
Paper 157-2010

Understanding the define.xml File and Converting It to a Relational Database

Lex Jansen, Octagon Research Solutions, Wayne, PA

ABSTRACT
When submitting clinical study data in electronic format to the FDA, not only information from trials has to be submitted,
but also information to help understand the data. Part of this information is a data definition file, which is the metadata
describing the format and content of the submitted data sets. When submitting data in the CDISC SDTM format it is
required to submit the data definition file in the Case Report Tabulation Data Definition Specification (define.xml) format
as prepared by the CDISC define.xml team.

This paper illustrates how the define.xml can be transformed into relational SAS® data sets by using SAS XML Mapper
technology. Once the content of the define.xml is available in SAS data sets it can be presented as a PDF file with the
use of SAS ODS (Output Delivery System).

The relational SAS data sets can also be used to validate the metadata contained in the define.xml file against the SAS
transport files and the different types of SDTM metadata:

• metadata for domain datasets

• metadata for domain content (including value level metadata)

• metadata for controlled terminology

INTRODUCTION
The FDA issued the Final Guidance on Electronic Submissions using the eCTD specifications in April 2006. The latest
revision of this guidance was published in June 2008 [1]

Technical specifications associated with this guidance are provided as stand-alone documents. Among these are Study
Data Specifications [2] that provide further guidance for submitting animal and human study data in electronic format
when providing electronic submissions to the FDA. Study data includes information from trials submitted to the agency
for evaluation and information to understand the data (data definition). The study data includes both raw and derived
data.

As of January 1, 2008, sponsors submitting data electronically to the FDA are required to follow the new eCTD guidance.
The previous guidance, originally issued in 1999, has been withdrawn as of the same date.

The new guidance differs from the 1999 guidance in one significant aspect: The application table of contents is no longer
submitted as a PDF file, but is submitted as XML (eXtensible Markup Language). This means that the electronic
submissions will now be XML based.

The current version of the Study Data Specifications contains specifications for the Data Tabulation data sets of human
drug product clinical studies and provides a reference to the Study Data Tabulation Model (SDTM) [3][4][5][6] developed
by the Submission Data Standard (SDS) working group of the Clinical Data Interchange Standard Consortium (CDISC).

Further, the Study Data Specifications document gives a reference to the Case Report Tabulation Data Definition
Specification (CRT-DDS or define.xml) developed by the CDISC define.xml Team [7].

DATA DEFINITION TABLES: define.xml
Released for implementation in February 2005, the Case Report Tabulation Data Definition Specification (CRT-DDS or
define.xml) Version 1.0 [7] specifies the standard for providing Case Report Tabulations Data Definitions in an XML
format for submission to regulatory authorities (e.g., FDA). The XML schema used to define the expected structure for
these XML files is based on an extension to the CDISC Operational Data Model (ODM). The current version of the CRT-
DDS (version 1.0) is based on version 1.2.1 of the CDISC ODM [8], which is both semantically and syntactically identical
to Version 1.2.0 of the CDISC ODM.

The Data Definition Document provides a list of the data sets included in the submission along with a detailed description
of the contents of each data set. To increase the level of automation and improve the efficiency of the Regulatory Review
process, the define.xml file can be used to provide the Data Definition Document in a machine-readable format.

1

Hands-on WorkshopsSAS Global Forum 2010

In July 2007 The CDISC Submission Data Standards (SDS) Metadata Team released a draft version of the Metadata
Submission Guidelines, Appendix to the Study Data Tabulation Model Implementation Guide 3.1.1 for review [9]. This
release included a sample electronic submission that contains examples of CRF annotations, metadata associated with
the submission domains, SDTM domains, and an example of a define.xml file.

WHY CONVERT THE DEFINE.XML INTO RELATIONAL SAS DATA SETS?
In this section we will present business cases that justify the effort of converting the metadata that is contained in a
define.xml file into relational SAS data sets.

PRINTING THE DEFINE.XML
In January 2008 CDISC published a report that summarizes the work, experiences and findings of the first CDISC SDTM
/ ADaM Pilot Project [10]. The objective of the pilot project was to test how well the submission of CDISC-adherent data
sets and associated metadata met the needs and the expectations of both medical and statistical FDA reviewers.

This pilot report mentions the following issue:

“A major issue identified by the regulatory review team was the difficulty in printing the Define file. The style sheet
used in the pilot submission package was developed with the primary target of web browser rendering, which is not
readily suited to printing. Reviewers who attempted to print the Define file found that the file did not fit on portrait
pages, that page breaks were not clean, and that printing only a portion of the file was difficult. Opening the
document in another application (e.g., Microsoft Word) provided a work-around, but was not an option that was user
friendly or efficient.”

…

As stated previously, style sheets used for viewing of the Define file do not facilitate printing the file in such a way as
to produce a reasonably formatted document. Solutions to allow both easy viewing and printing of Define files have
not been identified. This problem could be viewed as an implementation issue that sponsors will need to handle, after
discussing the issue with their FDA reviewers. For example, a sponsor might choose to provide two versions of the
style sheet – XML for viewing and PDF for printing. Ideally, a reminder of the issue would be included somewhere in
the CRT-DDS guidance (e.g., a note that consideration be given to how the sponsor will respond to a request from
reviewers for a print-friendly version of the style sheet). It should be noted that the regulatory review team for the pilot
project emphasized that the ability to print the document would be essential for the future use of XML files. [10]

Once the metadata that is contained in the define.xml is converted to relational SAS data sets, we can use the extensive
reporting capabilities of SAS to present the define.xml metadata in a variety of output formats like PDF, RTF or Excel.
The PDF representation of the define.xml will allow us to print the metadata contained in the define.xml.

ASSESSING THE QUALITY OF THE DEFINE.XML
When submitting clinical study data in electronic (SDTM) format to the FDA it is obvious that the metadata that is
contained in the define.xml file, that comes along with this data, should accurately describe the data. The process used
to create the define.xml file may not guarantee this. For this reason, it is important to validate the define.xml file against
the data independently from the process that created the define.xml file. Once the metadata that is contained in the
define.xml is converted to relational SAS data sets, we can use SAS to perform various checks to validate the define.xml
against the clinical study data.

XML 101
In this section we present a short introduction to XML.

BASIC SYNTAX
The Extensible Markup Language (XML) [11] is a general-purpose markup language. It is classified as an extensible
language because it allows users to define their own elements. Its primary purpose is to facilitate the sharing of
structured data across different information systems. XML is a language that is hierarchical, text-based and describes
data in terms of markup tags. A good introductory guide to XML can be found in the reference section [12].

Every XML document starts with the XML declaration. This is a small collection of details that prepares an XML
processor for working with the document.

2

Hands-on WorkshopsSAS Global Forum 2010

syntax XML declaration example

<?xml param1 param2 … ?> <?xml version="1.0" encoding="ISO-8859-1" ?>

Elements are the basic building blocks of XML, dividing a document into a hierarchy of regions. Some elements are
containers, holding text or (child) elements. Others are empty and serve as place markers. Every XML file should have
exactly 1 root element that contains all other elements.

syntax Container Element example

< name attribute1 attribute2 … >
 content
</ name >

<def:leaf ID="Location.DM" xlink:href="dm.xpt">
 <def:title>dm.xpt</def:title>
</def:leaf>

An empty element is similar, but contains no content or end tag.

syntax Empty Element example

< name attribute1 attribute2 … />

<ItemRef ItemOID="STUDYID" OrderNumber="1"
 Mandatory="Yes" Role="IDENTIFIER"
 RoleCodeListOID="RoleCodeList" />

In the element starting tag there can be information about the element in the form of an attribute. Attributes define
properties of elements. They associate a name with a value, which is a string of character data enclosed in quotes.
There is no limit to how many attributes an element can have, as long as no two attributes have the same name.

syntax Attributes example

name = “ value “

ItemOID="STUDYID" OrderNumber="1"
Mandatory="Yes" Role="IDENTIFIER"
RoleCodeListOID="RoleCodeList"

Namespaces are a mechanism by which element and attribute names can be assigned to groups. They are most often
used when combining different vocabularies in the same document. If each vocabulary is given a namespace then the
ambiguity between identically named elements or attributes can be resolved.

syntax Namespaces example

xmlns: name = “ URI “

xmlns="http://www.cdisc.org/ns/odm/v1.2"
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xmlns:xlink="http://www.w3.org/1999/xlink"
xmlns:def="http://www.cdisc.org/ns/def/v1.0"

Comments in an XML document are not interpreted by the XML processor:

3

Hands-on WorkshopsSAS Global Forum 2010

syntax Comments example

<!-- comment text -->

<!-- File: define.xml -->
<!-- Date: 02/02/2005 -->
<!-- Author: Clinical Data Interchange Standards -->
<!-- Consortium (CDISC) define.xml team -->

A CDATA (character data) section tells the XML parser that this section of the document contains no markup and should
be treated as regular text. CDATA sections can be useful for large regions of text that contain a lot of ‘forbidden’ XML
characters. They should be used with care though, since it may be hard to use any elements or attributes inside the
marked region.

syntax CDATA example

<![CDATA unparsed character data
]]>

<TranslatedText xml:lang="en"><![CDATA[Classifies
 subjects based on Hy’s Law - 2 variations - For each
 variation, subject is classified as normal or abnormal at
 baseline and as normal or abnormal based on most
 extreme value during treatment, Safety population
]]></TranslatedText>

Processing instructions are meant to provide information to a specific XML processor, but may not be relevant to
others. It is a container for data that is targeted toward a specific XML processor. The processing instruction looks like
the XML declaration, but is targeted at a specific XML processor. The XML declaration can be viewed as a processing
instruction for all XML processors.

syntax Processing Instructions example

<? target data ?> <?xml-stylesheet type="text/xsl" href="define1-0-0.xsl" ?>

Now that we have explained the most important building blocks of XML, we can look at a more complete example in
Figure 1.

Figure 1: Excerpt of an XML file (define.xml)

The first line is the XML declaration.

The second line contains a processing instruction
to include the XSL style sheet to display the XML
file in a human readable form in a browser.

<ODM> is the root element.

<Study>, <GlobalVariables>, <MetaDataVersion>,
<StudyName>, <ItemGroupDef>, etc are
elements.

<Study> is a child element of the <ODM> element.

FileOid, ODMVersion, etc are attributes of the
<ODM> element.

The 4 lines starting with “xmlns:” are namespace
declarations.
This excerpt contains no comments or CDATA
sections.

4

Hands-on WorkshopsSAS Global Forum 2010

WELL-FORMED AND VALIDATED
An XML file is said to be well-formed if it conforms to the rules of XML syntax. At a very basic level this means:

• A single element, called the root element, contains all other elements in the document (in the define.xml the
root element is <ODM>)

• Elements should be properly opened and closed

• Elements do not overlap, e.g. are properly nested

• Attributes are properly quoted

• The document does not contain illegal characters.
For example, the “<” character has special meaning because it opens a tag. So, if this character is part of the
content, it should be should substituted as “<”

A conforming XML parser is not allowed to process an XML document that is not well-formed.

An XML schema is a description of a type of XML document, typically expressed in terms of constraints on the structure
and content of documents of that type. This description goes above and beyond the basic syntax constraints imposed
by well-formedness of an XML document [13].

The schema defines the allowed elements and attributes, order of the elements, overall structure, etc...

A schema might also describe that the content of a certain element is only valid if it conforms to the ISO 8601 date and
time specification. An XML document is valid, if it conforms to a specific XML schema.

The following example illustrates the difference between well-formed and validated. The XML document in Figure 2 is
a well-formed XML document, but is obviously not valid with respect to the schema that defines a valid define.xml file.

Figure 2: A well-formed XML document, but not a valid define.xml document

XPATH AND XSL
In order to be able to understand the XML structure of a define.xml file, we need to briefly discuss a few more XML
related standards and concepts.

To be able to extract information from an XML document the XPath standard gives XML developers a tool for navigating
the structure of an XML document. We can simply demonstrate this by 2 examples from Figure 2.

• The XPath location path /favorites/single/artist returns all artist elements: “The Sheppards” and
“Joyce Harris”.

5

Hands-on WorkshopsSAS Global Forum 2010

• The XPath location path /favorites/single/@genre returns the “doowop” and “R&B” attributes.

The XPath standard is part of the XSL family of standards.

XSL is the Extensible Style sheet Language [14], one of the most complicated – and most useful – parts of XML. While
XML itself is intended to define the structure of a document, it does not contain any information on how it is to be
displayed. In order to do this we need a language, XSL, to describe the format of a document, ready for use in a display
application (computer screen, cell phone screen, paper,).

XSL is actually a family of transformation languages which allows one to describe how files encoded in the XML
standard are to be formatted or transformed.

The following three languages can be distinguished:

• XSL Transformations (XSLT): an XML language for transforming XML documents.

• XSL Formatting Objects (XSL-FO): an XML language for specifying the visual formatting of an XML document

• The XML Path Language (XPath): a non-XML language used by XSLT, and also available for use in non-XSLT
contexts, for addressing the parts of an XML document.

THE STRUCTURE OF THE DEFINE.XML
The previous section explained the building blocks of XML. This section will specifically describe the structure of a
define.xml file that conforms to the Case Report Tabulation Data Definition Specification (CRT-DDS or define.xml)
version 1.0 as developed by the CDISC define.xml Team [7].

SCHEMA STRUCTURE
The CRT-DDS (define.xml) standard is based on the CDISC operational model (ODM). The ODM is defined by an XML
schema that allows extension [8]. This extension mechanism has been implemented by expressing the ODM schema
using two files:

• a foundation XML Schema file (ODM1-2-1-foundation.xsd), which defines the elements, attributes and structure
of the base ODM schema.

• an application XML Schema file (ODM1-2-1.xsd.) which imports the foundation XML Schema and other schema
definitions needed by ODM, such as the core W3C XML schema (xml.xsd) and the XML schema that defines
the W3C XML Signature standard (xmldsig-core-schema.xsd).

To create the define.xml extension three files have been provided:

• A namespace XML schema (define-ns.xsd) that defines the extension namespace and any new elements and
attributes.

• An extension XML Schema file (define-extension.xsd) defines the location of the extensions within the ODM.

• An application extension XML Schema file (define1-0-0.xsd) that will import the extension XML Schema file and,
in turn, any files imported in the ODM root schema.

In November 2009 CDISC published a XML Schema Validation for Define.xml white paper [15]. This white paper,
created by the CDISC XML Technology team, provides guidance on validating define.xml documents against the
define.xml XML schemas and proposes practices and tools to improve define.xml schema validation.

6

Hands-on WorkshopsSAS Global Forum 2010

Figure 3: The define.xml (CRT-DDS) and the associated style sheet and schemas

DEFINE.XML BUILDING BLOCKS
In this paragraph we will show the building blocks of the define.xml. As mentioned before, the CRT-DDS standard
(define.xml) is an extension of ODM. The ODM model defines many elements and attributes that are optional.

We will only mention required elements and attributes, or elements and attributes that were found in the example
define.xml file.

Figure 4 shows a high-level overview of a define.xml file.

Figure 4: The building blocks of the define.xml (CRT-DDS)

We will now describe the different parts of the define.xml file.

 The header section of the define.xml is important for the XML processor.

7

Hands-on WorkshopsSAS Global Forum 2010

The first line identifies the file as an XML document and specifies the XML version (“1.0”) and the encoding of the
document (“ISO-8859-1”). The second line includes a reference to the style sheet (“define1-0-0.xsl”) that can be used by
an XSL processor to render the document. In this case the style sheet can be used by the XSL processor in a web
browser to render the XML file as HTML for display. As mentioned before, the HTML that gets created by the browser
depends on the particular browser application.

 Following the header section is the ODM root element. All other elements in the define.xml file will be contained
within the ODM element. The ODM element contains attributes that define the namespaces and the location of the
schema that specifies the XML document.

Other required ODM attributes are displayed in Table 1.

Table 1: ODM required attributes

Attribute Description

FileType Type of transmission. For define.xml the only valid value is “Snapshot”. This means that
the document contains only the current state of the data and metadata it describes, and
no transactional history.

FileOID A unique identifier for this file. FileOIDs should be universally unique if at all possible.

CreationDateTime Date and Time when the define.xml file was last modified (ISO 8601 datetime).

ODMVersion The version of the ODM standard used. According to the ODM schema, this is an optional
attribute. However, a missing ODMVersion should be interpreted as "1.1". Documents
based on ODM 1.2 should have ODMVersion="1.2".

 Study is the first element contained in the ODM root element. The Study element collects static structural
information about an individual study. It has one attribute “OID”, which is the unique identifier of the Study.

The Study element has two child-elements in the define.xml:

• GlobalVariables - General summary information about the Study.

• MetaDataVersion - Domain and variable definitions within the submission.

 GlobalVariables is a required child element of the Study element and contains three required child elements:

• StudyName - Short external name for the study.

• StudyDescription - Free-text description of the study.

• ProtocolName - The sponsor’s internal name for the protocol.

 The MetaDataVersion is a child element of the Study element and contains the domain and variable definitions
included within a submission. Table 2 lists the MetaDataVersion attributes that are part of the define.xml file. The
attributes with a prefix of “def:” are extensions to the ODM schema.

8

Hands-on WorkshopsSAS Global Forum 2010

Table 2: MetaDataVersion required attributes

Attribute Description

OID The unique identifier of the MetaDataVersion

Name Name of the MetaDataVersion

Description Further description of the data definition document

def:DefineVersion The schema version used for the define.xml

def:StandardName Short name of the MetaDataVersion (e.g. CDISC SDTM)

def:StandardVersion The version of an external standard to which the data conforms (e.g. 3.1.1)

 Table 3 lists the MetaDataVersion child elements. The ItemGroupDef and ItemDef elements are required.

Table 3: MetaDataVersion child elements

Element Description

def:AnnotatedCRF This element can be used to reference an Annotated Case Report Form (CRF), a PDF
file that maps the data collection fields used to collect subject data to the corresponding
variables or discrete variable values contained within the data sets

def:SupplementalDoc This element can be used to reference a PDF file with supplemental data definition
information. A reason for this document can be the need for further explanations or
descriptions of variables contained within the data sets.

def:leaf This element has to be present if either the def:AnnotatedCRF and/or the
def:SupplementalDoc are provided. The def:leaf element will then contain the actual
location of the PDF file relative to the define.xml

def:ComputationMethod This element is available for every unique computational algorithm that is referenced by
variable metadata or variable value-level metadata. It contains the method name and
the computation rule in a kind of pseudo code.

def:ValueListDef This element provides additional value-level metadata for certain variables that are part
of a normalized data structure. For example, the Vital Signs domain has a
measurement parameter (VSTESTCD) that stores the name of a measurement (height,
weight, systolic blood pressure, …). A corresponding value list will then describe each
unique value of the measurement (“HEIGHT”, “WEIGHT”, “SYSBP”, …)

ItemGroupDef For every data set in the submission there is an ItemGroupDef element describing data
set metadata (label, structure, keys, variables, location of transport file, …)

ItemDef For every variable referenced in either def:ValueListDef or ItemGroupDef there will be
an ItemDef element. This element will describe properties like name, label, length,
computation method, range or code list restrictions, and several other properties.

CodeList The CodeList element defines a discrete set of permitted values for an item. The
definition can be an explicit list of values or a reference to an externally defined code
list.

METADATAVERSION ELEMENT DETAILS
In this paragraph we will dive deeper into the sub-elements of the MetaDataVersion element. We will see how the
different elements relate to each other.

def:AnnotatedCRF, def:SupplementalDoc and def:leaf

As mentioned before, these elements can be used to reference PDF files. Figure 5 shows the relation between these
elements. The def:DocumentRef/@leafID must match the corresponding def:leaf/@ID.

9

Hands-on WorkshopsSAS Global Forum 2010

Figure 5: Referencing external PDF files

ItemGroupDef

For every data set in the submission there will be an ItemGroupDef element with domain-level metadata. Table 4 lists the
ItemGroupDef attributes.

Table 4: ItemGroupDef attributes

Attribute Status Description

OID Required The unique identifier of the domain.

Name Required The file name of the data set or data domain name (e.g., “DM” for
Demographics)

Repeating Required “Yes” for domains with more than one record per subject whereas, “No” for
domains with 1 record per subject.

IsReferenceData Optional “Yes” for domains that contain reference data only, no subject-level data. “No”
indicates subject-level data. Absence of this attribute indicates subject-level
data.

SASDatasetName1 Optional Name of SAS data set.

Purpose Optional Purpose for the data set (e.g., “Tabulation”, “Analysis”).

def:Label Required Brief description of the data domain.

def:Structure Optional Data domain structure (e.g. “One record per subject per visit”).

def:DomainKeys Optional Comma-separated text string that contains the data set variables that uniquely
identify a data record.

def:Class Optional General class of the domain as defined in the SDTM model (e.g., “Events”,
“Interventions”, “Findings”, “Special Purpose”, “Trial Design”, ...)

def:ArchiveLocationID Required Reference to the def:leaf element that contains a link to the location of the data
set.

ItemGroupDef elements have:

• One ItemRef child element per variable in the data set

• Exactly one def:leaf element that contains the XLink information that is referenced by the def:ArchiveLocationID
attribute.

The relation between the ItemGroupDef/@def:ArchiveLocationID and the def:leaf/@ID is illustrated in Figure 6.

1 SASDatasetName is an optional attribute that is part of the ODM foundation. This means that it is a valid attribute in the
define.xml. This attribute is not mentioned in the define.xml specification.

10

Hands-on WorkshopsSAS Global Forum 2010

Figure 6: Referencing external data sets

ItemRef and ItemDef

For every variable in a data set in the submission there will be an ItemRef and an ItemDef element with variable-level
metadata. Table 5 lists the ItemRef attributes. Table 6 lists ItemDef attributes. ItemDef elements can have an optional
associated CodeListRef or def:ValueListRef child element.

def:ComputationMethod

The def:ComputationMethod element has one attribute (OID) and contains the details about computational algorithms
used to derive or impute variable values.

Figure 7: Example of a ComputationMethod

11

Hands-on WorkshopsSAS Global Forum 2010

Table 5: ItemRef attributes

Attribute Status Description

ItemOID Required The unique identifier of the variable.

OrderNumber Optional Provide an ordering on the ItemRefs (within the containing ItemGroupDef) for
use whenever a list of ItemRefs is presented to a user.

Mandatory Required Indicates that the clinical data for an instance of the containing item group
would be incomplete without an instance of this type of item.

Variables that have an SDTM “Core” attribute given as "Required" should have
Mandatory="Yes" in the define.xml. SDTM variables that have a “Core” attribute
as "Expected" or "Permissible" should have Mandatory="No" in the define.xml.

Role Optional Variable classification (e.g., “Identifier”, “Topic”, .”Timing Variable”, ...). Values
are interpreted as codes from CodeList as specified by @RoleCodeListOID

RoleCodeListOID Optional The identifier of the corresponding Role Code List, which defines the full set
roles from which the Role attribute values are to be taken.

Table 6: ItemDef attributes

Attribute Status Description

OID Required The unique identifier of the variable.

Name Required Variable name.

DataType Required Type of the data (e.g., text, integer, float, ...)

Length Conditional The variable length.

SignificantDigits Conditional The number of decimal digits.

SASFieldName2 Optional

Origin Optional Indicator of the origin of the variable (e.g., CRF page number, derived,
or a reference to other variable(s).

Comment Required Further information regarding variable definition, usage, etc.

Def:Label Required Variable label.

Def:DisplayFormat Optional Display format for numeric variables (e.g., 8.2)

Def:ComputationMethodOID Optional Unique identifier of the corresponding computation method.

CodeList and def:ValueListDef
Many variables in a submission have a discrete list of valid values or controlled terms associated with them. The
CodeList element defines the controlled terminology. For variables whose values are restricted to a list of values, the
corresponding ItemDef element has to include a CodeListRef element that references a CodeList element. The
CodeListOID attribute of the CodeListRef element should match the OID attribute of the CodeList element.

The def:ValueListDef element provides additional value-level metadata for certain variables that are part of a normalized
data structure. For example, the Vital Signs domain has a measurement parameter (VSTESTCD) that stores the name
of a measurement (height, weight, systolic blood pressure, …). A corresponding value list will then describe each unique
value of the measurement (“HEIGHT”, “WEIGHT”, “SYSBP”, …). For these variables, the corresponding ItemDef
element has to include a def:ValueListRef element that references a def:ValueListDef element. The def:ValueListOID
attribute of the def:ValueListRef element should match the OID attribute of the def:ValueListDef element.

Figure 8 illustrates several concepts that are related to ItemRef, ItemDef, def:ComputationMethod, CodeList and
def:ValueListDef elements.

2 SASFieldName is optional an attribute that is part of the ODM foundation. This means that it is a valid attribute in the
define.xml. This attribute is not mentioned in the define.xml specification.

12

Hands-on WorkshopsSAS Global Forum 2010

The black numbers on the right side represent the source of a relation and a red numbers on the left side represent the
target of a relation. In every relation there has to be a correspondence between the identifier of the source and the
target.

For example: In relation 4: source identifier = ItemRef/@ItemOID, target identifier = ItemDef/@OID and the both have
the value “VS.VSTESTCD”;

Figure 8: Relations within a define.xml

13

Hands-on WorkshopsSAS Global Forum 2010

DESIGNING A RELATIONAL DATA STRUCTURE FOR THE DEFINE.XML
In the previous paragraphs we have seen the structure of the define.xml file. Also, we have seen the relations between
the different parts of the define.xml file. Since the define.xml file does not have a 2-dimensional data structure, it is not a
trivial task to translate the define.xml to number of 2-dimensional SAS data set with rows and columns. We will need to
create a relational data model from the define.xml.

According to the rules of ODM the OID (object identifier) for a MetaDataVersion, ItemGroupDef, ItemDef or CodeList
element must be unique within a single study. Together with the Study OID, these object identifiers will serve as keys in
the relational data model.

We can map the define.xml to the following data sets (all data sets also contain the MetaDataVersion OID, or SAS
variables MetaDataVersion_OID):

• MetaDataVersion which contains one record:

o ODM attributes (xsi:schemaLocation, FileOID, ODMVersion, FileType, CreationDateTime)

o Study OID attribute

o Text of GlobalVariables child elements: StudyName, StudyDescription and ProtocolName

o MetaDataVersion attributes: OID, Name, Description, def:DefineVersion, def:StandardName and
def:StandardVersion

• AnnotatedCRF which contains:

o For every def:AnnotatedCRF element and every def:DocumentRef child element the leafID attribute

• SupplementalDoc which contains:

o For every def:SupplementalDoc element and every def:DocumentRef child element the leafID
attribute

• Leaf which contains:

o For every def:AnnotatedCRF element the leafID attribute and the corresponding def:leaf@xlink:href
and def:leaf/title

o For every def:SupplementalDoc element the leafID attribute and the corresponding def:leaf@xlink:href
and def:leaf/title

• ItemGroupDef which contains for every ItemGroupDef:

o the ItemGroupDef attributes: OID, Name, Repeating, IsReferenceData, SASDatasetName, Purpose,
def:Label, def:Structure, def:DomainKeys, def:Class, def:ArchiveLocationID

o from ItemGroupDef/def:leaf the ID attribute, xlink:href attribute and the contents of the def:title child
element (this is possible since every ItemGroupDef has exactly one def:leaf child element)

• ItemGroupDef_ItemRef which contains for every ItemRef element in an ItemGroupDef element:

o The OID attribute of the parent ItemGroupDef element

o ItemRef attributes: ItemOID, OrderNumber, Mandatory, Role and RoleCodeListOID

• ItemDef which contains for every ItemDef element:

o ItemDef attributes: OID, Name, DataType, Length, SignificantDigits, SASFieldName, Origin,
Comment, Def:Label, Def:DisplayFormat and Def:ComputationMethodOID

o If applicable, the OID of the associated codelist: CodeListRef/@CodeListOID

o If applicable, the OID of the associated valuelist: def:ValueListRef/@ValueListOID

• ComputationMethod which contains for every def:ComputationMethod element:

o The OID attribute and the text content of the element.

The OID for a def:ComputationMethod element must be unique within a single study.

• CodeList which contains for every CodeList element:

o Attributes OID, Name, DataType and SASFormatName

14

Hands-on WorkshopsSAS Global Forum 2010

• CodeList_CodeListItem which contains for every CodeListItem element:

o OID Attribute of the parent CodeList element

o CodeListItem attributes (CodedValue and Rank)

o Content of CodeListItem/TranslatedText element and the CodeListItem/TranslatedText/@xml:lang
attribute

• ExternalCodeList which contains for every ExternalCodeList element:

o OID Attribute of the parent CodeList element

o ExternalCodeList attributes (Dictionary and Version)

• ValueList which contains for every def:ValueListDef element:

o The OID attributes

The OID for a def:ValueListDef element must be unique within a single study.

• ValueListItem which contains for every def:ValueListDef/ItemRef:

o OID Attribute of the parent def:ValueListDef element

o ItemRef attributes: ItemOID, OrderNumber and Mandatory

The appendix shows an (incomplete) data model for the define.xml.

READING XML FILES WITH SAS
We can read an XML file and turn it into a SAS data set by using the XML engine on a libname statement. However, this
is only possible if the XML file represents a ‘rectangular’ structure.

The XML file as we saw earlier in Figure 2 looks like a ‘rectangular’ structure, so we can read it easily with SAS:

LIBNAME favs xml "favorites.xml";

DATA single;

 SET favs.single;

RUN;

The resulting SAS data set looks like this:

We can already see an issue here, because the attribute /favorites/single/@genre (with values ‘doowop’ and ‘r&b’) has
not been included in the SAS data set.

USING THE SAS XML MAPPER
To be able to read more complicated XML files like the define.xml file with SAS and create SAS data sets we need to
create an XMLMAP. The XMLMap tells the SAS XML engine how to map the content in the hierarchical define.xml file to
rows and columns in the rectangular SAS tables. An XMLMAP file is an XML file itself. Once we have an XMLMAP we
can easily create SAS data sets with the following code:

15

Hands-on WorkshopsSAS Global Forum 2010

FILENAME define "c:\Projects\CDISC\Define.xml\define.xml";
FILENAME sxlemap "c:\Projects\CDISC\Define.xml\DefineXML.map";
LIBNAME define XML XMLMAP=sxlemap access=READONLY;
PROC COPY IN=define OUT=outlib;
RUN;

Figure 9 shows part of an XMLMAP. It specifies that the data set ItemDef has a character variable named
ItemDef_Name (length 40), whose content is defined by the XPath specification
/ODM/Study/MetaDataVersion/ItemDef/@Name.

Figure 9: XMLMAP example3

THE SAS XML MAPPER
An XMLMAP can be created with the SAS XML Mapper, which is a Java-based graphical application that helps in
creating and modifying XMLMaps [16]. Either the specific XML file (define.xml) or the schema that defines the rules of
the XML file can be used as input for the XML Mapper. The advantage of using the schema is that it contains definitions
of optional XML elements and attributes that may not be a part of the specific define.xml file. This will allow for the
creation of a more generic XMLMAP. Figure 10 shows the SAS XML Mapper interface with the define.xml loaded in the
left panel.

The latest version of the SAS XML Mapper is version 92.110 09w09 and was released in February 2009 [17].

A new feature of 9.2 is that you can now export an XML document from a SAS data set using the XMLMap that was
created to import the XML document. SAS XML Mapper enables you to update the XMLMap to XMLMap syntax version
1.9, which provides elements for exporting.

Further, the AutoMap feature using XML automatically generates XMLMap syntax for the displayed XML document. SAS
XML Mapper analyzes the XML document's tree structure. SAS XML Mapper generates an XMLMap TABLE element to
contain a data set definition for each level in the XML document, except for leaf nodes, which contain columns. For each
level, SAS XML Mapper generates an XMLMap COLUMN element to contain a variable definition for each nested
element or attribute. For each level, SAS XML Mapper gives you the option to generate surrogate keys. Surrogate keys
are system-generated counter variables that identify each observation in resulting SAS data sets. The surrogate keys
preserve the XML structure so that the resulting SAS data sets can be rejoined.

3 This particular XMLMap gave a warning in the XML Mapper application: "Column (MetaDataVersion_OID) in table
(ItemDef) has an XPath outside the scope of the table path. The contents of this column may not correspond to other
row values and/or may be missing entirely." In this particular case using this XMLMap would not lead to unexpected
results. However, to avoid that inexperienced SAS XML Mapper users start creating tables by dragging elements and
attributes in the same SAS target table, regardless of the origin of the data in the XML source file, SAS decided to create
help users with a warning when they go outside of the table boundary. This warning should be considered as a "safety
net".

16

Hands-on WorkshopsSAS Global Forum 2010

Figure 10: SAS XML Mapper interface

VALIDATING THE DEFINE.XML
Earlier we talked about two different ways to verify whether XML files are coded correctly:

Well-formed The XML code must be syntactically correct.

Valid If the XML file has an associated XML Schema, the elements must appear in the defined structure and
the content of the individual elements must conform to the declared data types specified in the schema.

There are numerous tools available that can check well-formedness and validate an XML file against an XML schema.
As mentioned earlier in this paper, the CDISC XML Technologies Team has published a XML Schema Validation for
Define.xml white paper, that provides guidance on validating define.xml documents against the define.xml XML schemas
and proposes practices and tools to improve define.xml schema validation [15].

To further ensure the quality of the define.xml, more validation needs to be performed:

• Validate against the rules as specified in the Case Report Tabulation Data Definition Specification (define.xml)
version 1.0 [7]. An example of this is the rule that the ItemOID attribute in an ItemRef element must match the
OID attribute of a corresponding ItemDef element.

• Check the consistency between the define.xml content and the SAS transport files. For example, an
ItemGroupDef element must contain an ItemRef element for each variable included in the corresponding SAS
transport file.

17

Hands-on WorkshopsSAS Global Forum 2010

• Check the consistency between the define.xml and the SDTM metadata. An example of this is the “Mandatory”
attribute of the ItemRef element, which needs to be consistent with the SDTM Core attribute (Required,
Expected, Permissible).

Once we have the define.xml converted into relational SAS data sets, it will be easy to perform these validation checks.

Some code examples:

To check for duplicate ItemDef elements:

PROC SQL;
 SELECT ItemDef_OID, ItemDef_Name, ItemDef_Label
 FROM ItemDef
 GROUP BY ItemDef_OID
 HAVING COUNT(*) > 1
 ORDER BY ItemDef_OID;
QUIT;

To check for duplicate ItemRef elements within an ItemGroupDef element:

PROC SQL;
 SELECT ItemGroupDef_OID, ItemRef_ItemOID, ItemRef_OrderNumber
 FROM ItemgroupDef_itemref
 GROUP BY ItemGroupDef_OID, ItemRef_ItemOID
 HAVING COUNT(*) > 1
 ORDER BY ItemGroupDef_OID, ItemRef_ItemOID;
QUIT;

To check for ItemRef elements within an ItemDefGroup without an ItemDef element:

PROC SQL;
 SELECT ItemRef_ItemOID
 FROM ItemgroupDef_itemref
 EXCEPT
 SELECT ItemDef_OID
 FROM ItemDef
QUIT;

CONCLUSION
SAS/Base together with the SAS XML Mapper enable the conversion of the define.xml into relational SAS data sets.

This enables the creation of a PDF rendition of the define.xml file and the use of SAS to perform various checks to
validate the define.xml against the clinical study data. The methodology described in this paper is applicable to the
current version of the define.xml file, but also to future extensions.

18

Hands-on WorkshopsSAS Global Forum 2010

REFERENCES
1. U.S. Department of Health and Human Services, Food and Drug Administration, Center for Drug Evaluation and

Research (CDER), Center for Biologics Evaluation and Research (CBER)”.
“Final Guidance for Industry: Providing Regulatory Submissions in Electronic Format--Human Pharmaceutical
Applications and Related Submissions Using the eCTD Specifications”. Revision 2, June 2008.
(http://www.fda.gov/downloads/Drugs/GuidanceComplianceRegulatoryInformation/Guidances/UCM072349.pdf)

2. U.S. Department of Health and Human Services Food and Drug Administration Center for Drug Evaluation and
Research (CDER). Study Data Specifications, Version 1.5.1, January 2010
(http://www.fda.gov/downloads/Drugs/DevelopmentApprovalProcess/FormsSubmissionRequirements/ElectronicSub
missions/UCM199759.pdf)

3. CDISC Study Data Tabulation Model, Version 1.1, April 28, 2005
(http://www.cdisc.org/content1605)

4. CDISC Study Data Tabulation Model Implementation Guide: Human Clinical Trials, Version 3.1.1, August 26, 2005
(http://www.cdisc.org/content1605)

5. CDISC Study Data Tabulation Model, Version 1.2, November 12, 2008
(http://www.cdisc.org/sdtm)

6. CDISC Study Data Tabulation Model Implementation Guide: Human Clinical Trials, Version 3.1.2, November 12,
2008 (http://www.cdisc.org/sdtm)

7. Case Report Tabulation Data Definition Specification (define.xml), Version 1.0, February 9, 2005
(http://www.cdisc.org/define-xml)

8. CDISC Operational Data Model (ODM), Version 1.2.1, January, 2005
(http://www.cdisc.org/odm)

9. CDISC Metadata Submission Guidelines, Appendix to the Study Data Tabulation Model Implementation Guide
3.1.1, Draft version 0.9, July 25, 2007 (http://www.cdisc.org/content1210)

10. CDISC SDTM/ADaM Pilot Project Report. January 31, 2008. (http://www.cdisc.org/content1037)

11. Extensible Markup Language (XML) 1.0, Fourth Edition, August 16, 2006
(http://www.w3.org/TR/2006/REC-xml-20060816)

12. Eric T. Ray, 2003, Learning XML, Creating Self-Describing Data. 2nd Edition, (O’Reilly and Associates)

13. Eric van der Vlist, 2002, XML Schema, The W3C’s Object-Oriented Descriptions for XML (O’Reilly and Associates)

14. Dough Tidwell, 2001, XSLT, Mastering XML Transformations. (O’Reilly and Associates)

15. XML Schema Validation for Define.xml, Version 1.0, November 30, 2009
(http://www.cdisc.org/define-xml)

16. SAS Institute Inc. 2009. SAS® 9.2 XML LIBNAME Engine: User’s Guide. Cary, NC: SAS Institute Inc.
(http://support.sas.com/documentation/cdl/en/engxml/61740/PDF/default/engxml.pdf)

17. SAS XML Mapper download: http://www.sas.com/apps/demosdownloads/92_SDL_sysdep.jsp?packageID=000513

CONTACT INFORMATION
Lex Jansen,
Senior Consultant, Clinical Data Strategies
Octagon Research Solutions, Inc.
585 East Swedesford Road, Suite 200
Wayne, PA 19087
Email:

This paper can be found at http://www.lexjansen.com together with links to more than 10,000 other papers that
were presented at SAS usergroups.

SAS and all other SAS Institute Inc. product or service names are registered trademarks or trademarks of SAS Institute
Inc. in the USA and other countries. ® indicates USA registration. Other brand and product names are trademarks of
their respective companies.

19

Hands-on WorkshopsSAS Global Forum 2010

http://www.fda.gov/downloads/Drugs/GuidanceComplianceRegulatoryInformation/Guidances/UCM072349.pdf
http://www.fda.gov/downloads/Drugs/DevelopmentApprovalProcess/FormsSubmissionRequirements/ElectronicSubmissions/UCM199759.pdf
http://www.fda.gov/downloads/Drugs/DevelopmentApprovalProcess/FormsSubmissionRequirements/ElectronicSubmissions/UCM199759.pdf
http://www.cdisc.org/content1605
http://www.cdisc.org/content1605
http://www.cdisc.org/sdtm
http://www.cdisc.org/sdtm
http://www.cdisc.org/define-xml
http://www.cdisc.org/odm
http://www.cdisc.org/content1210
http://www.cdisc.org/content1037
http://www.w3.org/TR/2006/REC-xml-20060816
http://www.oreilly.com/catalog/learnxml2/
http://www.oreilly.com/catalog/xmlschema/
http://www.oreilly.com/catalog/xslt/
http://www.cdisc.org/define-xml
http://support.sas.com/documentation/cdl/en/engxml/61740/PDF/default/engxml.pdf
http://www.sas.com/apps/demosdownloads/92_SDL_sysdep.jsp?packageID=000513
http://www.lexjansen.com/

APPENDIX
(incomplete) data model for Define.xml

20

Hands-on WorkshopsSAS Global Forum 2010

	2010 Table of Contents

