doc='help');

proc report data=sashelp.class nowd;
 column Name Sex Age Weight Height;
 define Weight / display;

 compute Weight;
 if (Weight > 100) then do;
 CALL DEFINE(_ROW_, "STYLE",
 "STYLE=data[tagattr='wrap:yes']");
 end;
 endcomp;
run;

ods _all_ close

The output for this test case does not show much. It really looks quite normal. But a quick look at the XML shows

a different story. And manipulating the spreadsheet by hand will reveal different behavior as well.

12

Beyond the BasicsSAS Global Forum 2010

THE XML
Since this attribute mostly controls how the worksheet behaves after the fact, it is easiest to see the results of these
options by looking at the XML. The only place WRAPTEXT appears is in the style definitions. Normally, it will be in
every style that is defined. But setting wraptext=no turns this off. The data style definition is affected by this, and
is therefore missing the WRAPTEXT attribute. Because this feature goes in the style definition, the tagset treats it as
a style override. It is a sort of exception, but the tagset has processing to handle overrides, and this TAGATTR=
value adds to that.

<Style ss:ID="data" ss:Parent="table">
<ss:Borders>
<ss:Border ss:Position="Right" ss:Color="#CCD6BE" ss:Weight="1"
ss:LineStyle="Continuous" />
<ss:Border ss:Position="Bottom" ss:Color="#CCD6BE" ss:Weight="1"
ss:LineStyle="Continuous" />
</ss:Borders>

<Interior ss:Color="#FFFFFF" ss:Pattern="Solid" />
<Protection ss:Protected="1" />
</Style>

13

Beyond the BasicsSAS Global Forum 2010

Later, the REPORT procedure specifies wrap:yes on TAGATTR=. This results in two new style definitions being
created for use by the cells in any row with a weight greater than 100. There is one left-justified data style and one
right-justified data style.

<Style ss:ID="data__l1" ss:Parent="data__l">
<Alignment ss:WrapText="1" ss:Horizontal="Left"/>
<Protection ss:Protected="1" />
<NumberFormat ss:Format="General" />
</Style>
<Style ss:ID="data__r1" ss:Parent="data__l">
<Alignment ss:WrapText="1" ss:Horizontal="Left"/>
<Protection ss:Protected="1" />
<NumberFormat ss:Format="General" />
</Style>

The row that uses these styles looks like this.

<Row ss:AutoFitHeight="1" ss:Height="15">
<Cell ss:StyleID="data__l1" ss:Index="1"><Data ss:Type="String">Alfred</Data></
Cell>
<Cell ss:StyleID="data__l1" ss:Index="2"><Data ss:Type="String">M</Data></Cell>
<Cell ss:StyleID="data__r1" ss:Index="3"><Data ss:Type="Number">14</Data></Cell>
<Cell ss:StyleID="data__r1" ss:Index="4"><Data ss:Type="Number">112.5</Data></Cell>
<Cell ss:StyleID="data__r1" ss:Index="5"><Data ss:Type="Number">69</Data></Cell>
</Row>

Now, for more geeky tagset programming stuff! Feel free to cover your eyes and count to 1000 until this part is over...

THE INTERNAL DETAILS.

These examples have shown both how to use the options on TAGATTR, and the snippets of XML that are affected by
each option. But there is more to it than that. The tagset has to parse the TAGATTR= value for the options and their
values, it then has to save them in a way that they can be easily used when the time comes. There are three different
scenarios: the first is that the value will directly affect the attributes for the cell, the second is that it will go into a new
style definition that the cell will then reference, and the third is the one used by hidden where the value of TAGATTR=
changes the XML for the row but not the cell.

The first challenge is to parse the value of TAGATTR= for values. This is done with a regular expression, the
expression must be case insensitive. The setup for the regular expression looks like this.

More simply, this expression is looking for any of the following: format:, formula:, Rotate:, Type:,
Hidden:, MergeAcross:, or Wrap:.

At this point the regular expression is ready for use. Here is where the values get saved away into an array named
$attrs. The entire process can be watched from the log by adding options(debug_level='-5') to the ODS statement.
The first thing to check for is a ':'. If that is not present than any value that is in TAGATTR= must be a format. If
there is a ':' then the value of TAGATTR= has to be parsed for any values it might have.

14

Beyond the BasicsSAS Global Forum 2010

This section loops through the values listed in TAGATTR= with the regular expression. Each value is added to an
array called $attrs with the option name as the key.

Check to see this entry is a format and if it is 'text' change it to '@' so Excel will be happy.

It has to be a format if there is not a name: in front of the value. There are some styles that have 'onload' as the
TAGATTR= value—those will cause problems, so get rid of them.

15

Beyond the BasicsSAS Global Forum 2010

Now, post-process all the entries that need it. Type needs to be 'String' if the format is '@'. Normalize yes/no,
true/false to true/false so the values are easier to test. Type needs to be properly cased if it was set. The tagset
cannot rely on the programmer to always properly case the type the way Excel wants.

Debug sections can show how everything looks. These are all over the tagset. This one will show the results of all
this TAGATTR= processing.

Finally, here are the two special cases, if hidden was set, the $hidden_row variable is now set so the row can easily
hide itself independently of any fluctuations that might occur in other cells in the row. Wrapping text has interactions
with the WRAPTEXT option in the ODS statement. All of that is handled here, so that the XML can be optimized to do
the right thing.

16

Beyond the BasicsSAS Global Forum 2010

That's it for the processing of TAGATTR. $attrs, $hidden_row, and $cell_wraptext will be used later on as
needed. Looking for those variables reveals their final use.

$hidden_row is one of the easiest to see. When the row starts, ss:Hidden="1" is printed if $hidden_row is
true. $hidden_row is then unset for the next row.

$cell_wraptext is a little more complicated. The alignment tag is part of the style definition. The align_tag event
is used to create that section of the style. First, if $cell_wraptext is set, just and vjust must be redefined. If
they are not, then Excel loses them even though they are defined in the parent style. I, if $cell_wraptext is not
set, then it is changed to true, which is the default behavior. Finally, ss:WrapText="1" is printed if
$cell_wraptext is true.

17

Beyond the BasicsSAS Global Forum 2010

Rotate is another piece of the style definition. After the first part of the align tag is created, this code evaluates
$attrs to see if rotate should be added.

The type is handled along with the automatic types. If a type is set with TAGATTR, then that is the type that is used.
If it happens to be a datetime, then it is set explicitly so that the uppercasing is correct. Otherwise, the type is set
according to the type of value that ODS thinks it is.

18

Beyond the BasicsSAS Global Forum 2010

Formats are simpler. The value of $format_override is set to $attrs['format'], and when the style is created
that value is used. The value of $format could be currency or percentage if the tagset had detected a currency
symbol or percentage sign.

MERGEACROSS has its own event to handle all the possibilities. The first section is for data notes, which only occur
in the REPORT procedure. The second section is for normally spanning cells, which occur all the time in various
places like titles and headers. The last section is the special case where the TAGATTR= MERGEACROSS option is
taking control. If MERGEACROSS is 'yes' then the current width of the sheet is used, but if it is a number, then the
cell will merge across that many cells.

19

Beyond the BasicsSAS Global Forum 2010

Formulas are a little bit complicated as well. First $formula is set from $attrs. This is done in a strange way—by
looping through the values of $attr. I'm not sure why it does it that way, but I'm not going to change it now. The
next thing is that if there is a $formula, the type of the cell has to be a number if there is no value in the cell
otherwise Excel does not like it. Then, as long as the type is not 'String', the formula gets processed for double-
quotes and then printed.

20

Beyond the BasicsSAS Global Forum 2010

Congratulations on reading this far! This is everything you never wanted to know about TAGATTR= and its use in
the ExcelXP tagset. If all you take away from this is the capabilities of TAGATTR= and how to use them with the
ExcelXP tagset, then you are doing well. You might have a little better idea of why TAGATTR= is used and how it
interacts with the tagset, the XML it creates, and possibly even a little bit about how Excel works. Maybe you are
ready to play with the tagset and add your own TAGATTR= options. Whatever you have taken away from this, you
are it! Take this knowledge and run with it, play with it, and see how it might help you get better Excel reports from
ODS.

CONTACT INFORMATION
Your comments and questions are valued and encouraged. Contact the author:

Eric Gebhart
SAS Institute Inc.
SAS Campus Drive
Cary, NC, 27513
Work Phone: 919-632-1742
E-mail: Eric.Gebhart@sas.com
Web: http://support.sas.com/rnd/base/ods/odsmarkup/

SAS and all other SAS Institute Inc. product or service names are registered trademarks or trademarks of SAS
Institute Inc. in the USA and other countries. ® indicates USA registration.

21

Beyond the BasicsSAS Global Forum 2010

mailto:Eric.Gebhart@sas.com
mailto:Eric.Gebhart@sas.com

Other brand and product names are trademarks of their respective companies.

22

Beyond the BasicsSAS Global Forum 2010

	2010 Table of Contents

