
1

Paper 033-2010

SAS® Style Templates: Always in Fashion
Cynthia L. Zender, SAS Institute Inc., Cary, NC

ABSTRACT
The syntax for style templates changed in SAS® 9.2 and became much easier to use. With the new CLASS
statement, there is no need to debate the use of the STYLE statement versus the now defunct REPLACE statement.
Yes, the REPLACE statement has gone away, and now we have the CLASS statement. In addition, you can import a
CSS file into a SAS style template. All of these exciting new changes add up to stylish and fashionable output using
ODS style templates.

This paper provides an introduction into the use of style templates in SAS 9.2. Methods of determining the correct
style elements will be shown along with several concrete examples of making style template changes. The use of the
IMPORT statement will also be demonstrated. In addition to these topics, a job aid will be provided that outlines the
most commonly used style elements and their attributes.

INTRODUCTION
The first fact that most SAS users learn about the Output Delivery System (ODS) is the use of the basic "sandwich"
invocation statements. Second, most SAS users learn about the use of the STYLE= option. The STYLE= option
specifies an ODS style template (or style definition) which, for destinations that support styles, changes the overall
look and feel of the output. Each ODS destination is like a major fashion designer or fashion house (Yves St. Laurent,
Chanel, Calvin Klein, Armani), and each style template or style definition is like a particular outfit in a fashion line—
the prêt-a-porter or ready to wear—outfits in the ODS fashion line styles are provided by SAS at installation time.

ODS HTML has a certain set of style conventions, as seen in STYLES.DEFAULT (sans-serif fonts, relative font sizes,
more use of color). ODS PDF and ODS RTF have a different set of style conventions (serif fonts, absolute font sizes
in points, gray and white colors) as seen in STYLES.PRINTER and STYLES.RTF, respectively.

When you use the TEMPLATE procedure to design your own style template for use with ODS, you move into the
world of custom style templates. Most of the time, you can create your new style template by starting with an existing
template as the basis for your new style. If you need something special, like designing a style template from scratch
or using a Cascading Style Sheet (CSS) file as the starting point for your new style template, those are also
possibilities.

In the fashion industry, custom-fitted clothing is known as haute couture. Haute couture translates to high sewing or
high dressmaking, and when talking about clothing, it means clothes that are made to order for a specific customer or
for the runway. These clothes are usually made with pricey fabric and are sewn with exquisite handsewn seams and
finishes. When talking about style templates, the attention to detail that you find in haute couture translates to the
attention that you must invest in learning and mastering TEMPLATE procedure syntax, as well as style element and
style attribute concepts.

HOW STYLE TEMPLATES WORK
The style template is used by ODS to provide style information to the applications that render ODS output for viewing.
A style template (or style definition) is a collection of style elements. These style elements can impact tabular and/or
graphic portions of your output. (If you use the GSTYLE system option in SAS 9.2, there are graph style elements
that will impact the graphic portions of your output. If you use the NOGSTYLE system option, then SAS/GRAPH®
procedures such as GCHART, GPLOT, and GMAP will not use style template information. However, the new SG
procedures, SGPLOT, SGSCATTER, and SGPANEL always use style template information.)

Some style elements are abstract elements—such as Container or Cell—whose purpose is to act as a parent
element from which other style elements can inherit their style attributes. Non-abstract elements (such as Header or
SystemTitle) represent style elements that directly correspond to a piece of your output. For example, the Header
style element impacts the style of column headings in tabular output, and the GraphLabelText style element impacts
the style of labels in graphical output. Each style element is a collection of style attributes. The style attributes
represent common style characteristics (foreground color, background color, font face, font weight, font style) that
should be used for a particular piece of output, as indicated by the style element usage or by style element
inheritance.

Beyond the BasicsSAS Global Forum 2010

2

Figure 1 shows an example of some tabular and graphic style elements and some of the style attributes that are
defined by each element. For example, both the Header and the GraphLabelText elements have a font attribute and
a color attribute. This means that it is possible for each style element to have separate font information (font face, font
style, font weight, font size) or separate color information. The two color definitions are shown in Figure 1, note that
the style attribute color is the same as the style attribute foreground in earlier versions of SAS.

Figure 1. Conceptual relationship between style elements and style attributes

If we investigated further in STYLES.DEFAULT, we would discover that the color and font information for these two
style elements is:

Header: color=colors('headerfg')
 font = fonts('HeadingFont')

GraphLabelText: color=GraphColors('glabel')
 font = GraphFonts('GraphLabelFont')

The syntax color=colors('...') for the color attribute is a way for the style template to point to a specific,
named color in the colors style element or the GraphColors style element, as shown below (from
STYLES.DEFAULT). Compare the GraphColors style element with the colors style element, and you will see
specific color names provided in the GraphColors style element, while the colors style element contains references
to the color_list style element. Only the style attributes for Header and GraphLabelText are highlighted.

One useful side effect of putting colors in a lookup list in the style template is that if you want to have an impact on all
the colors in the style template, you only need to change the values in the color_list style element. If you change the
colors here, you would effectively change every style element that used fgA2, for example.

On the other hand, if you only wanted to change the Header style element and any elements that inherited from the
Header style element, then you could leave the color_list element unchanged, and make your changes directly in
the CLASS statement for the Header element.

Beyond the BasicsSAS Global Forum 2010

3

GraphColors style element colors and color_list style elements
class GraphColors /
 . . . more style attributes . . .
 'gcdata' = cx000000
 'gdata' = cxB9CFE7
 . . . more style attributes . . .
 'gtext' = cx000000
 'glabel' = cx000000
 'gborderlines' = cx000000
 'goutlines' = cx000000
 'ggrid' = cxECECEC
 . . . more style attributes . . .;

class color_list /
 'fgB2' = cx0066AA
 'fgB1' = cx004488
 'fgA4' = cxAAFFAA
 'bgA4' = cx880000
 'bgA3' = cxD3D3D3
 'fgA2' = cx0033AA
 'bgA2' = cxB0B0B0
 'fgA1' = cx000000
 'bgA1' = cxF0F0F0
 'fgA' = cx002288
 'bgA' = cxE0E0E0;
class colors /
 . . . more style attributes . . .
 'headerfg' = color_list('fgA2')
 'headerbg' = color_list('bgA2')
 . . . more style attributes . . .
 'systitlefg' = color_list('fgA')
 'systitlebg' = color_list('bgA')
 . . . more style attributes . . .
 'docfg' = color_list('fgA')
 'docbg' = color_list('bgA');

When you look at the GraphColors style element, you can see that the setting for the glabel attribute, cx000000, is
what will be used for the GraphLabelText style element. However, when you look at the colors style element, you
see that the Header foreground color is cx0033AA. (To find out the color for the Header style element, you have to
trace from the headerfg value to the fgA2 attribute value). This type of inheritance (using a lookup list) only
happens in style templates with colors and fonts.

There are two other types of inheritance that you could encounter in a style template. One type is style element
inheritance, such as when the Header element inherits from the HeadersandFooters style element, or the
RowHeader style element inherits from the Header style element. The other type of inheritance is style template
inheritance, such as when STYLES.PRINTER inherits from STYLES.DEFAULT or STYLES.RTF inherits from
STYLES.PRINTER.

Starting with SAS 9.2, you don't have to worry too much about any of these types of style template, style element and
style attribute inheritance, because the developers have devised a clever way to make sure that the inheritance
structure is maintained. They've created a style template called BASE.TEMPLATE.STYLE, which is the implicit
parent template for all of the style templates that you create. This is one of the reasons that you don't have to worry
about inheritance very much; because when you create a style template, the pattern for style element inheritance has
already been designed.

For more information about other ODS templates, such as Table, Tagset, and Graph templates, refer to my SAS
Global Forum 2009 paper entitled, "Tiptoe Through the Templates," available from this URL:
http://support.sas.com/resources/papers/proceedings09/227-2009.pdf or from the http://support.sas.com/rnd/papers
Web site.

UNDERSTANDING COLORS
Let's talk about colors for a minute. You might wonder about the colors that are going to be used for the Header style
element or the GraphLabelText style element. The colors are specified as RGB (Red-Green-Blue) color values. In
the RGB color system, color names are of the form CXrrggbb, where the color values are given as hexadecimal
numbers in the range 00 through FF. Most web page colors and output for the web use RGB color values. SAS style
templates use RGB color codes. The color specification can be deconstructed as follows: CX indicates the RGB
color specification; rr is the red component; gg is the green component; bb is the blue component. Because the digits

Beyond the BasicsSAS Global Forum 2010

4

or characters are hexadecimal values, you can think of them as percentages, where the values represent these
percentages. Figure 2 shows some examples of hexadecimal values, the equivalent decimal numbers, and their color
percentages.

Figure 2. Hex values for colors with decimal and percent equivalents

Using this information, you now have a way to translate the colors in a general fashion.

cxFF0000 = 100% red, 0% green, 0% blue
cx00FF00 = 0% red, 100% green, 0% blue
cx339966=20% red, 60% green, 40% blue

Colors that are easy to remember are CX000000 (black – the absence of all colors) and CXFFFFFF (white – the
presence of all colors). Otherwise, to figure out what an actual hexadecimal RGB color looks like (such as
CX339966), you either have to consult a color map or an online color application, or you need to experiment with
color values until you find a color that suits your purpose. In the zip file of programs that accompanies this paper (see
“Download Information” at the end of this paper), you will find a program that creates a color map. This color map is
partially shown in Figure 3, where CX339966 is revealed to be a sort of teal-blue-green color.

Figure 3. Partial program output of color values and colors

Beyond the BasicsSAS Global Forum 2010

5

UNDERSTANDING FONTS
Fonts are referenced in style templates using the same lookup list technique that was used for color references. The
font reference is straightforward once you understand that the style attribute for fonts usually refers to SAS registry
font specifications. For example, the Header font specification in STYLES.DEFAULT refers to the HeadingFont
attribute, which is 'headingFont' = ("<sans-serif>, Helvetica, sans-serif",4,bold). This means
that the first choice for the Header font will be the sans-serif font defined in the SAS registry (on my Windows system,
this is the Arial font). Then, if Arial is not available when the output is rendered, Helvetica will be used. If Helvetica is
not available on the rendering system, any sans-serif font on the system will be used. If all else fails, the application
will use its default font for rendering. The size for the Header font is going to be a relative size of 4 (HTML relative
fonts are specified in sizes from 1 to 7), and the font weight will be bold. In the style templates provided by SAS,
HTML-based fonts are specified with relative numbers, and the fonts used for the Printer and RTF destinations are
specified with absolute point sizes.

You can use the FONTREG procedure to register fonts for use with SAS/GRAPH (and all other SAS products).
However, a discussion of the FONTREG procedure is outside the scope of this paper. If you do register True Type
fonts (not listed in the SAS registry), you only need to reference the correct font name in order for that font to be
used. Remember, however, that in your templates, it is always a good idea to specify a secondary font or a font
family as an alternative in case a report is opened or rendered on a system without the first font you specify.

STYLE TEMPLATE FASHION SHOW
In SAS 9.2, you can use the CLASS or STYLE statement to change the attributes of an existing style element such
as Header, and/or the IMPORT statement to convert a CSS file to a style template. To illustrate the use of the
CLASS, STYLE, and IMPORT statements (among other things), suppose that you're sitting in the audience at the
House of ODS fashion show, where I have my haute couture custom collection of templates strutting down the
fashion runway for your review.

You might not want to buy all the outfits, but perhaps some of these style template couture techniques will be useful
to you. The fashions on display today will illustrate changes that use the CLASS statement and automatic inheritance,
changes that bypass inheritance, changes to simple style elements (like Header, RowHeader or SystemTitle), and
changes to more complex elements such as the Table or Output elements. Along the way, you'll learn about some of
the custom detailing and style attributes used in the creation of these templates.

On the runway today are:

Outfit 1: Changing the Header and RowHeader style
Outfit 2: Changing Header style, but using default colors for RowHeader
Outfit 3: Making TITLE statements different sizes
Outfit 4: Changing the default formatting for output from the ODS TEXT= option
Outfit 5: Changing interior table lines
Outfit 6: Using CSS class selectors to change Header style
Outfit 7: Changing graph output with a style template

UNDERSTANDING THE PATTERN AND DIRECTIONS
Whenever you make a high fashion garment (or any garment for that matter), one technique is to start with a muslin
shell in the basic pattern that you want, and then modify the muslin pattern to contain the changes that you are
designing. For this fashion show, the basic muslin that is the following example uses STYLES.SASWEB as the basic
style template. For most of the outfits, this is our basic starting point. The starting output is shown in Figure 4. The
style STYLES.SASWEB is designed for use with HTML-based destinations. Most of the style templates will be used
with the ODS HTML destination. However, the methods of modifying the style syntax and the information about style
elements and attributes are applicable to other destinations as well. Several of the template designs will be shown
with the ODS PDF or ODS RTF destination.

For more information about style template syntax changes between SAS 9.1.3 and SAS 9.2, refer to Kevin Smith's
SAS Global Forum paper (Paper 053-31) entitled, "The TEMPLATE Procedure Styles: Evolution and Revolution."
(See “References” at the end of this paper.) An invaluable reference is the ODS documentation on the TEMPLATE
procedure, because no paper can cover the wealth of information and details that are contained in the ODS
documentation. The best advice I ever got when first learning SAS and JCL (at the same time!) was "RTFM.".
Sometimes the acronym was an expletive, and sometimes an encouragement to read the manual in question. Some
documentation Web sites that I constantly refer to are listed below.

Beyond the BasicsSAS Global Forum 2010

6

• For information about using style attributes and style elements together:
http://support.sas.com/documentation/cdl/en/odsug/61723/HTML/default/a002685135.htm.

• For information about style attributes and their values:
http://support.sas.com/documentation/cdl/en/odsug/61723/HTML/default/a002972093.htm.

• For documentation on ODS Style Elements for Device-based Graphics and Template-based Graphics:
Device-based graphics: http://support.sas.com/documentation/cdl/en/odsug/61723/HTML/default/a003241787.htm
Template-based graphics: http://support.sas.com/documentation/cdl/en/odsug/61723/HTML/default/a003166123.htm.

Figure 4. Report Starting Point

The program is very basic code for the FREQ, MEANS, and REPORT procedures. The data used is a subset of
SASHELP.PRDSALE, and the ODS invocation is:

Beyond the BasicsSAS Global Forum 2010

7

ods html file='demo00_basic.html' style=sasweb;
. . . proc freq, proc means and proc report steps . . .
ods html close;

OUTFIT 1: CHANGING HEADER AND ROWHEADER STYLE
For the first example, only the FREQ and MEANS procedures are used. This example illustrates how to make
changes to the Header style element and the RowHeader style element. In addition, the template code also changes
the ProcTitle and SystemTitle style elements.

Figure 5. Program Results

The template code that produced the above results is shown below. Only the ODS HTML sandwich statements are
shown for the PROC MEANS and PROC FREQ steps that use STYLES.DEMO01.

ods path work.temp(update)
 sashelp.tmplmst(read);

proc template;
 define style styles.demo01;
 parent=styles.sasweb;
 class Header/
 background=pink
 foreground=purple;
 class ProcTitle /
 foreground=purple
 font=fonts('HeadingFont');
 class SystemTitle /
 foreground=purple;
 end;
run;

Beyond the BasicsSAS Global Forum 2010

8

ods html file='demo01_outfit1.html' style=styles.demo01;

 . . . proc means and proc freq steps . . .

ods html close;

This is a very basic template. The STYLES.SASWEB style is used as the parent template. Note that you do not have
to worry about the color_list or the fonts style elements. The CLASS statement works with the way that style
element inheritance is resolved to ensure that the style attributes listed in the code override the same-named style
attributes for the style element from the parent template. In earlier versions of SAS, you had to know whether to use a
STYLE statement or a REPLACE statement in order to override style attributes. However, in SAS 9.2, the CLASS
statement is all you need to use. (One of the ODS developers calls the CLASS statement "syntactic sugar for STYLE
foo FROM foo".) The font characteristics of the procedure title are inherited from the HeadingFont attribute, while the
foreground color comes directly from the foreground attribute override. (Note that you could have used
color=purple as well, because foreground and color are both acceptable style attributes for changing foreground
color, just as background and backgroundcolor are both acceptable style attributes for changing background color.)

OUTFIT 2: CHANGING HEADER STYLE, BUT USING DEFAULT COLORS FOR ROWHEADER
The header area of a SAS report, whether created with the MEANS, FREQ, or REPORT procedure, is the area that
spans the report from left to right along the top of the report table. For the MEANS procedure, in our output, it is the
area of the report that contains the class variable name and the calculated statistics. The header area for the FREQ
procedure contains the variable name from the TABLE statement and the frequency and percent statistics. The
FREQ procedure also has row header area. In our report, it is the leftmost column, which contains the names of each
product. In the first example, the row header area changed when the header area changed because the RowHeader
style element inherits from the Header style element. What if you wanted to change the header area of each table to
the current color scheme but did not want to change the row header area?

There are actually several ways to achieve this result. Only a few of them are shown below. (The other methods are
shown in the zip file of programs that you can download.) No matter which method you use, you can achieve the
results shown in Figure 6. Because the MEANS procedure does not have a row header area, the new style template
has no effect on the MEANS procedure output. But, with the FREQ procedure, you can see how the row header area
uses the regular STYLES.SASWEB colors, while the header area uses the new colors.

Beyond the BasicsSAS Global Forum 2010

9

Figure 6. Program Results

proc template;
 define style styles.demo02a;
 parent=styles.sasweb;
 class Header/
 background=pink
 foreground=purple;
 class RowHeader /
 background=color_list('bgA1')
 foreground=color_list('bgA');
 class ProcTitle /
 foreground=purple
 font=fonts('HeadingFont');
 class SystemTitle /
 foreground=purple;
 end;
run;

ods html file='demo02a_outfit2.html' style=styles.demo02a;

 . . . proc means and proc freq steps . . .

ods html close;

The changes to the Header, SystemTitle, and ProcTitle elements are the same as in the previous program. A
CLASS statement has been added for the RowHeader element. To figure out the correct color_list attribute to use,
you need to do a bit of investigation in STYLES.SASWEB. Because you already know (or can find out) that the
RowHeader element inherits attributes from the Header element, you only need to do a bit of tracking to discover
that the appropriate color_list attributes are bgA and bgA1. The relevant sections from STYLES.SASWEB are
shown below.

 style color_list/
 . . . more attributes . . .
 'bgA1' = cx6495ED
 'bgA' = cxffffff;
 style colors /
 . . . more attributes . . .
 'headerfg' = color_list('bgA')
 'headerbg' = color_list('bgA1') ;
 style HeadersAndFooters from Cell
 "Abstract. Controls table headers and footers." /
 font = fonts('HeadingFont')
 color = colors('headerfg')
 backgroundcolor = colors('headerbg');
 style Header from HeadersAndFooters
 "Controls the headers of a table.";
 style RowHeader from Header;

An even simpler way to create a style template that bypasses inheritance for the row header area on the report would
be to let inheritance work for you by creating the new style template with the syntax shown below. The results from
this code would be the same as shown in Figure 6.

proc template;
 define style styles.demo02b;
 parent=styles.sasweb;
 class Header /
 background=pink
 foreground=purple;
 class RowHeader from HeadersandFooters/;
 class ProcTitle /
 foreground=purple
 font=fonts('HeadingFont');
 class SystemTitle /

Beyond the BasicsSAS Global Forum 2010

10

 foreground=purple;
 end;
run;

In the above example, you would just set the RowHeader style element to explicitly inherit from the
HeadersandFooters style element instead of the Header element. This would also allow the header area to be pink
and purple, while leaving the row header area unchanged and set to the original colors.

OUTFIT 3: MAKING TITLE STATEMENTS DIFFERENT SIZES
By default, when you use ODS style templates, all of the titles and footnotes are the same size. Sometimes, however,
you want the different TITLE statements to be different sizes. You already know about the SystemTitle element, but
when you change it, you change all of the titles (or footnotes via SystemFooter) to be the same. If you look in
BASE.TEMPLATE.STYLE (as shown in the excerpt below), you will discover that the developers have planned
ahead. In that template definition, there are placeholder style elements for the TITLE and FOOTNOTE statements
that you could issue. The relevant SystemTitle elements are shown below (parallel style elements exist for
SystemFooter elements). You would never change the Base.Template.Style template, of course. But, if you create a
new style template that uses some of these elements (as shown below in styles.demo03), you can achieve the
results shown in Figure 7.

proc template;
define style Base.Template.Style;
 notes "Implicit parent for all style templates";
 . . . more style elements . . .
 style SystemTitle from TitlesAndFooters
 "Controls system title text.";
 style SystemTitle2 from SystemTitle
 "Controls system title2 text";
 style SystemTitle3 from SystemTitle2
 "Controls system title3 text";

 . . . more style elements . . .
end;

run;

Figure 7. Program Results

Beyond the BasicsSAS Global Forum 2010

11

proc template;
 define style styles.demo03;
 parent=styles.sasweb;
 class SystemTitle / foreground=purple
 font=("<serif>, Times New Roman, serif",7,bold);
 class SystemTitle2 / foreground=purple
 font=("<sans-serif>, Helvetica, sans-serif",5,bold italic);
 class SystemTitle3 / foreground=purple just=l
 font=("<sans-serif>, Helvetica, sans-serif",3,bold);
 end;
run;

Note how the font and size are different for each of the TITLE statements in the output. Also, because of the just=l
attribute change, the TITLE3 output is left-justified in the output. Because only the TITLE statements are of interest,
only the FREQ procedure output is shown in Figure 7.

OUTFIT 4: CHANGING THE DEFAULT FORMATTING FOR OUTPUT FROM THE ODS TEXT=
OPTION
You can use the ODS TEXT= statement to place text before, after, or between the output of procedure steps. The
ODS TEXT= output is normally left-justified and in a regular-sized font. The style element that controls the ODS
TEXT= text string is the UserText style element. Figure 8 shows how the ODS TEXT= string has been modified to
act as a pseudo-title between the PROC FREQ and the PROC MEANS steps. Figure 8 shows the output from the
ODS PDF destination, which is one of the destinations where the ODS TEXT= statement is frequently used to
simulate a title between two procedure steps. The program for this example, however, contains the style template
that you would use to format the UserText element for both HTML and RTF.

Figure 8. Program Results

Beyond the BasicsSAS Global Forum 2010

12

proc template;
 define style styles.demo04;
 parent=styles.printer;
 class UserText from SystemTitle/ just=c;
 end;
run;

ods pdf file='demo04_outfit4.pdf' style=styles.demo04 startpage=no;
 . . . PROC FREQ step . . .
ods text = ' ';
ods text = 'Long and Brilliant Text String';
 . . . PROC MEANS step . . .
ods _all_ close;

For the ODS PDF destination, the style template inherits from the STYLES.PRINTER style template. (You can also
use this template for ODS RTF output.), If you want to use the ODS TEXT= text as a pseudo-title, then you only need
to have the UserText element inherit attributes from the SystemTitle style element. Although you could specify all of
the individual style attributes for UserText, the only specific attribute you need to specify is the just attribute because
without this attribute, your ODS TEXT= string would still be left-justified.

OUTFIT 5: CHANGING INTERIOR TABLE LINES
There are several style attributes that work together to change the interior table lines in SAS output. By default, the
interior table lines are controlled by the Table style element. The two essential attributes to change are the rules
attribute and the borderspacing attribute (also known as the cellspacing attribute). In these examples, the table frame
is turned off (frame=void) so that the effect of the rules attribute is easier to see. In Figure 9, the changed style
template is shown next to the FREQ procedure output that uses the changed template.

Template Code PROC FREQ Output
proc template;
 define style styles.demo05a;
 parent=styles.sasweb;
 class table /
 frame=void
 borderspacing=0
 rules = none;
 end;
run;

proc template;
 define style styles.demo05b;
 parent=styles.printer;
 class table /
 frame=void
 borderspacing=0
 rules = cols;
 end;
run;

Beyond the BasicsSAS Global Forum 2010

13

proc template;
 define style styles.demo05c;
 parent=styles.rtf;
 class table /
 frame=void
 borderspacing=0
 rules = rows;
 end;
run;

Figure 9. Program Code and Results

In these three templates, when the table frame is turned off, you can see the effect of the three different specifications
for the rules style attribute. The borderspacing attribute is set to zero so that the background of the table does not
show through the normal space between each cell. For example, consider the same template code, but with a value
of 0.5pt for the borderspacing attribute and a background color of light gray for the data cells. What appears as
white horizontal lines is the 0.5pt space between each cell.

Figure 10. Program Results

There are many possible combinations of the rules and frame attributes. Remember that the JOURNAL and
JOURNAL2 style templates are already designed without interior table lines and produce output that might be
suitable for print and academic journal publications. Figure 11 shows the possible values that you can specify for
each of these attributes. You'll need to experiment with different values in each destination to see which attributes
give you the interior table lines you desire.

Figure 11. Attribute Values for RULES and FRAME Style Attributes

OUTFIT 6: USING CSS CLASS SELECTORS TO CHANGE HEADER STYLE
When you create ODS HTML destination output, the default behavior is for the style template attributes to be
translated to CSS style properties and inserted into an in-line or embedded <STYLE> section in the HTML file. The
RTF and PDF destinations do not work this way. Starting in SAS 9.2, however, you can use a CSS style sheet with

Beyond the BasicsSAS Global Forum 2010

14

the ODS RTF and ODS PDF destinations using the CSSSTYLE= option. Another way to use a CSS file is to import it
into an ODS style template. Consider the REPORT procedure output shown in Figure 4. What if you wanted different
styles for the Actual and Predicted variable headers? Consider the following CSS file (Hdr.CSS). It defines two class
selectors, AHDR and PHDR.

.AHDR
{ font-family: Arial, Helvetica, sans-serif;
 font-size: x-small; font-weight: bold; font-style: normal;
 color: #000000; background-color: pink;}
.PHDR
{ font-family: Arial, Helvetica, sans-serif;
 font-size: x-small; font-weight: bold; font-style: normal;
 color: #000000; background-color: purple;}

The CSS file, when imported into a style template, adds two style elements to the new style template. These style
elements will not be requested by any of the other ODS report areas (such as SystemTitle, Header, or Data
elements). However, with the REPORT procedure, we can use the following syntax for the Actual and Predicted
variables to produce the HTML results in Figure 12. The full text of the template and the REPORT procedure code
follows Figure 12.

Figure 12. Program Results

ods path work.temp(update)
 sashelp.tmplmst(read);

proc template;
 define style styles.demo06;
 parent=styles.sasweb;
 import 'Hdr.CSS';
 end;
run;

ods html file='demo06_outfit6.html' style=demo06;
ods rtf file='demo06_outfit6.rtf' style=demo06;
ods pdf file='demo06_outfit6.pdf' style=demo06;

proc report data=prdsale nowd;
 title 'Product and Region Report';
 column product region,(actual predict)
 ('Total Sales' actual=acttot predict=predtot);
 define product / group style(column)=RowHeader;
 define region / across 'Region Sales';
 define actual / sum 'Actual' style(header)=AHDR;
 define predict/ sum 'Predicted' style(header)=PHDR;
 define acttot / sum 'Actual' style(header)=AHDR;
 define predtot / sum 'Predicted' style(header)=PHDR;

Beyond the BasicsSAS Global Forum 2010

15

 rbreak after / summarize;
 compute product;
 if _break_ = '_RBREAK_' then do;
 product='Total';
 call define('product','style','style=RowHeader');
 end;
 endcomp;
run;

ods html close;

The code example shown above will also work for RTF and PDF destinations. If you want to see an HTMLCLASS
example using AHDR and PHDR class selectors, or if you want to review the CSSSTYLE= option to accomplish the
same results, those alternative methods are contained in the download file for this paper.

OUTFIT 7: CHANGING GRAPH OUTPUT WITH A STYLE TEMPLATE
Last, but not least, in this haute couture fashion show, is an example of how to change graph output using a style
template. For this show, only a simple bar chart will be changed. All of the bars are the same height so that you can
see the colors being used. In a bar chart, grouped colors are controlled by the GraphData1-GraphData12 style
elements. These style elements use the gdata1-gdata12 style attributes from the GraphColors style element to
control bar colors. The style template for this example will change bar colors for SGPLOT procedure output as well as
for GCHART procedure output. (Note that the GCHART procedure output will only be affected by the style template if
the GSTYLE system option is in effect.) The SGPLOT results are shown in Figure 13, and they were produced by the
code immediately following the figure.

Figure 13: SGPLOT Program Results

ods path work.temp(update)
 sashelp.tmplmst(read);

proc template;
 define style styles.demo07;
 parent = styles.ocean;
 class GraphColors /
 'gdata1' = CXEAADEA

Beyond the BasicsSAS Global Forum 2010

16

 'gdata2' = CXCD69C9
 'gdata3' = CXFF6EC7
 'gdata4' = CX990099
 'gdata5' = CX551A8B;
 end;
run;

ods listing style=demo07;
proc sgplot data=prdsale;
 vbar product / group=product;
 title 'SGPLOT Vbar';
run;

To effectively change the output of the new SG procedures, you need to consult the SAS/GRAPH documentation,
which contains useful style element information for graph components. With classic SAS/GRAPH procedures, such
as GCHART, GPLOT, and GMAP, you can continue to use your SAS/GRAPH syntax methods for changing output
appearance, or you can use style template methods for changing the style. Keep in mind that, for classic
SAS/GRAPH procedures, changes in SAS/GRAPH procedure and GOPTIONS, AXIS, SYMBOL, and PATTERN
statements will override style settings from the style template. For the new SG procedures, changes in the SG
procedure syntax will override what's in the style template.

HAUTE COUTURE DETAILS
Whether you're sewing a dress for a fashion show or designing a style template, you have to understand the basic
components that you're working with. For example, no matter how fancy or plain a dress might be, all dresses have
some basic components for which decisions have to be made: a dress has a neckline and/or collar treatment
(PeterPan collar, mandarin collar, boat neckline, middy collar, cowl neckline, v-neck, sweetheart neckline, etc.); a
dress has to accommodate arms (set-in sleeves, sleeveless, strapless, raglan sleeves, gathered sleeves, spaghetti
straps, etc.); a dress has a fastening mechanism (zipper in the back, zipper at the side, wrap dress, buttons in the
front, buttons in the back, hook and eyes, etc.); a dress has a bodice and waistline treatment (empire bodice and
raised waist, darted bodice and gathered waist, princess style without a separate waist seam, tent dress with no
waist, smocked bodice, etc.); and a dress has a skirt and hem treatment (full skirt, A-line skirt, pleated skirt, circle
skirt, etc.).

In the same way, your SAS output has some basic components (or style elements) that you will work with over and
over again as you design your style templates. Those style elements for tabular output are shown in Figure 14, and
for graphic output, they are shown in Figure 15.

Figure 14. Common Style Elements for Tabular Output

Beyond the BasicsSAS Global Forum 2010

17

Figure 15. Common Style Elements shown for SGPLOT Procedure Output

Of course, there are a few more style elements (but not many) that you might need to work with, especially for tabular
output. The ByLine, Body, RowHeader, SystemTitle, SystemFooter, ProcTitle, and UserText elements round out
the list. And, it doesn't matter which SAS procedure you use. Just as a dress will always have some type of skirt,
tabular procedure output will always have header area cells and data area cells that are styled by the Header and
Data style elements, respectively. Do you absolutely need to know which style element the Header element inherits
from in order to change the Header element? No! In SAS 9.2, with the new inheritance model in
BASE.TEMPLATE.STYLE, all you need to do is use the CLASS statement (or STYLE statement) to change the
visible style element. But, as shown in Outfit 2, where Header changed but RowHeader used the original template
colors, knowing more about inheritance can be useful.

If you are uncertain about which style elements and attributes are used for your tabular output, you can use the
TAGSETS.STYLE_POPUP (with Microsoft Internet Explorer) or TAGSETS.ODSSTYLE destination to help you
determine exactly which style elements are used in your output and which style attributes are specified by those
elements. The TAGSETS.STYLE_POPUP destination uses JavaScript and popup windows to display element and
attribute information. The TAGSETS.ODSSTYLE destination resolves all inheritance into template code that is
suitable for cutting and pasting. An example of TAGSETS.STYLE_POPUP output is shown in Figure 16, and an
example of TAGSETS.ODSSTYLE output is shown in Figure 17. The complete code that produced the output shown
in both of these figures is in the downloadable zip file that will be posted on the support.sas.com Web site. (See
“Download Information” at the end of this paper.)

Beyond the BasicsSAS Global Forum 2010

18

Figure 16. TAGSETS.STYLE_POPUP Output

To invoke the TAGSETS.STYLE_POPUP tagset, use the following code:

ods path sashelp.tmplmst(read);

ods tagsets.style_popup path='.' (url=none) file='spu_diagnose.html'
 style=sasweb stylesheet='spu.css';
 . . . Your procedure code of interest . . .
ods _all_ close;

Note that popups must be enabled in your browser in order to see the popup window that displays the style elements
and attributes. These elements and attributes can be used for PDF and RTF destinations as well; you use the HTML
destination for diagnostic purposes only.

The TAGSETS.ODSSTYLE destination is also a good diagnostic tool, because it creates a file that can be used to
design a new template from scratch (without any PARENT= statement). This file can also be used (in a verbose
form) to see how inheritance was resolved across multiple parent templates or to cut and paste from when designing
your own style templates (with or without a parent template in effect). You could change the STYLE statement in the
ODSSTYLE output to a CLASS statement, or you can leave it as a STYLE statement. Since CLASS and STYLE are
effectively the same if there isn't a parent style definition, either statement will work, because the template code
generated by TAGSETS.ODSSTYLE does not have a PARENT statement. Partial output from
TAGSETS.ODSSTYLE is shown in Figure 17.

Beyond the BasicsSAS Global Forum 2010

19

Figure 17. Partial TAGSETS.ODSSTYLE Output

The output from TAGSETS.ODSSTYLE was rearranged for purposes of Figure 17 to show some of the most
common elements at the top of the output file. In addition, a comment at the top of the output file is not shown in
order to conserve space. Note how the TXT file created by TAGSETS.ODSSTYLE contains a syntactically correct
PROC TEMPLATE step that defines a new style template called STYLES.MYSTYLE. Note also that there are no
colors, color_list, or fonts style elements in this output file. That is because inheritance has been resolved into each
STYLE statement, resulting in verbose, but very clear code.

ods path sashelp.tmplmst(read);

ods tagsets.odsstyle path='.' (url=none) file='dummy.html'
 style=sasweb stylesheet='resolved_style_info.txt';
 . . . Your procedure code of interest . . .
ods _all_ close;

Whether you are just starting with style templates or you have worked with style templates in earlier versions of SAS,
these two diagnostic tagset templates can help you understand the style elements and attributes that you need to use
in your own style template design. In addition, the appendix to this paper contains a table (which is useful as a job
aid) of common style attributes and their possible values. This table is an excerpt from the ODS documentation topic
entitled, "Style Attributes and Their Values" (referenced in “Understanding the Pattern and Directions” above), which
is a complete list of all the possible style attributes that you can specify in a style template. This documentation topic
also contains information about which destinations support each attribute and the area of the output that is affected

Beyond the BasicsSAS Global Forum 2010

20

by the attribute. In addition, the file named COMMON_STYLE_ELEMENTS.TXT is in the zip file of programs that
accompanies this paper.

CONCLUSION
Learning to modify style templates has never been easier. Since the advent of SAS 9.2 and the introduction of the
CLASS and IMPORT statements, you can fashion your own line of style templates complete with your company's
preferred fonts and color palettes. Tracing inheritance issues is not as crucial when using SAS 9.2 as it was in SAS 8
or SAS 9.1.3, because the introduction of BASE.TEMPLATE.STYLE as the implicit style template parent simplifies
the code that you have to write.

DOWNLOAD INFORMATION
Papers written by SAS staff for SAS Global Forum and other user group presentations are generally available for
download from the Web site listed below. Papers presented at SAS Global Forum 2010 will be available shortly after
the conference is over.

http://support.sas.com/rnd/papers

Search for your paper of interest by paper title (not by author name). Figure 18 shows the paper and download
information for the author's CSSSTYLE paper from SAS Global Forum 2009.

Figure 18. Support.sas.com site for paper and program download

REFERENCES AND RECOMMENDED READING
• Smith, Kevin D. 2006. "The TEMPLATE Procedure Styles: Evolution and Revolution." Proceedings of the

SAS Users Group International 31 Conference. Cary, NC. SAS Institute Inc. Available at
www2.sas.com/proceedings/sugi31/053-31.pdf.

• Smith, Kevin D. 2007. "The Output Delivery System (ODS) from Scratch." Proceedings of the SAS Global
Forum 2007 Conference. Cary, NC. SAS Institute Inc. Available at
http://support.sas.com/rnd/base/ods/scratch/ods-from-sc-paper.pdf.

• Cartier, J. 2002. "Visual Styles for V9 SAS® Output." Proceedings of the Twenty-Seventh Annual SAS Users
Group International Conference. Cary, NC: SAS Institute Inc. Available at
http://support.sas.com/rnd/datavisualization/papers/VisualStyles.pdf.

• Cartier, J. 2002. "The Basics of Creating Graphs with SAS/GRAPH® Software." Proceedings of the Twenty-
Seventh Annual SAS Users Group International Conference. Cary, NC: SAS Institute Inc. Available at
http://support.sas.com/rnd/datavisualization/papers/GraphBasics.pdf.

• Cartier, J. 2003. "It's All in the Presentation." Proceedings of the Twenty-Eighth Annual SAS Users Group
International Conference. Cary, NC: SAS Institute Inc. Available at
http://www2.sas.com/proceedings/sugi28/147-28.pdf.

• Zender, Cynthia L. 2009. "CSSSTYLE: Stylish Output with ODS and SAS® 9.2." Proceedings of the SAS
Global Forum 2009 Conference. Cary, NC. SAS Institute Inc. Available at
http://support.sas.com/resources/papers/proceedings09/014-2009.pdf.

• Zender, Cynthia L. 2009. "Tiptoe Through the Templates." Proceedings of the SAS Global Forum 2009
Conference. Cary, NC. SAS Institute Inc. Available at
http://support.sas.com/resources/papers/proceedings09/227-2009.pdf.

Beyond the BasicsSAS Global Forum 2010

21

• Gebhart. Eric. 2007. "ODS Markup, Tagsets, and Styles! Taming ODS Styles and Tagsets." Proceedings of
the SAS Global Forum 2007 Conference. Cary, NC. SAS Institute Inc. Available at
www2.sas.com/proceedings/forum2007/225-2007.pdf.

• Parker, Chevell. 2003. "Generating Custom Excel Spreadsheets using ODS." Proceedings of the SAS Users
Group International 28 Conference. Cary, NC. SAS Institute Inc.
Available at www2.sas.com/proceedings/sugi28/012-28.pdf.

• Heath, Dan. 2007. “New SAS/GRAPH® Procedures for Creating Statistical Graphics in Data Analysis.”
Proceedings of the 2007 SAS Global Forum. Cary, NC: SAS Institute Inc. Available at
http://support.sas.com/rnd/datavisualization/papers/sgf2007/SGF2007-Proc.pdf.

• Heath, Dan. 2008. “Effective Graphics Made Simple Using SAS/GRAPH® SG Procedures.” Proceedings of
the 2008 SAS Global Forum. Cary, NC: SAS Institute Inc. Available at
http://www2.sas.com/proceedings/forum2008/255-2008.pdf.

• Haworth, Lauren E., Cynthia L. Zender, and Michele M. Burlew. 2009. Output Delivery System: The Basics
and Beyond. Cary, NC: SAS Institute Inc.

ACKNOWLEDGMENTS
As always, the author would like to thank David Kelley, Kevin Smith, Wayne Hester, Scott Huntley, Dan O'Connor,
and Eric Gebhart for their efforts to make ODS as wonderful as it is (and for answering my questions about it). In
addition, thanks are always due to Bari Lawhorn and Chevell Parker who possess awesome ODS problem solving
skills. This paper has been made better because of Michele Ensor, Jane Stroupe, David Kelley, Kevin Smith, Bari
Lawhorn, Chevell Parker, Lorilyn Russell, and Chris Riddiough, who reviewed it, and Jeanne Ferneyhough who
edited it. I am very grateful to my grandmother and mother (both deceased), who taught me that if you have a sewing
machine, a pattern, some fabric and patience, you can sew anything. The sewing machine didn't help me with ODS,
but the patience did!

CONTACT INFORMATION
Your comments and questions are valued and encouraged. Contact the author at:

Cynthia Zender
SAS Campus Drive
SAS Institute Inc.
E-mail: Cynthia.Zender@sas.com

SAS and all other SAS Institute Inc. product or service names are registered trademarks or trademarks of SAS
Institute Inc. in the USA and other countries. ® indicates USA registration.

Other brand and product names are trademarks of their respective companies.

Beyond the BasicsSAS Global Forum 2010

22

APPENDIX: COMMON STYLE ATTRIBUTES AND THEIR VALUES

Use With Attribute Possible Value

Table or cell
style elements
(such as
Header
RowHeader
ByLine
ProcTitle
SystemTitle
SystemFooter,
etc.)

COLOR or FOREGROUND
BACKGROUND or
BACKGROUNDCOLOR

white, red, yellow, black, pink, purple
cxFFFFFF, cxFF0000, cxFFFF00, cx000000
h000FF00, h07880FF, h0B480FF, h0000000

FONT_FACE Times
"Times New Roman"
Arial
Helvetica
Courier
'Courier New'
"Arial, Helvetica, Helv"

FONT_SIZE 5, 10 pt, 1 cm, 0.25 in

FONT_STYLE italic, roman

FONT_WEIGHT medium, bold, light

FONT_WIDTH compressed, narrow, wide

FONT ('<sans-serif>,Arial, Helvetica, Helv', 2)
("Times, Times New Roman", 10pt, bold)
('Courier New, Courier', 14pt, bold italic)

CELLWIDTH or WIDTH 150, 2 in, 5 cm, 20%

CELLHEIGHT or HEIGHT 150, 2 in, 5 cm, 20%

JUST left, center, right or l, c, r

VJUST top, middle, bottom or t, m, b

URL 'www.sas.com'
"http://support.sas.com"
'C:\report_dir\Jan_Sales.html'

PREIMAGE
POSTIMAGE
BACKGROUNDIMAGE

'C:\images\myimage.jpg' or "myimage.jpg" or
'http://www.srv.com/images/myimage.jpg'

PREHTML
POSTHTML

"<HR size=3>"
' SAS Web Page'

PRETEXT
POSTTEXT

'This is a draft.'
"Continue"

Table style
elements only
(such as
Table,
Output or the
"container"
abstract style
elements)

BORDERCOLOR CX000000, black (or any color scheme as shown above)

BORDERWIDTH
BORDERSPACING
PADDING

0, 7, .1 in, 1 cm

RULES ALL, COLS, GROUPS, NONE, ROWS

FRAME VOID, ABOVE, BELOW, BOX, HSIDES, LHS, RHS, VSIDES

OUTPUTWIDTH or WIDTH 150, 3 in, 20 cm, 95%

Beyond the BasicsSAS Global Forum 2010

	2010 Table of Contents

