
1

Paper 007-2010

 From Unfriendly Text File to SAS® Dataset – Reading Character Strings
Anastasiya Osborne, Farm Service Agency (USDA), Washington, DC

ABSTRACT
What does it take to automatically clean unwieldy text files in SAS9? It takes business necessity and intermediate–to-
advanced combinations of SAS9 options, statements, character and date functions, call routines, macros, and OS
commands. This paper describes how to automate an otherwise tedious and error-prone process of extracting data
from text files with inconsistent structure and format. The data is then used in a real-life project.

INTRODUCTION
This paper discusses an algorithm developed to automate repetitive, unexciting, and error-prone steps to manually
extract data from loosely structured and inconsistently formatted text files. The data is then used to update and verify
a database of temporary changes in crop prices as input in a loan rate making process.
The SAS program developed to automate the process uses an array of techniques to extract temporary changes in
crop prices from daily text files, correspond them with the file name and creation date, execute a general macro for
each file in a program directory, and run a verification program.
The need for such automation resulted from a real-world project at the Farm Service Agency, USDA. The goal of the
project is to establish annual county loan rates (for the crop year) for 18 major crops, as mandated by Congress. One
of the steps, traditionally done manually, was to update and verify a database of temporary changes in crop prices
(called temporary differentials), reported on-line as a daily text file, cluttered with other information.

The discussed SAS program:

- automatically reads text files from a shared drive, using options NOXWAIT and CALL SYSTEM for DOS
commands;

- extracts comments with temporary changes in crop prices and takes only those that correspond to the date
of the file creation;

- uses two %INCLUDE statements, one to run the macro RUNEM for all the text files saved in a program
directory, and another to run the date verification program (to check for missing files);

- uses character functions (SCAN, INDEX, SUBSTR, TRANSLATE; LENGTH);
- uses date and time functions and formats (TODAY, ANYDTDTEw.);
- significantly saves project time and improves data quality.

To establish county loan rates, FSA needs to create a database of Posted County Price (PCPs) and Temporary
Differentials for the two previous years. Such data is reported daily online on the USDA’s Farm Service Agency’s
website. However, the data is the opposite of user-friendly and the format of reported data points can change without
notice. The text file requires a lot of manual work to make it possible to enter the data into a database for further
processing.

The changes to the process, discussed in this paper, made it possible to completely automate the process and
dispose of any manual steps, such as data entry and verification by hand.

The process starts with downloading daily text files from the web. It is usually done once a month. Then the office-
developed SAS program reads those files and creates several datasets with market rates sheets, temporary
differentials, and verification reports.

PROBLEMS WITH AUTOMATION
The previous official process included a lot of steps that were manual, incredibly time consuming, and vulnerable to
error. Verification was also manual and thus very labor intensive. This was a hard way to obtain data for analysis. The
biggest problem with the project was a step that, at the time, was considered impossible to automate – saving the text
file published on the Farm Service Agency website to a shared drive, and manually inputting the section that
reported temporary differentials (see Fig. 3). The data in the file was in such a computer-unfriendly and loose format
that the only way to get this data for further processing was to type a few rows of data every day, and verify it two or

Applications DevelopmentSAS Global Forum 2010

2

three times. However, in the 14 years of this project, it became the worst and most tiresome step. The data other
than temporary differentials was reported well enough for a programmer to read it automatically.
The group had an official notebook, like before the computerized age, where an analyst would write down the
temporary differentials taken from the daily web file for that day, and then check the notes (twice!) whether there was
a mistake. After I took over the project, many interesting SAS techniques were developed just by trying to eliminate
the possibility of making mistakes and to make the process faster. After automating this step, I automatically verified
the earlier temporary differentials data and found two errors. This provided me with yet more evidence that manual
verification should not be relied on too much.

Below is an example of how the data usually looks (Fig.1). There were several problems with the data, as well as with
the way it was processed previously. First, the old program would process one file only, without looping through a list
of designated files, so for a 2-year period (494 work days when the files are produced) an analyst would have to run
the program 494 times(!). Second, there was no verification whether any of the files were missing. Third, the dates
were reported free-style, without regular format. This presented no difficulties to the human eye, but confused SAS
(prior to SAS9). The fourth problem was with the nature of the temporary differentials (or price adjustments) - the
price could be adjusted in one state, or several states, or all the states, and this was quite an obstacle to overcome –
coming up with a mechanism for taking a not-fully-structured character string and dividing it into a proper number of
SAS variables. A much lesser problem was the outdated units in the reporting system, although it still managed to
give us grief at one point.

Fig 1. Average text file with posted county prices and temporary differentials,
see"ftp://165.221.16.16/public/ratespub/default.htm“

PROBLEM 1 – ONE DATE AT A TIME (NO MONTHLY OR ANNUAL LOOPS)
I took over this project in January 2007, and automated it from what was official and regular by that time. Some of the
problems that came with reading the unfriendly text file were already solved by the previous ingenious programmer,

Applications DevelopmentSAS Global Forum 2010

3

and some were still there, waiting for me. The old program could read and create an output from all the numbers in
the dataset, except temporary differentials. However, it would read one file at a time. The old program created a
window for an analyst to type the month, date, and year separately, and the program (after checking whether the date
was valid) would read the file and create posted county prices in a text file. If any portion of the date was invalid, there
would be a warning, for example, “The day is incorrect!” Given that the loan rate cycle needs a 2-year period of
reported posted county prices (494 work-day files), verifying it would be exceedingly labor-intensive. Also, the
program could not tell whether any of the files were missing in a monthly folder, even if all the files already there had
correct dates. An analyst was supposed to verify this manually.

I changed the structure of the files and saved in one folder all 494 files needed for establishing loan rates in one loan
year. It worked very well to have one dataset with all the needed data, but took a long time to run. A year later I
started making monthly folders, to cut down the remote computer’s processing time, and this is the method used in
the examples. The pre-2007 official program was modified drastically to read all the files in a folder, create a list of
those files, read their names (the official file name was unconventional “mm/dd/y.txt”) and create a macro to execute
the files one at a time.

The files are located on the FSA public website, "ftp://165.221.16.16/public/ratespub/default.htm“. For example, the
website says “0101.txt” for a market sheet file from January 1. The year is not specified yet. After 2-3 weeks the file
name becomes “090101.txt” if this is the data for 2009. Since the pattern is not standard, the analyst downloads the
files and renames them into the comparable file names. Unfortunately, the official standard way was to just put the
last digit of the year (for example, January 2009 is “01019.txt), not the last 2 or, better still, 4 digits, and it took me
some time to figure out how to read those file names and reconstruct the date so that SAS would understand it.

The program starts like this, after the verbose commented-out text with the program name, date, input and output file
locations, and history of the process.

/* First, we assign macro */
%LET as_of_today = February 3, 2010; /* to make unique files, as the name goes into

the output file name */
%LET mymonth = January; /*usually the previous month, as we need to wait until the end

of the month to process the data*/
%LET myyear = 2010;
%LET RATESOUT = "S:\EPAS\MKTRATES\For verification\newMRADD &as_of_today..txt" ;

/* this was a requirement – to still produce the text file to
compare with the old process*/

/* What month are we processing? CHANGE HERE!*/
%LET startmonth = '01JAN2010'd ;
%LET endmonth = '31JAN2010'd ;

/*NOTE: We now read files from monthly folders.
NOTE: DO NOT MAKE SPACES IN THE FOLDER NAME WHEN DOWNLOADING FILES FROM THE WEB! THE
PROGRAM WILL NOT RUN! IT SHOULD LOOK LIKE: JANUARY2010 */

%LET rawdir1 = s:\epas\mktrates\&mymonth.&myyear ;
/* Where all the SAS programs are located. */
%LET progdir = S:\EPAS\MKTRATES\SAS programs for checking data ;

Here is the step that was needed to make a list of files in the folder.

OPTIONS NOXWAIT;
RUN; /* without this option the DOS window will stay open ...*/

DATA A ; /*(It could be _null_, but I wanted to see what was going on. */
 command="dir &rawdir1*.txt /b > &rawdir1\files.txt";
 call system(command);
RUN; quit;
/* This is how data A looks after PROC PRINT:
dir s:\epas\mktrates\January2010*.txt /b > s:\epas\mktrates\January2010\files.txt */

Another way to accomplish the same task would be to use the PIPE engine.
filename q pipe 'dir "s:\epas\mktrates\January2010" /b' ;

Applications DevelopmentSAS Global Forum 2010

4

DATA FILES (keep = filename);
 length filename $9 ext $3;
 infile "&rawdir1\files.txt" delimiter= '.' ;
 input filename ext;
RUN;
/* Here is the part of PROC PRINT of the dataset FILES:
 1 files
 2 mkt01040
 3 mkt01050
 …

21 mkt01290 */

We found out the number of daily files in the folder. Now the question arises – is this the right number?

PROBLEM 2 – HOW MANY FILES ARE ENOUGH?
The program reads the entire folder (a month worth of data), creates a dataset with market rate sheets, a dataset with
temporary differentials, and also creates two verification reports – are there dates that are extraneous or missing?
Are there extraneous or missing data points, even if there is the correct number of daily files? Interestingly, in January
2009 the automatic verification report showed that one daily file was missing on the FSA website. After my office
reported this problem to the Farm Service Agency personnel in Kansas City, they eventually found the missing file
and put it on-line. This was the first time a file had been lost in many years. It happened again in July 2009.
This is the part where automatic verification is in order. We need to compare the files that are in the folder to the files
that should have been there. How do we know whether the number of the files is correct? The market rates are
published once a day during work days, but not on federal holidays. I took the list of federal holidays for the last few
years and for the next few years out of the U.S. Office of Personnel Management’s website
“http://www.opm.gov/Operating_Status_Schedules/fedhol/2010.asp”, created a permanent dataset (a reference
table), and checked the list of files in monthly folders with the list of federal holidays. The verification module registers
which dates are missing from the master list of every calendar day in a period. Now, it’s okay to have missing data for
weekends, but then the program checks the list of federal holidays. If the missing date is not on the list of federal
holidays and it was not Saturday or Sunday (those three cases are legitimate reasons to be missing a file), the
verification program creates a report.
In other words: the program compiles the list of files in a month, and compares them to a list of calendar days in that
month, and also to the list of federal holidays, and reports whether the reason for missing files was valid (holidays,
weekend), or the files were missing for non-legitimate reasons (analyst forgot to download the file, or the Farm
Service Agency forgot to put that file on the web – we are all human.)

DATA RIGHTLIST_OFDATES (rename = (date = date_see));
 date = &startmonth. ; /* Change - monthly */
 do while(date <= &endmonth.);
 output;
 date = intnx('day', date, 1);
 end;
 keep date ;
 format date date9. ;
RUN; /* The data set WORK.RIGHTLIST_OFDATES has 31 observations and 1 variable
(from 01JAN2010 to 31JAN2010). */

/* make a match between the perfect list of calendar days and the reported data */;
DATA CLEANDATE ;
 set files ;
 if substr(filename, 1, 1) ^= "m" then delete; /* take out one bad observation */
 bad_date = substr(filename, 4, 5) ; /* official date */
 dd = substr(bad_date, 1, 4)||"1"||substr(bad_date, 5, 1); /* The third symbol of
the year became "1" instead of "0" in January 2010 to signify a new decade. The year
YY0Y became XX1Y. This is currently hard-coded, but Howard Schreier proposed a cut-off
solution. */
 date_see = input(dd, ANYDTDTE12.) ; /* ANYDTDTEw. reads multiple date layouts. */
 format date_see date9. ;
RUN ;

Applications DevelopmentSAS Global Forum 2010

http://www.opm.gov/Operating_Status_Schedules/fedhol/2010.asp�

5

Below is the partial print-out of the dataset CLEANDATE. We can see the conventional date now.
/*
 Obs filename bad_date dd date_see

 1 mkt01040 01040 010400 04JAN2010
 2 mkt01050 01050 010500 05JAN2010
 3 mkt01060 01060 010600 06JAN2010
 …
 20 mkt01290 01290 012900 29JAN2010 */

PROC SORT data = CLEANDATE ;
 by date_see ;
RUN ;

DATA ANALYSIS (rename = (date_see = date)) ;
 merge rightlist_ofdates
 cleandate
 ;
 by date_see ;
RUN ;

DATA OFF ;
 merge analysis (in = a)
 mr.Fedholidays2003_2010 (in = b)
 ;
 by date ;
 if a ;

if date = . or date < '01jun2008'd then delete ; /* This can be replaced with a
macro variable. In earlier versions, all two previous years of data would be
processed in June of every year. */

RUN ;

ODS listing ;
PROC CONTENTS data = ANALYSIS ;
RUN ;

PROC CONTENTS data = MR.FEDHOLIDAYS2003_2010 ;
RUN ;

/* Question: How would I know then is Saturday or Sunday? */
PROC FORMAT ;
 value DWKf

1 = "Sunday"
2 = "Monday"

 3 = "Tuesday"
 4 = "Wednesday"
 5 = "Thursday"
 6 = "Friday"
 7 = "Saturday"
 ;
RUN ;

DATA BETTEROFF ;
 length reason $40. ;
 set off ;

 DAY_ofWEEK = weekday(date) ; /*day of the week as numbers, 1 is Sunday */
 d_desc = DAY_ofWEEK ;

 if filename = " " then
 do ;

Applications DevelopmentSAS Global Forum 2010

6

 if day ^= " " then reason = name_XH ;
 else if day = " " and DAY_ofWEEK = 1 then reason = "Sunday" ;

else if day = " " and DAY_ofWEEK = 7 then reason = "Saturday" ;
 else /*reason = " " */;
 end ;
 format d_desc DWKf. ; /* To see familiar representation. */
RUN ;

Fig 2. Explanation for each of the missing file.

/* Check for the reasons of non-reports, if there are any. */
DATA BAD ;
 set betteroff ;
 if filename = " " and reason = " " ;
RUN ;
/*end of checking for date validity */

Now we will discuss in detail the problem with reporting dates and the function ANYDTDTEw. (already shown in
action on the bottom of p.4.)

PROBLEM 3 – VARIATIONS IN REPORTING DATES
One of the big problems with automatically reading temporary differentials was the unexplainably inconsistent formats
of reported dates (see Fig. 3. on next page.) For example, August 1, 2006 could be represented as 8/1/2006,
8/1/2006, 08/01/2006, 8/01/06 and so on. The MMDDYY informat would handle all of the variations shown, but not
YYYYMMDD, as in ‘20060801’. This problem with date formats became possible to resolve easily only with SAS9,
with the new date function ANYDTDTEw. that was designed to deal with such variations in reporting dates. Applying
ANYDTDTEw. to unwieldy files was the first step to successfully automating the process. The other problems
remained.

Source:
- List of Federal

holidays
- Calendar

Legitimate reasons:
-Weekends
-Federal holidays

Unacceptable
reason:

 Missing file
(either web
or shared
folder)

Applications DevelopmentSAS Global Forum 2010

7

7

Try to Automate This!Try to Automate This!

Wrong units

Different States vs. U.S.

IN vs. ADD

Human Mistakes - often

No space

Problems with dates

Fig 3. Problems with automation of reading a SAS-unfriendly text file into a database.

Let’s continue with the SAS program. We need to have a code that will automatically run the macro %RUNEM for
each of the daily files in the monthly folder. That macro will clean all the extraneous text from the daily file and come
out with two SAS datasets, one for market rate sheets (official module, already in production before 2007), and one
for temporary differentials (new module, that was deemed impossible to make.)

data m_call;

length codeline $50. olddate1 $6. ;
 set files;
 if filename = "files" then delete ;

 file "&PROGDIR\m_call for temp differentials.sas";
 olddate1 = substr(filename, 4, 5);

 codeline = '%runem('||'olddate = ' ||olddate1 ||")" ;
 put codeline;

run;

/* This is how the “m_call” looks.

 Obs codeline olddate1 filename

 1 %runem(olddate = 01040) 01040 mkt01040
 2 %runem(olddate = 01050) 01050 mkt01050
 3 %runem(olddate = 01060) 01060 mkt01060
 …
 20 %runem(olddate = 01290) 01290 mkt01290 */

Applications DevelopmentSAS Global Forum 2010

8

Now is the time to show the code for processing of daily files.

filename ratesout "S:\EPAS\MKTRATES\For verification\newMRADD &as_of_today. .txt" ;

 %macro RUNEM (olddate =);
/* GOAL: read market rate sheets and extract info about changes */
/* in temporary differentials. This part was missing from J.C. */
/* program. IDEA: extract comments and take only those */
/* that correspond to the date of the market rate file. Create */
/* a file with all the temporary changes and compare to the file*/
/* made by manual input. */

filename in "S:\EPAS\MKTRATES\&mymonth.&myyear.\mkt&olddate..txt" ;
/* NOTE: monthly change */

PROBLEM 4 – DIFFERENT LENGTH OF TEXT (SEVERAL STATES VS. ALL U.S.)
Another problem with market sheet files was that temporary differentials could change for all of the United States, in
one state only, or in several states. There was no standardization or expectation of what would be written on each
row, except that the data would start after the word “in” and end before the word “add”. For example, see below what
variations were reported on January 04, 2007:

(50) GLF YC differentials in MN add 0 cents/bu. (Effective 10/27/2006)
(51) GLF SOR differentials in TX add -0.05 cents/cwt. (Effective 11/2/2006)
(52) GLF YC differentials in MS, LA, & AL add 0 cents/bu.(Effective 11/28/2006)
(74) GLF YSB differentials in LA, AL, MS add 0 cents/bu.(Effective 10/27/2006)
(75) TKO YSB differentials in TN add 0 cents/bu. (Effective 10/27/2006)

You can see that sometimes there is one state where the temporary differentials were reported, sometimes there are
several states. Also, the last state can come after a comma or an ampersand, with or without a space. Sometimes
the data in the text file would be missing, or read as “N/B”. The data can be changed the next day after reporting, or
almost a month later, and then the file’s name changes to include “c’ – for corrected.
If you look at comment 52, you will notice that there is no separation between the data units and the left parenthesis.
So, the data is not lined up in columns. How would we read such a file?
This is how we dealt with temporary differentials in general, including problem 4.

/***/
 /* TEMPORARY DIFFERENTIALS MODULE */
/***/
data look ;
 infile in length=reclen;
 input @; /* Take everything from the text file */
 input @1 lstring $varying200. reclen; /* Take any text row, including blank ones */
 lstrip=trim(left(lstring)); /* Take all the spaces out on the left */

 if substr(lstrip, 1, 1) = "("
 and substr(lstrip, 2, 1) in ('1', '2', '3', '4', '5','6', '7', '8', '9')
 then output look ; /* This is how the strings with temporary differentials start*/
run ;

data cleanit (drop = lstring ind intermediate loc1 change1 date1 date2 date3 date4 dd

dd1);
 length report_date 8. comment $3. market $3. grain $3. word $3.

 dd $6. dd1 $6. ;
 set look ;

 comment = scan (lstrip, 1) ;

 market = scan (lstrip, 2) ;
 grain = scan (lstrip, 3) ;

Applications DevelopmentSAS Global Forum 2010

9

 word = scan (lstrip, 5) ;
 ind = INDEX(lstrip,' '); /* position in string */

/* Use INDEX to search for 'grouped letters' anywhere in a string or
to search for individual letters */

 intermediate = substr(lstrip, INDEX(lstrip, "add")) ;
 loc1 = substr(intermediate, 4, 6) ;
 change1 = trim(translate(loc1,' ','cen')) ;
 change = input(change1, comma7.2) ;

 date1 = SUBSTR(lstrip, INDEX(lstrip,'e '));
 date2 = substr(date1, 2) ; /*The best approximation */

date3 = translate(date2,' ',')') ; /*Which says, "variable lstrip should
be the incoming value with the right parenthesis changed to a
space.*/

 date4 = trim(date3) ;
 date_ch = input(date4, ANYDTDTE12.) ; /* It's possible!
 ANYDTDTEw. can read multiple date layouts. */
 dd = substr("&olddate", 1, 4)||"0"||substr("&olddate", 5, 1);
 dd1 = input(dd, ANYDTDTE12.) ;
 report_date = input(dd1, 8.) ;
 format date_ch mmddyy10. report_date mmddyy10. ;

 call symputx("normal_date", put(report_date, 8.));

run ;

/* Big problem – how to read different states, and rarely happening state 4. */
data extract_info ;
 length states $20. state1 $2. state2 $3. state3rough $7. state3try $7.
 state3 $2. state4 $2.;
 set cleanit ;

 if word = "in" then
 do ;
 states = trim(substr(lstrip, INDEX(lstrip, "in")));
 state1 = substr(states, 4, 2);
 state2rough = trim(substr(states, 7, 3));

state2 = translate(state2rough,' ','add');

state3rough = substr(states, 11, 7);
state3try = trim(state3rough) ;
try1 = trim(substr(state3try, 2, INDEX(lstrip, " "))) ;
try2 = trim(left(translate(try1,' ','&')));
try3 = scan(try2, 1) ;
if try3 in ('AL', 'AK', 'AS', 'AZ', 'AR', 'CA', 'CO', 'CT', 'DE',

'DC', 'FL','GA', 'GU', 'HI', 'ID', 'IL', 'IN', 'IA', 'KS', 'KY', 'LA', 'ME', 'MD', 'MH', 'MA',
'MI', 'MN', MS', 'MO', 'MT', 'NE', 'NV', 'NH', 'NJ', 'NM', 'NY','NC', 'ND', 'OH', 'OK', 'OR',
'PA', 'PR', 'RI', 'SC', 'SD', 'TN', 'TX', 'UT', 'VT', 'VA', 'WA', 'WV', 'WI', 'WY')
 then state3 = try3 ;
 else state3 = ' ';

 /* the hardest state 4 */

 try4 = scan(lstrip, 10) ;
 try4close = trim(left(translate(try4,' ','and')));

 if try4close in ('AL', 'AK', 'AS', 'AZ', 'AR', 'CA', 'CO', 'CT', 'DE',
 'DC', 'FL','GA', 'GU', 'HI', 'ID', 'IL', 'IN', 'IA', 'KS', 'KY', 'LA', 'ME', 'MD',
'MH', 'MA', 'MI', 'MN', MS', 'MO', 'MT', 'NE', 'NV', 'NH', 'NJ', 'NM', 'NY','NC', 'ND', 'OH',
'OK', 'OR', 'PA', 'PR', 'RI', 'SC', 'SD', 'TN', 'TX', 'UT', 'VT', 'VA', 'WA', 'WV', 'WI', 'WY')
 then state4 = try4close ;
 else state4 = ' ';
 end;
 if word = "add" then state = 'US' ;

Applications DevelopmentSAS Global Forum 2010

10

 unit1 = substr(lstrip, INDEX(lstrip, "cents")) ;
 unit = SUBSTR(unit1,1,INDEX(unit1,'.'));
run ;

/* Clean file */
proc sql;
 create table differentials as
 select report_date
 , lstrip
 , market
 , grain
 , word
 , state
 , state1
 , state2
 , state3
 , state4
 , change
 , date_ch

 from extract_info
 order by date_ch
 ;
quit;

/* Take only those temporary differentials that were made on a report date
of market rates. */
data diff;
 set differentials ;
 if date_ch = report_date ;
run ;

/* Keep all the differentials in a permanent database. */
proc datasets;
 append base = ad.temp_differentials data = diff ;
run ;
quit ;

/* The portion of the code that starts here in the SAS program is omitted because it
was an official program to deal with market rates only. I took it as a “MARKET SHEET
MODULE.” */

%mend RUNEM ;

%include "S:\EPAS\MKTRATES\SAS programs for checking data\m_call for temp
differentials.sas" ;

Another way to solve the problem with reading the affected states into a variable was proposed by Ian Whitlock in
August 2009. It uses the COMPBL function that removes multiple blanks in a character string by translating each
occurrence of two or more consecutive blanks into a single blank.

data Ian_idea ;
 length line $ 100 statelist $ 20 ;
 input line $char100. ;
 if line =: "(" and index("123456789", substr(line,2,1)) ;

 statelist = substr (line, index(line, "differentials in") + 17) ;
 statelist = substr (statelist, 1, index(statelist, "add") - 1) ;
 statelist = compbl (translate (statelist , " " , ",&")) ;
 put statelist= ;

Applications DevelopmentSAS Global Forum 2010

11

cards ;
(50) GLF YC differentials in MN add 0 cents/bu. (Effective 10/27/2006)
(51) GLF SOR differentials in TX add -0.05 cents/cwt. (Effective 11/2/2006)
(52) GLF YC differentials in MS, LA, & AL add 0 cents/bu.(Effective 11/28/2006)
(74) GLF YSB differentials in LA, AL, MS add 0 cents/bu.(Effective 10/27/2006)
(75) TKO YSB differentials in TN add 0 cents/bu. (Effective 10/27/2006)
;
run ;
/* From the log:
 statelist=MN
 statelist=TX
 statelist=MS LA AL
 statelist=LA AL MS
 statelist=TN */

 One last word about other, less important problems, mentioned in Fig. 3. We had to deal with the wrong units too.
The reporting system was so old that it kept saying “cents/bu” or “cents/cwt”, even though the data is reported in
dollars. For example, in October 2007, a temporary differential was reported as “-1”, and my program read it as
$0.01, because that’s what the official unit is (cent/bu). However, after checking with Kansas City, we had to change it
to $1.00. It has been such a ride to work with this reporting system! Luckily, the Farm Service Agency is
reengineering the database software for the county loan program. Eventually, we expect to be able to query a
database in Kansas City to get this data, not read daily text and compile a database from them.

I am sure that Perl users would solve these string-searching problems in a more elegant-looking way, and I have
every intention to learn how to do it, but this project modification took place in 2007, in a time crunch during
production cycle, and I am proud the date-related problems were solved successfully and the seemingly impossible
process automation was achieved.

Fig. 4 on the next page gives you an idea how the text file with temporary differentials looked like in the early days of
the project, and Fig 5 shows the Excel version of a permanent SAS dataset.

Fig.4. Official file with temporary differentials until January 2007 – created by manual data entry.

Applications DevelopmentSAS Global Forum 2010

12

9

Automated in June 2007! Automated in June 2007! 

Fig. 5. Input of temporary differentials from FSA website was automated in June 2007. This is an Excel file with

the output – for documentation.

CONCLUSION
This paper shows how to SAS-automate a manual process of extracting data from text files that have inconsistent
structure and format. Automation of this tedious and error-prone process helps reduce typos and allows for automatic
verification. The automation saves a significant amount of time and reduces the likelihood of errors.

ACKNOWLEDGMENTS
Thanks to Paul Dorfman for talking to me about SAS from time to time, and also to Ian Whitlock, Howard Schreier,
and Mike Rhoads for giving me useful comments on my NESUG 2009 paper. Thanks to Joy Harwood, the Economic
and Policy Analysis Staff director at the Farm Service Agency, USDA; and to Terry Hickenbotham, my supervisor at
the Farm Loan Analysis Group, for allowing me to work on and present this paper at SAS meetings and conferences.

CONTACT INFORMATION
Your comments and questions are valued and highly encouraged. Contact the author at:
Anastasiya Osborne
Farm Service Agency, USDA
1400 Independence Ave, S.W.
Washington, DC 20250-0506
Work Phone: 202-690-0446. E-mail: Anastasiya.Osborne@wdc.usda.gov

SAS and all other SAS Institute Inc. product or service names are registered trademarks or trademarks of SAS
Institute Inc. in the USA and other countries. ® indicates USA registration.
Other brand and product names are trademarks of their respective companies.

Applications DevelopmentSAS Global Forum 2010

mailto:Anastasiya.Osborne@wdc.usda.gov�

	2010 Table of Contents

