
1

Paper 013-2010

Using Base SAS® to Talk to the Outside World: Consuming SOAP and REST Web

Services Using SAS® 9.1 and the New Features of SAS® 9.2®.

Curtis E. Mack, Looking Glass Analytics

ABSTRACT

There has long been a trend in the computing industry of breaking isolatable computing components into

separate internet accessible services. By consuming these services, many different applications can include

the same functionality without having to install and maintain them separately. Many of these services are

published as SOAP services, and more recently they have been published using the REST protocol. This

paper will show how these services can be consumed from within a Base SAS application. Four different

techniques will be show, custom coding via a SOCKETS, the newer PROC SOAP and PROC HTML, and the

brand new XML92 LIBNAME engine with the XMLTYP=WSDL option.

This paper is written for the experienced SAS programmer who has little to no knowledge of web services.

However, it would also be valuable to someone with experience using each independently but not together.

INTRODUCTION

Web services have been available for quite awhile now. They are the standard method for delivering data

to web based applications and have many applications in batch processing and other non-web based

applications as well. Google® has been a pioneer in this area with a wealth of services doing things such as

generating maps, creating chart graphics, geocoding, and many others. Microsoft also has a suite of services

under their Bing® brand. The list is endless and always growing. Some of these services are public and free

and even more are available under many different licensing structures. Many companies also publish

internally accessible services to disseminate their own information and business logic. More and more

primary data sources are starting to offer web services as a way to disseminate their information. SAS®

offers tools for publish web services under their Integration Technology product and other tools to create

them easily are included in development tools such as Visual Studio.

The Protocols

There are two main protocols being used in web services, SOAP and REST. They each have differing

strength and weaknesses.

SOAP

 Object based

 More structured

 Well integrated into code

development tools.

 More powerful

 Harder to code without tools

REST

 Parameter Based

 Less Structured

 More Human Readable

 Easier to code without tools

 Has become more popular

Applications DevelopmentSAS Global Forum 2010

2

SOAP

SOAP (Simple Object Access Protocol) is an XML based standard for publishing web services. These

services use an object based paradigm, and the SOAP interface is a way of serializing the needed objects

in both directions so that the processes on both sides can work with the same object concepts even

though they may materialize them completely differently. Serialization is the process s of converting an

object structure into a format that can be transmitted using a stream of standard characters. In the case

of SOAP this is done using the XML standard. Each SOAP service publishes a service agreement in the

form of a WSDL (Web Service Definition Language) file. This is an XML schema describing the objects

and methods of the service. This file can be obtained by calling the “wsdl” action on the web service.

This is done by adding the text “?wsdl” to the end of the service’s url. (e.g.

“http://wslite.strikeiron.com/censusinfolite01/CensusInfoLite.asmx?WSDL”) Everything you need to

know to consume the service can be found in this file. The trick is finding the pieces of information you

actually need in this file which is usually rather large. Keep in mind that it is designed to be read by a

machine. First let’s look at what it takes to make an

SOAP call with or without SAS.

A SOAP call is a broken into three parts, the header (in

black on figure 1) which contains non-XML text

describing the HTTP package that transmits the call,

the envelope (in white on figure 1) which is the XML

tag specifying which service and method is being

called, and the body (in red on figure 1) which

contains the XML serialized object the method being called is requires as a parameter.

 There is a bit of a war in the SOAP community over how to structure the content of the SOAP Body.

One format is referred to as “RPC”. Unfortunately for some of you this acronym appears to refer to a

much older protocol used for submitting jobs on remote machines. This use of the acronym has no

relationship to that one. It specifies that the body content must contain the name of the action being

called, and that all of the object definitions are completely aliased to their namespaces. This appears to

be an older format but there are many services still using it. Another format is referred to as the

“Document” format. In it the body contains only the object being passed, without namespace

references. Yet a third format is called “Document Wrapped” and as the name implies it like the

“Document” format only contains the object being passed. It however wraps that information in a tag

that tells the service which action is being called. This is the format the Microsoft development tools

create by default, and appears to be becoming the standard. There are other formats but they are

mostly just slight variations on the RPC or Document formats. For now, the most important thing is to

understand what your target service expects, and format your request accordingly.

These SOAP examples are using services from

the company Strike Iron. They offer many web

based services, including a selection of free

services such as the CensusLite service used in

this demonstration. To learn more please visit

them at www.StrikeIron.com

Applications DevelopmentSAS Global Forum 2010

3

To use a service, you need four pieces of information from the WSDL file:
1. The URL of the service

2. The method or “Action” you wish to use (there are often more than one at a service)

3. The object to be passed to the action, and its structure.

4. The object the service will return from the action and its structure.

As mention earlier all of this can be obtained from the site’s WSDL file. You could just open that file in a

browser and read it yourself and get something like this.

This file goes on for pages. Fortunately there are good tools

to help you get the information you need from the WSDL file

without much effort. One that works well and has a free

version is SoapUI. We will now step through the process of

getting the needed information from a WSDL file using this

tool. The first step (and possibly the hardest) is obtaining the

WSDL file for the service which you wish to access. Hopefully

you have this already; otherwise you will need to look it up.

After opening the SoapUI tool, create a new project give it a name and the path to WSDL of the desired

service. This could be a file on a local drive, but it is simplest to just enter the URL of the service

Free open source tool for reading WSDL files

and generating sample SOAP calls

http://www.soapui.org/

Applications DevelopmentSAS Global Forum 2010

4

followed by “?WSDL”. Here is what that should like like in SoapUi.

Soap UI will then read the WSDL file and create partial test requests for each of the services offered by

that site. In the example below we have opened the “GetCensusInfoForZIPCode” action from the

“CensusInfoLiteSoap” service.

As you can see SoapUI has already generated the skeleton of a XML Envelope needed in a call to that

action. The black question mark(s) indicate where a parameter should be entered.

Applications DevelopmentSAS Global Forum 2010

5

In the next example we enter a ZIP Code of 98501 into the ZIPCode parameter. When we press the

green arrow, SoapUI makes that call and shows us what is returned by the service.

In this case the service returns an XML structure that gives use various Census statistics for that ZIP

Code. Clicking on the “Raw” tabs of each of these windows we are switch a view that shows us exactly

what is sent to and received from the service.

To make an SOAP call in SAS 9.1 or earlier, the text in the left window is exactly what we must somehow

send to the service and the text on the right is exactly what we will receive in return.

Applications DevelopmentSAS Global Forum 2010

6

Let’s take a closer look at the structure of the SOAP request in figure 1.

These are main parts of a SOAP request

1) Header - This is the HTML call to tell
the server to expect a SOAP request
(In black)
a) A POST command with the

filename of the service
b) The URL of the service
c) The name of the action being

called
d) A HTTP content type
e) The length in bytes of the SOAP

envelope being sent(Next)
2) The SOAP Envelope (in white)

a) The XML specifications
b) The Opening SOAP tag

i) XML Namespace Alias for the
service being called

ii) XML Namespace Alias for the
SOAP envelope standard

c) The SOAP Body
i) The Opening SOAP Body Tag
ii) The Action Call (in Red)

(1) The opening action tag
(2) The XML describing the object the action is expecting as input
(3) The closing action tag

iii) The Soap Body closing tag
d) The Soap Envelope closing tag

When this is passed to the service, the service will return the results.

Thanks to the SAS XML Mapper, reading the XML
formatted results from an SOAP call can be pretty simple.
This GUI tool creates a XML map which is itself an XML file
that tells the SAS XML libname engine how to convert the
object describe in an XML file into a SAS table. Since the
objects returned by these services can be very complicated with multiple nested hierarchies of
information, SAS needs instructions on which data elements become the rows and columns of a SAS
dataset. In the following example, the result returned by above SoapUI call was saved to a file named
“results.xml”. We open SAS XML Mapper and then us it to open that file. Unfortunately, this is what is
returned.

POST http://wslite.strikeiron.com/censusinfolite01/CensusInfoLite.asmx
HTTP/1.1'

Host: wslite.strikeiron.com

SOAPAction: "http://www.wslite.strikeiron.com/GetCensusInfoForZIPCode"

 Content-Type: application/soap+xml; harset=utf-8

 Content-Length: 340

<?xml version="1.0" encoding="utf-8"?>

<soap12:Envelope

 xmlnsxmlns:wsl=http://www.wslite.strikeiron.com

 xmlns:soap12="http://www.w3.org/2003/05/soap-envelope">'

 <soap12:Body>

 <wsl:GetCensusInfoForZIPCode>

 <wsl:ZIPCode>98501</wsl:ZIPCode>

 </wsl:GetCensusInfoForZIPCode>

 </soap12:Body>

 </soap12:Envelope>

Figure 1

F

Connection: Close

Some installations of SAS will not include the

XMLMapper. It is part of the Base SAS package,

but it often isn’t installed by default.

Applications DevelopmentSAS Global Forum 2010

7

It turns out that XML Mapper occasionally fails when reading complicated XML structures. There are
ways to work around this. Frequently we do not need all the branches of an XML structure. If you edit
the XML file and remove these branches, XML Mapper can often handle the result. As long as you
maintain the hierarchy of the data you want to capture, the XML map generated on the edited version
will also work on the unedited version. If you need more than one set of information from a single XML
file, you can edit the file multiple times to create multiple XML maps. When the edited version of the
file is opened, it looks like this.

Applications DevelopmentSAS Global Forum 2010

8

The next step is to click and drag the desired data elements from the XML on the left to the table
definition on the right. In this example, as is typical, there are several levels of hierarchy which we do
not need. We select the “CensusInformation” element and clicked “AutoMap this branch” from the
right mouse button pop-up menu.

We then saved the XML map to a file which we will us later.

The challenge now is how to get Base SAS to make that SOAP call and save the results. We will explore
three ways to do this.

SOAP Custom Coding Method

This technique has been available in SAS for quite a

while. It uses SAS’s SOCKET filename engine to establish

a direct link to the service. All of the communication is handled by code, so all of the text in Error!

Reference source not found. must be generated and sent to the service via HTTP. Appendix A has an

example macro that will make a simple SOAP call and store the resulting XML in a text file. Appendix B

contains the code used to make the call used in these examples. The will step through the code

generated by the macro to explain how the call is made. The green boxes are selected sections of that

generated code. “SOAP_Call “ macro.

In example 1 the most important thing to notice is the “SoapSrv” filename statement is using a SOCKET

engine. This is the way

the code opens a direct

HTTP stream to the site
filename SoapSrv socket "wslite.strikeiron.com:80" lrecl=32767 termstr=CRLF;
filename SoapRtrn "G:\PNWSUG\Papers\Soap\CensusLite\results.xml" RECFM=N;
filename ContXML "G:\PNWSUG\Papers\Soap\CensusLite\ZIP98501SOAPBody.xml";

Example 1

SAS 9.2 Phase 1 (TS1M0) on Vista requires Hot

Fix F9BA26 for this socket functionality to work.

Applications DevelopmentSAS Global Forum 2010

9

hosting the service. This reference points to the root URL of the published service through port 80.

Note that this not the full service reference, but just the high level domain. There are also a couple

other parameters that are required to prevent the data streams from being truncated. Next, look at the

“SoapRtrn” filename. This is the file where the information returned by the service will be stored. The

record format is set to “N”. This prevents the results from

being arbitrarily broken into records. If this were to

happen the resulting XML file would be difficult to read,

particularly by software tools. The “ContXML” filename

references the file containing the XML that will be sent as

the body of the service request. In this example it looks like

the XML in Error! Reference source not found.2. This XML

is formatted to match the object expected by the service we are calling; in this case we are requesting

Census information for ZIP Code 98501.

The trickiest part of generating a SOAP call

manually is the HTTP requirement for the

“Content-Length” parameter. This is the

length of the entire SOAP package

including the Envelope, Header, and Body.

This is the reason a separate a DATA step is

needed to count the number of bytes in

body XML (Example 2). This step reads the

data as shown in figure 2 into a SAS

dataset containing just one variable while

summing the length of each value. An extra character will be added between each record, so one is

added to the total byte count for every

record.

The next section of the code is the DATA

step that makes the HTTP call, and reads

the returned results. The beginning of

that DATA step is show in example 3. The

first thing to notice here is that the INFILE

and FILE statements both point to the

same “SoapSrv” filename reference. This is the nature of working with sockets. The DATA step will first

write to that socket, and then it will read the results back from the same socket.

<wsl:GetCensusInfoForZIPCode>

 <wsl:ZIPCode>98501</wsl:ZIPCode>

</wsl:GetCensusInfoForZIPCode>

Figure 2

data _ContXML(drop = TotalXMLLength);
 retain TotalXMLLength 0;
 length content $32767;
 infile ContXML end=xmleof;
 input;
 content = strip(_infile_);
 TotalXMLLength = TotalXMLLength + length(content) + 1;
 if xmleof then call symput('TotalXMLLength',TotalXMLLength);
run;

Example 2

data _null_;
 length content1 content2 $32767;
 retain mode 1 TotalReturn ReturnLength 0;
 infile SoapSrv truncover;
 file SoapSrv;

Example 3

Applications DevelopmentSAS Global Forum 2010

10

The next part of that

DATA step is wrapped

in a “if _n_ = 1” block

so that it only

executes on the first

loop of the data

vector (example 4).

The first part of this

section constructs the

HTTP header of the

call, and the opening

and closing SOAP

tags. Since the HTTP

header must contain

the parameter 'ContentLength' which is length of the entire SOAP envelope, all of these strings must be

created up front so that the lengths of the start tag, the length of the body that was calculated earlier

(the macro code resolved that to 101 in this example), and the length of the end tag can be summed

before the HTTP header is constructed. To get this length correct, it must also sum in the number of

end-of-line characters that will be included in the envelope. It adds 4 to cover those between the

header, soap tags, and body. It also calculates the number that will be needed to work within the

32,767 byte maximum line length. To do this it divides the number of bytes in the body by that

maximum line length and rounds down. In this example we have a very small body so that resolves as “

int(101 / 32767)” which is of course zero. Longer bodied SOAP calls need this however. The put

statement near the end writes the Header and opening SOAP tag to the socket. The last line starts

tracking the number of bytes already sent to the socket. Once again, this is so it can work within the line

length limit.

The next section of the DATA step is

still within the “if” block that only

executes on the first record

(example 5). It reads the body of

the SOAP call from the DATASET

created in example 2. It does this

using the SCL Open, Fetch, and

Close statements. If you are not

familiar with this technique, it is a

way of reading a DATA set without it

being in the SET statement. Since

the current DATA Step expects it

data to come from the socket infile statement, this technique was needed. This loop reads each record

and writes it straight to the socket. The rest of the logic is needed to insert line breaks if the maximum

line length is approached.

if _n_ = 1 then do;
content1 = '<soapenv:Envelope '||
'xmlns:soapenv="http://schemas.xmlsoap.org/soap/envelope/"' || " " || 'xmlns:' ||
"wsl=""http://www.wslite.strikeiron.com""" || ">" || '<soapenv:Body>';
content2 = "</soapenv:Body>" || "</soapenv:Envelope>";
ContentLength = length(content1) + length(content2) + 101 + 4 + int(101 / 32767);
 call symput ('ContentLength',ContentLength);
 put "POST http://wslite.strikeiron.com/censusinfolite01/CensusInfoLite.asmx HTTP/1.1" /
 'Content-Type: text/xml; charset=utf-8' /
 "SOAPAction: ""http://www.wslite.strikeiron.com/GetCensusInfoForZIPCode""" /
 "Host: wslite.strikeiron.com" /
 'Content-Length: ' ContentLength /;
 put content1 @;
 currentLineLength = length(content1);

Example 4

 fc = open("_ContXML");
 do until(fetch(fc));
 thisLine = strip(getvarc(fc,1));
 if sum(length(thisLine),currentLineLength) + 1 >= 32767 then do;
 put;
 currentLineLength = 0;
 end;
 put thisLine@@;
 currentLineLength = sum(length(thisLine),currentLineLength) + 1;
 end;
 rc = close(fc);

Example 5

Applications DevelopmentSAS Global Forum 2010

11

Now that the headers and

body have been written, all

that is left is closing the SOAP

tag (example 6). At least one

would think that is all that is

needed, but you can see that

this code writes out the

closing SOAP tag stored in “content2”, but it then writes out another HTTP call. It is simply sending the

command to close the connection, which is good practice anyways. However, this is also a trick that was

needed for this very frustrating reason. The next step in the process is to read the package returned

from the service. It unfortunately will not have an end-of-line or end-of-file character at the end. As

such the DATA step will never see the last record. This extra call forces the service to send another

package acknowledging the close, and therefore we will get an end-of-line character between them. Up

until now we have been writing to the socket. The final line of this section closes the “if” block, so the

next sections are executing for each record returned from the service and reading the results.

The service will return a package much like what we just sent to it. Therefore there are three “modes”

in the process of reading them. First is reading the HTTP header and SOAP tag, second is reading the

body, and the final is reading the closing SOAP tag

and the acknowledgement that the connection has

been closed. Example 7 has the first mode. It simple

reads the record coming in as being part of the

header. All it does is capture the “Content-Length”

of the body that will follow. If it sees a blank line,

this indicates the beginning of the body, and it

switches to mode 2.

Mode 2 treats each record as part of the body. It will

read each one and write the results out to a file

(example 8). Since this DATA step has already

declared its output FILE statement as being the socket,

it must now re-declare the output FILE to be the output

destination. There is no special character string

indicating that the end of the body has been reached.

This is why the “Content-Length” was captured earlier.

When the total number of bytes returned equals that

value, the process switches to mode 3.

Mode 3 is just some clean-up. It simply reads the rest of the records sent and does nothing with them.

When all of this is done, we have a file containing the XML return from the service. This end of what the

“SOAP_CALL” macro does.

 put;
 put content2 ;
 put 'OPTIONS / HTTP/1.1' /
 "Host: http://wslite.strikeiron.com/censusinfolite01/CensusInfoLite.asmx" /
 'Connection: Close' /;
 end;

Example 6

if mode = 1 then do;
 input thisRec $ 1 - 32767;
 if thisRec =: "Content-Length:" then do;
 ReturnLength = input(scan(thisRec,2,':'),10.);
 end;
 call symput('ReturnLength',ReturnLength);
 if thisRec = " " then mode = 2;
 end;

Example 7

 if mode = 2 then do;
 nextReturn = ReturnLength - TotalReturn;
 input thisRec $varying32767. nextReturn;
 file SoapRtrn;
 put thisRec;
 TotalReturn = TotalReturn + length(thisRec);
 if TotalReturn >= ReturnLength then mode = 3;
 end;

Example 8

Applications DevelopmentSAS Global Forum 2010

12

The next steps in a larger process are be to read that XML

and do something with it. This is where the XML map

discussed earlier comes into play. In figure 3 that file is

used to define a LIBNAME statement that point to the

resulting XML. Now the results can be treated as a

readonly dataset and used however needed. In our

example, we get a dataset with one row with variables for

several Census counts for ZIP Code 98501 like this:

That was a lot of work, and for those of you who have switch to SAS 9.2, work you do not need to do.

However, it is always good to understand what is going on behind the scenes.

PROC SOAP

For those who have made

the transition to SAS 9.2,

there is now a much

simpler way to make

SOAP calls. The PROC

SOAP procedure handles

all of the port

communication for you,

all you need to supply is the service URL, action name (with namespace) , and a file containing the

contents of the SOAP Body. Other advantages are it offers support for authetication and proxy servers.

Figure 4 contains the equivalent PROC SOAP version of the example call we used describing the manual

method. It reads the same XML file containing the body XML. The results can be read using the same

XML map. But wait, the SAS developers have been busy, if you are using SAS 9.2 Phase 2 or later there

may be a still easier way.

XMLType = WSDL

If you are using SAS 9.2 Phase 2 or later there is an even newer aproach to reading SOAP services,

LIBNAME statements

usign the XML engine and

the “XMLType = WSDL”

option. Figure 5 shows

how our example might

be written using this

method. Unfortunately,

FILENAME request "temprq.xml" ;
FILENAME response "tempre.xml" ;
proc soap in=request
 out=response
 url=http://wslite.strikeiron.com/censusinfolite01/CensusInfoLite.asmx
 soapaction="http://www.wslite.strikeiron.com/GetCensusInfoForZIPCode";
run;

Figure 4

filename XMLMap "c:\CensusLite.map";

libname results XML "c:\results.xml"

xmlmap= XMLMap access=READONLY;

Figure 3

filename Census url
"http://wslite.strikeiron.com/censusinfolite01/CensusInfoLite.asmx?WSDL”;
libname Census XML92 xmltype=WSDL;

proc datasets library= Census details;
run;

Figure 5

Applications DevelopmentSAS Global Forum 2010

13

this example does not work. As of the time this was written, this method was very particular of the

services it would support. It only supports SOAP calls using the “Document Wrapped” format

mentioned earlier. Also, since it doesn’t use XML Maps, the objects the called service returns must be

“rectangular”, meaning they have a simple row and column structure. Despite these limitations, this

represents an exciting direction in SAS support of SOAP services and it will be interesting to see how this

progresses. It may also be a good option for those creating their own Microsoft Windows based

services, as they use the correct format and the author of such a service can define them to return

objects SAS can easily recognize as tables.

REST

The REST model is a much less structured protocol, and is mostly a formalization of methods that have

been used in the web sites for years before. It involves

calling the URL of a service with all of the parameters of

the call appended to the end of the URL as name value

pairs separated by ampersands. This is the same

technique used to call many web sites and how web forms

submit the data they collect to their host servers. There is

no standard for defining the parameters of a service nor

the structure of what it returns. This information must be

researched by the developer and the rules implemented

in code.

A typical REST call looks

something like figure 6. The

URL up to the first “?” is the

path to the service.

Everything after that are

name/parameter pairs separated by ampersands. Equal signs separate the parameter name and its

value. The “%20” strings in the parameters are escaped space characters. Spaces should not be

included in URLs, so this is how they are passed in parameters. There are other escape sequences

needed for other special characters. The methods to read a REST service in SAS are pretty straight

forward.

http://local.yahooapis.com/MapsService/V1/geocode?appid=XXXXXXXXXXXX-

&street=1600%20Pennsylvania%20Avenue%20NW&city=Washington&state=DC

Figure 6

These Example use the

Yahoo! Geocoding Service

www.Yahoo.com

Applications DevelopmentSAS Global Forum 2010

14

REST Custom Coding Method

This technique has been available

for many versions of SAS. Due to

the existence of the URL filename

engine, coding a call to a REST

service is relatively simple. You

just declare a FILENAME statement

using the URL engine and point it

to the fully qualify URL of the

service with all of the parameters

included. By opening that file

reference using an INFILE

statement in a DATA Step like you

would any other file, you can read

the service’s response. The most

difficult process is constructing

that URL string using MACRO

syntax like in the example in Figure

7. Most of the complexity of this

example comes from the MACRO escape syntax needed to prevent any special characters from being

resolved by the MACRO interpreter. Notice the URLENCODE function called by the first line. This

handy function does all of the special character escaping required for the parameters being passed in

the URL. This converts those spaces in the address into “%20” strings. The DATA step reads from the

URL INFILE and writes the results to another file. Since the service can return anything from a text file,

to XML, or even an image, we do not

want SAS interpreting the incoming

end-of-line characters as record breaks

so we use the length statement on the

INFILE statement in conjunction with

the $varying INFORMAT to make SAS

read the entire record without regard

to special characters. We also want to

prevent SAS from adding its own end-

of-line characters, so we specify a

“recfm=n” on the FILE statement.

The result can be of any format the

service chooses. In this example it

returns the XML document shown in

figure 8. This can be read using the

same techniques used earlier.

%let AddressVal = %qsysfunc(URLENCODE(1600 Pennsylvania

Avenue));

%let CityVal = %qsysfunc(URLENCODE(Washington));

%let StateVal = DC;

%let url = %nrstr(http://local.yahooapis.com/MapsService/V1/geocode)

%nrstr(?appid=XXXXXXXXXXXX-)

%nrstr(&street=)%superq(AddressVal)

%nrstr(&city=)%superq(CityVal)

%nrstr(&state=)%superq(StateVal);

filename InURL url "%superq(url)" lrecl=4000;

filename OutXML "OutXML.xml";

data _null_;

 infile InURL length=len;

 input record $varying4000. len;

 file OutXML noprint notitles recfm=n;

 put record $varying4000. len;

run;

Figure 7

<?xml version="1.0" ?>

<ResultSet xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"

xmlns="urn:yahoo:maps" xsi:schemaLocation="urn:yahoo:maps

http://api.local.yahoo.com/MapsService/V1/GeocodeResponse.xsd">

 <Result precision="address">

 <Latitude>38.898590</Latitude>

 <Longitude>-77.035971</Longitude>

 <Address>1600 Pennsylvania Ave NW</Address>

 <City>Washington</City>

 <State>DC</State>

 <Zip>20006</Zip>

 <Country>US</Country>

 </Result>

 </ResultSet>

- <!-- ws01.ydn.gq1.yahoo.com uncompressed Fri Sep 25 10:06:25

PDT 2009 -->;

Figure 8

Applications DevelopmentSAS Global Forum 2010

15

PROC HTTP

If you are using SAS 9.2 Phase 1 or later

there is a new somewhat simpler aproach

to reading REST services, PROC HTTP.

Figure 9 shows our same Yahoo example

using the PROC HTTP method. This

method requires that the name value

parameter pairs be stored in a single line

file. This file is then used as one of the

parameters to the PROC HTTP call, along

with the URL of the service and the file in

which to store the results. The resulting file

is identicle to that generated using the

manual method, and can be read the same

way.

There are several advantages to this

technique. Having the parameter string in a

file removes the step of creating the

complete URL using MACRO syntax, along with all the MACRO quoting that requires. PROC HTTP also

automatically handles the URL formating of any special characters in the parameters. This method can

also handle both GET and POST formated requests HTTP. Finally, the complexities or handling a non-

text result file are transparent.

To demonstrate a service returing a non-text file,

figure 10 is an example of using PROC HTTP to access

a service that returns an image. This is a good

example of how the REST protocol’s loose structure

requires the developer to do some research in order

to build the parameter strings. Here are the

parmeters of this call:

 The CHT parameter specifies that

we want a Ven Diagram

 The first three values of the CHD

parameter specify the relative sizes

of three circles: A, B, and C.

 The fourth value specifies the area

of circle A intersecting B.

 The fifth value specifies the area of

circle A intersecting C.

filename OutXML "OutXML.xml";

filename address "address.txt";

data _null_;

 file address;

 put 'appid=XXXXXXXXXXXX-' @;

 put '&street=1600 Pennsylvania Avenue' @;

 put '&city=Washington' @;

 put '&state=DC';

run;

PROC HTTP

 in=address

 out=OutXML

 url="http://local.yahooapis.com/MapsService/V1/geocode";

RUN;

Figure 9

%let WorkDir = G:\PNWSUG\Papers\Soap\GoogleChart;

filename in "&WorkDir\in";

filename out "&WorkDir\out.png";

data _null_;

 file in;

 put ‘cht=v&chd=t:100,80,50,30,25,10,10&chs=500x500&chl=‘

run;

proc http in=in

 out=out

 url="http://chart.apis.google.com/chart?"

 method="post"

 ct="application/x-www-form-urlencoded";

run;

Figure 10

This Example uses the

Google Chart API

http://code.google.com/apis/chart/

Applications DevelopmentSAS Global Forum 2010

16

 The sixth value specifies the area of B

intersecting C.

 The seventh value specifies the area of A

intersecting B intersecting C.

 The CHS parameter is the desired image size

 The CHL parameter specifies the labels, in this

case there are none.

As you can see, this would be imposible to figure out

without looking at the documentation for the service.

The resulting image is shown in figure 11.

Conclusion

There are many different ways to consume web services from within base SAS. Given the myriad of

services out there, on top of those that could be developed in house, this distributed approach to

application design should be in your tool kit. SAS is actively developing in this area of their product

lending further support to this being an established model that is gaining in popularity.

Warning
All of these public web services have Terms of Use agreements. Please read them before

implementing an application that uses these services!

Biography

Curtis currently works for Looking Glass Analytics as a SAS consultant and GIS service manager. Prior to

that, he worked for the Washington State Department of Social & Health Services Division of Research

and Data Analysis, and the US Census Bureau. Hehas worked extensively with SAS for fifteen years. He

has expertise in Geographic Information Systems, database design/programming particularly using

Oracle and PL/SQL, and in demographic analysis. He holds a bachelors degree in Geography from the

University of Washington.

Curtis Mack

Looking Glass Analytics

Curtis.Mack@lgan.com

www.LGAN.com

Acknowledgements

SAS is a registered trademark of SAS Institute, Inc. in the USA and other countries. Other brand and

product names are registered trademarks or trademarks of their respective companies.

® indicates USA registration.

Figure 11

Applications DevelopmentSAS Global Forum 2010

mailto:Curtis.Mack@lgan.com

17

Apendix A

The SOAP_CALL macro

%macro SOAP_Call(Host,ServiceLocation,SoapAction,

 SchemaReference,ContentXML,OutputXML);

 %let outLrecl = 32767;

 *filename SoapSrv "c:\temp\test.txt";

 filename SoapSrv socket "&Host:80" lrecl=&outLrecl termstr=CRLF;

 filename SoapRtrn "&OutputXML";

 filename ContXML "&ContentXML";

 filename junk "c:\temp\junk2.txt" lrecl=&outLrecl;

* read the Content XML into a dataset all cleaned and ready to go, while

counting the number of

bytes in the file.;

 data _ContXML(drop = TotalXMLLength);

 retain TotalXMLLength 0;

 length content $&outLrecl;

 infile ContXML end=xmleof;

 input;

 content = strip(_infile_);

 TotalXMLLength = TotalXMLLength + length(content) + 1; * Had to add 1

byte for the spaces that put will put

between each output element;

 if xmleof then call symput('TotalXMLLength',TotalXMLLength);

 run;

 %put TotalXMLLength = &TotalXMLLength;

 * Make the call;

 data junk;

 length content1 content2 $&outLrecl;

 retain mode 1 TotalReturn ReturnLength 0;

 infile SoapSrv truncover;

 file SoapSrv;

 if _n_ = 1 then do;

* SOAP xml open tags;

 content1 =

 '<soapenv:Envelope '||

 'xmlns:soapenv="http://schemas.xmlsoap.org/soap/envelope/"' ||

" " ||

 'xmlns:' || %sysfunc(quote(%superq(SchemaReference))) || ">" ||

 '<soapenv:Body>';

*SOAP xml close tags;

 content2 =

 "</soapenv:Body>" ||

 "</soapenv:Envelope>";

* Determine the total length of the xml. Add three for the spaces between

put statments;

 ContentLength = length(content1) + length(content2) + &TotalXMLLength +

4 + int(&TotalXMLLength / &outLrecl);

 call symput ('ContentLength',ContentLength);

 * Make the HTML call to the server telling it to expect a SOAP packet;

 put "POST &ServiceLocation HTTP/1.1" /

 'Content-Type: text/xml; charset=utf-8' /

 "SOAPAction: ""&SoapAction""" /

 "Host: &Host" /

Applications DevelopmentSAS Global Forum 2010

18

 'Content-Length: ' ContentLength /;

 * Send the SOAP XML reading the contents from the _ContXML dataset;

 put content1 @;

 currentLineLength = length(content1);

 fc = open("_ContXML");

 do until(fetch(fc));

 thisLine = strip(getvarc(fc,1));

 if sum(length(thisLine),currentLineLength) + 1 >= &outLrecl then do;

 put;

 currentLineLength = 0;

 end;

 put thisLine@@;

 currentLineLength = sum(length(thisLine),currentLineLength) + 1;

 end;

 rc = close(fc);

 put;

 put content2 ;

* Make another generic request from the server. This was needed because I

could not get SAS to read the last line of the information returned because

there was no end-of-line. This step just gets the server to send some more

information with some end of line characters in a way that does not generate

a server error;

 put 'OPTIONS / HTTP/1.1' /

 "Host: &ServerLocation" /

 'Connection: Close' /;

 end;

* First step, read through the HTML headers looking for the length of the

SOAP XML data returned;

 if mode = 1 then do;

 input thisRec $ 1 - &outLrecl;

 if thisRec =: "Content-Length:" then do;

 ReturnLength = input(scan(thisRec,2,':'),10.);

 end;

 call symput('ReturnLength',ReturnLength);

* A blank line signifies that the next data will be the SOAP XML;

 if thisRec = " " then mode = 2;

 end;

* Next, extract read the XML and save it to the secified file;

 if mode = 2 then do;

 nextReturn = ReturnLength - TotalReturn;

 input thisRec $varying&outLrecl.. nextReturn;

 file SoapRtrn;

 put thisRec;

 TotalReturn = TotalReturn + length(thisRec);

 if TotalReturn >= ReturnLength then mode = 3;

 end;

* Ignore any records that come after the XML, these are just the results of

the OPTIONS call;

 if mode = 3 then do;

 input;

 end;

 run;

 %put ReturnLength: &ReturnLength;

%mend SOAP_Call;

Applications DevelopmentSAS Global Forum 2010

19

Apendix B

options mprint;

%let WorkDir = G:\PNWSUG\Papers\Soap\CensusLite;

%SOAP_Call(wslite.strikeiron.com,

 http://wslite.strikeiron.com/censusinfolite01/CensusInfoLite.asmx,

 http://www.wslite.strikeiron.com/GetCensusInfoForZIPCode,

 %nrstr(wsl="http://www.wslite.strikeiron.com"),

 &WorkDir\ZIP98501SOAPBody.xml,

 &WorkDir\results.xml);

filename CensMap "&WorkDir\CensusInformation.map";

libname Census xml "&WorkDir\results.xml" xmlmap=CensMap

 access=READONLY;

Data ZIP98501Census;

 set Census.Censusinformation;

run;

Applications DevelopmentSAS Global Forum 2010

	2010 Table of Contents

