
 1

Paper 004-2010

Creating Easily-Reusable and Extensible Processes:

Code that Thinks for Itself

Faisal Dosani, RBC - Royal Bank of Canada, Toronto, ON, Canada

Lisa Eckler, Lisa Eckler Consulting Inc., Toronto, ON, Canada

Marje Fecht, Prowerk Consulting Ltd., Toronto, ON, Canada

ABSTRACT

It's easy to write code that answers only one need. It's more challenging and time-consuming to develop a "hands-off"
process that adapts to many needs. In the long run, time and effort is saved by building a modular process with wide
applicability.

This paper investigates the implementation of a framework to help in building efficient and reusable code. We start by
looking at design considerations prior to the start of coding, including identifying design patterns and utilizing Metadata
driven logic. Then we consider effective ways to split logical sections of code into easily reusable components.

Examples will be presented including

 components of the planning process

 design framework

 key features of flexible code

 macros that enable creating hands off code with minimal intervention.

A basic understanding of SAS® and the SAS Macro Language is assumed throughout the paper, however the concepts
may be beneficial to a wider audience.

1. INTRODUCTION

Every once in a while, instead of being asked to “just quickly build another one based on what we already have”, we get
asked to design and build something from scratch which is carefully planned for consistency, flexibility AND ease of
operation and maintenance. Of course, the flexibility includes the ability to anticipate needs which haven’t been defined
or don’t yet exist. This can be both an enviable opportunity and a daunting responsibility. The easy route would be to
follow the precarious path of a quick and dirty project implementation, but maybe now is the time to make the extra effort
and save the headaches later.

Have you considered the following?

 the similarities of this project to other work you have completed, including the commonalities in coding and
processes

 the ongoing maintenance issues that spaghetti code and processes would create

 the organizational or reporting hierarchies this process needs to serve.

If you try to focus on the bigger picture when projects and requests come across your desk, you can create flexible and
extensible solutions that

 avoid maintainability issues

 enable “speed to market” of results

 build reusable code and processes that will benefit you and your team.

This paper explores the planning and development efforts involved in a real-life information delivery project. The
intended result of the project was the creation of a framework consisting of easily reusable and easily extensible code

and processes. The goal of the framework was a multi-layered and multi-component approach that would adapt to the
delivery of information (data and reports including a large number of metrics and dimensions) for 3 possible components:

 enterprise wide
 division specific
 project specific.

Applications DevelopmentSAS Global Forum 2010

 2

An important requirement was the ability to deliver
information for any of the 3 components either in unison or
alone (eg: if requirements for the project-specific

component were not yet available, we would still deliver the
enterprise and division information).

The development process was segmented into layers that
adapt to the specific project or task. The layers include:

 technology foundation
 metadata (information about the specific task /

project)
 data element definitions (eg: dimensions, metrics,

etc)
 program modules
 output data (eg: reference tables and analytics

data)
 output reports.

A driver program (see diagram) forms the core which holds
together the relevant components and project-specific
parameters.

Obviously, this approach only works with proper planning
and discipline. That is the first area we will focus on.

2. PLANNING AND REQUIREMENTS GATHERING
Best practices dictate that before any code is written, we should investigate the needs, wants, wishes, goals and
priorities of our business partners (stakeholders and key users). Ideally, both of these groups will be represented on the
team. Gathering input from these people should be a first step. The perspectives of both the stakeholders and key users
are essential to capture the big picture as well as the details. Documenting and feeding this information back to the team
will help build consensus and maintain a record of the principles which will determine both the early decisions and those
which may need to be revisited in subsequent phases.

The principles may require that every result or product contain some common or
consistent elements, some divisional elements and some customized elements. We
need to establish

 which elements must always be included at the enterprise level. This may be
a high-level decision related to overall priorities of the enterprise. The
enterprise component may support a consistent look and feel for the results or
may provide uniform contextual or relationship data.

 which elements may vary by division or be optional

 which will always be customized for a particular project.

Defining a hierarchy of components at this stage will aid in identifying which are required and which are optional. The
process must flow smoothly whether or not the optional components are present. This will support a modular design and
will also help to break the project into manageable sub-tasks for detailed requirement gathering, technical design,
development, testing and delivery. Once a hierarchy is agreed upon, tasks for various components can proceed
independently.

Let’s consider some general information delivery scenarios across different types of businesses:

 Marketing Example: In a Marketing organization, we may always include some profile data about the client and

the overall relationship, some data about a divisional relationship to that client, and then the specifics of what
has changed during a particular marketing campaign which we can attribute to that campaign.

 Sales Example: In a Sales organization, we may always include some overall annual corporate sales targets,
some data about one division’s sales over time, and then the current year’s sales performance by one particular
team.

 Manufacturing Example: In a Manufacturing organization, we may always begin with some context on the

overall relationship with a supplier and then look at what they are supplying to one particular division or physical
location, and then the specifics of cost and quality of one item supplied.

Missing divisional elements
but still delivering results
for enterprise and project
elements

Applications DevelopmentSAS Global Forum 2010

 3

These are very different environments but the information delivery requirements have some commonalities. Each follows
a similar hierarchical structure where we go from contextual or relationship data which is always included to divisional or
product-related data to customized, specific data. Part of the planning will involve distinguishing the consistent from the
distinctive elements:

 What will always be included, either at the enterprise level or the division level?

 What aspects must always be customized for each division or project?

 Are some of the customizations simply filters which could be controlled by metadata or parameters or are they
truly unique requirements?

Even as design and development proceed, additional opportunities to streamline the customization may emerge as
patterns become evident.

Key Users

Identifying the intended recipients or users of each type of result at this early stage is helpful because it may expose
details on what information should or should not be included, depending on the audience and possible sensitivity of the
data. For example, is it appropriate for every viewer of a departmental sales report to see what the overall results of the
enterprise are? This will support decisions about how, when and where results are to be delivered.

Minimum requirements
If the typical situation is to always include a standardized enterprise component and
select one division component and one customized project component, we will want to
determine whether we should reasonably provide partial results: if the component for a
specific project doesn’t apply or hasn’t yet been defined, will just the enterprise
component and a division provide meaningful information? If so, we’ll want to be able to
deliver the results of enterprise and division components and optionally insert a project-
specific component later. The stakeholders should be able to anticipate whether we
need to design for component combinations like enterprise and project in the absence of
division or enterprise, division and a combination of two different project components. It

may take many discussions and consideration of very detailed scenarios to establish the
rules around the minimally acceptable inputs and results before we can understand what design constraints are

appropriate.

Controlling the process

Can we anticipate what changes to the overall requirements are likely to occur in the future? If so, this should influence
the design to maximize flexibility and ease maintainability. If we’re anticipating re-using the same processes in many
ways, we must also consider the process timing and frequency. If the data are only available after some date or event,
how can we detect when that has been reached? The ideal here would be to capture some metadata which dictates
when the process is valid for a particular project. Again, the stakeholders and key users can help identify what metadata

would be meaningful to control the process so that we can prepare to capture it. For example, we may have an external
table which allows us to identify what all the divisions of the enterprise are. That table can provide control information as
to what divisions require reporting on a monthly basis. We may have processes that run conditionally, dependent on
some event, so we need to consider how to recognize that event to allow for as much automation as possible.

Results – What formats are required?
As noted in the Key Users section, it is imperative that the requirements’ gathering includes a focus on the expected

results that will be produced. Likely, the key users represent a cross-section perhaps including

 business users

 analysts

 project planners.

Each of these users will have different needs, which should be identified early so that the design and expected inputs can
accommodate the results.

You should consider the wealth of options including

 analytical datasets (SAS format or something else)

 summary reports and their required format

o Excel – static or dynamic

o PowerPoint results

o PDF documents

 statistical reports.

Missing divisional elements
only impacts that

component of the results

Applications DevelopmentSAS Global Forum 2010

 4

Once the necessary results are identified, you can then begin exploring the toolsets needed, such as ODS, Microsoft
Office Add-Ins, OLAP tools, BI tools, etc.

Validation

Part of the exploration of high-level requirements should include a discussion of how we can deliver and validate our
results. How will we know when we get it right? Delivering intermediate products for review and user acceptance
during the development will help to structure the project and build respect and acceptance. At this stage we can

plan for who will review and provide sign-off on each of the deliverables.

The early discussions with the business partners should provide an understanding of their goals and priorities and what
the essential and the flexible or optional components are. After these discussions have been completed, documented
and a common understanding of the requirements is agreed on, process design can begin.

3. DESIGN
3a. Process and documentation

We are now at the stage where we need to look into the design and documentation of our framework. Our design should
fulfill the needs of our clients today and in the future. This line of thinking falls into the realm of design patterns.

What is a design pattern?

 a blueprint (methodology) for solving problems in a variety of situations

 describes the process flow for a framework and how different components interact with each other

 patterns should be reusable and not a one off implementation.

A simple example might consist of extracting data, transforming this data, and finally delivering this data in its intended
format (Extract, Transform and Load, or ETL). This delivery can be a report, loading it to another system or some sort of
user interface. What is important is the pattern describes the flow and high level components which the framework
supports. This ETL example can be considered a pattern in that it helps define a structure which is reusable and
common. Breaking a framework into such components helps modularize and simplify the processing.

One of the keys to creating a re-useable framework will be to separate the logic into compartments. Think of
these compartments as little black boxes. They take something in (metadata, metric definitions) and give you
something back in return (data, reports). The user of the black box doesn’t need to know anything about the
inner workings, all they care about is what they input and what they get back in return. If you can break down
the majority of programming into this kind of thinking you can create a plethora of reusable, robust and
portable code.

Let’s put the design pattern into some real world context such as a change machine. The change machine concept is
pretty simple. We put currency into the slot and a few seconds later we get change from the dispenser. Most people will
not know how the inner workings of the change machine work exactly, they just know if they put in a five dollar bill they
will have twenty quarters returned. This is the beauty of modules. They shield the users from internal complexities so the
users can concentrate on what is important, like getting change. You can even break the process down further into sub-
modules within the bigger context. Think of the coin dispensing mechanism as its own module as all it requires for input
is the number of coins to dispense. This is within the bigger machine but you see common theme between them. They all
take some sort of input, do some processing, and have some end result.

OUTPUT
Change

(20 Quarters)

Algorithm for computing
change

INPUT

$5

BLACK BOX

Applications DevelopmentSAS Global Forum 2010

 5

Within the context of a marketing campaign our top level design pattern might take on the following form:

Working with our business partners and through our planning phase we should gather the required input which feeds into
the black box and returns the information we hope to deliver. The black box contains our processing and logic (example:
defining the client profile and divisional information) and shields the business users from the inner complexities allowing
them to concentrate on the things which are important to them such as the information they will be providing and
receiving in return.

Documentation
Another equally important part of preparing our framework is properly documenting it so users fully understand the
design which our framework will evolve into. Documentation can include such things as:

 data definition tables

 database table definitions

 flow diagrams

 reporting templates.

The documentation should also outline how our various components communicate with each other to ensure a symbiotic
relationship throughout. This relationship should be thoroughly documented as we need to know how each of these
components will interact with each other, like pieces of a jigsaw puzzle fitting together. Detailed information on expected
input and expected output will be a key in facilitating the smooth interaction between such modules. This can be a
specific structure of a dataset which will be passed along and accepted by each module or may even be a list of key
expected fields which will be used for merging or matching data.

Metadata

One key component which is sometimes forgotten is a control or metadata module. Such a module can help immensely
in making our process totally hands off and further improve the possibility of making components more generic.
Designing our framework to incorporate this from the beginning will not only save time now but in the future as metadata
will drive which sections of the framework are called upon and when. It’s like an air traffic controller, controlling
scheduling and traffic flow and making decisions about de-icing, managing flights on the ground and in the air.

Below are some possible metadata examples by industry (not a complete list):

Marketing example

 Project identifier

 Project title / description

 Project start date

 Project end date

 Line of business indicator

 Test / control grouping indicators

 Success definitions

 Project costs

 Expected financial and relationship results

OUTPUT
 Reports
 Analytical

(detailed)
datasets

Extraction and processing

INPUT
 Campaign

metadata
 Metric

definitions

BLACK BOX

Black Box

Applications DevelopmentSAS Global Forum 2010

 6

Sales example

 Project identifier

 Reporting start period

 Reporting end period

 Region identifier

 Target product identifier

 Base sales of product

 Advertising costs

Manufacturing example

 Project identifier

 Inventory start date

 Inventory end date

 Supplier

 Region indicator

 Facility Indicator.

Metadata will allow us immense flexibility as we develop and grow the framework. It will not only help
centralize conditional logic but help with processing, scheduling, delivery of data, and automating such.
The project Identifier will be the key driving force when relating metadata back to the framework as it will

tie everything together. Each project will have a set of definitions within metadata describing certain cues or
functionality which the framework will handle.

What does this mean for the production team? Instead of manually checking what gets run when or where the results
need to be delivered, we can place some of those conditions in metadata, allowing us to control the process via
metadata rather than manually altering the actual SAS code. This will cut down on quality assurance processing and

development work in the future and offers much more flexibility.

Metadata helps to enable customizable modules without creating specific customized code. This is what makes it
essential to any reusable and extensible project.

Much of what is described will be an iterative approach as scenarios change and new circumstances emerge. Building a
multi-purpose framework to handle your business requirements may need several cycles of development before you can
truly generalize the components to handle all the business needs anticipated by your business partners. Process
improvements will become evident as components and layers are designed and built.

Coding Conventions

It can’t be stressed enough that in addition to documenting our design and framework it is just as important to document
the coding modules we anticipate building. They should follow similar:

 naming conventions

 Example:

o divisional variable name - div_easternUs_numberOfClients

o divisional dataset name - div_easternUs_Sales_Dataset

 storage locations

 Example:

o standard production code storage location name - /myprojectname/code/prod

o standard production dataset location name - /myprojectname/data/prod

o standard production log location name - /myprojectname/log/prod

 input / output styles such as consistent formatting.

3b. Code

The way we architect our framework will have a huge impact on the coding techniques and tools which will be utilized.
Making sure a unified approach is used throughout the code will ensure consistency and take a lot of discipline. From our
design documentation and planning we should have an idea of the different modules we will want to build, how they differ
and how they will be similar if at all.

Applications DevelopmentSAS Global Forum 2010

 7

We want to separate logic and instructions where they differ and consolidate and generalize where they are similar. This
will promote reusability, help us naturally break our framework into logical entities, and help with the manageability. For
example, common enterprise elements and division elements can be different enough to separate into individual

components. We can reuse top level elements as much as possible across our framework rather than grouping them
with lower level elements which might constantly be changing as the division changes.

There are many possible levels of code and algorithm modularization. When determining which to employ, you should
consider

 code complexity

 applicability for generalization

 ease of use.

We will explore two modularization techniques used in this project

 driver / source programs

 macro modules.

Driver Programs / Source Programs
Consider one very common approach to program creation where you

 locate an existing program similar to the functionality you require

 copy the code and store it as a new and unrelated program

 start making changes to the code to tailor it to the current task

 run and test the code as if it had never been used before.
This results in a lot of lengthy programs that ALL may require changes as the business rules and data change.

Now, consider the approach where you recognize that sections of your programs can easily be re-used by just supplying
the information that changes via macro variables or control datasets. You proceed to break the code into those sections
and store them as separate, callable modules. This approach is what we call driver / source.

 identify extensible code segments and store them as a single dated copy of each module (segment of source
code)

 document the input that each module requires

 create a driver program that provides macro variable input for the current scenario and then calls the

appropriate modules.
A repeatable process like this requires additional and extensive testing to confirm that changes to the
source code modules accommodate all drivers that call the modules. But the payoff is that when business
rules change, there is only ONE source program to revise rather than a multitude. And, once the flexible
process is set up, re-use of code is simple.
SAS Global Forum 2009 Foundations and Fundamentals

Driver/Source example
Assuming that you have generalized your required extraction, summarization, and reporting processes into source
modules, then when you are ready to start reporting for a new project, just create a driver with necessary parameter

values as input to your source modules.

The below example driver program assumes that you have two generalized source programs that accept input and

provide the extract, summarization, and reporting that is required. Assume the source programs are named

 ProjectReportingExtract_mktg_2009_01_10.sas

 ProjectReportingOutput_mktg_2009_01_13.sas

Contents of driver program
*** Driver Program – specify appropriate values for parameters;

%let type = mktg; *** Project Type (mktg, sales, usage, etc.);

%let prestart = 01OCT2009; *** Pre project period for comparison;

%let prestop = 31DEC2009; *** End of Pre project period;

%let poststart = 01JAN2010; *** start project tracking;

%let poststop = 30JUN2010; *** expire date - stop tracking;

%let title = January 2010 Introduction of Incentives;

%let products = ('VRS', 'GQL', 'BGO', 'DLA');

%let codes = ('015', '119', '214');

*** run standard extract and reporting programs;

%include 'ProjectReportingExtract_&type._2009_01_10.sas';

%include 'ProjectReportingOutput_&type._2009_01_13.sas';

Applications DevelopmentSAS Global Forum 2010

 8

Improved Driver/Source example
The above approach works great, until your source code changes. Then, you need to find all drivers that are calling

the source, and you need to change the date stamp in the %include. Not fun! To avoid changing the version in

100’s of drivers, use a placeholder reference in your drivers so that the most current source program is called.

Additionally, create a program that references the latest source version:
Contents of ProjectReportingExtract_mktg_CurrentPgm.sas

*** call LATEST VERSION of standard extract program;

%include 'ProjectReportingExtract_&type._2009_01_10.sas';

Revised contents of driver program
*** Driver Program – specify appropriate values for parameters;

%let type = mktg; *** Project Type (mktg, sales, usage, etc.);

%let prestart = 01OCT2009; *** Pre project period for comparison;

%let prestop = 31DEC2009; *** End of Pre project period;

%let poststart = 01JAN2010; *** start project tracking;

%let poststop = 30JUN2010; *** expire date - stop tracking;

%let title = January 2010 Introduction of Incentives;

%let products = ('VRS', 'GQL', 'BGO', 'DLA');

%let codes = ('015', '119', '214');

*** run standard extract and reporting programs;

%include 'ProjectReportingExtract_&type._CurrentPgm.sas';

%include 'ProjectReportingOutput_&type._CurrentPgm.sas';

Now that source modules have been created, and drivers are in place to run the process, we need to consider further
task-specific modularization.

It should not come as a surprise that the SAS Macro language will likely be the choice for creating reusable
modules within a framework. Macros have always been a great way to generalize by building code and
passing parameters through a process to influence the results. We can write generic code that can handle
several situations rather than repeating code over and over again. Macro tools will allow us to build the
robust and versatile framework we desire.

Macro variables serve a similar purpose and are a component of the macro language. They can be used to feed
information into code that only differs by certain parameters, and can be used for passing down instructions and
conditions from metadata at a global level within our framework. This will allow our code to be very generic and mutate
when we instruct it to do so. Using metadata coupled with macros will truly enable hands off processing, and through
several iterations of code it will become obvious as to where these techniques can be implemented.

Macro variable examples

A neat trick to storing or not storing interim datasets is to use a macro variable as a flag. All datasets which you want to
be able to store permanently or discard after your SAS session is over can be controlled by the INTERIMLIBRARY flag. If
the variable is set to the value interim all datasets prefixed with &INTERIMLIBRARY will use the libname interim as

defined. If the macro variable is set to work they will use the default work library and be discarded after your session

ends. Practical use for this would be to store datasets during testing and once in production and stable you can use

work to save space and resources.

%LET INTERIMLIBRARY=interim; /*work or interim */

libname interim "/mydirectory/sasdata";

data &INTERIMLIBRARY..myDataset;

/*..Code..*/

run;

Setting up storage locations is another excellent use for macro variables. Instead of sifting through all the code you have
and changing locations in several SAS programs you can globally change a macro variable which will trickle down into all
your code where you’ve referenced it.

In this example we are setting up locations to store data and logs. The base location will always be the
same, but maybe for now we are just testing and not ready for production. For this we have the “stage”
macro variable which we can alter when we are ready to make the move to production. This kind of

Applications DevelopmentSAS Global Forum 2010

 9

technique helps minimize human error and maximizes the flexibility of the code.

%let dir = /base_directory;

%let stage = test; /*test or prod*/

libname data "&dir./data/&stage./subfolder1";

libname logs "&dir./logs/&stage./subfolder2";

Macro examples

Earlier we discussed the use of design patterns to help streamline and create highly reuseable code. Let’s take a look at
such an example:

The macro betweenList uses a start date and end date as input, calculates all the month-end dates in between the

two dates, and outputs the dates as a comma delimited list of quoted month-end dates. This can be helpful with trying to
gain efficiencies in a SQL query where you are pulling time series data. Providing a list of dates instead of a between-and
clause may improve the performance of the query. Further, this list could assist in parsing monthly sections of output or
control extracts which need to be done one month at a time.

*** Macro betweenList;

*** Purpose: This macro will accept 2 dates formatted as "yyyy-mm-dd";

*** the first being a start date and second being an end date;

*** from these dates it will calculate all the month end dates;

*** in between and including these dates.;

*** Input: startMonth and endMonth dates in yymmdd10. format;

*** Output: Quoted string list of Month end dates to use in SQL query ;

%macro betweenList (startMonth , endMonth);

*** expects start and stop in yymmdd10. format;

%global me_dateList; *Month end date listing;

data _null_;

length me_dateList $9000;

start = input(&startMonth , yymmdd10.);

stop = input(&endMonth , yymmdd10.);

current = start;

*Start of Do Loop;

do until (current ge stop);

 *place month and year into placeholder variables;

 *Calculate the current month end date;

 month=month(current); year=year(current);

 me_dt = intnx('month' , current , 0, 'E');

 *if current month is less than or equal to the stop month then append;

 if current le stop then do;

 ** append to previous string, using a comma as delimiter;

 **if me_dateList is new then write for the first time else append ;

 if me_dateList=' ' then me_dateList = "'" || put(me_dt, yymmddd10.) || "'";

 else me_dateList = trim(me_dateList) || ", '" || put(me_dt, yymmddd10.) ||"'";

 end;

 *add one to the current month and loop through;

 current = intnx('month', current, 1);

end;

*End of Do Loop;

*Place the date list into our global macro variable;

call symput ('me_dateList' , me_dateList);

run;

%mend;

%betweenList ('2009-10-31','2010-03-31')

%put &me_dateList;

Applications DevelopmentSAS Global Forum 2010

 10

The result from running the code above is the list
'2009-10-31', '2009-11-30', '2009-12-31', '2010-01-31', '2010-02-28', '2010-03-31'

If you have a series of drivers that you run sequentially in production, you want to be sure to clean-up the environment
when a new driver starts. Thus, we recommend a few final additions to the driver.

%macro cleanUp;

**;

*** clean up work datasets and all pre-existing macro variables;

**;

*** clean up the work directory;

proc datasets lib=work nolist nowarn nodetails kill;

quit;

*** build list of all macro variables;

*** which we want to clean up;

data _null_;

 length cmd $200;

 set sashelp.vmacro; /*Use the SAS help macro dictionary table*/

 where

 scope = 'GLOBAL' and /*Select all GLOBAL Macro variables with an offset of zero*/

 offset = 0 and

 /*These are macro variables which we do not want to include in our cleanup*/

 /*Some of these might include system variables*/

 (name ne: 'SYSDB' and

 name ne: 'SYSODS' and

 /*User defined macros which we want to protect*/

 name not in ('TABLE_DATE', 'MIN_MONTH_END', 'LOAD_FLAG')

)

 ;

 /*Cycle through the list of macro variables and delete the ones which have been

included*/

 cmd = '%nrstr(%symdel ' || trim(name) || ' / nowarn);';

 call execute(cmd);

run;

%mend cleanUp;

The cleanup macro can be included in our macro library code and called before each production run or in-between to

ensure we are

 managing our work space efficiently

 cleaning up old or unnecessary macro variables within our session.

 An example of usage might look like the following

*** include macro library and call cleanup;

%include 'ProjectReportingMacroLib_&type._CurrentPgm.sas';

%cleanUp;

*** Driver Program - specify appropriate values for parameters;

%let type = mktg; *** Project Type (mktg, sales, usage, etc.);

%let prestart = 01OCT2009; *** Pre project period for comparison;

%let prestop = 31DEC2009; *** End of Pre project period;

%let poststart = 01JAN2010; *** start project tracking;

%let poststop = 30JUN2010; *** expire date - stop tracking;

%let title = January 2010 Introduction of Incentives;

%let products = ('VRS', 'GQL', 'BGO', 'DLA');

%let codes = ('015', '119', '214');

*** run standard extract and reporting programs;

%include 'ProjectReportingExtract_&type._CurrentPgm.sas';

%include 'ProjectReportingOutput_&type._CurrentPgm.sas';

Applications DevelopmentSAS Global Forum 2010

 11

Macros can also be used to control which process and logic gets executed. Metadata coupled with macro logic can

help execute code based on certain conditions. The code below will conditionally run a marketing initiative’s success
module only when the marketing initiative has come to the end of the response window.

/*

Code run during metadata processing

ProjectEndDate - from metadata and represents the End of the Marketing

 Initiative Window

CurrentMonthEnd - generated with the current month end we are reporting for.

*/

data _null_;

set myLibname.metadata;

 if ProjectEndDate <= CurrentMonthEnd then do;

 call symput("ProjectWindowEnd",'Y');

 end;

 else call symput("ProjectWindowEnd",'N');

run;

/*..........*/

/*Macro which drives logic in our driver program*/

%macro processSuccess;

%if &ProjectWindowEnd. = Y %then %do;

 %include "/myCode/abcCorp_marketing_success_module.sas";

%end;

%mend processSuccess;

%processSuccess;

These macros enable flexibility by adapting the logic to the current requirements.

3c. Managing Results
An important and often overlooked aspect of the planning process involves results management. Results may include:

 logs

 data sets

 reports

 excel spreadsheets

 validation files.

Effective naming conventions and storage locations help to insure easy retrieval of results and appropriate cross-

referencing back to the code that generated the results. For example, consider the log resulting from running the
program

 projectID_extract1_20100215.sas

where projectID is a unique identifier for the project.

The associated log filename should include the SAS program name, for easy reference, along with the date time stamp
corresponding to when the program ran.

 projectID_extract1_20100215_yyyymmdd_hhmm.log

To automatically create the log file with each run of a program, use PROC PRINTTO to begin log writing at the top of the

SAS program. We recommend further generalization of the program by using macro variables for the filename and file
pathing to enable easy changes and usage for other purposes within the program (such as naming other files).

/* At top of program, initiate LOG writing so that all input is captured */

%let dir = /sas/projectID/; /* output locations */

%let stage = prod; /* devl, test, prod */

%let filename = projectID_extract1_20100215;

%let DateTime =

 %sysfunc(compress(%sysfunc(today(), yymmddN8.)_%sysfunc(time(),hhmm6.), ': '));

Applications DevelopmentSAS Global Forum 2010

 12

/* Route Log to a saved location for later perusal */

proc printto

 log = "&dir./logs/&stage./&filename._&datetime..log";

run;

In the example above, notice that the storage location varies by the phase of the project. When development is
underway, the results are located in the DEVL subfolder. As the project moves into testing, results are located in TEST,
and finally in PROD when we move to production. This way, it is easy to locate and review earlier versions.

Similar storage locations and naming conventions are used for the reports and other non-SAS file results.

What about SAS Datasets?

When creating permanent SAS datasets, including a date-time stamp in the name may be difficult due to the 32
character limit. Further, the data set name may need to be more static for downstream programs. Instead, consider
generation data sets.

Each data set in a generation data group has the same member name (data set name) but has a different version
number. Every time the data set is updated, a new generation data set is created and the version numbers of the older
versions are incremented. The DEFAULT version is called the base version, and is the most recent version of the data.
What are the advantages of using generation data sets?

 The most current version of the generation data group is referenced using the base data set name. Thus,
downstream programs do not need to worry about date-time stamps in the data set name.

 Older versions of the data are available for PROC COMPARE testing when validating the data.

 You don’t have to remember to save the data before creating a new version .

For further information on creating and using generation data sets, see the genmax and gennum data set options in SAS

online documentation.

4. TESTING AND QUALITY ASSURANCE

Our highly-modularized design lends itself to highly-modularized testing and quality assurance (QA). Unit testing will
ensure that our modules receive metadata (via parameters) and produce a uniform result regardless of the values of the
metadata. Our framework was designed and built with uniform interfaces between and across modules, creating SAS
datasets with common keys. Results from each module can be tested independently as long as we have the common
keys to bring the results together.

Essentials of our QA are:

 analysis of the contents of interim (or “QA”) datasets which can easily be related back to our data requirements

 review of SAS logs from running each of our component modules

 walkthroughs of program logic to ensure what has been implemented matches what was in our detailed
requirements

 analysis of our results in the form of analytical datasets and/or reports.

Initial QA of the first delivery of enterprise data will need to be exhaustive. It should be done by testers with in-depth

knowledge of more than one division or group to ensure that the data extraction is done correctly and that the same
metrics are understood to have the same meaning throughout the organization regardless of the division or project. The
role of enterprise metrics are to provide consistent profile or relationship data across all deliverables so once our results
have passed final QA the module will be frozen, copied to the production environment, and will be invoked by all of our
job streams without further testing. Recognizing that there will likely be multiple iterations of data QA on each of our
modules – at least for the pilot project – makes it worthwhile to develop a simple toolkit for validating data. There is no
substitute for thorough and intelligent analysis of the initial data delivery but subsequent QA should focus on only those
elements which should have changed.

For example
If our enterprise module is to deliver 20 metrics and the first, detailed QA determines that 18 of those are correct and 2

need to be refined, isolating the 18 which shouldn’t change and using PROC COMPARE to ensure that there were no

unexpected changes to the good 18 metrics in subsequent deliveries will take only seconds to prepare and submit. A

quick review of the output to ensure the ‘No unequal values were found. All values compared

are exactly equal’ message appears will then allow the QA time and energy to be focussed on the 2 metrics

that were expected to change in our second iteration. Here is some utility code to compare results from different

Applications DevelopmentSAS Global Forum 2010

 13

deliveries using the same sort of macro variables described in Section 3b. Note that only the first three macro variable
definitions will need to change when reusing this code in the same environment.

%let old_dataset = enterprise_2009_09_01;

%let new_dataset = enterprise_2009_09_08;

%let not_same = var19 var20;

** same as Section 3b **;

%let dir = /base_directory;

%let stage = test; /*test or prod*/

libname data "&dir./data/&stage./subfolder1";

** compare columns EXCEPT those we expect to be different **;

proc compare

 data = data.&new_dataset.(drop = ¬_same.)

 compare = data.&old_dataset. (drop = ¬_same.);

run;

This technique can be applied to each module at each iteration to help ensure consistency and data quality
with minimal effort.

Much of the QA effort is devoted to ensuring that the results data in SAS data format are correct. After the data are
correct we must also look at any reports or other files we are delivering. There is no substitute for a careful visual

inspection of reports or formatted files to make sure there is no unexpected truncation or field overflow and that formats
and rounding are as expected. If we convert from SAS to some other data format, such as Excel for reports or some
other DBMS, there can be formatting quirks which are difficult to test for. Some things to look for include

 Is the smallest data value in each field displayed properly?

 Is the largest data value in each field displayed properly?

 Do rounded values match what would appear if we used PROC PRINT?

 Do calculated and formatted fields reflect the expected values?

Each new division module will also need thorough testing and QA. The same method as described above for focussing
attention where it’s needed for testing of enterprise will apply to division. Once each division has been validated, the
module can be copied to production and invoked for each project without further testing. Our initial project module
required extensive testing and QA review. For each additional project using the same framework, we assess the extent
of differences from any existing project to isolate which elements require user QA testing. In many cases, we can reuse
an entire project by tailoring the parameters passed to it without needing to touch the code in the module. This takes

advantage of our design and the effort invested in early QA to minimize what’s needed to deliver additional projects.
Using standardized module names and storage locations, as described in the Code section above, and maintaining
discipline around element names and formats throughout our hierarchy means the components fit together without
concern over compatibility of interim results. Using a driver program of SAS code to select which modules to assemble
into one stream allows us to pull together the various required and optional components and know that they will work
together. This also reduces test time and effort for new projects.

5. ROLLOUT

Once we have created the framework that will encompass our modules, we can start to focus on how to bring everything
together in delivering the final product. We have focused on creating an extensible and reusable set of processes which if
done correctly should simplify the rollout process.

We need to think about questions such as:

 how will new data requests be handled

 how and when will jobs be scheduled

 how will results get sent to users

 how to automate all of the above.

Metadata will be the driving force in addressing ways to handle our roll out process. Metadata is used to help
describe the processes we are running and will be the gatekeeper to managing the execution, and delivery of
such.

Applications DevelopmentSAS Global Forum 2010

 14

Let’s examine some examples as to how we can manage the roll out dynamically.

Job scheduling

Imagine trying to determine which processes need to run monthly by working through a list of jobs, checking start and
end dates. This can be very tedious, not to mention prone to human errors. Maybe step one of the development iteration
involves creating a driver for each project identifier. Each of these drivers will describe a project and its attributes. Code
can be conditionally run depending on what is passed down from our metadata.

Let’s use an example where we want to run reports each month during a defined start and end period. This can easily be
executed if the metadata defines when the processing start date and end dates are. By including conditional code in our
driver program we can establish rules which the framework runs against thus automating which modules run. We can
decide if the driver is supposed to run or not depending on the current month end in comparison to the processing start
and end dates.

Let’s check out a code snippet of what this might look like:

/* Create some example metadata */
data metadata;

 input projectID $ startDate:yymmdd10. endDate:yymmdd10.;
format startDate endDate yymmddd10.;
datalines;
project1 2010-01-01 2010-03-31
project2 2010-01-01 2010-03-31
project3 2010-02-01 2010-03-31
project4 2010-03-01 2010-04-30
;
run;

/*Set up previous month end date as current month end for the example*/
/*Typcially this would be dynamically generated*/
%let currentME = %sysfunc(intnx(month,%sysfunc(today()),-1,E));

/*Count the total number of Projects so we can create our macro variables*/
proc sql ;

 Select
 count(projectID)
 into :numberOfProjects
 From metadata
 ;
quit;

%let numberOfProjects = &numberOfProjects;

/*Place our metadata variable values into macro variables*/
/*so we can do logical processing*/
proc sql feedback;

 Select
 projectID,
 startDate,
 endDate

 into :projectID_1 THROUGH :projectID_&numberOfProjects. ,
 :startDate_1 THROUGH :startDate_&numberOfProjects. ,
 :endDate_1 THROUGH :endDate_&numberOfProjects.
 From metadata
 ;
quit;

/*Cycle through metadata and compare with current month end date*/
/*If the current month end is between the start and end dates*/
/*we should call the corresponding driver module for the project*/
%macro masterMetadata;
%do i=1 %to &numberOfProjects; /*cycle through all the proejctIDs*/

Applications DevelopmentSAS Global Forum 2010

 15

 /*test the date condition - Check start and end date*/
 %if ((%sysevalf(&&startDate_&i - 1) < &¤tME) AND
 (%sysevalf(&&endDate_&i + 1) > &¤tME)

) %then %do;

 /*Include code for the driver we want to call*/
 %let prog =driver_&&projectID_&i...sas;
 %include code(&prog.) ;

 %end;
%end; /*end of the do loop*/
%mend masterMetadata;

/*call the macro*/
%masterMetadata;

New Requests

New data requests would involve the creation of new driver programs. These driver programs may only differ slightly in
the logic and instructions they contain. This can be as simple as altering the project identifier so when the driver is
executed it can refer back to the metadata which describes the execution rules for that project. This type of processing
really simplifies the creation of new data or report delivery since metadata drives the processing.

Data Delivery

Delivering the data to end users can also be driven from metadata cues. The metadata could describe the enterprise
and division data which is being produced. Based on this information we can set up delivery locations or methods
conditionally based on this metadata. Maybe a certain division would like an email pointing them to the location of their
data, while another wants data placed in a certain location where they can locate it. This can all be achieved with
conditional processing logic fed down from metadata.

/*We want to distinguish beetween US reports and Canadian Reports*/

/*They will be delivered to appropriate parties in respective locations*/

%macro dataDelivery(divisonID);

%if &divisonID = USA %then %do;

 /*US Reports should just be placed into the location with no notification*/

 libname data "&dir./data/&stage./subfolder1";

%end;

%else %if &divisonID = CAN %then %do;

 /*CAN Reports should be placed into the location with notification*/

 libname data "&dir./data/&stage./subfolder2";

 filename outbox email;

 data _null_;

 file outbox

 from="john.smith@mycompany.com"

 to="canadian.reporting@mycompany.com"

 subject="Canadian Reports Available";

 put "Canadian Reports will be available in the following location";

 put "&dir./data/&stage./subfolder2";

 run;

%end;

%mend dataDelivery;

%dataDelivery(USA);

%dataDelivery(CAN);

A Step Further

The examples which we have discussed can be taken to a level higher where our driver program would be automatically
generated and executed from metadata. It would mean our metadata would need to be fairly extensive in describing all
the rules and relationships needed to work properly. In short we would be creating a master driver which would take

Applications DevelopmentSAS Global Forum 2010

 16

metadata and generate the conditional calls and rules to run our processes, in addition to when to run them. We have

the project Start and End dates, so we know when the framework needs to be invoked for each project. Divisional
indicator can describe the people who receive, and where they receive them. Project definitions would individualize the
data to the requestors’ needs. These metadata elements will help drive the use of the modular items we created and
designed in earlier sections.

CONCLUSION
Building reusable and extensible code requires planning and discipline but the benefits outweigh the efforts. As

demonstrated in this paper, some of the key benefits are

 Once the framework is in place and metadata is available for a project, results can be delivered rapidly with little

effort. By defining and utilizing minimally acceptable inputs and results, even if a component (such as
divisional input) is not available, the other components (enterprise and project) are delivered to provide
immediate value.

 Code modularization not only helps reusability, but it also chunks the logic into digestible pieces.

Documenting and sharing knowledge about short, focused modules is far easier than doing it for 1000’s of lines
of code in one chunk. The Driver / Source Programs along with Macro Modules are a key to the success of

the framework. But, remember . . .
a repeatable process like this requires additional and extensive testing to confirm that changes to the
source code modules accommodate all drivers that call the modules!

For large projects such as this, we also recommend delivering intermediate products for review and user
acceptance during the development which helps to structure the project and build respect and acceptance
amongst the key stakeholders. No need to wait for the BIG BANG! Let your key stakeholders enjoy results as early as

they are available.

In the long run, time and effort is saved by building a robust modular process with wide applicability.

SUGGESTED READING
1) Fecht, Marje. “Think Before You Type… Best Practices Learned the Hard Way?”, Proceedings of SAS Global

Forum 2009. http://support.sas.com/resources/papers/proceedings09/133-2009.pdf

2) Eckler, Lisa. “When Good Looks Aren’t Enough”, Proceedings of NESUG, 2009.
http://www.nesug.org/Proceedings/nesug09/ff/ff13.pdf

3) Droogendyk, Harry and Fecht, Marje. “Demystifying the SAS Macro Facility” , Proceedings of SUGI 31.

http://www2.sas.com/proceedings/sugi31/251-31.pdf

ACKNOWLEDGMENT
The authors would like to thank James Moore for his review of the paper and his support of our approach during the
project.

CONTACT INFORMATION
Your comments and questions are valued and encouraged. Contact the authors via email at:

Faisal Dosani faisal.dosani@rbc.com

Lisa Eckler lisa.eckler@sympatico.ca

Marje Fecht marje.fecht@prowerk.com

SAS and all other SAS Institute Inc. product or service names are registered trademarks or trademarks of SAS Institute Inc. in the USA
and other countries. ® indicates USA registration.

Other brand and product names are trademarks of their respective companies.

Applications DevelopmentSAS Global Forum 2010

http://support.sas.com/resources/papers/proceedings09/133-2009.pdf
http://www.nesug.org/Proceedings/nesug09/ff/ff13.pdf
http://www2.sas.com/proceedings/sugi31/251-31.pdf
mailto:faisal.dosani@rbc.com
mailto:lisa.eckler@sympatico.ca
mailto:marje.fecht@prowerk.com

	2010 Table of Contents

