
 1

Paper 083-2010

SAS
®
 Code Validation: L.E.T.O Method

Aaron Augustine, Information Resources, Inc., Chicago, IL

ABSTRACT

Coders write abundant amounts of SAS® code for ad hoc analysis. This code is not usually intended for use in a full
scale production system, but it is still critical that it be validated. Specifically, the code should meet the necessary
business requirements, be syntactically correct and have the output reviewed. What makes this challenging is
coders must often do this without the benefit of external testing/peer review and usually in a short time frame. This
paper presents a method and checklist for reviewing your work that will ensure each of these points are covered. It is
easy to remember and implement. The content presented here is not specific to any particular SAS platform or
version. It is intended for beginning and intermediate SAS coders.

INTRODUCTION

In an analytics world a lot of SAS code is written for ad hoc analysis. The challenge is to provide an adequate level
of validation for a program within the time constraints of the project. If a person searches the web they would find
several prior SAS Global Forum papers related to debugging, log review and validation. Each paper generally
focuses on debugging or validation. This paper takes a different approach by covering both aspects. It describes a
method to review programs for the correct logic, syntax, record counts and output that is applicable to any platform.
The method is easy to remember and implement.

 BACKGROUND

Searching the web for such SAS topics as Debugging, Validation, and Error handling a person will find approximately
15 different SAS Global Forum papers. Upon reviewing these, each paper generally would fall into two camps:
Debugging/Log review and Code Validation. For Example, in SUGI 28, Lora D. Delwiche & Susan J. Slaughter gives
a very practical guide for debugging SAS programs with ERRORS, WARNINGS, AND NOTES (OH MY) A Practical
Guide To Debugging SAS Programs. This paper is an excellent source for details on common errors, but it could
use more details on program validation. Also in SUGI 28, Neil Howard presented a paper on Beyond Debugging:
Program Validation. The paper also gives a good overview of how to validate, but it may be challenging to
implement depending on project timelines. In the end what most coders really need is a quick method to verify that
their logic, syntax, record counts and output are correct. The L.E.T.O method accomplishes each of these
objectives.

L.E.T.O Method

The L.E.T.O method stands for:
 L: Logic: Review the code for the correct logic
 E: ERROR: Review the log for Errors, Warning, Uninitialized, Etc.
 T: Trace: Trace the record counts in the log
 O: Output: Check the output file

Anyone working with SAS can use this method to quickly determine if the code they are working with is validated. To
illustrate this method this paper provides a sample SAS code at the end along with the log and .LST files. The paper
will reference this sample as it describes each step in the method. The amount of time a coder spends on each step
will depend on the complexity of the code and what steps are executing. For example, checking for “repeats of BY
values” is not necessary unless the code is merging files with the Data Step.

The sample code presented is a simple example that reads in a source file with and ID, FIPSCODE and CENTS
field. It then merges up a translation file to calculate total dollars by County Name and write out the results. The
presentation of the method starts below with L: LOGIC.

L: LOGIC

New coders sometimes have the tendency to rush programs focusing first on making sure there are no syntax
errors. This is an important step but it is more important to make sure that the correct requirements and logic are

Coders' CornerSAS Global Forum 2010

 2

coded before reviewing a log that may change anyway. Once a coder finishes a program, they should go back and
separately list out the requirements of the code. Then they should trace back and make sure each point is covered.
An even better approach would be to write out each functional step in the code as a comment. This way they will
align to the requirements as they write the code. For example, in the sample code for this paper the brief high level
requirements are listed at the top of the program as comments and at each appropriate step.

/*HIGH LEVEL CODE REQUIREMENTS AS COMMENTS*/

/*1. Read in sources file*/

/*2. Merge in translation file*/

/*3. Run calculations*/

/*4. Write out Results*/

E: ERROR

Some coders seem to focus more on just looking for ERROR, WARNING, and uninitialized messages. Examples
are given in the sample code for each of these.

NOTE: Variable dummy is uninitialized.

88 proc freq data=sumout; tables _fre_; tile '_freq_ check';

 14

ERROR: Variable _FRE_ not found.

WARNING 14-169: Assuming the symbol TITLE was misspelled as tile.

These messages are a good place to start, but it is essential that coders extend their review of the log for other key
messages such as LOST CARD, new line, truncated, repeats of BY values, missing and Invalid data. Ignoring
these messages can be problematic. A more detailed discussion on these messages is given below. A coder
should keep in mind that depending on the program editor/environment these items may or may not be case
sensitive.

LOST CARD/new line/truncated/Invalid data

These SAS notes are often overlooked when reading in an external data file. However coders should double check
and verify why the message occurred and resolve them accordingly. For the data source given, these messages
could be acceptable, but in general it’s safer to resolve these messages since they could be masking other issues in
the input files. The sample code provides an example of each one of these messages. (See comments and code
below.)

o When reading in the source.txt file the LOST CARD and new line notes are due to missing values and can
be resolved by adding a MISSOVER option to the infile statement.

o The truncated message is caused by a LRECL option on the infile for the translation.txt file that is too short.
It should be adjusted to 100.

o The Invalid Data is due to a text value in a field that is defined as numeric in source.txt. SAS will treat this
as missing. For this example this is sufficient, but a coder may want to investigate their data source further
depending on the extent of the Invalid data messages.

NOTE: The infile '/ahome/msaja/source.txt' is:

 Filename=/ahome/msaja/source.txt,

 Owner Name=msaja,Group Name=act_dev,

 Access Permission=rw-r--r--,

 Last Modified=Mon Oct 19 20:28:32 2009,

2 The SAS System

 10:08 Tuesday, October 20, 2009

 File Size (bytes)=361

NOTE: Invalid data for cents in line 13 10-13.

RULE: ----+---1----+---2----+---3----+---4----+---5----+---6

13 14 25027 text 13

id=14 fipscode=25027 cents=. _ERROR_=1 _N_=13

NOTE: LOST CARD.

Coders' CornerSAS Global Forum 2010

 3

id=28 fipscode=25027 cents=. _ERROR_=1 _N_=28

NOTE: 28 records were read from the infile '/ahome/msaja/source.txt'.

 The minimum record length was 9.

 The maximum record length was 13.

NOTE: SAS went to a new line when INPUT statement reached past the

 end of a line.

NOTE: The infile '/ahome/msaja/translation.txt' is:

3 The SAS System

 10:08 Tuesday, October 20, 2009

 Filename=/ahome/msaja/translation.txt,

 Owner Name=msaja,Group Name=act_dev,

 Access Permission=rw-r--r--,

 Last Modified=Mon Oct 19 20:03:34 2009,

 File Size (bytes)=414

NOTE: 28 records were read from the infile

 '/ahome/msaja/translation.txt'.

 The minimum record length was 10.

 The maximum record length was 10.

 One or more lines were truncated.

In general truncated and invalid data messages are easier to resolve than Lost Card/New line. SUGI Paper 058-30,
In Search of the LOST CARD, gives some good discussion on these topics.

Repeats of BY Values

This message occurs when the merge statement has more than one dataset with repeats of by values. If a coder
encounters this message, they should first check the expected structures of the input files and determine if the
repeat by values should exist, and then if needed resolve it accordingly. Often new coders might want to simply
remove the duplicates rather than figuring out why they exist in the first place. Look below for an example of this
message.

NOTE: MERGE statement has more than one data set with repeats of BY

 values.

In this particular example, there are duplicate records in the translation file that could be removed with a NODUPKEY
option on the sort before the merge step. SUGI Paper 194-25, Pruning the SASLOG –Digging into the Roots of
NOTEs, WARNINGs, and ERRORs, also describes the repeat values message and a way to identify why the
message occurred.

Missing

Missing values are not uncommon and coders may have a tendency to overlook this message. This message
however could be an indicator that (a) There is a problem with the dataset processing or (b) There is a data condition
that has not been accounted for. Whatever the reason it would be a mistake to ignore the message without first
determining if it is acceptable to have missing values or not. See example below.

24 data source;

25 set source;

26 dollars=cents/100; /*convert cents to dollars*/

27 run;

NOTE: Missing values were generated as a result of performing an

 operation on missing values.

 Each place is given by: (Number of times) at (Line):(Column).

 1 at 26:16

The source data file has missing values for CENTS for some records.

T: TRACE

Once a coder has reviewed the logic of their program and resolved all messages in the log, it is a good idea to trace
the record counts of the log from start to end. Other documents and papers recommend printing out a few

Coders' CornerSAS Global Forum 2010

 4

observations or using PUT statements to output data to verify logic, but the L.E.T.O. method suggests a coder take it
one step further. As they read the log they should ask these questions:

1. What is the expected number of records for this input/output file? For example,

NOTE: The data set WORK.SOURCE has 27 observations and 3 variables.

NOTE: DATA statement used (Total process time):

The source file should have had 28 records read in from the raw file rather than 27.

2. How many variables do I expect? For example,

67 /*3. Run calculations*/

68 proc summary data=aandb;

69 by county_name;

5 The SAS System

 10:08 Tuesday, October 20, 2009

70 var dollars;

71 output out=sumout (drop= _type_) sum=;

72

NOTE: There were 28 observations read from the data set WORK.AANDB.

NOTE: The data set WORK.SUMOUT has 13 observations and 3 variables.

NOTE: PROCEDURE SUMMARY used (Total process time):

From the summary step a coder would expect to see 3 variables: COUNTY_NAME, _FREQ_, and DOLLARS.

3. When files are merged how many records should be either file or in both? For example,

47 data aandb

48 anotb

49 bnota

4 The SAS System

 10:08 Tuesday, October 20, 2009

50 ;

51 merge source (in=a)

52 translation (in=b)

53 ;

54 by fipscode;

55 testvar=dummy;

56 if a and b then output aandb;

57 else if a and not b then output anotb;

58 else if not a and b then output bnota;

59 run;

NOTE: Variable dummy is uninitialized.

NOTE: MERGE statement has more than one data set with repeats of BY

 values.

NOTE: There were 27 observations read from the data set WORK.SOURCE.

NOTE: There were 28 observations read from the data set

 WORK.TRANSLATION.

NOTE: The data set WORK.AANDB has 28 observations and 7 variables.

NOTE: The data set WORK.ANOTB has 0 observations and 7 variables.

NOTE: The data set WORK.BNOTA has 0 observations and 7 variables.

In this case a coder would expect all the records in the source file to have a translation record. If there were
records in ANOTB or BNOTA there could be a problem with the input files or code logic.

A coder comparing their expectations against what they observe in the log is a good way to see when they’re short
records/variables or have more than anticipated. Both situations often mean that the code logic and data is not

Coders' CornerSAS Global Forum 2010

 5

lining up and some corrective action is required.

O: OUTPUT

The last step in the method is to check the output. This step applies to both the .LST file and any other output files
produced by the program. Specifically, when a coder reviews the .LST and OUTPUT files they should check that:

(a) The output matches the format specified
(b) Look for any missing values
(c) Spot check any difficult calculations or formulas
(d) Output is consistent with general logic

The AANDB merged file in the sample code demonstrates issues (a) through (c).

(a) The COUNTY_NAME is truncated due to no length statement when reading in the translation file
(b) The TESTVAR is missing since DUMMY is uninitialized.
(c) The DOLLARS calculation is correct.

 aandb 3

 10:08 Tuesday, October 20, 2009

 county_

 Obs id fipscode cents dollars name testvar dummy

 1 1 25001 100 1 Barn . .

 2 15 25001 100 1 Barn . .

 3 2 25003 200 2 Berk . .

 4 16 25003 200 2 Berk . .

 5 3 25005 300 3 Bris . .

The final output file sample1.txt demonstrates issue (d) specifically, the starting position for the _FREQ_
variable is incorrect and the COUNTY_NAME is truncated. The coder would also expect the _FREQ_ to be 2 for
each variable based on the source file content but Hamp shows 4.

Barn 2 2.00

Berk 2 4.00

Bris 2 6.00

Duke 2 8.00

Esse 2 10.00

Fran 2 12.00

Hamp 4 30.00

Midd 2 18.00

Nant 2 20.00

Norf 2 22.00

Plym 2 24.00

Suff 2 26.00

Worc 2 .

In short, output checks are often overlooked but are essential since they are not obvious and can have a big impact
on the results.

Coders' CornerSAS Global Forum 2010

 6

Check List

This section provides a checklist that the coder could use to implement this method. In general as the coder gains
confidence with this method, these checks will become almost second nature.

1. Logic: Check the code logic against requirements
2. Error: Review the logic for the following items and resolve accordingly:

a. ERROR, WARNING, uninitialized,
b. LOST CARD, new line, truncated, Invalid data
c. repeats of BY values
d. missing

3. Trace: Trace the record counts of the log
a. Expected number of records and variables
b. Record counts for datasets resulting from merges (A and B, A not B, B not A)
c. Expected number of duplicates from a PROC SORT NODUPKEY

4. Output: Check the .LST and output files for
a. The output matches the format specified (variables/formats)
b. Look for any missing values.
c. Spot check any difficult calculations or formulas
d. Output is consistent with general logic.

Conclusion

Full scale production SAS code should have all the necessary review and testing plans executed before
implementation. For ad hoc SAS code, coders often do not have the benefit of external testing or peer review and
are usually working in short time periods. The L.E.T.O method provides a checklist to coders to verify their work in a
way that is effective and quick to implement. It can help verify the code meets the necessary business requirements,
is syntactically correct and has the output validated.

References

Andrew T. Kuligowski, In Search of the LOST CARD, Thirtieth Annual SAS Users Group International Conference,
Philadelphia, PA

Andrew T. Kuligowski, Pruning the SASLOG –Digging into the Roots of NOTEs, WARNINGs, and ERRORs, Twenty
Fifth Annual SAS Users Group International Conference, Indianapolis, IN

Lora D. Delwiche & Susan J. Slaughter, ERRORS, WARNINGS, AND NOTES (OH MY) A Practical Guide To
Debugging SAS Programs, Proceedings of the Twenty Eighth Annual SAS Users Group International Conference,
Seattle, WA

Neil Howard, Beyond Debugging: Program Validation, Proceedings of the Twenty Eighth Annual SAS Users Group
International Conference, Seattle, WA

Contact Information

Comments and questions are valued and encouraged. Contact the author at:

Aaron Augustine
Director, Analytics Research & Development
Information Resources, Inc.
Tel: +1 312 474 2159
aaron.augustine@infores.com or augustine17@sbcglobal.net
www.infores.com

SAS and all other SAS Institute Inc. product or service names are registered trademarks or trademarks of SAS
Institute Inc. in the USA and other countries. ® indicates USA registration.

Other brand and product names are trademarks of their respective companies.

Coders' CornerSAS Global Forum 2010

mailto:aaron.augustine@infores.com
mailto:augustine17@sbcglobal.net
http://www.infores.com/

 7

Sample Code Source Files

source.txt translation.txt

1 25001 100

2 25003 200

3 25005 300

4 25007 400

5 25009 500

6 25011 600

7 25013 700

8 25015 800

9 25017 900

10 25019 1000

11 25021 1100

12 25023 1200

14 25027 text

13 25025 1300

15 25001 100

16 25003 200

17 25005 300

18 25007 400

19 25009 500

20 25011 600

21 25013 700

22 25015 800

23 25017 900

24 25019 1000

25 25021 1100

26 25023 1200

27 25025 1300

28 25027

25001 Barnstable

25003 Berkshire

25005 Bristol

25007 Dukes

25009 Essex

25011 Franklin

25013 Hampden

25015 Hampshire

25017 Middlesex

25019 Nantucket

25021 Norfolk

25023 Plymouth

25025 Suffolk

25027 Worcester

25001 Barnstable

25003 Berkshire

25005 Bristol

25007 Dukes

25009 Essex

25011 Franklin

25013 Hampden

25015 Hampshire

25017 Middlesex

25019 Nantucket

25021 Norfolk

25023 Plymouth

25025 Suffolk

25027 Worcester

Code
NOTE: This source code is provided for the
purpose of illustrating the points made in this
paper. Readers should be encouraged to
evaluate and test this source code thoroughly,
before deciding to use it in their own SAS
programs.

/*CODE EXAMPLE FOR L.E.T.O METHOD*/

/*20091018*/

/*Aaron Augustine*/

/*HIGH LEVEL CODE REQUIREMENTS AS

COMMENTS*/

/*1. Read in sources file*/

/*2. Merge in translation file*/

/*3. Run calculations*/

/*4. Write out Results*/

options ls=70;

/*1. Read in sources file*/

data source;

 infile '/ahome/msaja/source.txt';

 input

 id

 fipscode

 cents

 ;

run;

data source;

 set source;

 dollars=cents/100; /*convert cents

to dollars*/

run;

proc print data=source(obs=5); title

'source file'; run;

data translation;

 infile

'/ahome/msaja/translation.txt'

lrecl=10;

 input

 fipscode

 county_name $

 ;

run;

proc print data=translation(obs=5);

title 'translation file'; run;

/*2. Merge in translation file*/

proc sort data=source; by

fipscode; run;

proc sort data=translation; by

fipscode; run;

data aandb

Coders' CornerSAS Global Forum 2010

 8

 anotb

 bnota

 ;

 merge source (in=a)

 translation (in=b)

 ;

 by fipscode;

 testvar=dummy;

 if a and b then output aandb;

 else if a and not b then output

anotb;

 else if not a and b then output

bnota;

run;

proc print data=aandb(obs=5); title

'aandb'; run;

proc print data=anotb(obs=5); title

'anotb'; run;

proc print data=bnota(obs=5); title

'bnota'; run;

/*3. Run calculations*/

proc summary data=aandb;

 by county_name;

 var dollars;

 output out=sumout (drop= _type_)

sum=;

proc print data=sumout; title

'sumout file'; run;

/*4. Write out Results*/

filename sumout

'/ahome/msaja/sample1.txt';

data _null_;

 set sumout;

 file sumout;

 put

 @1 county_name $10.

 @9 _freq_ 8.

 @20 dollars 8.2

 ;

run;

proc freq data=sumout; tables _fre_;

tile '_freq_ check'; run;

/*End of program*/

endsas;

Log

1 /*CODE EXAMPLE FOR

L.E.T.O METHOD*/

2 /*20091018*/

3 /*Aaron Augustine*/

4

5

6 /*HIGH LEVEL CODE

REQUIREMENTS AS COMMENTS*/

7 /*1. Read in sources

file*/

8 /*2. Merge in translation

file*/

9 /*3. Run calculations*/

10 /*4. Write out Results*/

11

12 options ls=70;

13

14 /*1. Read in sources

file*/

15 data source;

16 infile

'/ahome/msaja/source.txt';

17 input

18 id

19 fipscode

20 cents

21 ;

22 run;

NOTE: The infile

'/ahome/msaja/source.txt' is:

Filename=/ahome/msaja/source.txt,

 Owner Name=msaja,Group

Name=act_dev,

 Access Permission=rw-r--r--,

 Last Modified=Mon Oct 19

20:28:32 2009,

2 The SAS

System

10:08 Tuesday, October 20, 2009

 File Size (bytes)=361

NOTE: Invalid data for cents in line

13 10-13.

RULE: ----+---1----+---2----+---

3----+---4----+---5----+---6

13 14 25027 text 13

id=14 fipscode=25027 cents=.

ERROR=1 _N_=13

NOTE: LOST CARD.

id=28 fipscode=25027 cents=.

ERROR=1 _N_=28

NOTE: 28 records were read from the

infile '/ahome/msaja/source.txt'.

 The minimum record length was

9.

 The maximum record length was

13.

NOTE: SAS went to a new line when

INPUT statement reached past the

 end of a line.

NOTE: The data set WORK.SOURCE has

27 observations and 3 variables.

NOTE: DATA statement used (Total

process time):

 real time 0.02

seconds

 cpu time 0.02

seconds

23

24 data source;

25 set source;

26 dollars=cents/100;

/*convert cents to dollars*/

27 run;

NOTE: Missing values were generated

as a result of performing an

 operation on missing values.

 Each place is given by:

(Number of times) at

(Line):(Column).

 1 at 26:16

NOTE: There were 27 observations

read from the data set WORK.SOURCE.

NOTE: The data set WORK.SOURCE has

27 observations and 4 variables.

Coders' CornerSAS Global Forum 2010

 9

NOTE: DATA statement used (Total

process time):

 real time 0.01

seconds

 cpu time 0.00

seconds

28

29 proc print

data=source(obs=5); title 'source

file'; run;

NOTE: There were 5 observations read

from the data set WORK.SOURCE.

NOTE: The PROCEDURE PRINT printed

page 1.

NOTE: PROCEDURE PRINT used (Total

process time):

 real time 0.09

seconds

 cpu time 0.05

seconds

30

31

32 data translation;

33 infile

'/ahome/msaja/translation.txt'

lrecl=10;

34 input

35 fipscode

36 county_name $

37 ;

38 run;

NOTE: The infile

'/ahome/msaja/translation.txt' is:

3 The SAS

System

10:08 Tuesday, October 20, 2009

Filename=/ahome/msaja/translation.tx

t,

 Owner Name=msaja,Group

Name=act_dev,

 Access Permission=rw-r--r--,

 Last Modified=Mon Oct 19

20:03:34 2009,

 File Size (bytes)=414

NOTE: 28 records were read from the

infile

'/ahome/msaja/translation.txt'.

 The minimum record length was

10.

 The maximum record length was

10.

 One or more lines were

truncated.

NOTE: The data set WORK.TRANSLATION

has 28 observations and 2

 variables.

NOTE: DATA statement used (Total

process time):

 real time 0.01

seconds

 cpu time 0.01

seconds

39 proc print

data=translation(obs=5); title

'translation

39 ! file'; run;

NOTE: There were 5 observations read

from the data set

 WORK.TRANSLATION.

NOTE: The PROCEDURE PRINT printed

page 2.

NOTE: PROCEDURE PRINT used (Total

process time):

 real time 0.00

seconds

 cpu time 0.00

seconds

40

41

42

43 /*2. Merge in translation

file*/

44 proc sort data=source;

by fipscode; run;

NOTE: There were 27 observations

read from the data set WORK.SOURCE.

NOTE: The data set WORK.SOURCE has

27 observations and 4 variables.

NOTE: PROCEDURE SORT used (Total

process time):

 real time 0.00

seconds

 cpu time 0.00

seconds

45 proc sort

data=translation; by fipscode; run;

NOTE: There were 28 observations

read from the data set

 WORK.TRANSLATION.

NOTE: The data set WORK.TRANSLATION

has 28 observations and 2

 variables.

NOTE: PROCEDURE SORT used (Total

process time):

 real time 0.00

seconds

 cpu time 0.00

seconds

46

47 data aandb

48 anotb

49 bnota

4 The SAS

System

10:08 Tuesday, October 20, 2009

50 ;

51 merge source

(in=a)

52 translation

(in=b)

53 ;

54 by fipscode;

55 testvar=dummy;

Coders' CornerSAS Global Forum 2010

 10

56 if a and b then output

aandb;

57 else if a and not b

then output anotb;

58 else if not a and b

then output bnota;

59 run;

NOTE: Variable dummy is

uninitialized.

NOTE: MERGE statement has more than

one data set with repeats of BY

 values.

NOTE: There were 27 observations

read from the data set WORK.SOURCE.

NOTE: There were 28 observations

read from the data set

 WORK.TRANSLATION.

NOTE: The data set WORK.AANDB has 28

observations and 7 variables.

NOTE: The data set WORK.ANOTB has 0

observations and 7 variables.

NOTE: The data set WORK.BNOTA has 0

observations and 7 variables.

NOTE: DATA statement used (Total

process time):

 real time 0.01

seconds

 cpu time 0.02

seconds

60

61 proc print

data=aandb(obs=5); title 'aandb';

run;

NOTE: There were 5 observations read

from the data set WORK.AANDB.

NOTE: The PROCEDURE PRINT printed

page 3.

NOTE: PROCEDURE PRINT used (Total

process time):

 real time 0.00

seconds

 cpu time 0.00

seconds

62 proc print

data=anotb(obs=5); title 'anotb';

run;

NOTE: No observations in data set

WORK.ANOTB.

NOTE: PROCEDURE PRINT used (Total

process time):

 real time 0.00

seconds

 cpu time 0.00

seconds

63 proc print

data=bnota(obs=5); title 'bnota';

run;

NOTE: No observations in data set

WORK.BNOTA.

NOTE: PROCEDURE PRINT used (Total

process time):

 real time 0.00

seconds

 cpu time 0.00

seconds

64

65

66

67 /*3. Run calculations*/

68 proc summary data=aandb;

69 by county_name;

5 The SAS

System

10:08 Tuesday, October 20, 2009

70 var dollars;

71 output out=sumout

(drop= _type_) sum=;

72

NOTE: There were 28 observations

read from the data set WORK.AANDB.

NOTE: The data set WORK.SUMOUT has

13 observations and 3 variables.

NOTE: PROCEDURE SUMMARY used (Total

process time):

 real time 0.01

seconds

 cpu time 0.02

seconds

73 proc print data=sumout;

title 'sumout file'; run;

NOTE: There were 13 observations

read from the data set WORK.SUMOUT.

NOTE: The PROCEDURE PRINT printed

page 4.

NOTE: PROCEDURE PRINT used (Total

process time):

 real time 0.00

seconds

 cpu time 0.00

seconds

74

75

76 /*4. Write out Results*/

77 filename sumout

'/ahome/msaja/sample1.txt';

78 data _null_;

79 set sumout;

80 file sumout;

81 put

82 @1 county_name $10.

83 @9 _freq_ 8.

84 @20 dollars 8.2

85 ;

86 run;

NOTE: The file SUMOUT is:

Filename=/ahome/msaja/sample1.txt,

 Owner Name=msaja,Group

Name=act_dev,

 Access Permission=rw-r--r--,

 Last Modified=Tue Oct 20

10:08:33 2009

NOTE: 13 records were written to the

file SUMOUT.

 The minimum record length was

27.

Coders' CornerSAS Global Forum 2010

 11

 The maximum record length was

27.

NOTE: There were 13 observations

read from the data set WORK.SUMOUT.

NOTE: DATA statement used (Total

process time):

 real time 0.01

seconds

 cpu time 0.00

seconds

87

88 proc freq data=sumout;

tables _fre_; tile '_freq_ check';

14

ERROR: Variable _FRE_ not found.

WARNING 14-169: Assuming the symbol

TITLE was misspelled as tile.

6 The SAS

System

10:08 Tuesday, October 20, 2009

NOTE: The SAS System stopped

processing this step because of

errors.

NOTE: PROCEDURE FREQ used (Total

process time):

 real time 0.00

seconds

 cpu time 0.00

seconds

89

90 /*End of program*/

91 endsas;

ERROR: Errors printed on page 5.

NOTE: SAS Institute Inc., SAS Campus

Drive, Cary, NC USA 27513-2414

NOTE: The SAS System used:

 real time 0.44

seconds

 cpu time 0.23

seconds

LST file

 source file 1

 10:08 Tuesday, October 20, 2009

 Obs id fipscode cents dollars

 1 1 25001 100 1

 2 2 25003 200 2

 3 3 25005 300 3

 4 4 25007 400 4

 5 5 25009 500 5

 translation file 2

 10:08 Tuesday, October 20, 2009

 county_

 Obs fipscode name

 1 25001 Barn

 2 25003 Berk

 3 25005 Bris

 4 25007 Duke

 5 25009 Esse

 aandb 3

 10:08 Tuesday, October 20, 2009

 county_

 Obs id fipscode cents dollars name testvar dummy

 1 1 25001 100 1 Barn . .

 2 15 25001 100 1 Barn . .

 3 2 25003 200 2 Berk . .

 4 16 25003 200 2 Berk . .

 5 3 25005 300 3 Bris . .

 sumout file 4

 10:08 Tuesday, October 20, 2009

 county_

 Obs name _FREQ_ dollars

 1 Barn 2 2

 2 Berk 2 4

 3 Bris 2 6

Coders' CornerSAS Global Forum 2010

12

 4 Duke 2 8

 5 Esse 2 10

 6 Fran 2 12

 7 Hamp 4 30

 8 Midd 2 18

 9 Nant 2 20

 10 Norf 2 22

 11 Plym 2 24

 12 Suff 2 26

 13 Worc 2 .

Coders' CornerSAS Global Forum 2010

	2010 Table of Contents

