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ABSTRACT

The new SEVERITY procedure fits probability distributions for the severity (magnitude) of random events. Important
examples include events with negative impact (such as the distribution of losses claimed under insurance policies, the
magnitude of damages caused by natural disasters, and the severity of outbreaks of a disease) and events with positive
impact (such as order sizes for products characterized by intermittent demand).

The SEVERITY procedure can use any of eight different parametric families of probability distributions. If these eight
built-in distributions are not sufficient for your problem, then you can extend the SEVERITY procedure to support
any parametric family by specifying its CDF and PDF functions with SAS® programming statements and the FCMP
procedure.

The SEVERITY procedure can model the effects of exogenous variables on the severity of an event. It can also model
censored or truncated data, which is an important feature, especially for insurance problems. Data on payments under
insurance policies are subject to deductibles (which cause left truncation of the data) and are also subject to coverage
limits (which produce right censoring).

INTRODUCTION

Insurance and banking industries, among others, need to understand the nature of losses that were incurred in the
past in order to manage future risk. This is important both for maintaining a healthy and profitable business and also
for complying with various industry regulations. A stochastic modeling approach is often beneficial not only because it
provides quantitative estimation of the expected loss and the risk associated with it but also because it enables what-if
analysis of various business scenarios. In a typical application of this approach, past data is used to find the best-fitting
probability distributions for the frequency of loss occurrences and the magnitude (severity) of the losses.

In addition to allowing inference of the characteristics that are unique to the frequency and magnitude, independent
analysis of frequency and severity distributions allows more modeling flexibility, especially when factors that affect the
frequency are different from the factors that affect the magnitude. The best frequency and severity distributions are then
combined to compute the aggregate distribution of the losses. Various quantities of business interest can be inferred
from the aggregate distribution. Examples of such quantities include the estimate of the aggregate loss that is incurred in
a given time period and the value at risk (VaR), which is computed as a specific percentile of the aggregate distribution.
These quantities enable companies to comply with risk management regulations by allocating sufficient capital and
honoring the liability commitments.

A stochastic modeling approach is also useful for modeling any random event of interest whose frequency and magnitude
are expected to follow atypical probability distributions. Examples of such events are damages caused by natural
disasters, disease outbreaks, and product orders characterized by intermittent demand.

The SEVERITY procedure (new in SAS/ETS 9.22) enables you to model severity distributions, which are continuous
parametric probability distributions. The existing SAS/ETS COUNTREG procedure enables you to fit frequency distribu-
tions, which are discrete parametric probability distributions. The focus of this paper is to introduce and illustrate the
features of the SEVERITY procedure.

The SEVERITY procedure estimates parameters of any arbitrary continuous probability distribution that is used to model
magnitude (severity) of a continuous-valued event of interest. PROC SEVERITY is especially useful when the severity
of an event does not follow typical distributions (such as the normal distribution) that are often assumed by standard
statistical methods. It provides a default set of probability distribution models for various distributions that are used for
severity modeling. In the simplest form, you can estimate the parameters of any of these distributions by using a list
of severity values that are recorded in a SAS data set. The values can optionally be grouped by a set of BY variables.
PROC SEVERITY computes the estimates of the model parameters, their standard errors, and their covariance structure
by using the maximum likelihood method for each of the BY groups. When multiple distributions are fitted, PROC
SEVERITY also chooses the best distribution according to a specified selection criterion.

You can request that the procedure output the status of the estimation process, the parameter estimates and their
standard errors, the estimated covariance structure of the parameters, the statistics of fit, estimated cumulative distribution
function (CDF) for each of the specified distributions, and the empirical distribution function (EDF) estimate.
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The following key features of PROC SEVERITY make it different from other SAS procedures that can estimate continuous
probability distributions:

� PROC SEVERITY enables you to fit a distribution model when the severity values are left-truncated or right-
censored or both. This is especially useful in applications with an insurance-type model where a severity (loss) is
reported and recorded only if it is greater than the deductible amount (left-truncation) and a severity value greater
than or equal to the policy limit is recorded at the limit (right-censoring). The procedure also enables you to specify
a probability of observability for the left-truncated data, which is a probability of observing values that are greater
than the left-truncation threshold. In certain applications, this additional information can be useful to more correctly
model the distribution of the severity of events.
When left-truncation or right-censoring is specified, PROC SEVERITY can compute the empirical distribution
function (EDF) estimate by using Kaplan-Meier’s product-limit estimator or one of its robust variants.

� PROC SEVERITY can model the effect of exogenous or regressor variables on a probability distribution, providing
that the distribution has a scale parameter. A linear combination of the regressor variables is assumed to affect the
scale parameter via an exponential link function.
If a distribution does not have a scale parameter, then either it needs to have another parameter that can be
derived from a scale parameter by using a supported transformation or it needs to be reparameterized to have a
scale parameter. If neither of these is possible, then regression effects cannot be modeled.

� PROC SEVERITY enables you to define any arbitrary continuous parametric distribution model and to estimate its
parameters. You just need to define the key components of the distribution, such as its probability density function
(PDF) and cumulative distribution function (CDF), as a set of functions and subroutines that are written with the
FCMP procedure, which is part of Base SAS software. As long as the functions and subroutines follow certain
rules, PROC SEVERITY can fit the distribution model defined by them.

The following sections illustrate the features of PROC SEVERITY with some examples inspired by the real-world
applications.

GETTING STARTED WITH A SIMPLE MODEL

Let Y denote the random variable that represents the severity of the event of interest. The SEVERITY procedure fits an
error model of the form Y � F.‚/, where F is a probability distribution parameterized by a set of parameters ‚. In other
words, PROC SEVERITY enables you to confirm or reject the hypothesis that the distribution F adequately describes
the probability distribution of Y .

PROC SEVERITY provides a default set of probability distribution models that includes the Burr, exponential, gamma,
generalized Pareto, inverse Gaussian (Wald), lognormal, Pareto, and Weibull distributions. A summary of these models
is provided in Table 1.

The simplest way to use the SEVERITY procedure is to fit all of the predefined distributions to a set of values that
are recorded in a variable of a SAS data set and let the procedure identify the best-fitting distribution according to a
model selection criterion. For example, the following statements fit all the predefined distribution models to the values
of the variable Y in the data set Mylib.MyData and identify the best model as the one with the smallest value for the
Kolmogorov-Smirnov (KS) statistic:

proc severity data=mylib.mydata;
model y / crit=ks;

run;

Internally, PROC SEVERITY forms a candidate error model for each of the predefined distributions, estimates the
parameters of each candidate model, and computes the statistics of fit for each estimated model. The summary of the
estimation and selection process is as follows. More details are available in the SAS/ETS 9.22 User’s Guide.

1. The parameters of each distribution model are initialized either with the values you specified or with the default
parameter initialization method provided for the distribution. The parameters are initialized by using the method of
moments for all the predefined distributions except for the gamma and the Weibull distributions. For the gamma
distribution, approximate maximum likelihood estimates are used. For the Weibull distribution, the method of
percentile matching is used.

2. The parameters of each model are optimized using the maximum likelihood method. Given data that consist of N
observations, the likelihood of the data is computed as L D

QN
iD1 f .yi I‚/, where f .yi I‚/ denotes the probability

density function (PDF) of the distribution. The log likelihood of the data is then maximized using a nonlinear
optimization method. PROC SEVERITY enables you to choose various aspects of the optimization algorithm such
as the optimization technique and the stopping criterion.
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3. For each model the goodness of fit is computed using the specified selection criterion, and the model with the
best value is selected. Seven different statistics of fit can be used as selection criteria: log likelihood, Akaike’s
information criterion (AIC), corrected Akaike’s information criterion (AICC), Schwarz Bayesian information criterion
(BIC), Kolmogorov-Smirnov statistic (KS), Anderson-Darling statistic (AD), and Cramér-von-Mises statistic (CvM).
The first four are likelihood-based statistics, and the last three are computed by comparing the empirical distribution
function (EDF) of the data with the estimated cumulative distribution function (CDF).

4. Various diagnostic output and ODS graphics for each of the candidate models are prepared to enable better
comparison of the characteristics of the fitted models.

Table 1 Predefined SEVERITY Distributions

Name Distribution Parameters PDF (f ) and CDF (F )

BURR Burr � > 0, ˛ > 0, f .x/ D
˛
z


x.1Cz
 /.˛C1/


 > 0 F.x/ D 1 �
�

1
1Cz


�˛
EXP Exponential � > 0 f .x/ D 1

�
e�z

F.x/ D 1 � e�z

GAMMA Gamma � > 0, ˛ > 0 f .x/ D z˛e�z

x�.˛/

F.x/ D

.˛;z/
�.˛/

GPD Generalized � > 0, � > 0 f .x/ D 1
�
.1C �z/�1�1=�

Pareto F.x/ D 1 � .1C �z/�1=�

IGAUSS Inverse Gaussian � > 0, ˛ > 0 f .x/ D 1
�

q
˛

2�z3
e
�˛.z�1/2

2z

(Wald) F.x/ D ˆ
�
.z � 1/

q
˛
z

�
C

ˆ
�
�.z C 1/

q
˛
z

�
e2˛

LOGN Lognormal � (no bounds), f .x/ D 1

x�
p
2�
e
� 12

�
log.x/��

�

�2
� > 0 F.x/ D ˆ

�
log.x/��

�

�
PARETO Pareto � > 0, ˛ > 0 f .x/ D ˛�˛

.xC�/˛C1

F.x/ D 1 �
�

�
xC�

�˛
WEIBULL Weibull � > 0, � > 0 f .x/ D 1

x �z
�e�z

�

F.x/ D 1 � e�z
�

Notes:
1. z D x=� , wherever z is used.
2. � denotes the scale parameter for all the distributions. For LOGN, log.�/ D �.
3. Parameters are listed in the order in which they are defined in the distribution model.
4. 
.a; b/ D

R b
0 t

a�1e�tdt is the lower incomplete gamma function.
5. ˆ.y/ D 1

2

�
1C erf

�
y
p
2

��
is the standard normal CDF.
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EXAMPLE: Fitting Predefined Distributions

The following DATA step statements simulate a sample from a lognormal distribution with population parameters � D 1:5
and � D 0:25, and store the sample in the variable Y of a data set Work.Test_Sev1.

/*------------- Simple Lognormal Example -------------*/
data test_sev1(keep=y label='Simple Lognormal Sample');

call streaminit(45678);
label y='Response Variable';
Mu = 1.5;
Sigma = 0.25;
do n = 1 to 100;

y = exp(Mu) * rand('LOGNORMAL')**Sigma;
output;

end;
run;

The following statements enable ODS Graphics, fit all the predefined distribution models to the values of Y, and identify
the best distribution according to the corrected Akaike’s information criterion (AICC):

ods graphics on;

proc severity data=test_sev1;
model y / crit=aicc;

run;

The ODS GRAPHICS ON statement enables PROC SEVERITY to generate the default graphics, the PROC SEVERITY
statement specifies the input data set, and the MODEL statement specifies the variable to be modeled along with the
model selection criterion.

Some of the default output displayed by this step is shown in Figure 1 through Figure 3. First, information about the input
data set and the model selection table are displayed, as shown in Figure 1. The “Model Selection Table” displays the
convergence status, the value of the selection criterion, and the selection status for each of the candidate models. The
Converged column indicates whether the estimation process for a given distribution model has converged, might have
converged, or failed. The Selected column indicates whether a given distribution has the best fit for the data according to
the selection criterion. For this example, the lognormal distribution model is selected, because it has the lowest value for
the selection criterion.

Figure 1 Data Set Information and Model Selection Table

The SEVERITY Procedure

Input Data Set

Name WORK.TEST_SEV1
Label Simple Lognormal Sample

Model Selection Table

Corrected
Akaike's

Information
Distribution Converged Criterion Selected

Burr Yes 322.50845 No
Exp Yes 508.12287 No
Gamma Yes 320.50264 No
Igauss Yes 319.61652 No
Logn Yes 319.56579 Yes
Pareto Yes 510.28172 No
Gpd Yes 510.20576 No
Weibull Yes 334.82373 No

Next, comparative plots are prepared. These plots enable you to visually verify how the models differ from each other
and from the nonparametric estimates. The first plot in Figure 2 compares the cumulative distribution function (CDF)
estimates of all the models and the empirical distribution function (EDF) estimates. The second plot compares the
probability density function (PDF) estimates of all the models and the nonparametric kernel and histogram estimates.
Both plots indicate that the Exp (exponential), Pareto, and Gpd (generalized Pareto) distributions are a poor fit. The
Weibull distribution is also a poor fit, although not as poor as Exp, Pareto, and Gpd. The Burr and Gamma differ
significantly from the Igauss and Logn distributions in the central portion of the range of Y values, while the latter two fit
the data almost identically.
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Figure 2 Comparison of CDF and PDF Estimates of the Fitted Models

The comparative plots are followed by the estimation information for each of the candidate models. The information
for the lognormal model, which is the best-fitting model, is shown in Figure 3. The first table displays a summary of
the distribution. The second table displays the convergence status. This is followed by a summary of the optimization
process which indicates the technique used, the number of iterations, the number of times the objective function was
evaluated, and the log likelihood attained at the end of the optimization. Since the model with lognormal distribution has
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converged, PROC SEVERITY displays its statistics of fit and parameter estimates. The estimates of Mu=1.49605 and
Sigma=0.26243 are quite close to the population parameters of Mu=1.5 and Sigma=0.25 from which the sample was
generated. The p-value for each estimate indicates the rejection of the null hypothesis that the estimate is 0, implying
that both the estimates are significantly different from 0.

Figure 3 Estimation Details for the Lognormal Model

The SEVERITY Procedure

Distribution Information

Name Logn
Description Lognormal Distribution
Number of Distribution Parameters 2

Convergence Status for Logn Distribution

Convergence criterion (GCONV=1E-8) satisfied.

Optimization Summary for Logn Distribution

Optimization Technique Trust Region
Number of Iterations 2
Number of Function Evaluations 8
Log Likelihood -157.72104

Fit Statistics for Logn Distribution

-2 Log Likelihood 315.44208
Akaike's Information Criterion 319.44208
Corrected Akaike's Information Criterion 319.56579
Schwarz's Bayesian Information Criterion 324.65242
Kolmogorov-Smirnov Statistic 0.50641
Anderson-Darling Statistic 0.31240
Cramer-von Mises Statistic 0.04353

Parameter Estimates for Logn Distribution

Standard Approx
Parameter Estimate Error t Value Pr > |t|

Mu 1.49605 0.02651 56.43 <.0001
Sigma 0.26243 0.01874 14.00 <.0001

ACCOUNTING FOR THE UNOBSERVED: TRUNCATION AND CENSORING EFFECTS

One of the key features of PROC SEVERITY is that it enables you to specify whether the severity event’s magnitude is
observable and if it is observable, then whether the exact value of the magnitude is known. An event that is unobservable
when the magnitude is in certain intervals is said to have a truncation effect. An event whose magnitude is not known
exactly, but is known to have a value in a certain interval, is said to have a censoring effect.

PROC SEVERITY allows a severity event to be left-truncated and right-censored. An event is said to be left-truncated
if it is observed only when Y > T , where Y denotes the random variable for the magnitude and T denotes a random
variable for the truncation threshold. An event is said to be right-censored if the exact magnitude Y is not known, but it is
known to be greater than C , where C is a random variable for the censoring limit.

PROC SEVERITY assumes that the input data is given as a triplet .yi ; ti ; ıi / for i D 1; : : : ; N , where N is the number
of observations (in a BY group), yi is the observed value (magnitude) of the response (event) variable, ti is the left-
truncation threshold, and ıi is a right-censoring indicator. You can specify a set of values that indicate right-censoring;
the default set is {0}. If ıi is equal to one of those values, then the censoring limit ci is assumed to be equal to the
recorded value yi . If ıi is not equal to one of the indicator values or has a missing value, then yi is assumed to be
the exact event value; that is, the observation is uncensored. You can also specify a common (global) left-truncation
threshold Tg such that ti D Tg for all i . Similarly, you can also specify a global right-censoring limit Cg . For each
observation, yi is then compared with Cg . If yi < Cg , then ıi D 1 to indicate exact (uncensored) observation; otherwise,
ıi D 0 to indicate right-censored observation.
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For left-truncated data, PROC SEVERITY also enables you to provide additional information in the form of probability
of observability. It is defined as the probability that the underlying severity event is observed (and recorded) for the
specified left-truncation threshold value. For example, if you specify a value of 0.75, then for every 75 observations
recorded above a specified threshold, 25 more events have happened with a severity value less than or equal to the
specified threshold. Although the exact severity value of those 25 events is not known, PROC SEVERITY can use the
information about the number of those events while estimating the distribution of Y .

See the SAS/ETS 9.22 User’s Guide for details about the syntax for specifying left-truncation and right-censoring.

Likelihood with Censoring and Truncation

Specification of right-censoring and left-truncation affects the likelihood of the data. Let f‚.y/ and F‚.y/ denote the
PDF and CDF, respectively, evaluated at y for a set of parameter values ‚. If probability of observability is not specified,
then the likelihood of the data L is

L D
Y
i2E

f‚.yi /
Y
j2El

f‚.yj /

1 � F‚.tj /

Y
k2C

1 � F‚.ck/
Y
m2Cl

1 � F‚.cm/

1 � F‚.tm/

where E denotes the set of uncensored observations that are not left-truncated, El denotes the set of uncensored
observations that are left-truncated, C denotes the set of right-censored observations that are not left-truncated, and Cl
denotes the set of right-censored observations that are left-truncated. Note that .E [El / \ .C [ Cl / D ;.

If the probability of observability p.0 < p < 1/ is specified, then for each left-truncated observation with truncation
threshold t , there exist .1�p/=p observations with a response variable value that is less than or equal to t . The likelihood
of the data L is as follows:

L D
Y
i2E

f‚.yi /
Y
j2El

f‚.yj /F‚.tj /
1�p
p

Y
k2C

1 � F‚.ck/
Y
m2Cl

.1 � F‚.cm//F‚.tm/
1�p
p

EDF Estimation with Censoring and Truncation

Specification of right-censoring and left-truncation also affects estimation of the empirical distribution function (EDF),
used for computing EDF-based statistics of fit. The Kaplan-Meier (KM) estimator, also known as the product-limit
estimator, was first introduced by Kaplan and Meier (1958) for censored data. Lynden-Bell (1971) derived a similar
estimator for left-truncated data. PROC SEVERITY uses the definition that combines both censoring and truncation
information (Klein and Moeschberger 1997, Lai and Ying 1991). The EDF estimate OFn.yi / at observation i is computed
as

OFn.yi / D 1 �
Y
��yi

�
1 �

n�

Rn.�/

�

where n� and Rn.�/ are defined as follows:

� n� D
PN
kD1 I Œyk D � and ık ¤ 0�, which is the number of uncensored observations with response variable value

equal to � .

� Rn.�/ D
PN
kD1 I Œyk � � > tk �, which is the size (cardinality) of the risk set at � . The term risk set has its origins in

survival analysis; it contains the events that are at the risk of failure at a given time, � . In other words, it contains
the events that have survived up to time � and might fail at or after � . For PROC SEVERITY, time is equivalent to
the magnitude of the event and failure is equivalent to an uncensored and observable event, where observable
means it satisfies the left-truncation threshold.

The preceding estimator might not work well if the risk set size becomes very small. PROC SEVERITY enables you to
use a modification of the estimator proposed by Lai and Ying (1991), which computes the EDF estimate as

OFn.yi / D 1 �
Y
��yi

�
1 �

n�

Rn.�/
� I ŒRn.�/ � cN

˛ �

�

Use of appropriate values c and ˛ ensures that the effect of sufficiently small risk sets is ignored.
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EXAMPLE: Truncation and Censoring in Insurance Industry

The following DATA step prepares a data set to simulate a scenario that is typically encountered by an automobile
insurance company. This data was used by Klugman and Rioux (2006). Although inspired by the liability claims seen by
an insurance company, the data are not from any specific insurance company. The values of the variable LOSS represent
the loss values on claims that are reported to the insurance company. The variable DED records the deductible on the
insurance policy, which serves as the left-truncation of LOSS. The CAPPED variable indicates whether the loss exceeds
the policy limit. If CAPPED is equal to 1, then the actual value of LOSS is greater than the recorded value; that is, LOSS is
right-censored. If CAPPED is not equal to 1, then the recorded value of LOSS is the actual value of the loss (the payment
made by the insurance company plus the deductible).

/*----- Insurance Loss Data -----*/
data test_sev2(label='A Sample With Censoring and Truncation');

label loss='Observed Loss' ded='Deductible' capped='Exceeds Limit? (1:Yes,0:No)';
input loss ded capped @@;

datalines;
184 100 0 1100 100 1 1100 100 1 793 100 0 1100 100 1 1100 100 1 960 100 0
1100 100 1 1100 100 1 1100 100 1 3100 100 1 3100 100 1 872 100 0 3100 100 1
547 100 0 1495 100 0 401 100 0 1409 100 0 3100 100 1 1556 100 0 182 100 0
1744 100 0 1383 100 0 1301 100 0 1141 100 0 1148 100 0 1751 100 0 771 100 0
1044 100 0 4510 100 0 1215 250 0 1250 250 1 1178 250 0 1060 250 0 491 250 0
885 250 0 296 250 0 1105 250 0 381 250 0 974 250 0 685 250 0 1250 250 1
505 250 0 1811 250 0 331 250 0 1647 250 0 1564 250 0 495 250 0 3250 250 1
674 250 0 1614 250 0 931 250 0 693 250 0 1259 250 0 1441 250 0 3250 250 1
2880 250 0 1294 250 0 616 250 0 4254 250 0 929 250 0 1737 250 0 825 250 0
2275 250 0 927 250 0 913 250 0 1016 250 0 1434 250 0 2031 250 0 553 250 0
1213 500 0 1500 500 1 840 500 0 1500 500 1 1500 500 1 1500 500 1 1500 500 1
1500 500 1 1156 500 0 1500 500 1 2671 500 0 3469 500 0 1064 500 0 2080 500 0
1807 500 0 3500 500 1 2263 500 0 1768 500 0 514 500 0 3500 500 1 1240 500 0
653 500 0 708 500 0 1131 500 0 5500 500 1 1372 500 0 601 500 0 1122 500 0
2752 500 0 1200 500 0
;
run;

The following statements use the AICC criterion to analyze which of the eight predefined distributions has the best fit for
the data:

proc severity data=test_sev2 print=all;
model loss(lt=ded rc=capped(1)) / crit=aicc;

run;

The MODEL statement uses the LT= option to specify the left-truncation variable and the RC= option to specify the
right-censoring indicator variable. The numbers in the parentheses after the variable CAPPED specify the set of values
that indicate right-censoring, which is {1} in this case. The PRINT= option in the PROC SEVERITY statement requests
that all the displayed output be prepared.

Some of the key results prepared by PROC SEVERITY are shown in Figure 4 through Figure 9. The descriptive statistics
of LOSS are shown in the second table of Figure 4. In addition to the range, mean, and standard deviation of LOSS,
the table also indicates the number of observations that are right-censored, left-truncated, and both right-censored
and left-truncated. The “Model Selection Table” in Figure 4 shows that models with all the candidate distributions have
converged and that the Logn (lognormal) model has the best fit for the data according to the AICC criterion.

Figure 4 Summary Results for the Truncated and Censored Data

The SEVERITY Procedure

Input Data Set

Name WORK.TEST_SEV2
Label A Sample With Censoring and Truncation

Descriptive Statistics for Variable loss

Number of Observations 100
Number of Observations Used for Estimation 100
Minimum 182.00000
Maximum 5500
Mean 1478
Standard Deviation 982.23759
Number of Left Truncated Observations 100
Number of Right Censored Observations 25
Number of Left Truncated and Right Censored Observations 25
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Figure 4 continued

Model Selection Table

Corrected
Akaike's

Information
Distribution Converged Criterion Selected

Burr Yes 1257 No
Exp Yes 1258 No
Gamma Yes 1259 No
Igauss Yes 1259 No
Logn Yes 1257 Yes
Pareto Yes 1261 No
Gpd Yes 1261 No
Weibull Yes 1260 No

PROC SEVERITY also prepares a table that shows all the fit statistics for all the candidate models. It is useful to see
which model would fit best according to each of the criteria. The table prepared for this example is shown in Figure 5.
It indicates that none of the models is the best fit according to all the criteria. The Burr model is chosen by the log
likelihood and the EDF-based statistics, the lognormal model is chosen by AIC and AICC, and the exponential model is
chosen by the BIC criterion.

Figure 5 Comparing All Statistics of Fit for the Truncated and Censored Data

All Fit Statistics Table

-2 Log
Distribution Likelihood AIC AICC BIC KS

Burr 1251* 1257 1257 1265 0.82990*
Exp 1256 1258 1258 1261* 0.89249
Gamma 1255 1259 1259 1264 1.03554
Igauss 1255 1259 1259 1264 0.92024
Logn 1253 1257* 1257* 1262 0.93747
Pareto 1256 1260 1261 1266 0.89503
Gpd 1256 1260 1261 1266 0.89248
Weibull 1256 1260 1260 1265 1.01407

All Fit Statistics Table

Distribution AD CvM

Burr 0.83717* 0.07795*
Exp 1.55729 0.26230
Gamma 0.97066 0.14298
Igauss 1.35559 0.10962
Logn 0.93736 0.09946
Pareto 1.58336 0.26756
Gpd 1.55732 0.26230
Weibull 1.07105 0.16237

The parameter estimates of the three models that are chosen by different criteria are shown in Figure 6. The parameter
estimates are all significantly different from 0.

Figure 6 Parameter Estimates for the Truncated and Censored Data

Parameter Estimates for Burr Distribution

Standard Approx
Parameter Estimate Error t Value Pr > |t|

Theta 1208 461.47060 2.62 0.0103
Alpha 0.91341 0.51146 1.79 0.0772
Gamma 2.07127 0.50666 4.09 <.0001

Parameter Estimates for Exp Distribution

Standard Approx
Parameter Estimate Error t Value Pr > |t|

Theta 1598 185.42351 8.62 <.0001
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Figure 6 continued

Parameter Estimates for Logn Distribution

Standard Approx
Parameter Estimate Error t Value Pr > |t|

Mu 7.16304 0.10044 71.32 <.0001
Sigma 0.85888 0.09074 9.47 <.0001

You can take a closer look at the three competing models by using some diagnostic plots. The following statements fit
only Burr, lognormal, and exponential models to the data:

ods graphics on;
proc severity data=test_sev2 print=all plots(markcensored marktruncated)=pp;

model loss(lt=ded rc=capped(1)) / crit=aicc;

dist burr init=(theta=1208 alpha=0.9134 gamma=2.072);
dist logn init=(mu=7.163 sigma=0.86);
dist exp init=(theta=1598);

run;

Each candidate distribution needs to be specified by using a separate DIST statement. The convergence is made faster
by using the INIT= option in the DIST statement to provide initial values that are the final parameter estimates obtained
from the previous run of PROC SEVERITY. Use of the INIT= option overrides the default parameter initialization that
is defined for each distribution. The PLOTS= option in the PROC SEVERITY statement requests that the P-P plots
for each candidate distribution be prepared in addition to the default plots. It also instructs the procedure to mark the
left-truncated and right-censored observations in the CDF plot.

The plot that compares EDF and CDF estimates is shown in Figure 7. When left-truncation is specified, both the EDF
and CDF estimates are conditional on the response variable being greater than the smallest left-truncation threshold in
the sample. Notice the markers close to the X-axis of the plot. These indicate the values of LOSS that are left-truncated
or right-censored.

Figure 7 EDF and CDF Estimates for the Truncated and Censored Data
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In addition to the comparative plots, PROC SEVERITY produces a P-P plot for each of the models that has not failed
to converge. The P-P plot is a scatter plot of the EDF and the CDF estimates. The model for which the points are
scattered closer to the unit-slope reference line is a better fit. The P-P plots for the Burr and lognormal models are shown
in Figure 8 and Figure 9, respectively. Burr distribution’s CDF estimates are a better fit for the EDF estimates in the
middle region, but the lognormal distribution fits slightly better in the tail regions. So, based on the business needs and
preferences, you can choose either of the two.

Figure 8 P-P Plot for the Burr Model Figure 9 P-P Plot for the Lognormal Model

ACCOUNTING FOR THE EXTERNAL FORCES: REGRESSION EFFECTS

The SEVERITY procedure enables you to estimate the effects of regressor (exogenous) variables while fitting a
distribution model if the distribution has a scale parameter or a log-transformed scale parameter.

Let xj (j D 1; : : : ; k) denote the k regressor variables. Let ˇj denote the regression parameter that corresponds to the
regressor xj . The regression effects are modeled by extending the error model to the following form:

Y � exp.
kX
jD1

ˇj xj / � F.‚/

Under this model, the distribution of Y is valid and belongs to the same parametric family as F if and only if F has a
scale parameter. Let � denote the scale parameter and � denote the set of nonscale distribution parameters of F . Then
the model can be rewritten as

Y � F.�;�/

such that � is affected by the regressors as

� D �0 � exp.
kX
jD1

ˇj xj /

where �0 is the base value of the scale parameter. Thus, the regression model consists of the following parameters: �0,
�, and ˇj .j D 1; : : : ; k/.

Given this form of the model, distributions without a scale parameter cannot be considered when regression effects are
to be modeled. If a distribution does not have a direct scale parameter, then PROC SEVERITY accepts it only if it has a
log-transformed scale parameter—that is, if it has a parameter p D log.�/.

EXAMPLE: Modeling Regression Effects

This example simulates a scenario of modeling claims against a worker’s compensation insurance policy. An insurance
company wants to analyze the effect of regressors on the distribution of the severity of the claims that it paid for one
of its corporate clients. The regressors are usually referred to as key risk indicators (KRIs) in insurance and banking
industries.
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The following SAS statements prepare the sample data. The first DATA step creates the Work.WorkComp data set that
records the loss amount for each claim and the year in which the loss was incurred. The second DATA step creates the
Work.Kri data set that records the annual values of six KRIs: annual revenue in millions (revenue), ratio of temporary
to permanent employees (tempratio), average number of customer complaints (complaints), number of sick days per
employee (sickdays), attrition rate (attrition), and average number of employees (nemp). The final DATA step combines the
loss data with KRI data to prepare the Work.Test_Sev3 data set.

data workcomp(label='Workers Compensation Claims');
input year loss @@;
datalines;

01 1830 02 1031 02 1075 02 1113 02 1115 02 1119 02 1130 02 1131 02 1214
02 1260 02 1261 02 1263 02 1318 02 1319 02 1370 02 1370 02 1386 02 1440
02 1512 02 1631 02 1717 02 1748 02 1828 02 1912 02 2012 02 2030 02 2077
02 2093 02 2248 02 2263 02 2288 02 2293 02 2328 02 2366 02 2376 02 2442
02 2508 02 2603 02 2608 02 2718 02 2759 02 2767 02 2777 02 2826 02 2828
02 2838 02 2868 02 2896 02 2906 02 2906 02 2972 02 2988 02 3030 02 3075
02 3208 02 3218 02 3292 02 3391 02 3459 02 3503 02 3548 02 3552 02 3685
02 3747 02 3823 02 3833 02 3870 02 3900 02 3929 02 4020 02 4021 02 4082
02 4098 02 4147 02 4155 02 4249 02 4275 02 4524 02 4766 02 4788 02 4857
02 4970 02 4974 02 5149 02 5484 02 5770 02 5890 02 6455 02 6461 02 7073
02 7423 02 7854 02 8040 02 8449 02 8607 02 10127 02 10667 02 10939 02 12228
02 19445 03 1037 03 2516 03 2540 03 2662 03 3070 03 3293 03 6419 03 7188
03 8914 03 10055 03 18792 03 18897 03 19730 03 21833 03 30161 03 31942 03 40741
03 57995 03 62152 03 65814 04 1134 04 1248 04 2255 04 2548 04 2577 04 2759
04 2835 04 2864 04 3070 04 3332 04 3644 04 5110 04 5185 04 5671 04 6412
04 9124 04 13295 04 19505 04 28209 04 56688 05 1007 05 1698 05 2185 05 2786
05 3329 05 4686 05 4834 05 8940 05 9878 05 11602 05 15411
;
run;

data kri;
input year revenue tempratio complaints sickdays attrition nemp @@;
datalines;

01 20.0 0.15 4.91 2.56 0.07 53.44 02 20.0 0.51 8.96 3.01 0.08 12.37
03 19.5 0.71 9.01 4.65 0.16 44.17 04 19.0 0.59 4.44 4.26 0.05 39.47
05 20.5 0.19 2.49 0.06 0.16 15.71
;
run;

data test_sev3(drop=year); merge workcomp kri; by year; run;

The following PROC SEVERITY step fits regression models with each of the predefined distributions to the data that are
recorded in the Work.Test_Sev3 data set. The regressors are specified in the MODEL statement. The NLOPTIONS
statement sets the maximum number of iterations that can be used by the nonlinear optimizer to obtain maximum
likelihood estimates of the model parameters.

proc severity data=test_sev3 outest=est3 print=all plots=none;
model loss = revenue tempratio complaints sickdays attrition nemp / crit=ad;
nloptions maxiter=100;

run;

Some of the key results prepared by PROC SEVERITY are shown in Figure 10 and Figure 11. The “Model Selection
Table,” shown in Figure 10, indicates that the Burr model is the best model according to the Anderson-Darling statistic.

Figure 10 Model Selection Table for the Regression Example

The SEVERITY Procedure

Model Selection Table

Anderson-
Darling

Distribution Converged Statistic Selected

Burr Yes 1.26719 Yes
Exp Yes 7.45680 No
Gamma Yes 3.84381 No
Igauss Yes 2.48764 No
Logn Yes 2.29535 No
Pareto Yes 7.45820 No
Gpd Yes 7.45680 No
Weibull Yes 4.63597 No
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The initial values and final estimates for the parameters of the Burr model are shown in Figure 11. The “Initial Parameter
Values and Bounds” table indicates that regressors revenue and sickdays are redundant; that is, they are linearly dependent
on other regressors. Redundant regressors are removed from all the models prior to estimating the parameters. The
“Parameter Estimates” table indicates that p-values for regressors complaints and nemp are too high to reject the null
hypothesis that their coefficients are 0.

Figure 11 Initial and Final Parameter Estimates for the Burr Model with Regressors

Initial Parameter Values and
Bounds for Burr Distribution

Initial Lower Upper
Parameter Value Bound Bound

Theta 1542 1.05367E-8 Infty
Alpha 1.82063 1.05367E-8 Infty
Gamma 2.00000 1.05367E-8 Infty
revenue Redundant . .
tempratio 2.64718 -709.78271 709.78271
complaints -0.08609 -709.78271 709.78271
sickdays Redundant . .
attrition 8.06157 -709.78271 709.78271
nemp 0.00422 -709.78271 709.78271

Parameter Estimates for Burr Distribution

Standard Approx
Parameter Estimate Error t Value Pr > |t|

Theta 684.08880 286.84830 2.38 0.0184
Alpha 0.68884 0.27171 2.54 0.0123
Gamma 2.61451 0.48605 5.38 <.0001
tempratio 2.11688 1.20947 1.75 0.0822
complaints -0.05504 0.06001 -0.92 0.3606
attrition 7.90205 2.81177 2.81 0.0056
nemp 0.00451 0.01041 0.43 0.6655

The search for significant regressors is usually done by eliminating the insignificant regressors one at a time starting
with the one that has the highest p-value, which in this case is nemp. The following PROC SEVERITY step includes
only three regressors in the model: tempratio, complaints, and attrition. In addition to fitting the Burr model, it also fits the
lognormal model, which was the closest contender to the Burr model when all regressors were included. The INEST=
option in the PROC SEVERITY statement specifies the data set that contains initial values of the parameters. The data
set Work.Est3 contains the final estimates that are prepared by the previous PROC SEVERITY step.

proc severity data=test_sev3 inest=est3 print=all plots=none;
model loss = tempratio complaints attrition;
dist burr;
dist logn;

run;

The “All Fit Statistics Table,” shown in Figure 12, indicates that the lognormal model is chosen by most of the likelihood-
based statistics, whereas the Burr model is chosen by all the EDF-based statistics. The insurance company can choose
either model based on the statistics of fit that align with its policies or preferences.

Figure 12 Comparison of Statistics of Fit for Burr and Lognormal Regression Models

The SEVERITY Procedure

All Fit Statistics Table

-2 Log
Distribution Likelihood AIC AICC BIC KS

Burr 2859* 2871 2871 2889 1.01507*
Logn 2860 2870* 2870* 2885* 1.33957

All Fit Statistics Table

Distribution AD CvM

Burr 1.28932* 0.20534*
Logn 2.32926 0.38933
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The final parameter estimates of the Burr and lognormal models are shown in Figure 13. Estimates of all the distribution
and regression parameters are significant for both models. The estimate that is reported for the parameter Theta
of the Burr distribution is the base value for its scale parameter � . Let t , c, and a denote the values observed in
a particular year for regressors tempratio, complaints, and attrition, respectively. If the Burr distribution is chosen to
model the loss, then the effective value of the scale parameter varies with the observed values of regressors as
� � 689:55exp.2:52 t � 0:076 cC 8:24 a/. The estimate that is reported for the parameter Mu of the lognormal distribution
is the base value for �, which is the log-transformed scale parameter. If the lognormal distribution is chosen to model the
loss, then the effective value of the parameter � varies with regressor values as � � 6:724C 3:08 t � 0:106 c C 8:51 a.
For each model, the attrition rate has the largest impact on the scale of the distribution. As the proportion of temporary
employees or the attrition rate increases, the scale of the distribution increases, which means that the distribution
becomes more spread out (fatter tails), leading to higher probability (risk) of incurring larger losses.

Figure 13 Parameter Estimates for the Burr and Lognormal Regression Models

Parameter Estimates for Burr Distribution

Standard Approx
Parameter Estimate Error t Value Pr > |t|

Theta 689.55059 292.00821 2.36 0.0195
Alpha 0.68086 0.26747 2.55 0.0120
Gamma 2.62537 0.48905 5.37 <.0001
tempratio 2.52092 0.80887 3.12 0.0022
complaints -0.07600 0.03567 -2.13 0.0348
attrition 8.24398 2.73147 3.02 0.0030

Parameter Estimates for Logn Distribution

Standard Approx
Parameter Estimate Error t Value Pr > |t|

Mu 6.72395 0.36645 18.35 <.0001
Sigma 0.79242 0.04637 17.09 <.0001
tempratio 3.08115 0.62758 4.91 <.0001
complaints -0.10598 0.03480 -3.05 0.0028
attrition 8.50982 1.83739 4.63 <.0001

WIDENING THE HORIZON: DEFINING YOUR OWN DISTRIBUTIONS

One of the most powerful features of the SEVERITY procedure is that it enables you to define and fit any arbitrary
continuous probability distribution of your choice if none of the eight predefined distributions satisfy your need.

For PROC SEVERITY, a severity distribution model consists of a set of functions and subroutines that are defined by
using the FCMP procedure. The FCMP procedure is part of Base SAS software. Each function or subroutine must be
named as <distribution-name>_<keyword>, where distribution-name is the identifying short name of the distribution
and the keyword suffix identifies one of the functions or subroutines. The total length of the name should not exceed 32
characters. The summary of all the recognized keyword suffixes and their expected behavior is given in Table 2.

Table 2 List of Functions and Subroutines That Define a Distribution Model

Keyword Suffix Type Required Expected to Return

CDF Function YES Cumulative distribution function value
PDF Function YES Probability distribution function value
CDFGRADIENT Subroutine NO Gradient of the CDF
CDFHESSIAN Subroutine NO Hessian of the CDF
CONSTANTPARM Subroutine NO Constant parameters
DESCRIPTION Function NO Description of the distribution
LOWERBOUNDS Subroutine NO Lower bounds on parameters
PARMINIT Subroutine NO Initial values for parameters
PDFGRADIENT Subroutine NO Gradient of the PDF
PDFHESSIAN Subroutine NO Hessian of the PDF
SCALETRANSFORM Function NO Type of relationship between the scale parameter

and the first distribution parameter
UPPERBOUNDS Subroutine NO Upper bounds on parameters
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Each function or subroutine must have a specific signature, which consists of the number of arguments, sequence and
types of arguments, and return value type. See the SAS/ETS 9.22 User’s Guide for more details. All the predefined
distributions have been defined in this manner by using PROC FCMP. They are available in the Sashelp.Svrtdist library.
An inventory of many other useful severity distributions can be found in Klugman, Panjer, and Willmot (1998). The
following subsection illustrates how you can define and fit your own model with a distribution that is typically required by
the insurance industry.

EXAMPLE: Defining a Model for Mixed Tail Distributions

In some applications, a few severity values tend to be extreme as compared to the typical values. The extreme values
represent the worst case scenarios and cannot be discarded as outliers. Instead, their distribution must be modeled
to prepare for their occurrences. In such cases, it is often useful to fit one distribution to the non-extreme values and
another distribution to the extreme values. The mixed tail distribution mixes two distributions: one for the body region,
which contains the non-extreme values, and another for the tail region, which contains the extreme values. The tail
distribution is typically a generalized Pareto distribution (GPD), because it is usually good for modeling the conditional
excess severity above a threshold. The body distribution can be any distribution. The following definitions are used in
describing a generic formulation of a mixed tail distribution:

g.x/ PDF of the body distribution

G.x/ CDF of the body distribution

h.x/ PDF of the tail distribution

H.x/ CDF of the tail distribution

� scale parameter for the body distribution

� set of nonscale parameters for the body distribution

� shape parameter for the GPD tail distribution

xr normalized value of the response variable at which the tail starts

pn mixing probability

Given these notations, the PDF f .x/ and the CDF F.x/ of the mixed tail distribution are defined as

f .x/ D

(
pn

G.xb/
g.x/ if x � xb

.1 � pn/h.x � xb/ if x > xb

F.x/ D

(
pn

G.xb/
G.x/ if x � xb

pn C .1 � pn/H.x � xb/ if x > xb

where xb D �xr is the value of the response variable at which the tail starts.

These definitions indicate the following:

� The body distribution is conditional on X � xb , where X denotes the random response variable.

� The tail distribution is the generalized Pareto distribution of the .X � xb/ values.

� The probability that a response variable value belongs to the body is pn. Consequently the probability that the
value belongs to the tail is .1 � pn/.

The parameters of this distribution are � , �, �, xr , and pn. The scale of the GPD tail distribution �t is computed as

�t D
G.xb I �;�/

g.xb I �;�/

.1 � pn/

pn
D �

G.xr I � D 1;�/

g.xr I � D 1;�/

.1 � pn/

pn

The parameter xr is usually estimated by using a tail index estimation algorithm such as the Hill’s algorithm (Danielsson
et al. 2001). The parameter pn is usually determined by the domain expert and is based on the fraction of losses that
are expected to belong to the tail.
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The following SAS statements define the LOGNGPD distribution model for a mixed tail distribution with the lognormal
distribution as the body distribution and GPD as the tail distribution:

proc fcmp library=sashelp.svrtdist outlib=work.sevexmpl.models;
function LOGNGPD_DESCRIPTION() $64;

return("Lognormal Body-GPD Tail Distribution");
endsub;

function LOGNGPD_PDF(x, Mu,Sigma,Xi,Xr,Pn);
cutoff = exp(Mu) * Xr;
p = CDF('LOGN',cutoff, Mu, Sigma);
if (x < cutoff + constant('MACEPS')) then

return ((Pn/p)*PDF('LOGN', x, Mu, Sigma));
gpd_scale = p*((1-Pn)/Pn)/PDF('LOGN', cutoff, Mu, Sigma);
h = (1+Xi*(x-cutoff)/gpd_scale)**(-1-(1/Xi))/gpd_scale;
return ((1-Pn)*h);

endsub;

function LOGNGPD_CDF(x, Mu,Sigma,Xi,Xr,Pn);
cutoff = exp(Mu) * Xr;
p = CDF('LOGN',cutoff, Mu, Sigma);
if (x < cutoff + constant('MACEPS')) then

return ((Pn/p)*CDF('LOGN', x, Mu, Sigma));
gpd_scale = p*((1-Pn)/Pn)/PDF('LOGN', cutoff, Mu, Sigma);
H = 1 - (1 + Xi*((x-cutoff)/gpd_scale))**(-1/Xi);
return (Pn + (1-Pn)*H);

endsub;

function LOGNGPD_SCALETRANSFORM() $3;
return ("LOG");

endsub;

subroutine LOGNGPD_CONSTANTPARM(Xr,Pn);
endsub;

subroutine LOGNGPD_PARMINIT(dim,x[*],nx[*],F[*], Mu,Sigma,Xi,Xr,Pn);
outargs Mu,Sigma,Xi,Xr,Pn;
array m[2] / nosymbols;
array xe[1] / nosymbols;
array nxe[1] / nosymbols;
/* Initialize lognormal parameters */
call logn_parminit(dim, x, nx, F, Mu, Sigma);
if (not(missing(Mu))) then do;

/* Initialize Xr and Pn */
_status_ = .;
call streaminit(56789);
Xb = svrtutil_hillcutoff(dim, x, 100, 25, _status_);
if (missing(_status_) or _status_ = 1) then

Xb = svrtutil_percentile(Pn, dim, x, F);
Xr = Xb/exp(Mu);
Pn = 0.8;
/* Initialize GPD's shape parameter using excess values */
i = 1;
do while (i <= dim and x[i] < Xb+constant('MACEPS'));

i = i + 1;
end;
dime = dim-i+1;
call dynamic_array(xe, dime);
call dynamic_array(nxe, dime);
j = 1;
do while(i <= dim);

xe[j] = x[i] - Xb;
nxe[j] = nx[i];
i = i + 1;
j = j + 1;

end;
call gpd_parminit(dime, xe, nxe, F, theta_gpd, Xi);

end;
else do;

Xi=.; Xr=.; Pn=.;
end;

endsub;
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subroutine LOGNGPD_LOWERBOUNDS(Mu,Sigma,Xi,Xr,Pn);
outargs Mu,Sigma,Xi,Xr,Pn;
Mu = .; /* Mu has no lower bound */
Sigma = 0; /* Sigma > 0 */
Xi = 0; /* Xi > 0 */

endsub;
quit;

The statements define the two functions that are required of any distribution model (LOGNGPD_PDF and
LOGNGPD_CDF). The statements also define other subroutines, which are usually optional, but are required for
the proper definition of the mixed tail distribution. The name of each function or subroutine starts with the model’s short
or identifying name, which is ‘LOGNGPD’ in this case, followed by an underscore ‘_’, followed by a keyword suffix such
as ‘PDF’.

Following is the description of each function and subroutine suffix defined in this example:

� The DESCRIPTION suffix enables you to provide a label to the distribution model. It is used by PROC SEVERITY
in the displayed output.

� The PDF and CDF suffixes define functions that return the probability density function and cumulative distribution
function values, respectively, given the values of the random variable and the distribution parameters.

� The SCALETRANSFORM suffix specifies that the first parameter of the distribution is a log-transformed scale
parameter. You must define this subroutine in order to use this distribution in a model with regression effects.

� The CONSTANTPARM suffix specifies that parameters Xr and Pn, which represent parameters xr and pn of the
mixed tail distribution, respectively, are constant parameters. A constant parameter is not subject to optimization
and retains its initial value throughout the parameter estimation process. It must be assigned a valid, nonmissing
initial value. The signature of the subroutine must list only the constant parameters.

� The PARMINIT suffix defines a subroutine that returns the initial values for the parameters by using the sample
data or the empirical distribution function (EDF) estimate computed from it. The OUTARGS statement must be
used to specify the arguments that represent distribution parameters as the output arguments. In this example,
arguments Mu, Sigma, Xi, Xr, and Pn represent distribution parameters �, � , �, xr , and pn, respectively. The
statements that follow the OUTARGS statement assign initial values to the parameter arguments.

First, the parameters of the lognormal body (� and �) are initialized using the parameter initialization subroutine
LOGN_PARMINIT of the predefined lognormal distribution.

Then, the constant parameters are initialized. The parameter pn is fixed to 0.8. The parameter xr is estimated by
using the Hill’s tail index estimation algorithm (Danielsson et al. 2001), which is implemented by the predefined
utility function SVRTUTIL_HILLCUTOFF available to you in the Sashelp.Svrtdist library. The algorithm and the
utility function are described in detail in the SAS/ETS 9.22 User’s Guide. The function computes an estimate of
xb , which is used to compute an estimate of xr because xr D xb=� , where � D exp.�/ is the estimate of the
scale parameter of the body distribution. If SVRTUTIL_HILLCUTOFF fails to compute a valid estimate, then the
SVRTUTIL_PERCENTILE utility function, also available in the Sashelp.Svrtdist library, is used to set xb to the pnth
percentile of the data.

Finally, the � parameter of the GPD tail is initialized using the parameter initialization subroutine GPD_PARMINIT
of the predefined generalized Pareto distribution. Only the values that exceed the cutoff point (xb) are used for
estimating the tail parameters.

The Sashelp.Svrtdist library is specified with the LIBRARY= option in the PROC FCMP statement to enable
the LOGNGPD_PARMINIT subroutine to use the predefined utility functions (SVRTUTIL_HILLCUTOFF and
SVRTUTIL_PERCENTILE) and parameter initialization subroutines (LOGN_PARMINIT and GPD_PARMINIT).

� The LOWERBOUNDS suffix defines the lower bounds for all parameters. This subroutine is required because
the parameter Mu has a non-default lower bound. The bounds for Sigma and Xi must be specified. If they are
not specified, they are returned as missing values, which are interpreted as having no lower bound by PROC
SEVERITY. You do not need to specify bounds for the constant parameters Xr and Pn.
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The following DATA step statements simulate a sample from a mixed tail distribution with a lognormal body and GPD tail.
The parameter pn is fixed to 0.8, the same value used in the LOGNGPD_PARMINIT subroutine defined previously:

data testmixdist(keep=y label='Lognormal Body-GPD Tail Sample');
call streaminit(45678);
label y='Response Variable';
N = 100; Mu = 1.5; Sigma = 0.25; Xi = 1.5; Pn = 0.8;
/* Generate data comprising the lognormal body */
Nbody = N*Pn;
do i=1 to Nbody;

y = exp(Mu) * rand('LOGNORMAL')**Sigma;
output;

end;

/* Generate data comprising the GPD tail */
cutoff = quantile('LOGNORMAL', Pn, Mu, Sigma);
gpd_scale = (1-Pn) / pdf('LOGNORMAL', cutoff, Mu, Sigma);
do i=Nbody+1 to N;

y = cutoff + ((1-rand('UNIFORM'))**(-Xi) - 1)*gpd_scale/Xi;
output;

end;
run;

You can now fit the LOGNGPD distribution model to this data with PROC SEVERITY. First, you must communicate the
location of the library that contains the definition of the distribution and the locations of libraries that contain any functions
and subroutines that are used by your distribution model. The following OPTIONS statement sets the CMPLIB= system
option to include the FCMP library Work.Sevexmpl in the search path used by PROC SEVERITY to find FCMP functions
and subroutines. It is optional to specify Sashelp.Svrtdist in the search path, because PROC SEVERITY internally
appends that library to the path.

/*--- Set the search path for functions defined with PROC FCMP ---*/
options cmplib=(work.sevexmpl);

The following statements use PROC SEVERITY to fit the LOGNGPD distribution model to the simulated sample. They
also fit three other predefined distributions (BURR, LOGN, and GPD). The final parameter estimates are written to the
Work.Parmest data set.

ods graphics on;
proc severity data=testmixdist print=all plots=pp outest=parmest;

model y;
dist logngpd;
dist burr;
dist logn;
dist gpd;

run;

Some of the results prepared by PROC SEVERITY are shown in Figure 14 through Figure 16. The “All Fit Statistics
Table” in Figure 14 shows that the model with LOGNGPD distribution has the best fit according to almost all the statistics
of fit. The Burr distribution model is the closest contender to the LOGNGPD model. The lognormal and GPD distributions
fit the data poorly, GPD being the worst.

Figure 14 Statistics of Fit for the Lognormal Body-GPD Tail Sample

All Fit Statistics Table

-2 Log
Distribution Likelihood AIC AICC BIC KS

logngpd 418.78232* 428.78232* 429.42062* 441.80817 0.62140*
Burr 424.93728 430.93728 431.18728 438.75280* 0.71373
Logn 459.43471 463.43471 463.55842 468.64505 1.55267
Gpd 558.13444 562.13444 562.25815 567.34478 3.43470

All Fit Statistics Table

Distribution AD CvM

logngpd 0.31670* 0.04972*
Burr 0.57649 0.07860
Logn 3.27122 0.48448
Gpd 16.74156 3.31860
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The P-P plots of Figure 15 and Figure 16 provide a visual confirmation that the LOGNGPD distribution fits the tail region
better than the Burr distribution.

Figure 15 P-P Plot for the LOGNGPD Model Figure 16 P-P Plot for the Burr Model

The final parameter estimates of the LOGNGPD distribution are shown in Figure 17. The table indicates that parameters
Xr and Pn are constant and displays the values used for them. The estimates of all free (nonconstant) parameters are
significantly different from 0.

Figure 17 Detailed Results for the LOGNGPD Distribution

Parameter Estimates for logngpd Distribution

Standard Approx
Parameter Estimate Error t Value Pr > |t|

Mu 1.57921 0.06426 24.57 <.0001
Sigma 0.31868 0.04459 7.15 <.0001
Xi 1.03771 0.38205 2.72 0.0078
Xr 1.27395 Constant . .
Pn 0.80000 Constant . .

The following data step uses the Work.Parmest data set prepared by PROC SEVERITY to compute the value where the
tail region is estimated to start (xb D e�xr ) and the scale of the GPD tail distribution (�t D

G.xb/
g.xb/

.1�pn/
pn

):

data xb_thetat(keep=x_b theta_t);
set parmest(where=(_MODEL_='logngpd' and _TYPE_='EST'));
x_b = exp(Mu) * Xr;
theta_t = (CDF('LOGN',x_b,Mu,Sigma)/PDF('LOGN',x_b,Mu,Sigma)) * ((1-Pn)/Pn);

run;

The computed values of x_b and theta_t are approximately 6.18 and 1.28, respectively. Equipped with this additional
derived information, you can now interpret the results of fitting the mixed tail distribution as follows:

� The tail starts at y � 6:18. The primary benefit of using the scale-normalized cutoff (xr ) as the constant parameter
instead of using the actual cutoff (xb) is that the absolute cutoff is optimized by virtue of optimizing the scale of the
body region (� D e�).

� The values y � 6:18 follow the lognormal distribution with parameters � � 1:58 and � � 0:32. These parameter
estimates are reasonably close to the parameters used for simulating the sample.

� The values yt D y � 6:18 (yt > 0) follow the GPD distribution with scale �t � 1:28 and shape � � 1:04.
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CONCLUSION

Modeling severity distributions is an important step towards the model-based risk management that is required for
running a profitable business and complying with regulatory requirements in the insurance and banking industries. The
new SEVERITY procedure in the latest release of SAS/ETS software provides a simple yet powerful tool for fitting severity
distributions to continuous-valued data. It enables you to model the effects of censoring, truncation, and exogenous
variables on the distribution. You can use any of eight predefined distributions commonly used for modeling the severity of
losses, but the most powerful feature of PROC SEVERITY is that it enables you to define and fit any arbitrary continuous
distribution to your data, including mixture distributions.

This paper has illustrated the key features of PROC SEVERITY via examples. More details about the syntax and other
features of PROC SEVERITY are provided in the SAS/ETS 9.22 User’s Guide.
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