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How to Use ARRAYs and DO Loops:  Do I DO OVER or Do I DO i? 
Jennifer L Waller, Medical College of Georgia, Augusta, GA 

 

ABSTRACT 
Do you tend to copy DATA step code over and over and just change the variable?  Do you want to learn how to take 
those hundreds of line of code that essentially do the same operation and reduce them to something that is more 
efficient?  Then come and learn about ARRAYs and DO loops.  ARRAYs and DO loops are powerful data 
manipulation tools that help make code more efficient.  In this workshop you will learn when ARRAYs and DO 
loops can and should be used, how to set up an ARRAY with and without specifying the number of array elements, 
and determine what type of DO loop is most appropriate to use within the constraints of the task you want to 
perform.  Additionally, you will learn how to restructure your data set using ARRAYs and DO loops rather than 
PROC TRANSPOSE. 
 

INTRODUCTION 
Data preparation can take up to 90-95% of the time dedicated to a statistical analysis consulting project.  Rather than 
making sure statistical assumptions are correct, running the procedures to actually analyze the data, and examining 
the results, much of the time spent on a project is spent preparing the data for analysis.  Often, when preparing a 
data set for analysis the raw data needs to be manipulated in some way; for example, new variables need to be 
created, specific questionnaire items need to be reversed, and/or scores need to be calculated.  The list can go on 
and on.  What makes the task of preparing a data set for analysis tedious is that many times the same operation 
needs to be performed on a long list of variables (e.g. questionnaire items).  For a beginning SAS® programmer, the 
most likely approach taken to writing the necessary SAS code to write the same code over and over, once for each 
variable.  For example, if there is a 100 item questionnaire and 10 items need to be reversed, the code to reverse 
these 10 items results in 10 lines of code, one line for each questionnaire item to reverse.  Needless to say, there 
ends up being a lot of copying and pasting of the same code and then changing the code for each variable of interest. 

How can a beginning SAS programmer write less SAS code for this type of data preparation that is also more 
efficient?  One way is to use SAS ARRAYs and DO loops. 

 

SAS ARRAYS 
A SAS ARRAY is a set of variables of the same type that you want to perform the same operation on.  The set of 
variables is then referenced in the DATA step by the array name.  The variables in the array are called the “elements” 
of the array. 

Arrays can be used to do all sorts of things.  To list just a few, an array can be used to  

1. Set up a list of items of a questionnaire that need to be reversed 

2. Change values of several variables, e.g. change a value of “Not Applicable” to missing for score 
calculation purposes 

3. Create a set of new variables from an existing set of variables, e.g. dichotomizing ordinal or continuous 
variables. 

 
For example, assume we have collected data on the Centers for Epidemiologic Studies Depression (CES-D) scale, a 
20-item questionnaire.  Each questionnaire item is measured on an ordinal 0 to 3 scale.  An overall CESD-D score 
needs to be calculated and consists of the sum of the 20 questionnaire items.  However, 4 questionnaire items were 
asked in that the responses to the items need to be reversed;  that is, 0 needs to become a 3, 1 needs to become a 
2, 2 needs to become a 1 and 3 needs to become a 0 for each of these four items.  The four items that need to be 
reversed are items cesd4, cesd8, cesd12, and cesd16.  An example of the data is given in Figure 1. 

Figure 1: Raw CES-D data 
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Obs ID CESD1 
CESD

2 
CESD

3 
CESD

4 
CESD

5 
CESD

6 
CESD

7 
CESD

8 
CESD

9 CESD10 CESD11 

1 1101 2 3 2 . 3 2 2 3 3 2 1 

2 1102 0 2 3 0 2 2 2 1 0 0 2 

3 1103 3 0 2 3 2 1 2 3 1 2 1 

4 1104 1 0 0 2 3 3 2 3 3 2 1 

5 1105 3 2 2 . 3 . 3 3 . 2 2 

 
Obs CESD12 CESD13 CESD14 CESD15 CESD16 CESD17 CESD18 CESD19 CESD20 

1 3 3 2 3 3 0 1 3 0 

2 2 2 3 2 3 3 2 1 1 

3 3 2 2 3 3 1 1 0 2 

4 2 2 2 0 3 2 2 2 2 

5 3 3 3 3 3 0 0 2 0 
 

You might use the following SAS code to reverse the four items resulting in the output in Figure 2. 

 

data cesd; 
  set in.cesd1; 
  cesd4=3-cesd4; 
  cesd8=3-cesd8; 
  cesd12=3-cesd12; 
  cesd16=3-cesd16; 
 

 

Figure 2: CES-D data with items 4, 8, 12, and 16 reversed. 

Obs ID CESD1 CESD2 CESD3 
CESD

4 
CESD

5 
CESD

6 
CESD

7 
CESD

8 
CESD

9 CESD10 CESD11 

1 1101 2 3 2 . 3 2 2 0 3 2 1 

2 1102 0 2 3 3 2 2 2 2 0 0 2 

3 1103 3 0 2 0 2 1 2 0 1 2 1 

4 1104 1 0 0 1 3 3 2 0 3 2 1 

5 1105 3 2 2 . 3 . 3 0 . 2 2 

 

Obs CESD12 CESD13 CESD14 CESD15 CESD16 CESD17 CESD18 CESD19 CESD20 

1 0 3 2 3 0 0 1 3 0 

2 1 2 3 2 0 3 2 1 1 

3 0 2 2 3 0 1 1 0 2 

4 1 2 2 0 0 2 2 2 2 

5 0 3 3 3 0 0 0 2 0 

 

Notice that the code to reverse each of the four items is essentially the same with the only difference being the 
variable name of the item needing to be reversed.  Copying code that performs the same operation for a small 
number of variables is not that big of a problem.  However, what if the same operation had to be performed on a 100 
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variables?  It would be very inefficient, and I know I would have an increased likelihood of coding errors, to copy the 
code 100 times and change the variable name in each line.  The solution is to use a SAS ARRAY. 

 

INDEXED ARRAY SYNTAX 
There are two types of arrays that can be specified in SAS.  The first is what I call an indexed array and the second is 
a non-indexed array.  All arrays are set up and accessed only within a DATA step.  The syntax for an indexed array is 
as follows: 

 

 ARRAY arrayname {n} [$] [length] list_of_array_elements; 

 

where 

 ARRAY   is a SAS keyword that specifies that an array is being defined 

 arrayname  a valid SAS name that is not a variable name in the data set. 

 {n}   the index used to give the number of elements in the array, optional 

 [$]   used to specify if the elements in the array are character variables, the default 

    type is numeric 

 [length]   used to define the length of new variables being created in the array, optional 

 list_of_array_elements a list of variables of the same type (all numeric or all character) to be included in 

    the array 

 

An indexed array is one in which the number of elements, {n}, is specified when the array is defined.  A non-indexed 
array is one in which the number of elements is not specified and SAS determines the number of elements based on 
the number of variables listed in the array.  You can always use an indexed array, however you can only sometimes, 
depending on the situation, use a non-indexed array.  

Remember that the arrayname must be a valid SAS name that is not a variable name in the data set.  One tip I can 
give you to help distinguish an array name from a variable name is to start the arrayname with the letter “a”. 

 

EXAMPLE OF AN INDEXED ARRAY 
Going back to the example of reversing the CES-D items, the SAS code that would be required to define an indexed 
array containing the 4 CES-D items that need to be reversed is 

 

data cesd; 
  set in.cesd1; 
  array areverse {4} cesd4 cesd8 cesd12 cesd18 ; 
 

 

In defining this array we first specify the SAS keyword ARRAY with 

 areverse     the arrayname used to reference the array in future SAS code 

 {4}    there are 4 elements that will be in the array 

 [$]    not needed as all variables in the array are numeric 

 [length]    not needed 

 cesd4 cesd8 cesd12 cesd18 is the list of the variables that specify the 4 array elements. 
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NON-INDEXED ARRAY SYNTAX 
In addition to the indexed array, SAS also provides the option of using a non-indexed array.  Here you don’t specify 
the number of elements in the array, {n}.  Rather, during the creation of the array, SAS determines the number of 
elements of the array based on the set of variables listed.  The syntax for a non-indexed array is as follows: 

 

 ARRAY arrayname [$] [length] list_of_array_elements; 

 

where 

 ARRAY   is a SAS keyword that specifies that an array is being defined 

 arrayname  a valid SAS name that is not a variable name in the data set. 

 [$]   used to specify if the elements in the array are character variables, the default 

    type is numeric 

 [length]   used to define the length of new variables being created in the array, optional 

 list_of_array_elements a list of variables of the same type (all numeric or all character) to be included in 

    the array 

 

EXAMPLE OF A NON-INDEXED ARRAY 
Again, using the CES-D item reversal example, the SAS code that would be to define a non-indexed array containing 
the 4 CES-D items that need to be reversed is 

 

data cesd; 
  set in.cesd1; 
  array areverse cesd4 cesd8 cesd12 cesd18; 
 

 

In defining this array we first specify the SAS keyword ARRAY with 

 areverse     the arrayname used to reference the array in future SAS code 

 cesd4 cesd8 cesd12 cesd18 is the list of the variables that specify the 4 array elements. 

 

One great thing about non-indexed arrays is that they allow for less typing, but give the same functionality in the use 
of an array. 

 

SAS DO LOOPS 
So we have now defined our arrays, but now we have to use them to manipulate the data.  We use a DO loop to 
perform the data manipulations on the arrays.  Within a DATA step, a DO loop is used to specify a set of SAS 
statements or operations that are to be performed as a unit during an iteration of the loop.  It is important to note that 
operations performed within a DO loop are performed within an observation.  Another thing that you need to be 
aware of is that every DO loop has a corresponding END statement.  If you don’t END your DO loop, you will get a 
SAS Error message in your log indicating that a corresponding END statement was not found for the DO statement.   

There are four different types of DO loops available in SAS. 

1. DO index=, an iterative, or indexed, DO loop used to perform the operations in the DO loop at a 
specified start and ending index value for an array 

2. DO OVER loop used to perform the operations in the DO loop over ALL elements in the array 
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3. DO UNTIL (logical condition) loop used to perform the operations in the DO loop until the logical 
condition is satisfied 

4. DO WHILE (logical condition) loop used to perform the operations in the DO loop while the logical 
condition is satisfied 

 

Many times, DO loops are used in conjunction with a SAS array, with the basic idea being that the operations in the 
DO loop will be performed over all the elements in the array.  It should be noted that within a single DO loop multiple 
arrays can be referenced and operations on different arrays can be performed. 

 

ITERATIVE DO LOOP DEFINITION AND SYNTAX 
An iterative DO loop executes the statements between a DO statement and an END statement repetitively based on 
the value of the specified starting and stopping values of an index.  The syntax for an iterative DO loop begins with 
the SAS keyword DO and is given by 

 

 DO indexvariable = startingvalue TO stoppingvalue <BY increment>; 

or 

 DO indexvariable = startingvalue, nextvalue, …., endingvalue; 

 

where 

 indexvariable  a valid SAS variable name, e.g. i 

 startingvalue  a valid starting value, for an indexed array this should be greater than or equal to 

    1 but less than the number of elements in the array, can be a character value if 

    not used in conjunction with an array 

 endingvalue  a valid ending value, for an indexed array this should be less than or equal to the 

    total number of elements in the array, can be character if not used in conjunction 

    with an array 

 <BY increment>  can specify for numeric starting and ending values how to increment the array, 

    optional, e.g. by 2 to do every other element in the array. 

 

Note, if the DO loop is being used in conjunction with an array, the way to reference the array element in the DO loop 
is to reference the array name and specify the index variable used in the DO statement in square brackets, 
arrayname[indexvariable].  An advantage of an iterative DO loop used in conjunction with an array is that the DO loop 
can be used to specify a subset of the array elements to perform the operation on. 

 

EXAMPLE OF ITERATIVE DO LOOP WITH INDEXED ARRAY 
Going back to the CES-D example, the array “areverse” has been defined.  The DO loop is now defined and the 
operation that needs to be performed included between the DO and END statements. 

 

data cesd; 
  set in.cesd1; 
  array areverse {4} cesd4 cesd8 cesd12 cesd16; 
  do i=1 to 4; 
    areverse[i]=3-areverse[i]; 
  end; 
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The above SAS code specifies the indexed array “areverse” that contains 4 elements with the list of elements being 
cesd4, cesd8, cesd12 and cesd16.  The iterative DO loop is specified as 

 

 indexvariable   i 

 startingvalue   1 

 endingvalue   4 

 <BY increment>   not specified 

 

Within the DO loop the following operation is performed on the array “areverse” where 

 areverse[i]   specifies the arrayname and the indexvariable to use for each iteration 

     of the loop 

 

Specifically, Table 1 gives the value of the index variable and the value of the array element being used for every 
iteration of the loop. 

 

Table 1: Iterative step through of DO loop processing of array “reverse” 

Iteration i = areverse[i] Value of 

areverse[i] 

Operation 

Performed 

Increment i by 1 

One 1 areverse[1] cesd4 cesd4=3-cesd4 i=1+1=2 

Two 2 areverse[2] cesd8 cesd8=3-cesd8 i=2+1=3 

Three 3 areverse[3] cesd12 cesd12=3-cesd12 i=3+1=4 

Four 4 areverse[4] cesd16 cesd16=3-cesd16 i=4+1=5 so exit the loop 

 

The resulting output is exactly the same as that presented in Figure 2. 

 

DO OVER LOOP DEFINITON AND SYNTAX 
The DO OVER loop is one of the most useful DO loops that I have discovered in SAS.  It can be used with an array 
when indexing of the array is not needed.  For example, if the operation needs to be performed on all elements there 
is no reason to define the array with an index and no need to created an iterative DO loop.  The key to using this type 
of DO loop is that the operations between the DO and END statements will be performed over ALL elements in the 
array.  An advantage is that the number of array elements does not need to be known.  The syntax for the DO OVER 
loop is 

 

 DO OVER arrayname; 

 

where  

 arrayname  valid non-indexed arrayname that has been previously defined 

 

When using an arrayname in the operations to perform within the DO loop, one nice feature of the DO OVER loop is 
that no index is needed when referencing the array.  One just needs to reference the arrayname like one would a 
variable name. 
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EXAMPLE OF DO OVER LOOP WITH A NON-INDEXED ARRAY 
Again, using the CES-D example, the non-indexed array “areverse” has been defined.  The DO OVER loop is now 
defined and the operation that needs to be performed included between the DO and END statements. 

 

data cesd; 
  set in.cesd1; 
  array areverse cesd4 cesd8 cesd12 cesd16; 
  do over areverse; 
    areverse=3-areverse; 
  end; 
 

 

The above SAS code specifies the non-indexed array “areverse”.  SAS will determine that the array “areverse” 
contains 4 elements: cesd4, cesd8, cesd12 and cesd16.  The non-iterative DO OVER loop is specified as 

 

 DO OVER areverse; 

where 

 areverse  the arrayname to perform the operation on each element of the array 

 

REFERENCING MULTIPLE ARRAYS IN A SINGLE DO LOOP 
One advantage of using ARRAYs and DO loops is that operations on multiple arrays can be done within a single DO 
loop; however there are things that must be kept in mind.  The first is that the arrays should all contain the same 
number of elements.  The second is that if operations are being done within a DO loop on two or more arrays 
simultaneously (i.e. an operation using one array is being used to create new variables in a second array), the order 
of the array elements needs to be the same in each array.  In other words, if we are creating newvar1 in newarray 
from var1 in oldarray then newvar1 and var1 need to be in the same position in the list of array elements.  Here is an 
example. 

 

 
 

array aold cesd4  cesd8   cesd12  cesd16; 
array arev rcesd4 rcesd12 rcesd16 rcesd8; 
do over aold; 
  arev=3-aold; 
end; 

 

Looking at the above code, the DO loop will correctly assign the reversed value of the first element of the array aold, 
which is reference variable cesd4, to the first element of the value of the first element of the array arev, rcesd4.  
However, during the second pass through the loop, and hence the arrays, the value of the second element of the 
array aold, which is referencing the variable cesd8, will incorrectly assign the reversed value of cesd8 to the second 
element of the array arev, which is the variable rcesd12.  Similarly, an incorrect assignment will be made for the third 
and fourth elements of the array arev. 

When using multiple arrays within a DO loop, it is imperative to make sure that the elements are in the correct order 
in each array. 

 

 
 

array aold cesd4  cesd8  cesd12  cesd16; 
array arev rcesd4 rcesd8 rcesd12 rcesd16; 
do over aold; 
  arev=3-aold; 
end; 
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EXAMPLES USING NON-INDEXED ARRAYS AND DO OVER LOOPS 
As stated before, ARRAYs and DO loops can be used for a variety of data manipulation needs from assigning or 
reassigning values, renaming variables, creating new variables from existing variables, simulating data, creating 
randomization schemes, and changing the data structure.  The following are examples of how to manipulate data for 
some of these applications. 

 

EXAMPLE 1 – ASSIGNING OR REASSIGNING VALUES 
Suppose data have been entered such that for a series of items in a list an individual had to mark whether the item 
applied to them or not.  In order to make data entry faster, the person entering the data only entered a 1 if the item 
was checked and otherwise left the item as missing.  We want to change all missing values to 0. 

 

data list; 
  set in.list1; 
  array aquest q1-q20; 
  do over aquest; 
    if aquest=. then aquest=0; 
  end; 
run; 
 

 

There are a couple things to note. The first is that because we want to perform the operation on all variables in the 
array, we can create a non-indexed array and use a DO OVER loop.  Secondly, we can specify the list of array 
elements with the “-“ in between the first variable name, q1, and last variable name, q20, because the variables are 
named with the same root name followed by a number that is indicated sequentially from 1 to 20. 

 

EXAMPLE 2 – “RENAMING” VARIABLES 
Another use of arrays and DO loops for data manipulation is the ability to “rename” variables.  The word “rename” is 
in quotes for a reason.  We are not really renaming the variables, but creating a new variable that contains the exact 
information as the existing or old variable.  Below is the SAS code used to “rename” a group of variables.  You should 
know that there are other ways to actually rename variables. 

 

array aquest q1-q20; 
array anquest nq1-nq20; 
do over aquest; 
  anquest=aquest; 
  if anquest=. Then anquest=0; 
end; 

 

Note that here we rename the variables in array aquest, q1-q20, to nq1-nq20 in array anquest, and then assign the 
new variables a value of 0 if the value was missing.  If we do not drop the original variables, q1-q20, we have 
preserved the raw data values within our data set as well as created new variables that we can use for analysis with 
no missing data. 

 

EXAMPLE 3 – CREATION OF NEW VARIABLES USING MULTIPLE ARRAYS 
Arrays and DO loops can also be used to create new variables using multiple arrays.  For example, an investigator 
collects data on height in meters and weight in kilograms at 5 different time points and needs the body mass index 
(BMI) determined for each weekly measure.  To utilize arrays and DO loops to calculate the BMI you must first set up 
three arrays.  These can be indexed or non-indexed arrays.  If you are using non-indexed arrays you need to be 
careful to order the variables for height and the variables for weight in the same order in their respective arrays.    The 
SAS code that might be used is  
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array awtkg wtkg1-wtkg5; 
array ahtm htm1-htm5; 
array abmi bmi1-bmi5; 
do over awtkg; 
  abmi=awtkg/(ahtm**2); 
end; 

 

Notice in the above code that the order of the variables in each array is the same, var1-var5.  As well, notice that you 
only need to specify one arrayname in the DO OVER as each array contains the same number of elements.  If you 
wanted to use indexed arrays and iterative DO loops to perform the same operations above, the SAS code is 

 

array awtkg {5} wtkg1-wtkg5; 
array ahtm  {5} htm1-htm5; 
array abmi  {5} bmi1-bmi5; 
do i=1 to 5; 
  abmi[i]=awtkg[i]/(ahtm[i]**2); 
end; 
 

 

EXAMPLE 4 – USING INDEXED ARRAYS AND ITERATIVE DO LOOPS TO CHANGE THE DATA 
STRUCTURE 
The final example we will examine demonstrates the solution to a common problem of changing the data structure 
from a short wide data set to a long narrow data set; from one record per ID to multiple records per ID.  The use of 
arrays and DO loops for this problem is especially useful when an investigator has collected repeated measures of 
several variables yet entered one observation containing all measures for each individual.  Using the height and 
weight data from Example 3, the raw data are given in Figure 3 as an example of a short wide data set.  Here there 
are 5 measurement times with height and weight collected at each time point.  Only 3 observations are shown. 

 

 Figure 3: Raw height and weight data at 5 measurement times. 

Obs id htm1 htm2 htm3 Htm4 htm5 wtkg1 wtkg2 wtkg3 wtkg4 wtkg5 

1 1 0.9072 1.0080 1.1592 1.3356 1.5372 20.4545 25.9091 29.5455 37.2727 45.4545 

2 2 0.7560 0.8316 0.9576 1.1088 1.2348 15.9091 18.1818 21.3636 25.4545 32.2727 

3 3 0.8316 0.9324 1.1088 1.2348 1.3608 19.5455 27.2727 32.7273 39.5455 52.2727 
 

We want to change the structure of this data set so that each individual has five observations with the observation 
corresponding to a measurement time.  The steps to restructure the data are as follows: 

1. Create an array for each measurement that contains the variables corresponding to the measurements at 
the specific time points. 

2. Create an iterative DO loop with an index that uses the first measurement time at the starting index value 
and the last measurement time as the ending index value. 

3. Perform any operations that are needed on the variables, such as creating new variables at each 
measurement time. 

4. Create a measurement time variable.  This can be a created as some function of the index variable from the 
DO loop if you want. 

5. Assign each arrayname to a new variable name that is NOT an arrayname, e.g. newvar=arrayname[i]; 

6. Use an OUTPUT statement before ending the DO loop to output the observation to the data set. 

7. END the DO loop. 

8. Using a DROP or KEEP statement, drop any variables that you don’t need or keep only those variables you 
want to keep. 
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Using the BMI data in Figure 3, below is example SAS code to transform the short wide data set to a long skinny data 
set.  Because we are creating the BMI for each measurement time from the existing height and weight variables and 
we are creating a measurement time variable, the new data set should end up having 15 observations and 5 
variables. 

 

data bmi_longskinny; 
  set in.bmi_shortwide; 
  array ahtm {5} htm1-htm5; 
  array awtkg {5} wtkg1-wtkg5; 
  array abmi {5} bmi1-bmi5; 
  do i=1 to 5; 
    timept=i;                      ** creates the measurement time variable; 
    abmi[i]=awtkg[i]/(ahtm[i]**2); ** calculates the bmi for each time point; 
    htm=ahtm[i];                   ** assigns the ith value of array ahtm to htm; 
    wtkg=awtkg[i];                 ** assigns the ith value of array awtgk to wtkg; 
    bmi=abmi[i];                   ** assigns the ith value of array abmi to bmi; 
    output;                        ** outputs the observation to the data set; 
  end; 
  keep id timept htm wtkg bmi;      
run; 

 

 

Figure 4 shows the long skinny data set.  Notice that each id has 5 observations corresponding to the 5 measurement 
times. 

Obs id timept htm wtkg bmi 

1 1 1 0.9072 20.4545 24.8533 

2 1 2 1.0080 25.9091 25.4995 

3 1 3 1.1592 29.5455 21.9874 

4 1 4 1.3356 37.2727 20.8948 

5 1 5 1.5372 45.4545 19.2361 

6 2 1 0.7560 15.9091 27.8357 

7 2 2 0.8316 18.1818 26.2911 

8 2 3 0.9576 21.3636 23.2974 

9 2 4 1.1088 25.4545 20.7042 

10 2 5 1.2348 32.2727 21.1662 

11 3 1 0.8316 19.5455 28.2629 

12 3 2 0.9324 27.2727 31.3707 

13 3 3 1.1088 32.7273 26.6197 

14 3 4 1.2348 39.5455 25.9360 

15 3 5 1.3608 52.2727 28.2284 
 

 

CONCLUSION 
The utility of SAS ARRAYs and DO loops are many when having to manipulate data. We have looked at  just some of 
the ways to use arrays and DO loops including creating new variables, performing the same operation over a set a 
variables more efficiently, “renaming” variables, and changing the data structure.  Arrays and DO loops can also be 
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used to simulate data and create randomization schemes.  SAS ARRAYs and DO loops are powerful data 
manipulation tools that help to make your program more efficient and save you lots of time and energy. 

 

CONTACT INFORMATION 
Your comments and questions are valued and encouraged. Contact the author at: 
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