
1

Paper 158-2010

How to Use ARRAYs and DO Loops: Do I DO OVER or Do I DO i?
Jennifer L Waller, Medical College of Georgia, Augusta, GA

ABSTRACT
Do you tend to copy DATA step code over and over and just change the variable? Do you want to learn how to take
those hundreds of line of code that essentially do the same operation and reduce them to something that is more
efficient? Then come and learn about ARRAYs and DO loops. ARRAYs and DO loops are powerful data
manipulation tools that help make code more efficient. In this workshop you will learn when ARRAYs and DO
loops can and should be used, how to set up an ARRAY with and without specifying the number of array elements,
and determine what type of DO loop is most appropriate to use within the constraints of the task you want to
perform. Additionally, you will learn how to restructure your data set using ARRAYs and DO loops rather than
PROC TRANSPOSE.

INTRODUCTION
Data preparation can take up to 90-95% of the time dedicated to a statistical analysis consulting project. Rather than
making sure statistical assumptions are correct, running the procedures to actually analyze the data, and examining
the results, much of the time spent on a project is spent preparing the data for analysis. Often, when preparing a
data set for analysis the raw data needs to be manipulated in some way; for example, new variables need to be
created, specific questionnaire items need to be reversed, and/or scores need to be calculated. The list can go on
and on. What makes the task of preparing a data set for analysis tedious is that many times the same operation
needs to be performed on a long list of variables (e.g. questionnaire items). For a beginning SAS® programmer, the
most likely approach taken to writing the necessary SAS code to write the same code over and over, once for each
variable. For example, if there is a 100 item questionnaire and 10 items need to be reversed, the code to reverse
these 10 items results in 10 lines of code, one line for each questionnaire item to reverse. Needless to say, there
ends up being a lot of copying and pasting of the same code and then changing the code for each variable of interest.

How can a beginning SAS programmer write less SAS code for this type of data preparation that is also more
efficient? One way is to use SAS ARRAYs and DO loops.

SAS ARRAYS
A SAS ARRAY is a set of variables of the same type that you want to perform the same operation on. The set of
variables is then referenced in the DATA step by the array name. The variables in the array are called the “elements”
of the array.

Arrays can be used to do all sorts of things. To list just a few, an array can be used to

1. Set up a list of items of a questionnaire that need to be reversed

2. Change values of several variables, e.g. change a value of “Not Applicable” to missing for score
calculation purposes

3. Create a set of new variables from an existing set of variables, e.g. dichotomizing ordinal or continuous
variables.

For example, assume we have collected data on the Centers for Epidemiologic Studies Depression (CES-D) scale, a
20-item questionnaire. Each questionnaire item is measured on an ordinal 0 to 3 scale. An overall CESD-D score
needs to be calculated and consists of the sum of the 20 questionnaire items. However, 4 questionnaire items were
asked in that the responses to the items need to be reversed; that is, 0 needs to become a 3, 1 needs to become a
2, 2 needs to become a 1 and 3 needs to become a 0 for each of these four items. The four items that need to be
reversed are items cesd4, cesd8, cesd12, and cesd16. An example of the data is given in Figure 1.

Figure 1: Raw CES-D data

Hands-on WorkshopsSAS Global Forum 2010

2

Obs ID CESD1
CESD

2
CESD

3
CESD

4
CESD

5
CESD

6
CESD

7
CESD

8
CESD

9 CESD10 CESD11

1 1101 2 3 2 . 3 2 2 3 3 2 1

2 1102 0 2 3 0 2 2 2 1 0 0 2

3 1103 3 0 2 3 2 1 2 3 1 2 1

4 1104 1 0 0 2 3 3 2 3 3 2 1

5 1105 3 2 2 . 3 . 3 3 . 2 2

Obs CESD12 CESD13 CESD14 CESD15 CESD16 CESD17 CESD18 CESD19 CESD20

1 3 3 2 3 3 0 1 3 0

2 2 2 3 2 3 3 2 1 1

3 3 2 2 3 3 1 1 0 2

4 2 2 2 0 3 2 2 2 2

5 3 3 3 3 3 0 0 2 0

You might use the following SAS code to reverse the four items resulting in the output in Figure 2.

data cesd;
 set in.cesd1;
 cesd4=3-cesd4;
 cesd8=3-cesd8;
 cesd12=3-cesd12;
 cesd16=3-cesd16;

Figure 2: CES-D data with items 4, 8, 12, and 16 reversed.

Obs ID CESD1 CESD2 CESD3
CESD

4
CESD

5
CESD

6
CESD

7
CESD

8
CESD

9 CESD10 CESD11

1 1101 2 3 2 . 3 2 2 0 3 2 1

2 1102 0 2 3 3 2 2 2 2 0 0 2

3 1103 3 0 2 0 2 1 2 0 1 2 1

4 1104 1 0 0 1 3 3 2 0 3 2 1

5 1105 3 2 2 . 3 . 3 0 . 2 2

Obs CESD12 CESD13 CESD14 CESD15 CESD16 CESD17 CESD18 CESD19 CESD20

1 0 3 2 3 0 0 1 3 0

2 1 2 3 2 0 3 2 1 1

3 0 2 2 3 0 1 1 0 2

4 1 2 2 0 0 2 2 2 2

5 0 3 3 3 0 0 0 2 0

Notice that the code to reverse each of the four items is essentially the same with the only difference being the
variable name of the item needing to be reversed. Copying code that performs the same operation for a small
number of variables is not that big of a problem. However, what if the same operation had to be performed on a 100

Hands-on WorkshopsSAS Global Forum 2010

3

variables? It would be very inefficient, and I know I would have an increased likelihood of coding errors, to copy the
code 100 times and change the variable name in each line. The solution is to use a SAS ARRAY.

INDEXED ARRAY SYNTAX
There are two types of arrays that can be specified in SAS. The first is what I call an indexed array and the second is
a non-indexed array. All arrays are set up and accessed only within a DATA step. The syntax for an indexed array is
as follows:

 ARRAY arrayname {n} [$] [length] list_of_array_elements;

where

 ARRAY is a SAS keyword that specifies that an array is being defined

 arrayname a valid SAS name that is not a variable name in the data set.

 {n} the index used to give the number of elements in the array, optional

 [$] used to specify if the elements in the array are character variables, the default

 type is numeric

 [length] used to define the length of new variables being created in the array, optional

 list_of_array_elements a list of variables of the same type (all numeric or all character) to be included in

 the array

An indexed array is one in which the number of elements, {n}, is specified when the array is defined. A non-indexed
array is one in which the number of elements is not specified and SAS determines the number of elements based on
the number of variables listed in the array. You can always use an indexed array, however you can only sometimes,
depending on the situation, use a non-indexed array.

Remember that the arrayname must be a valid SAS name that is not a variable name in the data set. One tip I can
give you to help distinguish an array name from a variable name is to start the arrayname with the letter “a”.

EXAMPLE OF AN INDEXED ARRAY
Going back to the example of reversing the CES-D items, the SAS code that would be required to define an indexed
array containing the 4 CES-D items that need to be reversed is

data cesd;
 set in.cesd1;
 array areverse {4} cesd4 cesd8 cesd12 cesd18 ;

In defining this array we first specify the SAS keyword ARRAY with

 areverse the arrayname used to reference the array in future SAS code

 {4} there are 4 elements that will be in the array

 [$] not needed as all variables in the array are numeric

 [length] not needed

 cesd4 cesd8 cesd12 cesd18 is the list of the variables that specify the 4 array elements.

Hands-on WorkshopsSAS Global Forum 2010

4

NON-INDEXED ARRAY SYNTAX
In addition to the indexed array, SAS also provides the option of using a non-indexed array. Here you don’t specify
the number of elements in the array, {n}. Rather, during the creation of the array, SAS determines the number of
elements of the array based on the set of variables listed. The syntax for a non-indexed array is as follows:

 ARRAY arrayname [$] [length] list_of_array_elements;

where

 ARRAY is a SAS keyword that specifies that an array is being defined

 arrayname a valid SAS name that is not a variable name in the data set.

 [$] used to specify if the elements in the array are character variables, the default

 type is numeric

 [length] used to define the length of new variables being created in the array, optional

 list_of_array_elements a list of variables of the same type (all numeric or all character) to be included in

 the array

EXAMPLE OF A NON-INDEXED ARRAY
Again, using the CES-D item reversal example, the SAS code that would be to define a non-indexed array containing
the 4 CES-D items that need to be reversed is

data cesd;
 set in.cesd1;
 array areverse cesd4 cesd8 cesd12 cesd18;

In defining this array we first specify the SAS keyword ARRAY with

 areverse the arrayname used to reference the array in future SAS code

 cesd4 cesd8 cesd12 cesd18 is the list of the variables that specify the 4 array elements.

One great thing about non-indexed arrays is that they allow for less typing, but give the same functionality in the use
of an array.

SAS DO LOOPS
So we have now defined our arrays, but now we have to use them to manipulate the data. We use a DO loop to
perform the data manipulations on the arrays. Within a DATA step, a DO loop is used to specify a set of SAS
statements or operations that are to be performed as a unit during an iteration of the loop. It is important to note that
operations performed within a DO loop are performed within an observation. Another thing that you need to be
aware of is that every DO loop has a corresponding END statement. If you don’t END your DO loop, you will get a
SAS Error message in your log indicating that a corresponding END statement was not found for the DO statement.

There are four different types of DO loops available in SAS.

1. DO index=, an iterative, or indexed, DO loop used to perform the operations in the DO loop at a
specified start and ending index value for an array

2. DO OVER loop used to perform the operations in the DO loop over ALL elements in the array

Hands-on WorkshopsSAS Global Forum 2010

5

3. DO UNTIL (logical condition) loop used to perform the operations in the DO loop until the logical
condition is satisfied

4. DO WHILE (logical condition) loop used to perform the operations in the DO loop while the logical
condition is satisfied

Many times, DO loops are used in conjunction with a SAS array, with the basic idea being that the operations in the
DO loop will be performed over all the elements in the array. It should be noted that within a single DO loop multiple
arrays can be referenced and operations on different arrays can be performed.

ITERATIVE DO LOOP DEFINITION AND SYNTAX
An iterative DO loop executes the statements between a DO statement and an END statement repetitively based on
the value of the specified starting and stopping values of an index. The syntax for an iterative DO loop begins with
the SAS keyword DO and is given by

 DO indexvariable = startingvalue TO stoppingvalue <BY increment>;

or

 DO indexvariable = startingvalue, nextvalue, …., endingvalue;

where

 indexvariable a valid SAS variable name, e.g. i

 startingvalue a valid starting value, for an indexed array this should be greater than or equal to

 1 but less than the number of elements in the array, can be a character value if

 not used in conjunction with an array

 endingvalue a valid ending value, for an indexed array this should be less than or equal to the

 total number of elements in the array, can be character if not used in conjunction

 with an array

 <BY increment> can specify for numeric starting and ending values how to increment the array,

 optional, e.g. by 2 to do every other element in the array.

Note, if the DO loop is being used in conjunction with an array, the way to reference the array element in the DO loop
is to reference the array name and specify the index variable used in the DO statement in square brackets,
arrayname[indexvariable]. An advantage of an iterative DO loop used in conjunction with an array is that the DO loop
can be used to specify a subset of the array elements to perform the operation on.

EXAMPLE OF ITERATIVE DO LOOP WITH INDEXED ARRAY
Going back to the CES-D example, the array “areverse” has been defined. The DO loop is now defined and the
operation that needs to be performed included between the DO and END statements.

data cesd;
 set in.cesd1;
 array areverse {4} cesd4 cesd8 cesd12 cesd16;
 do i=1 to 4;
 areverse[i]=3-areverse[i];
 end;

Hands-on WorkshopsSAS Global Forum 2010

6

The above SAS code specifies the indexed array “areverse” that contains 4 elements with the list of elements being
cesd4, cesd8, cesd12 and cesd16. The iterative DO loop is specified as

 indexvariable i

 startingvalue 1

 endingvalue 4

 <BY increment> not specified

Within the DO loop the following operation is performed on the array “areverse” where

 areverse[i] specifies the arrayname and the indexvariable to use for each iteration

 of the loop

Specifically, Table 1 gives the value of the index variable and the value of the array element being used for every
iteration of the loop.

Table 1: Iterative step through of DO loop processing of array “reverse”

Iteration i = areverse[i] Value of

areverse[i]

Operation

Performed

Increment i by 1

One 1 areverse[1] cesd4 cesd4=3-cesd4 i=1+1=2

Two 2 areverse[2] cesd8 cesd8=3-cesd8 i=2+1=3

Three 3 areverse[3] cesd12 cesd12=3-cesd12 i=3+1=4

Four 4 areverse[4] cesd16 cesd16=3-cesd16 i=4+1=5 so exit the loop

The resulting output is exactly the same as that presented in Figure 2.

DO OVER LOOP DEFINITON AND SYNTAX
The DO OVER loop is one of the most useful DO loops that I have discovered in SAS. It can be used with an array
when indexing of the array is not needed. For example, if the operation needs to be performed on all elements there
is no reason to define the array with an index and no need to created an iterative DO loop. The key to using this type
of DO loop is that the operations between the DO and END statements will be performed over ALL elements in the
array. An advantage is that the number of array elements does not need to be known. The syntax for the DO OVER
loop is

 DO OVER arrayname;

where

 arrayname valid non-indexed arrayname that has been previously defined

When using an arrayname in the operations to perform within the DO loop, one nice feature of the DO OVER loop is
that no index is needed when referencing the array. One just needs to reference the arrayname like one would a
variable name.

Hands-on WorkshopsSAS Global Forum 2010

7

EXAMPLE OF DO OVER LOOP WITH A NON-INDEXED ARRAY
Again, using the CES-D example, the non-indexed array “areverse” has been defined. The DO OVER loop is now
defined and the operation that needs to be performed included between the DO and END statements.

data cesd;
 set in.cesd1;
 array areverse cesd4 cesd8 cesd12 cesd16;
 do over areverse;
 areverse=3-areverse;
 end;

The above SAS code specifies the non-indexed array “areverse”. SAS will determine that the array “areverse”
contains 4 elements: cesd4, cesd8, cesd12 and cesd16. The non-iterative DO OVER loop is specified as

 DO OVER areverse;

where

 areverse the arrayname to perform the operation on each element of the array

REFERENCING MULTIPLE ARRAYS IN A SINGLE DO LOOP
One advantage of using ARRAYs and DO loops is that operations on multiple arrays can be done within a single DO
loop; however there are things that must be kept in mind. The first is that the arrays should all contain the same
number of elements. The second is that if operations are being done within a DO loop on two or more arrays
simultaneously (i.e. an operation using one array is being used to create new variables in a second array), the order
of the array elements needs to be the same in each array. In other words, if we are creating newvar1 in newarray
from var1 in oldarray then newvar1 and var1 need to be in the same position in the list of array elements. Here is an
example.

array aold cesd4 cesd8 cesd12 cesd16;
array arev rcesd4 rcesd12 rcesd16 rcesd8;
do over aold;
 arev=3-aold;
end;

Looking at the above code, the DO loop will correctly assign the reversed value of the first element of the array aold,
which is reference variable cesd4, to the first element of the value of the first element of the array arev, rcesd4.
However, during the second pass through the loop, and hence the arrays, the value of the second element of the
array aold, which is referencing the variable cesd8, will incorrectly assign the reversed value of cesd8 to the second
element of the array arev, which is the variable rcesd12. Similarly, an incorrect assignment will be made for the third
and fourth elements of the array arev.

When using multiple arrays within a DO loop, it is imperative to make sure that the elements are in the correct order
in each array.

array aold cesd4 cesd8 cesd12 cesd16;
array arev rcesd4 rcesd8 rcesd12 rcesd16;
do over aold;
 arev=3-aold;
end;

Hands-on WorkshopsSAS Global Forum 2010

8

EXAMPLES USING NON-INDEXED ARRAYS AND DO OVER LOOPS
As stated before, ARRAYs and DO loops can be used for a variety of data manipulation needs from assigning or
reassigning values, renaming variables, creating new variables from existing variables, simulating data, creating
randomization schemes, and changing the data structure. The following are examples of how to manipulate data for
some of these applications.

EXAMPLE 1 – ASSIGNING OR REASSIGNING VALUES
Suppose data have been entered such that for a series of items in a list an individual had to mark whether the item
applied to them or not. In order to make data entry faster, the person entering the data only entered a 1 if the item
was checked and otherwise left the item as missing. We want to change all missing values to 0.

data list;
 set in.list1;
 array aquest q1-q20;
 do over aquest;
 if aquest=. then aquest=0;
 end;
run;

There are a couple things to note. The first is that because we want to perform the operation on all variables in the
array, we can create a non-indexed array and use a DO OVER loop. Secondly, we can specify the list of array
elements with the “-“ in between the first variable name, q1, and last variable name, q20, because the variables are
named with the same root name followed by a number that is indicated sequentially from 1 to 20.

EXAMPLE 2 – “RENAMING” VARIABLES
Another use of arrays and DO loops for data manipulation is the ability to “rename” variables. The word “rename” is
in quotes for a reason. We are not really renaming the variables, but creating a new variable that contains the exact
information as the existing or old variable. Below is the SAS code used to “rename” a group of variables. You should
know that there are other ways to actually rename variables.

array aquest q1-q20;
array anquest nq1-nq20;
do over aquest;
 anquest=aquest;
 if anquest=. Then anquest=0;
end;

Note that here we rename the variables in array aquest, q1-q20, to nq1-nq20 in array anquest, and then assign the
new variables a value of 0 if the value was missing. If we do not drop the original variables, q1-q20, we have
preserved the raw data values within our data set as well as created new variables that we can use for analysis with
no missing data.

EXAMPLE 3 – CREATION OF NEW VARIABLES USING MULTIPLE ARRAYS
Arrays and DO loops can also be used to create new variables using multiple arrays. For example, an investigator
collects data on height in meters and weight in kilograms at 5 different time points and needs the body mass index
(BMI) determined for each weekly measure. To utilize arrays and DO loops to calculate the BMI you must first set up
three arrays. These can be indexed or non-indexed arrays. If you are using non-indexed arrays you need to be
careful to order the variables for height and the variables for weight in the same order in their respective arrays. The
SAS code that might be used is

Hands-on WorkshopsSAS Global Forum 2010

9

array awtkg wtkg1-wtkg5;
array ahtm htm1-htm5;
array abmi bmi1-bmi5;
do over awtkg;
 abmi=awtkg/(ahtm**2);
end;

Notice in the above code that the order of the variables in each array is the same, var1-var5. As well, notice that you
only need to specify one arrayname in the DO OVER as each array contains the same number of elements. If you
wanted to use indexed arrays and iterative DO loops to perform the same operations above, the SAS code is

array awtkg {5} wtkg1-wtkg5;
array ahtm {5} htm1-htm5;
array abmi {5} bmi1-bmi5;
do i=1 to 5;
 abmi[i]=awtkg[i]/(ahtm[i]**2);
end;

EXAMPLE 4 – USING INDEXED ARRAYS AND ITERATIVE DO LOOPS TO CHANGE THE DATA
STRUCTURE
The final example we will examine demonstrates the solution to a common problem of changing the data structure
from a short wide data set to a long narrow data set; from one record per ID to multiple records per ID. The use of
arrays and DO loops for this problem is especially useful when an investigator has collected repeated measures of
several variables yet entered one observation containing all measures for each individual. Using the height and
weight data from Example 3, the raw data are given in Figure 3 as an example of a short wide data set. Here there
are 5 measurement times with height and weight collected at each time point. Only 3 observations are shown.

 Figure 3: Raw height and weight data at 5 measurement times.

Obs id htm1 htm2 htm3 Htm4 htm5 wtkg1 wtkg2 wtkg3 wtkg4 wtkg5

1 1 0.9072 1.0080 1.1592 1.3356 1.5372 20.4545 25.9091 29.5455 37.2727 45.4545

2 2 0.7560 0.8316 0.9576 1.1088 1.2348 15.9091 18.1818 21.3636 25.4545 32.2727

3 3 0.8316 0.9324 1.1088 1.2348 1.3608 19.5455 27.2727 32.7273 39.5455 52.2727

We want to change the structure of this data set so that each individual has five observations with the observation
corresponding to a measurement time. The steps to restructure the data are as follows:

1. Create an array for each measurement that contains the variables corresponding to the measurements at
the specific time points.

2. Create an iterative DO loop with an index that uses the first measurement time at the starting index value
and the last measurement time as the ending index value.

3. Perform any operations that are needed on the variables, such as creating new variables at each
measurement time.

4. Create a measurement time variable. This can be a created as some function of the index variable from the
DO loop if you want.

5. Assign each arrayname to a new variable name that is NOT an arrayname, e.g. newvar=arrayname[i];

6. Use an OUTPUT statement before ending the DO loop to output the observation to the data set.

7. END the DO loop.

8. Using a DROP or KEEP statement, drop any variables that you don’t need or keep only those variables you
want to keep.

Hands-on WorkshopsSAS Global Forum 2010

10

Using the BMI data in Figure 3, below is example SAS code to transform the short wide data set to a long skinny data
set. Because we are creating the BMI for each measurement time from the existing height and weight variables and
we are creating a measurement time variable, the new data set should end up having 15 observations and 5
variables.

data bmi_longskinny;
 set in.bmi_shortwide;
 array ahtm {5} htm1-htm5;
 array awtkg {5} wtkg1-wtkg5;
 array abmi {5} bmi1-bmi5;
 do i=1 to 5;
 timept=i; ** creates the measurement time variable;
 abmi[i]=awtkg[i]/(ahtm[i]**2); ** calculates the bmi for each time point;
 htm=ahtm[i]; ** assigns the ith value of array ahtm to htm;
 wtkg=awtkg[i]; ** assigns the ith value of array awtgk to wtkg;
 bmi=abmi[i]; ** assigns the ith value of array abmi to bmi;
 output; ** outputs the observation to the data set;
 end;
 keep id timept htm wtkg bmi;
run;

Figure 4 shows the long skinny data set. Notice that each id has 5 observations corresponding to the 5 measurement
times.

Obs id timept htm wtkg bmi

1 1 1 0.9072 20.4545 24.8533

2 1 2 1.0080 25.9091 25.4995

3 1 3 1.1592 29.5455 21.9874

4 1 4 1.3356 37.2727 20.8948

5 1 5 1.5372 45.4545 19.2361

6 2 1 0.7560 15.9091 27.8357

7 2 2 0.8316 18.1818 26.2911

8 2 3 0.9576 21.3636 23.2974

9 2 4 1.1088 25.4545 20.7042

10 2 5 1.2348 32.2727 21.1662

11 3 1 0.8316 19.5455 28.2629

12 3 2 0.9324 27.2727 31.3707

13 3 3 1.1088 32.7273 26.6197

14 3 4 1.2348 39.5455 25.9360

15 3 5 1.3608 52.2727 28.2284

CONCLUSION
The utility of SAS ARRAYs and DO loops are many when having to manipulate data. We have looked at just some of
the ways to use arrays and DO loops including creating new variables, performing the same operation over a set a
variables more efficiently, “renaming” variables, and changing the data structure. Arrays and DO loops can also be

Hands-on WorkshopsSAS Global Forum 2010

11

used to simulate data and create randomization schemes. SAS ARRAYs and DO loops are powerful data
manipulation tools that help to make your program more efficient and save you lots of time and energy.

CONTACT INFORMATION
Your comments and questions are valued and encouraged. Contact the author at:

Jennifer Waller
Medical College of Georgia
Department of Biostatistics, AE-1012
Augusta, GA 30912-4900

jwaller@mcg.edu

SAS and all other SAS Institute Inc. product or service names are registered trademarks or trademarks of SAS
Institute Inc. in the USA and other countries. ® indicates USA registration.

Other brand and product names are trademarks of their respective companies.

Hands-on WorkshopsSAS Global Forum 2010

	2010 Table of Contents

