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ABSTRACT  

Longitudinal data, or data that are repeated measurements on various subjects across time, are commonplace in 
everyday life. Multi-level mixed models are often used for analyzing longitudinal data and drawing meaningful 
inferences about them. This paper discusses two common mixed models, the linear growth model and the logistic 
growth model, and fits them to a prototypical example that involves repeated measures on forest growth. Parameter 
estimates and model fitting results from two analyses are compared. The nonlinear logistic growth curve is selected 
as the suitable model for the current data, even though evidence from model fit statistics seems to suggest otherwise. 
Computer implementation is via PROC NLMIXED in the SAS® 9.2 program. A plot of the data, code descriptions, and 
output interpretations are also presented. 
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INTRODUCTION 

Change is ubiquitous in our everyday life. Measuring change requests a longitudinal perspective, with repeated 
observations of the same items over long periods of time. A popular approach to analyze longitudinal data is latent 
growth analysis, which is a multi-level change model and includes both fixed and random effects. Latent growth 
models have a wide variety of application, and can be easily fit in SAS/STAT mixed procedures. 

PROC NLMIXED is a recently developed procedure dealing with general mixed model analysis. The main feature of it 
is the specification of the equations with the parameters to be estimated, following some hypothetical mathematical 
equations. It can be viewed as generalizations of the random coefficient models fit by the popular PROC MIXED 
procedure. This generalization allows the random coefficients to enter the model nonlinearly, whereas in PROC 
MIXED they can only enter linearly. Thus Proc NLMIXED is more flexible, allowing the modeling of multiple linear and 
nonlinear models to be specified.  

The current study shows how both the linear and nonlinear model can be fitted using the NLMIXED procedure. The 
general purpose of this paper is to provide a demonstration of programming features of PROC NLMIXED by fitting 
two different growth curve models. Another important goal is to help researcher and SAS users implement these 
models as a useful way to test their hypothesis of growth.   

DATA DESCRIPTION 

To illustrate how to fit mixed models using NLMIXED procedures, consider a longitudinal study on the development of 
forest management by Marshall (2005). The study consisted of multiple waves of measurement of the forest yield and 
growth at 9 different installations in Pacific Northwest region. The following are variable definitions and a snapshot of 
the dataset. 

 

INST   Installation Number (1-9)    

TAGE     Total Age                                                   

CV6PA   Merchantable volume per acre 

CUNIT CV6PA/100  

                                 IIIINSTNSTNSTNST                TATATATAGEGEGEGE                CV6PA     CUNITCV6PA     CUNITCV6PA     CUNITCV6PA     CUNIT    

         ....    ....   .... 

                                   6      40      2505     25.05 

                                   6      46      4326     43.26 

                                   6      52      6035     60.35 

                                   7      25        29      0.29 

                                   7      31       219      2.19 

                                   7      37       677      6.77 
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                                   7      44      1412     14.12 

                                   7      51      2342     23.42 

                                   8      24       174      1.74 

                                   8      51     10114    101.14 

                                   8      56     11719    117.19 

         ....    ....   .... 

 

Series plot of the growth data over last several decades show all 9 locations appear to have S-shape trajectories. 
That means the tree volume per acre increase gradually at first, more rapidly in the middle growth period, and slowly 
at the end, leveling off at a maximum value after some period of time. However, before we conclude that individual 
changes are best represented by a nonlinear curve, a simple questions to ask is, does there exist a linear growth 
trajectory?  

 

 

 

ANALYSIS I: LINEAR MODEL 

In linear growth models, we define an individual i on occasion j is a linear function of time:   

yij = b0i + b1i*Timeij + eij   

b0i = g0 + u0i        [1] 

b1i = g1 + u1i     

Here Timeij is the corresponding time, B0 and B1 are random intercepts and slopes, and eij are the residual errors 

assumed to be normally distributed and independent of deviation of B0 and B1. G0 and G1 represent the fixed 

components in the linear model, while U0i and U1i are random components in the model.  The equation indicates that 

the trajectory for the outcome variable is a function of the intercept and slop, which themselves are random variables. 
U0i and U1i are normally distributed with zero means but nonzero variances (S

2
U0, S

2
U1) and covariance (COV). 

Below is the SAS code to fit the above linear growth curve using NLMIXED procedure. 
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Figure 1. Serial plot of the forest yield and growth at 9 different installations 
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    PROC NLMIXED DATA=DataA; 

PARMS  g0=-50 g1=1 s2e=20 s2u0=500 cov=-20 s2u1=1; 

   b0 = g0 + u0;    /*Random effect intercept*/ 

   b1 = g1 + u1;    /*Random effect slope*/ 

   y  = b0 + b1*TAge;    /*Linear equation*/ 

p  = g0 + g1*TAge;    /*Predicted value from estimates of fixed effects*/ 

MODEL Cunit ~ NORMAL(y, s2e); 

RANDOM u0 u1 ~ NORMAL([0,0],[s2u0,cov,s2u1]) SUBJECT=Inst; 

PREDICT p OUT=DataB; 

TITLE 'Model 1: Linear growth curve model using NLMIXED'; 

    RUN; 

 

The PARMS statement identifies the unknown parameters and their starting values. There are two fixed effects 
parameters (G0 and G1) and three variance components (S2U0, S2U1, and COV). The next three statements specify 
the linear mixed mode. The MODEL statement defines the dependent variable and its conditional distribution given 
the random effects. Here a normal conditional distribution is specified with mean B0 + B1*TAGE and variances S2E. 
The RANDOM statement defines the double random effect to be U0 and U1, and specifies that they follow a bivariate 
normal distribution. The SUBJECT argument defines a variable indicating when the random effect obtains new 
realizations; in this case, it changes according to the values of the TAGE variable. The PREDICT statement enables 
us to construct predictions for every observation in the input data set and output a new dataset, allowing us to plot the 
growth trajectory of predicted outcome values against time.  

The main output from this analysis is as follows. 

 

                                          Fit Statistics 

 

                             -2 Log Likelihood                  494.8 

                             AIC (smaller is better)            506.8 

                             AICC (smaller is better)           508.0 

                             BIC (smaller is better)            507.9 

    

                                       Parameter Estimates 

 

                        Standard 

   Parameter  Estimate     Error    DF  t Value  Pr > |t|   Alpha     Lower     Upper  Gradient 

 

   g0         -62.8550    7.7088     7    -8.15    <.0001    0.05  -81.0835  -44.6265  7.339E-6 

   g1           2.6514    0.3282     7     8.08    <.0001    0.05    1.8753    3.4274  0.000137 

   s2u0         500.13    271.14     7     1.84    0.1076    0.05   -141.01   1141.26  0.000431 

   cov        -19.4519   10.8137     7    -1.80    0.1151    0.05  -45.0222    6.1184  -8.39E-7 

   s2u1         0.9474    0.4800     7     1.97    0.0890    0.05   -0.1876    2.0824  0.000213 

   s2e         18.4339    3.5057     7     5.26    0.0012    0.05   10.1442   26.7236  -9.84E-7 

 

The ”Fit Statistics” table lists the final maximized value of the log likelihood as well as the information criteria of 
Akaike (AIC) and Bayesian (BIC).  These statistics can be used to compare different nonlinear mixed models. The 
“Parameter Estimates” table lists the maximum likelihood estimates of the five parameters and their approximate 
standard errors, computed using the final Hessian matrix. Approximate t values and Wald-type confidence limits are 
also provided, with degrees of freedom equal to the number of subjects minus the number of random effects.  

From the above results, we have the following linear fitted model: 

  CUNIT = -62.86 + 2.65*TAGE      [2] 

Here you would expect the average yearly increase of merchantable volume is 2.65 units per acre. However, when 
TAGE is near zero, the initial value of CUNIT is -63, a negative volume number – that is not possible! 
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ANALYSIS II: NONLINEAR LOGISTIC MODEL 

If a linear change trajectory with a negative intercept at the initial point does not make sense, it may be appropriate to 
hypothesize the true change trajectory that gave rise to this sample is nonlinear. As we have noticed earlier, those 
series plots are S-shaped curves, including (1) a lower asymptote (“floor”) from which all installations rise, (2) an 
upper asymptote (“ceiling”) where tree volume of all locations will reach a maximum at some point, (3) a smooth 
curve joining the two asymptotes. These three features define a so called “logistic” trajectory. We therefore adopt the 
following logistic nonlinear mixed model (see SAS Institute Inc, 2008 for more references), 

��� = �����	


 � �
��������	����� ��⁄ �
+ ���        [3] 

Here Timeij is the corresponding time; B1, B2, B3 are the fixed-effects parameters; U1i is the random-effect 

parameter assumed to be iid N(0,σ
 2

u), and eij is the residual error assumed to be iid N(0,σ
2

e) and independent of 

the U1i.  This model has a logistic form, and the random-effect parameters U1i enter the model linearly. 

The NLMIXED procedure to fit this nonlinear mixed model is as follows:  

 

PROC NLMIXED DATA=DataA; 

  PARMS b1=100 b2=30 b3=10 s2u1=1 s2e=1; 

  y = (b1 + u1)/ (1.0 + EXP(-(TAge-b2)/b3)); 

  p =  b1/ (1.0 + EXP(-(TAge-b2)/b3)); 

  MODEL Cunit ~ NORMAL(y,s2e); 

  RANDOM u1 ~ NORMAL(0,s2u1) SUBJECT=Inst; 

  PREDICT p OUT=DataC; 

  TITLE 'Model 2: Logistic growth curve model using NLMIXED'; 

RUN; 

 

In the PARMS statement there are three fixed-effects parameters (B1, B2, B3) and two variance components (S2U, 
S2E). B1 determines the maximum or the asymptote value that Y can approach; B2 is related to the intercept but can 
only determine the intercept jointly with B3. B3 also determines the rapidity with which the trajectory approaches the 
upper asymptote or the ceiling.   
 
The next four statements specify the logistic mixed model, where the Y is predicted dependent variable and p is the 
fixed component in Y. The dependent variable CUNIT is normally distributed with mean Y and variance S2E. The 
RANDOM statement defines the single random effect to be U1, and specifies that it follows a normal distribution with 
mean 0 and variance S2U1.   
 
The main output from the logistic analysis is as follows. 

 

                                          Fit Statistics 

 

                             -2 Log Likelihood                  517.2 

                             AIC (smaller is better)            527.2 

                             AICC (smaller is better)           528.1 

                             BIC (smaller is better)            528.2 

 

                                       Parameter Estimates 

 

                        Standard 

   Parameter  Estimate     Error    DF  t Value  Pr > |t|   Alpha     Lower     Upper  Gradient 

 

   b1           100.83   15.9830     8     6.31    0.0002    0.05   63.9754    137.69  -8.86E-8 

   b2          42.6062    1.1624     8    36.65    <.0001    0.05   39.9258   45.2867  1.258E-6 

   b3           7.5580    0.5309     8    14.24    <.0001    0.05    6.3338    8.7822  -5.48E-6 

   s2u1        1980.61    974.22     8     2.03    0.0765    0.05   -265.95   4227.16  1.024E-9 

   s2e         36.6171    6.4246     8     5.70    0.0005    0.05   21.8021   51.4322  6.236E-7 
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For the logistic fitted model, the predicted volume values for an individual forest location is thus  

 CUNIT = 100.83 / (1.0 + EXP(-(TAGE-42.61)/7.56));            [4] 

CONCLUSION  

Plotting predicted trajectory of linear and logistic models side by side allows direct comparison of the two fitted 
models. Figure 2 shows that the linear trajectory does not flatten out asymptotically as the curve approaches an 
upper or lower limit, while the logistical model does. This difference explains why the predicted value of the linear 
model is negative even at the initial time point. The difference also pointed out a very important feature of logistic 
growth curves in biology and many other sciences when changes often include a plateau, such as when body shape 
and size typically level off with age. Based on these observations, we conclude that the nonlinear logistic trajectory is 
the better fitting model for the present study. 

  

 
It should be pointed out that our decision to pick the logistic model over linear model is based on the substantial 
consideration, not on the comparison of model fit statistics. If we are negligent and ignore the common sense, we 
might reach an opposite conclusion. Indeed, the linear model has lower goodness of fit values –2LL, AIC, and BIC. 
Inspection of these output “Fit statistics” may suggest that the linear model fits data better than the logistic model. 
However, the linear model does not make sense for the current data – it is not possible for the forest volume to have 
a negative initial value and to grow infinitely. Therefore we should be cautious when we choose among a group of 
well-fitting growth models in longitudinal research. Blind numeric comparison of model fit indexes will rarely help us to 
pick the correct model. “Substance is paramount”, as Singer and Willett (2003) have warned. The best way to select 
an appropriate growth model is to work with a theoretical framework and blend it with strong empirical evidence. 
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Figure 2. Plot of predicted linear and nonlinear trajectory 
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