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ABSTRACT 

Life would be simple if all data were stored and accessed via SAS® software. In reality, most organizations store data 
in multiple repositories and access this data using a variety of analytical tools that don’t communicate with each other. 
Technology solutions that bridge between analytical systems and data repositories are critical to sharing information 
throughout the organization. The SAS/SHARE® driver for JDBC is a powerful example of bridging technology that 
increases the value of SAS data to an organization. 
 
We demonstrate that an integration solution using the SAS/SHARE driver is both useful and suitable for high-
throughput production use. We extended an existing Java-based life sciences web application to integrate secure, 
dynamic access to SAS data sets. We document the implementation process, detailing best practices, pitfalls, and 
workarounds discovered along the way. 
 

BACKGROUND AND PROBLEM STATEMENT 

LabKey Server is an open-source, web-based system for collaborative biomedical research. It provides a secure data 
repository for managing and sharing laboratory data, including proteomics, microarray, flow cytometry and plate-
based assay data. Life sciences organizations have deployed the system to solve a variety of data management 
problems, including managing large HIV/AIDS vaccine trials, analyzing high-throughput proteomics data for cancer 
biomarker research, and providing repositories of infectious disease research using flow cytometry. More information 
about the product is available at the LabKey Software Foundation website, http://www.labkey.org. 

LabKey Server is written in Java and uses a relational database (PostgreSQL or Microsoft SQL Server) to store its 
data. Data is added to the system via a combination of automated systems (e.g., analytic pipelines that pull assay 
data directly from laboratory instruments, nightly uploads of specimen information from external data dumps) and 
manual processes (e.g., direct entry of subject responses into web forms, manual uploads of assay data by remote 
laboratories). The system organizes all data within a security framework that ensures sensitive information can be 
viewed and altered only by those who are explicitly granted authorization. 

Once in the system, general-purpose data management tools allow querying, joining, reporting, charting, and 
exporting of data via a web-based user interface. Also provided is an extensive set of domain-specific data analysis 
and management tools customized to understand the intricacies of specific assays and the requirements of scientists 
using those assays. Every attempt to access data is subject to authorization checks performed at the application 
level. 

The Statistical Center for HIV/AIDS Research and Prevention (SCHARP) provides data management and statistical 
analysis expertise to several large consortia working toward an HIV/AIDS vaccine. SCHARP is part of the Vaccine 
and Infectious Disease Institute of the Fred Hutchinson Cancer Research Center based in Seattle, WA. SCHARP 
operates one of the most broadly used installations of LabKey Server to help coordinate these large-scale 
collaborations. As a statistical center, SCHARP also makes extensive use of SAS as a repository and analysis 
system. 

The SCHARP installation of LabKey Server houses hundreds of observational studies; it provides secure analysis 
and publishing of study and assay data to thousands of individual collaborators. External users are not permitted 
direct access to SCHARP’s SAS installation. Instead, select data sets are published on LabKey Server where specific 
groups are granted access. In the past, publishing a SAS data set meant exporting it to text format, typically a tab-
separated value (TSV) file, and instructing LabKey Server to load the text file; this is accomplished via automated 
scripts in some cases and via manual processes in others. 

This type of export/import process has many drawbacks. It is complex, fragile, and prone to errors that are difficult to 
detect. It is also time consuming, awkward, and unnecessarily resource intensive. Once transferred, the resulting 
data is less than ideal. It may be out-of-date immediately, since the data set could change in SAS. The transfer 
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process via TSV files is also inherently “lossy”: we lose important information about SAS formats, special missing 
values, data set labels, variable descriptions, and other critical meta data. 

In an effort to resolve these issues, SCHARP sponsored a project to create more seamless integration between SAS 
data sets and LabKey Server. The key requirements for this solution included: 

 Relatively low cost (this precluded solutions that entailed extensive re-architecting of the Java application) 

 Support for the entire suite of analytical tools on SAS data sets. SCHARP had built expertise and code 
around the standard LabKey features that operate on tables stored in the primary database; they wanted 
SAS data sets to behave identically. This meant that SAS data set integration had to support: 

o Sortable, filterable HTML grids with paging. 

o User-defined views saved with custom filters, sorts, and column lists. 

o Custom queries and reports. 

o Export to Excel, web query, and TSV formats. 

o Access from JavaScript, Java, R, and SAS client libraries. 

 Strict adherence to the existing LabKey Server security model. SAS data sets must follow the same 
authorization steps as any other data set. SCHARP wanted to continue using the groups and permissions 
they had configured for their 2,000+ users on the system and did not want to open up their SAS installation 
beyond their internal use. 

 Transfer of SAS meta data along with the data sets. 

SOLUTION OVERVIEW 

After considering several possible solutions, an approach employing SAS/SHARE and the SAS/SHARE driver for 
JDBC quickly became the leading contender for meeting the above requirements. JDBC is the Java Database 
Connectivity API, an industry-standard interface for connecting Java applications with a wide range of databases. 
LabKey Server accesses its primary database server using JDBC, so its existing data management tools are already 
tuned to this API. 

A SAS/SHARE-to-Java solution involves three key components: 

 SAS/SHARE service. SAS/SHARE provides concurrent access to SAS data sets over a network. This 
service is configured to run as part of the SAS installation. Configuration involves setting up a TCP/IP port, 
defining libraries to publish, and starting the service. 

 SAS/SHARE driver for JDBC. The driver JAR files must be on the classpath of the Java application. 

 Java code that loads the driver, connects to the SAS/SHARE service via its URL and port, and executes 
queries against the service via the JDBC API. 

Once configured, the Java application sees the SAS repository as a relational database similar to PostgreSQL or 
Microsoft SQL Server. Using JDBC means that several familiar SAS constructs are accessed and referred to by their 
database counterparts: 

 Each SAS library defined by SAS/SHARE appears as a database “schema.” 

 Each data set appears as a “table” within its schema. 

 Each SAS variable appears as a “column” within its table. 

The Java application uses JDBC to retrieve data stored in SAS data sets. It can also retrieve “meta data” associated 
with schemas, tables, and columns; meta data is information about types and properties, for example: name, data 
type, and description of each column or the primary keys and descriptions of each table. 

TEST IMPLEMENTATION 

We decided to test the approach by writing a simple command line Java application that connects to a local instance 
of SAS/SHARE. During the development and testing phase, we ran SAS, our Java development environment, our 
web application, and our test database server on our development machines. This is highly recommend since it 
allowed us to change the SAS/SHARE service configuration, change the published libraries, experiment with 
authentication, execute performance tests, modify data sets, etc. without disturbing a production SAS installation. 
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The SAS® 9.2 Drivers for JDBC Cookbook from SAS Institute provides detailed reference information for configuring 
and connecting with the SAS/SHARE service. Below are the basic steps for setting up SAS/SHARE on a 
development machine configured with Windows 7 and SAS 9.2 (changing file paths should make these steps 
compatible with other configurations): 

 In your “services” file, configure a TCP/IP port for SAS/SHARE to use. We chose to assign port 5010 to the 
SAS/SHARE service by adding this line to our services file: 
 
   sasshare    5010/tcp    #SAS/SHARE server 

 
The location of the services file changes based on your operating system, so consult your operating system 
documentation for the correct path. It’s likely located in c:\windows\system32\drivers\etc\services on 
Windows; on Linux, Unix, and OS X, you may find it in /etc/services.  

 Define one or more libraries and start the SAS/SHARE service. Run SAS and execute the following 
statements: 
 
   libname sample 'C:\Program Files\SAS\SASFoundation\9.2\core\sample'; 

   proc server authenticate=optional id=sasshare; 

   run; 

 
The SAS/SHARE service should now be running. Important: The “authenticate=optional” setting runs 

SAS/SHARE in a completely open, unsecured manner. It should be used for development purposes only. 

 Place the SAS/SHARE driver for JDBC JAR files (sas.core.jar and sas.intrnet.javatools.jar) on your java 
classpath. 

 Write Java code that connects to the SAS/SHARE service defined above. The basic approach looks like 
this: 
 
   Class.forName("com.sas.net.sharenet.ShareNetDriver"); 

   String url = "jdbc:sharenet://localhost:5010?appname=JdbcTest"; 

   conn = DriverManager.getConnection(url); 

 

   Statement stmt = conn.createStatement(); 

   String sql = "SELECT * FROM sample.empinfo"; 

   ResultSet rs = stmt.executeQuery(sql); 

 

   while (rs.next()) 

      System.out.println(rs.getString("name") + " " + rs.getInt("idNum")); 

 

   rs.close(); 

   stmt.close(); 

   conn.close(); 

 
A full test application would include exception handling and would probably log more columns and meta 
data. It would also exercise functionality beyond a simple SELECT statement. See Appendix A for Java 
source code of a complete SAS/SHARE JDBC test application that can be compiled and run from the 
command line. 

The test application we wrote retrieved data and meta data from many sample data sets. It also confirmed that basic 
SQL operations such as WHERE, ORDER BY, GROUP BY, aggregates, aliases, sub-selects, and standard JOINs 
were all supported. After successful tests, the next step was to integrate the SAS/SHARE connection capability into 
LabKey Server. 

INTEGRATION 

Writing an application to test Java and SAS/SHARE integration was quite straightforward; the driver worked as 
advertised and seemed to follow the JDBC specification. Integrating SAS/SHARE into a production system was 
significantly more difficult; it required some changes to core code and revealed problems with the driver that had to 
be dealt with. 
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SAS/SHARE CONFIGURATION 

The test application includes a hard-coded connection string ("jdbc:sharenet://localhost:5010?appname=JdbcTest") 
and no authentication credentials. This is unacceptable in a production environment, where the code must be 
independent of the SAS/SHARE configuration details. Also, establishing and closing a database connection for each 
query is unnecessarily expensive.  

In Java web applications, configuration of external resources is often done using the Java Naming and Directory 
Interface (JNDI). Configuration details are specified in a separate XML file, keeping code and settings independent. 
JDBC database connection configurations are specified by adding a DataSource element to the web application’s 
context file, for example: 

<Resource name="jdbc/sasDataSource" 

 auth="Container" 

 type="javax.sql.DataSource" 

 driverClassName="com.sas.net.sharenet.ShareNetDriver" 

 url="jdbc:sharenet://localhost:5010?appname=LabKey" 

 maxActive="8" 

 maxIdle="4"/> 

This element defines a DataSource named “sasDataSource” with settings very similar to the test application above. 
The URL is the same, other than changing the “appname” parameter to the production server’s name. (The 
“appname” parameter is optional and SAS-specific, but it can be helpful because it appears whenever SAS/SHARE 
logs activity from this connection. You should change the value of this parameter to your own application’s name.) 
This particular configuration is suitable only for development use since it assumes authentication is optional on the 
SAS/SHARE service. However, it’s a trivial process to add credentials once you configure your SAS/SHARE service 
to require authentication: simply add “username” and “password” properties and they will be sent to SAS/SHARE 
when making a connection. 

The SAS/SHARE driver for JDBC JAR files must be on the classpath on the server. The exact location will vary by 
application server. With Apache Tomcat, placing the JAR files in <tomcat>/common/lib is sufficient. 

A JDBC connection to a JNDI-defined DataSource is obtained via code that looks like this: 

Context ctx = new InitialContext(); 

DataSource ds = (DataSource)ctx.lookup("jdbc/sasDataSource"); 

Connection conn = ds.getConnection(); 

This code loads a specific DataSource by name, but many applications will take a more general approach. LabKey 
Server, for example, enumerates all the DataSources specified in a context file and displays their names in a drop-
down list available to administrators. Administrators then choose which set of DataSources, schemas, and tables to 
publish in each area of the web site, which lets the administrator fine-tune permissions for each data set. The system 
can connect to multiple databases of different types; for example, a server could connect to three SAS/SHARE 
servers, a PostgreSQL database server, and two Microsoft SQL Server databases. 

In addition to hiding the configuration details (and in particular, the credentials) from the code, our DataSource 
definition provides another very important feature: a connection pool. The “maxActive” and “maxIdle” properties 
define a pool of connections that are maintained by the connection manager. The connection manager doesn’t make 
a database connection every time your code asks for a connection; instead, it loans out previously established 
connections from its pool. A properly configured database connection pool is critical for most high-throughput web 
applications. The pool defined here is relatively small; consult your connection pool documentation to determine the 
proper settings for your application. 

HANDLING SAS/SHARE DIFFERENCES 

JDBC hides many of the differences between databases from the Java code that operates on them, but it can’t hide 
all differences. Despite SQL standardization efforts, every database server requires different SQL syntax for common 
features and supports a unique set of capabilities. An application built to communicate with different database servers 
needs a way to address these differences. 

Because it supported multiple primary databases (PostgreSQL and Microsoft SQL Server), LabKey Server had in 
place an abstraction layer that hides database-specific implementation details from the application layer. Adding a 
third provider to this layer to support SAS/SHARE was relatively straightforward. 

We call this the “SQL dialect” layer. It’s implemented as an abstract class with an implementation subclass for every 
database we support. The application layer calls SQL dialect methods to determine capabilities and SQL syntax 
supported by each database. For example, the SAS/SHARE driver doesn’t allow in-line comments in SQL queries, so 
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the SAS dialect’s supportsComments() method returns false. Likewise, the SAS dialect’s getConcatenationOperator() 
method returns “||”. 

ISSUES, WORKAROUNDS, AND RECOMMENDATIONS 

Developing and testing the SAS/SHARE integration uncovered a significant number of issues that had to be 
addressed. Some issues were very minor, requiring a simple code change or a new setting in the SAS SQL dialect. 
Others were more involved, requiring major reworking of the code. Issues we uncovered included: 

 Obtaining the JDBC driver. Most database server vendors post their JDBC drivers on the Internet, available 
for free download. As of the time of this writing, the most recent JDBC driver is not available for download 
(only version 9.1.3). We strongly recommend using the most recent driver (see below), so you’ll need to 
acquire the 9.2 driver from SAS Institute. Note that the standard installation places the JDBC driver JAR 

files in an obscure directory such as: 
 
   C:\Program Files\SAS\SASFoundation\9.2\eclipse\plugins 

 

Copy the JDBC driver JAR files (sas.core.jar and sas.intrnet.javatools.jar) from there to your application 
server or Java project. 

 JDBC driver differences. The 9.2 JDBC driver changed significantly from the 9.1.3 JDBC driver. For 
example, the names used to retrieve both column and primary key meta data changed. (With the 9.1 driver, 
column meta data is reported as “NAME”, “SQLTYPE”, “SIZE” while in 9.2 it is reported as 
“COLUMN_NAME”, “DATA_TYPE”, “COLUMN_SIZE”.) The newer names are more consistent with other 
JDBC drivers, but if your application might encounter either driver you must detect the driver version and 
accommodate the differences. (In our case, LabKey Server uses a different SQL dialect for each driver 
version.) Since JDBC drivers are usually backwards compatible, the easiest solution here is to always use 
the most recent 9.2 JDBC driver, even against a 9.1 SAS installation. 

 9.2 driver versions. SAS released several versions of the 9.2 JDBC driver. The first release had a critical 
bug in its handling of database meta data; a call to Connection.getMetaData().getColumns() returned 
information claiming that every variable in the data set was type “double” (even character and date 
variables)! Fortunately, SAS Institute has released newer versions of the driver that fix this problem. As with 
the above issue, always use the most recent 9.2 JDBC driver. At this time, the most recent version is 

called 9.22-m2; the driver lists a version number of 9.2.902200.2.0.20090722190000_v920m2. 

 No database name. Unlike most database servers, SAS/SHARE doesn’t use a database name. JDBC 
clients simply connect to a port and see all the published libraries. General purpose clients that expect a 
database name will need to change to address this difference.  

 DatabaseMetaData not completely implemented. The DatabaseMetaData JDBC interface is used by clients 
to determine capabilities of the current driver and database. The SAS JDBC driver does not fully implement 
this interface; 18 of the standard methods throw InvocationTargetException. Many of the unimplemented 
methods are fairly obscure, but several are important for customizing behavior based on driver and SAS 
versions: getDatabaseMajorVersion(), getDatabaseMinorVersion(), getJDBCMajorVersion(), 
getJDBCMinorVersion(). In place of these more convenient methods, use getDriverVersion() and 
getDatabaseProductName() and parse the strings they return. 

 ResultSet.getRow() method not implemented. Calling getRow() always throws a SQLException (“Method not 
yet supported”); code that needs to track the current row must do so manually. 

 Paging. Many applications provide “paging” of large data sets; they display (for example) only the first 1,000 
rows and provide a means to skip to other pages containing 1,000 rows each. Most database servers 
provide “limit” and “offset” predicates in their SQL syntax to enable efficient paging implementations. The 
SAS/SHARE SQL syntax does not support these commands, which makes implementing paging tedious 
and inefficient. Paging is important for our application, so we implemented paging manually. If a limit of 
1,000 rows is requested, we select all rows but display only the first 1,000 rows. If we’re displaying the third 
page of 1,000 rows, we select all the rows, skip through the first 2,000 rows, then display rows 2,001 to 
3,000. This approach incurs extra database work and network traffic, but it gets the job done. 

 Dates. A JDBC PreparedStatement allows for parameterized SQL queries; SQL is written with placeholders 
(?) that take their values from Java objects that are added to the PreparedStatement. We discovered that, 
unlike other database servers, the SAS/SHARE driver does not support java.sql.Timestamp objects as 
PreparedStatement parameters; using a Timestamp object as a parameter in a WHERE clause resulted in 
completely unpredictable results. When setting a date parameter, use a java.sql.Date object instead. 

SAS/SHARE SQL also supports a date literal syntax; the following SQL statement is legal: 
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   SELECT * FROM example.hosp WHERE AdmitDate = '12JUL05'd 

 

However, including hard-coded date strings in SQL is rarely useful. 

 No support for in-line comments. Most of the SQL statements sent to the database server by LabKey Server 
are generated by code. We include comments inside the SQL of some of the more complex queries to help 
with debugging. Most database servers ignore comments inside SQL statements, but SAS/SHARE does 
not; any comments result in an exception. To resolve this issue, we added a supportsComments() method to 
the SQL dialect; our code checks this method before adding comments to a SQL statement. 

 Alias names. SAS/SHARE required some small changes to code that generated alias names for columns 
and tables. We had used dollar signs ($) in alias names, but these were rejected by SAS/SHARE; we 
replaced them with underscores (_). 

 Formats. One major feature we have not yet been able to support is retrieving formatted values from 
SAS/SHARE. Retrieving raw data is useful in many scenarios, but in other cases formatted values would be 
very helpful. The SAS/SHARE SQL syntax supports the PUT function, which applies a format to the given 
column, and the format name associated with a variable can be retrieved from JDBC meta data. The 
problem is associating the right format library with each dataset. One can set a format library search path 
when establishing a SAS/SHARE session, but a single search path is too restrictive for most SAS 
repositories. Our client, for example, stores datasets in hundreds of studies, each of which has a unique 
format library. A single format library search path does not work at all and the alternative, creating separate 
SAS/SHARE services for each protocol, would be an operational nightmare. We are searching for a solution 
to this issue; please contact the author if you discover one. 

GENERAL RECOMMENDATIONS 

Integrating SAS/SHARE with Java requires substantial development effort. Here are a few general recommendations 
for developers embarking on such a solution: 

 Configure your development machine as a complete, standalone test environment. Install SAS, configure 
SAS/SHARE, and run your Java application all on your development machine. Development and testing will 
require frequent restarts and reconfiguration of both your application and SAS/SHARE; you certainly don’t 
want to test against a production SAS installation. Having complete control over all the components will 
speed the development process. 

 Implement general data and meta data browsers. As you develop your solution, you’ll want an easy way to 
display both the data and the meta data returned for each data set.  Invest in general-purpose browsing UI 
that displays this information.  Even simple logging routines will provide great value. 

 Design your security approach early in the process. How will you protect the production SAS/SHARE 
server? How does your Java application appropriately limit access to data sets?  How will an administrator 
control which users can access each data set? 

CONCLUSION 

The SAS/SHARE driver for JDBC gives Java applications direct access to SAS data. This bridging technology 
supports a robust set of database functions and performs well in high-throughput environments. Using the 
SAS/SHARE driver for JDBC, and learning to work around its limitations, provides a powerful tool for sharing valuable 
SAS data throughout an organization. 
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APPENDIX A: SAS/SHARE JDBC TEST APPLICATION 

 

import java.sql.*; 

 

// Simple test of querying SAS data sets using the SAS/SHARE driver for JDBC 

public class Main 

{ 

   public static void main(String[] args) 

   { 

      Connection conn = null; 

 

      try 

      { 

         Class.forName("com.sas.net.sharenet.ShareNetDriver"); 

         String url = "jdbc:sharenet://localhost:5010?appname=JdbcTest"; 

         conn = DriverManager.getConnection(url); 

 

         DatabaseMetaData dma = conn.getMetaData(); 

         System.out.println("Connected to " + dma.getURL()); 

         System.out.println("Driver " + dma.getDriverName()); 

         System.out.println("Version " + dma.getDriverVersion()); 

 

         logSchemas(dma); 

         logTables(dma, "sample"); 

 

         Statement stmt = conn.createStatement(); 

 

         executeAndLog(stmt, "SELECT * FROM sample.empinfo"); 

         executeAndLog(stmt, "SELECT * FROM sample.leave"); 

         executeAndLog(stmt, "SELECT * FROM sample.empinfo INNER JOIN 

            sample.leave ON empinfo.idnum = leave.idnum ORDER BY Name"); 

         executeAndLog(stmt, " SELECT * FROM sample.empinfo e LEFT OUTER JOIN 

            sample.leave l ON e.idnum = l.idnum  WHERE Location <> 'Cary'"); 

         executeAndLog(stmt, "SELECT * FROM sample.leave RIGHT OUTER JOIN  

            sample.empinfo ON empinfo.idnum = leave.idnum"); 

      } 

      catch(Exception e) 

      { 

         e.printStackTrace(); 

      } 

      finally 

      { 

         try 

         { 

            if (null != conn) 

               conn.close(); 

         } 

         catch (SQLException e) 

         { 

            e.printStackTrace(); 

         } 

      } 

   } 
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   private static void logSchemas(DatabaseMetaData dmd) throws SQLException 

   { 

      logResultSet(dmd.getSchemas()); 

   } 

 

   private static void logTables(DatabaseMetaData dma, String schemaName) 

      throws SQLException 

   { 

      ResultSet tables = dma.getTables(null, schemaName, null, null); 

      logResultSet(tables); 

   } 

 

   private static void executeAndLog(Statement stmt, String sql) throws 

      SQLException 

   { 

      ResultSet rs = stmt.executeQuery(sql); 

      logResultSet(rs); 

      stmt.close(); 

   } 

 

   private static void logResultSet(ResultSet rs) throws SQLException 

   { 

      try 

      { 

         ResultSetMetaData md = rs.getMetaData(); 

         int columnCount = md.getColumnCount(); 

 

         for (int i = 1; i <= columnCount; i++) 

            System.out.print(md.getColumnName(i) + "(" +  

               md.getColumnType(i) + ") "); 

 

         System.out.println(); 

 

         while (rs.next()) 

         { 

            for (int i = 1; i <= columnCount; i++) 

            { 

               Object o = rs.getObject(i); 

               System.out.print(null == o ? "" : o.toString() + " "); 

            } 

 

            System.out.println(); 

         } 

      } 

      finally 

      { 

         if (null != rs) 

         { 

            rs.close(); 

         } 

      } 

   } 

} 
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