
-1-

* example 1 ... straight line distance calculation;

data _null_;

* ZIPCITYDISTANCE function;
d1 = zipcitydistance(12203,27513);

* find lat/long of center of 12203 (author's home, Albany, NY);
zip = 12203;
set sashelp.zipcode (rename=(x=long1 y=lat1))key=zip/unique;

* find lat/long of center of 27513 (SAS, Cary, NC);
zip = 27513;
set sashelp.zipcode (rename=(x=long2 y=lat2)) key=zip/unique;

file print;
put
"LATITUDE AND LONGITUDE OF TWO LOCATIONS (FROM SASHELP.ZIPCODE)" //
"ZIP 12203: LATITUDE " lat1 " LONGITUDE " long1 /
"ZIP 27513: LATITUDE " lat2 " LONGITUDE " long2 /;

* GEODIST function;
d2 = geodist(lat1, long1, lat2, long2, 'M');

*
convert latitude and longitude from degrees
to radians for use in Haversine formula
;
d_to_r = constant('pi')/180;
lat1 = lat1 * d_to_r; long1 = long1 * d_to_r;
lat2 = lat2 * d_to_r; long2 = long2 * d_to_r;

*
HAVERSINE formula (earth radius of 3949.99 miles
used to produce distance in miles)
;
d3 = 3949.99 * arcos(sin(lat1) * sin(lat2) + cos(lat1) *
 cos(lat2) * cos(long2 - long1));

put
"STRAIGHT LINE DISTANCE COMPARISON" //
"ZIPCITYDISTANCE : " d1 /
"GEODIST : " d2 /
"HAVERSINE : " d3;

stop;
run;

Paper 050-2010

Driving Distances and Times Using SAS® and Google Maps
Mike Zdeb, University@Albany School of Public Health, Rensselaer, NY

ABSTRACT
SAS 9.2 contains new functions (ZIPCITYDISTANCE, GEODIST) that allow a user to compute geodesic distance (the shortest
distance between two points on the surface of a sphere). Both functions use the Vincenty distance formula. Prior to SAS 9.2,
a data step was used to compute such distances, commonly with the Haversine formula. Vincenty and Haversine distance
estimates are straight line distances and there are occasions where that type of estimate is what you need. There are other
occasions where what you want is not the straight line distance, but a driving distance. Given only one combination of
locations, using Google Maps to get the driving distance and time is no problem. However, if you have a large number of
location pairs, a FILENAME statement and the URL access method within SAS can be used to access Google Maps multiple
times and extract both the driving distance and time each time the site is accessed.

INTRODUCTION
There are a number of instances where it is important to know the distance between two locations. Some examples include
determining: average distance of potential customers from a new store location; the percentage of the population within a given
distance from a specialty medical service; chronic disease history among the population living within varying distances from a
pollution source. In each of these situations, calculation of distance is integral to solving a problem.

The information that one has on
location can vary in precision from
knowing only a 5-digit zip code to
knowing the latitude and longitude
(with various intermediate levels
such as a zip+4 or a street
address). Prior to SAS 9.2, a user
had to write a data step with an
equation that calculated distance. A
commonly used equation is based
on the Haversine formula that will
calculate "... great-circle distances
between two points on a sphere
from their longitudes and latitudes
..."1 . New functions in SAS 9.2
simplify distance calculation. The
ZIPCITYDISTANCE function
calculates the distance in miles
between the centroids of two user-
specified zips, while the GEODIST
function calculates the distance in
either miles or kilometers between
two user-specified locations that are
expressed in terms of latitude and
longitude. ZIPCITYDISTANCE
relies in information contained in
the data set SASHELP.ZIPCODE2.
Among the variables in that data set
are the latitude and longitude of zip
code centroids in degrees, with
variable name Y and X respectively.
Example 1 shows how to compute
the distance between the centroid of
two zips: 12203 (the author's home
in Albany, NY); 27513 (SAS in Cary,
NC).

Coders' CornerSAS Global Forum 2010

-2-

LATITUDE AND LONGITUDE OF TWO LOCATIONS (FROM SASHELP.ZIPCODE)

ZIP 12203: LATITUDE 42.691560 LONGITUDE -73.827840
ZIP 27513: LATITUDE 35.805410 LONGITUDE -78.797679

STRAIGHT LINE DISTANCE COMPARISON

ZIPCITYDISTANCE : 544.6
GEODIST : 544.58876085
HAVERSINE : 543.5986627

In example 1, the only arguments required in the ZIPCITYDISTANCE function are two zip codes. Both the GEODIST function
and the Haversine formula require the latitude and longitude and those values are read from the data set SASHELP.ZIPCODE.
That data set is indexed so it easy to extract values using a SET statement with a KEY= option. The values from
SASHELP.ZIPCODE are inserted in the GEODIST function and the 'M' option is used to produce a result in miles (without that
argument, the distance is
calculated by default in
kilometers). The Haversine
formula requires that all values of
latitude and longitude be
expressed in radians, not degrees.
Once the values are converted,
they are inserted into the formula.

The results of example 1 are
shown on the right. First, you can
see the values that were found in
SASHELP.ZIPCODE. Next, the
three distances are shown. The
ZIPCITYDISTANCE function produces a result with
one decimal place, while the GEODIST function
returns the same value, just with more decimal
places. Notice in example 1 that the
ZIPCITYDISTANCE function does the work of
finding the latitude and longitude in
SASHELP.ZIPCODE (you do not have to look up
the values on your own with a SET statement).

The result of the Haversine formula is a bit different
from the function results. Both of the new
functions are based on the Vincenty formula3, said
to be more accurate than the Haversine formula.
Regardless of the formula used, if you were
planning to use the distance estimate for a drive
from Albany to Cary, you can see in the map on
the right that your route would be a bit difficult to
maintain. This is a situation where the driving
distance and perhaps the driving time would be
more important to you than the straight line
distance shown on the map.

DRIVING DISTANCE AND TIMES
There is no driving distance function is SAS. Even
with GIS software, finding driving distances is not a
trivial task. However, it is easy to get both an
estimate of driving distance and driving time with
Google Maps. Once you have brought up the
maps web site in a browser, you can enter the two
zip codes separated by 'to' and the map on the
right is produced. If you cannot read the tiny text in
the Google-produced map, the estimate of driving
distance is 656 miles, with a time of about 10 hours
and 34 minutes (that distance being between zip
centroids).

Another way to get the information about driving
distance in Google Maps is to first enter just one
zip code (12203) and then get a map as shown on
the top of the next page. If you then click the right
mouse button on the location of the zip, you are
presented with a number of choices, among them
being "from here". If you click on that selection,
you can enter the destination zip of 27513, you will
once again get the driving distance and driving
time.

Coders' CornerSAS Global Forum 2010

-3-

AUTOMATING THE TASKS
Looking up one combination of zip codes to get a
driving distance is a trivial task in Google Maps.
However, what if you had the location of a facility
(be it a store, hospital, trauma center, etc.) and
wanted to know the number of people who were
within various drive times to that facility. The first
step in that process might be to find the driving
distance from the centroid of a large number of zip
codes to the centroid of the zip where your facility
is located. You could still do that one-by-one in
Google Maps, but it would be much better if you
could automate that process ... maybe by using
SAS.

If you look in the upper-right corner of the driving route map,
you will see that you can click on LINK and if you do, you
will see a URL that allows you to reproduce map showing
the driving rout between zips 12203 and 27513. That URL
is very long, but buried within all the text of the URL are the
values if the two zip codes. A bit of experimenting with that
long URL shows that it can be reduced to the following ...
http://maps.google.com/maps?daddr=27513&saddr=12203

Given that URL, Google Maps creates a map and you can
look at the HTML that produces what you see on the
screen. Selecting VIEW / SOURCE in Internet Explorer
gives you the display shown on the right. The next task is to
find the driving distance (and driving time) within all that text.
Once that text is found, it should be possible to write some
SAS code that finds that text for you.

Searching through all that HTML shows that the information
you want to extract looks as follows ...

<div class=dditd id=dditd><div>656 mi – about 10 hours 34 mins

and if you could strip away the HTML you can end up with the 656 miles and the 10 hours 34 mins seen on the left side of the
web page produced by Google Maps. The SAS code solution to the manual tasks are ...

Manual Task SAS Code Solution

use Google Maps with a URL that looks as follows ...
http://maps.google.com/maps?daddr=27513&saddr=12203

use the URL access method in a FILENAME statement

find the portion of the HTML that contains the driving
distance and driving time

read the HTML in a data step and use SAS functions to find
and extract the desired information

Coders' CornerSAS Global Forum 2010

http://maps.google.com/maps?daddr=27513&saddr=12203
http://maps.google.com/maps?daddr=27513&saddr=12203

-4-

* example 2;

* enter two zip codes;
%let z1=12203;
%let z2=27513;

* no changes required below this line;

filename x url "http://maps.google.com/maps?daddr=&z2.%nrstr(&saddr)=&z1";

data drive;
retain zip1 &z1 zip2 &z2;
infile x lrecl=32000 pad;
input;
loc = find(_infile_,'dditd>');
if loc ne 0 then do;
 text = substr(_infile_,loc,50);
 text = scan(text,1,'&');
 distance = input(scan(text,-1,'>'),comma12.);
 loc = find(_infile_,'about');
 text = substr(_infile_,loc,50);
 text = scan(text,3,'<>');
* convert times to seconds;
 select;
* combine days and hours;
 when (find(text,'day') ne 0) time = 86400*input(scan(text,1,' '),best.) +
 3600*input(scan(text,3,' '),best.);
* combine hours and minutes;
 when (find(text,'hour') ne 0) time = 3600*input(scan(text,1,' '),best.) +
 60*input(scan(text,3,' '),best.);
* just minutes;
 otherwise time = 60*input(scan(text,1,' '),best.);
 end;
 output;
 stop;
end;
keep zip1 zip2 distance time;
format time time.;
run;

filename x clear;

The SAS code in example 2 creates a map (that you do not see) with Google Maps, then reads the underlying HTML and
extracts the driving distance and driving time. Rather than entering the values of the two zip codes in the FILENAME
statement, two macro variables are used in anticipation of modifying the code to process a large number of zip code
combinations. There may be a few items in the SAS code that are new to you.

In the FILENAME statement, there is text preceded by an ampersand, &saddr, that does not represent a macro variable. The
%NRSTR macro function prevents SAS from interpreting that text as a macro variable. In the data step, you see an INPUT
statement with no variables listed. Each time an INPUT statement is used (with or without a variable list), the entire contents
of the record that is read are moved into a variable with the name _INFILE_4. You can treat _INFILE_ as you would any other
SAS data set variable. Thus you can use the character function FIND to search for the character string 'dditd>' within the
HTML. One you find that string, a number of other functions (SUBSTR, SCAN, INPUT, FIND again) are used to create the
variables DISTANCE and TIME. Given the distance between two locations,
Google Maps produces a driving time in various different ways. The SELECT
statement determines the type of time that is contained in the HTML and
creates a real SAS time variable whose value can be used in subsequent data
steps. The RETAIN statement adds the two zip codes to the data set which
looks as shown on the right.

Coders' CornerSAS Global Forum 2010

-5-

* example 3;

* data set with zip codes;
data zip_info;
set sashelp.zipcode;
where state eq 36 and
 county in (1 21 39 83 91 93 95) and
 zip ne 12203 and
 zip_class is missing;
keep zip;
run;

* place number of zip in a macro variable;
data _null_;
call symputx('nzips',obs);
stop;
set zip_info nobs=obs;
run;

* create a macro that contains a loop to access Google Maps multiple time;
%macro distance_time;
* delete any data set named DISTANCE_TIME that might exist in the WORK library;
proc datasets lib=work nolist;
delete distance_time;
quit;

* read one observation at a time from the data set;
%do j=1 %to &nzips;
data _null_;
nrec = &j;
set zip_info point=nrec;
call symputx('z2',put(zip,z5.));
stop;
run;

* change one zip code in the URL ... zip 12203 is hard-coded as part of the URL;
filename x url "http://maps.google.com/maps?daddr=&z2.%nrstr(&saddr)=12203";

data temp;
retain zip &z2;
<same code as example 2 ... look at that example for details>
keep zip distance time;
run;

filename x clear;

* add observation to the final data set;
proc append base=distance_time data=temp;
run;
%end;
%mend;

* use the macro;
%distance_time;

Now that you can do one pair of locations, go back to the task mentioned earlier in the paper ... you have the location of a
facility and want to know the number of people who are within various drive times to that facility. Assume that the facility is
located in zip 12203 (Albany, NY). Example 3 automates the task of finding driving distances and times to all zip codes in the
counties that surround Albany county (location of zip 12203). The first data step makes a data set of all those zip codes while
the next one places the number of observations in that data set (170) into a macro variable. The portion of the WHERE
statement 'ZIP_CLASS IS MISSING' eliminates zips used for PO boxes, large organizations, businesses, etc. The macro uses
a loop to cycle through the observations in the data set ZIP_INFO, creating a new URL each time a new zip is read. The
required information is extracted from the web page created in the background by Google Maps and added to a data set
named DISTANCE_TIME.

Coders' CornerSAS Global Forum 2010

-6-

* example 4;

ods listing close;
proc univariate data=zp;
var time;
freq pop;
ods output quantiles=qqq;
run;
ods listing;

ods html file='z:\quants.html' style=barrettsblue;
title 'DRIVE TIMES';
proc print data=qqq noobs;
var quantile estimate;
format estimate time5.;
run;
ods html close;

* example 5;

* my home;
%let addr1=59 Lenox Ave 12203;

* someplace in North Carolina;
%let addr2=SAS Campus Drive 27513;

data _null_;
call symput('a1',translate("&addr1",'+',' '));
call symput('a2',translate("&addr2",'+',' '));
run;

filename y url
"http://maps.google.com/maps?daddr=&a1=%nrstr(&saddr)=&a2";

The map on the right shows the location of the zip
centroids in counties in the Albany area. A random
sample of the observations in the data set
DISTANCE_TIME is shown just below the map on
the right. The next task is to match the
observations in that data set to one that contains
the population of each zip code. Then you can
determine the percentage of the population within
various drive times to the facility located in zip
12203. Data from the 2000 census was merged
to the observations in the data set
DISTANCE_TIME. Once each observation
contains both a driving time and a population,
PROC UNIVARIATE can be used find various
statistics.

The table on the right with the title 'DRIVE TIMES'
shows that the median drive time to the centroid of
zip 12203 is 23 minutes. It also shows that
maximum drive time is 1 hour and 47 minutes and
that 90% of the population in the counties shown in
the map on the right is within a 53 minute drive of
zip 12203. The SAS code used to compute the
statistics shown in that table is shown below. In example 4, PROC UNIVARIATE is used and
the FREQ option weights each observation by the number of people in each zip code.

MORE POSSIBILITIES
Rather than use zip centroids, you can also use a full address in the Google Maps lookup. The
SAS code in example 5 below can be used in place of the code shown at the top of example 2.
You can also use addresses in the macro shown in example 3.

Coders' CornerSAS Global Forum 2010

-7-

Finally, there are occasions when you have locations defined in terms of latitude and longitude. In example 1, we found the
latitude and longitude of the zip centroids for zips 12203 and 27513. Those coordinates can also be used in Google Maps to
find a driving time and distance and example 6 uses that data.

The results of example 6 are shown on the right. The distance
and time are almost identical to those found when the zip codes
are used in example 2, where the distance was found to be 656
miles and the time 10 hours and 34 minutes. Remember, the
values used in example 6 are from the data set
SASHELP.ZIPCODE. In example 2, Google Maps selects the
exact points to use when only the zips are specified and the
difference in values produced by examples 2 and 6 is most likely
caused by a slight difference in the latitude and longitude used
as the start and end points of the trip.

CONCLUSION
A number of SAS tools allow a user to access Google Maps and extract driving times and driving distances. The main tool is
the URL access method in the FILENAME statement. Then, the MACRO language can automate the task of looking up
distances and times for many pairs of locations, specified either as pairs of zips, addresses, or lat/long coordinates.

REFERENCES
1 "Calculate distance, bearing and more between Latitude/Longitude points",

http://www.movable-type.co.uk/scripts/latlong.html

2 Hadden, Louise and Zdeb, Mike. “ZIP Code 411: A Well-Kept SAS® Secret”, Proceedings of the Thirty-First Annual SAS
Users Group International Conference. (2006)
http://www2.sas.com/proceedings/sugi31/143-31.pdf

3 "Vincenty formula for distance between two Latitude/Longitude points",
http://www.movable-type.co.uk/scripts/latlong-vincenty.html

4 Schreier, Howard. “Now _INFILE_ is an Automatic Variable ! So What?”, Proceedings of the Thirteenth Annual Northeast
SAS Users Group Conference. (2001)
http://www.nesug.org/proceedings/nesug01/cc/cc4018bw.pdf

DRIVING DISTANCE BETWEEN ...

LAT/LONG: 42.691560,-73.827840
LAT/LONG: 35.805410,-78.797679:

654 MILES (TIME: 10 hours 41 mins)

* example 6;

%let ll1=%str(42.691560,-73.827840);
%let ll2=%str(35.805410,-78.797679);

* no changes required below this line;

filename x url "http://maps.google.com/maps?daddr=&ll2.%nrstr(&saddr)=&ll1";

data _null_;
infile x lrecl=32000 pad;
input;
loc = find(_infile_,'dditd>');
if loc ne 0 then do;
 text = substr(_infile_,loc,50);
 text = scan(text,1,'&');
 distance = input(scan(text,-1,'>'),comma12.);
 loc = find(_infile_,'about');
 text = substr(_infile_,loc,50);
 time = scan(text,3,'<>');
 file print;
 put "DRIVING DISTANCE BETWEEN ..." //
 "LAT/LONG: &LL1" /
 "LAT/LONG: &LL2:" //
 distance "MILES (TIME: " time ")";
 stop;
end;
run;

filename x clear;

Coders' CornerSAS Global Forum 2010

http://www.movable-type.co.uk/scripts/latlong.html
http://www2.sas.com/proceedings/sugi31/143-31.pdf
http://www.movable-type.co.uk/scripts/latlong-vincenty.html
http://www.nesug.org/proceedings/nesug01/cc/cc4018bw.pdf

-8-

SAS COMMUNITY
Much of the material in this paper first appeared on the SAS Community wiki. More code and additions to the material found in
this paper can be found at ...

http://www.sascommunity.org/wiki/Driving_Distances_and_Drive_Times_using_SAS_and_Google_Maps

and other postings by the author can be found at ...

http://www.sascommunity.org/wiki/User:Msz03

ACKNOWLEDGMENTS
This work was funded in part by NIH grant HHSN267200700019C from the Eunice Kennedy Shriver National Institute of Child
Health and Human Development.

TRADEMARK CITATION
SAS and all other SAS Institute Inc. product or service names are registered trademarks or trademarks of SAS Institute Inc. in
the USA and other countries. ® indicates USA registration. Other brand and product names are registered trademarks or
trademarks of their respective companies.

CONTACT INFORMATION
The author can be contacted using e-mail ... Mike Zdeb msz03@albany.edu

Coders' CornerSAS Global Forum 2010

http://www.sascommunity.org/wiki/User:Msz03
http://www.sascommunity.org/wiki/Driving_Distances_and_Drive_Times_using_SAS_and_Google_Maps

	2010 Table of Contents

