SAS Global Forum 2010 Beyond the Basics

Paper 039-2010

SAS® Data Integration Studio Tips and Tricks
Chris Olinger, d-Wise Technologies, Inc., Raleigh, NC
David Kratz, d-Wise Technologies, Inc., Raleigh, NC

ABSTRACT

Anyone who has used SAS® Data Integration Studio to process and transform data has invariably said to themselves
“is there another way to do the things that | want to do?” SAS® Data Integration Studio is great at certain tasks such
as standard transformations, visual representations of code, and impact analysis. However, it can be tricky to perform
some industry standard tasks such as writing jobs that can be promoted and configured through external options files,
loading metadata from non-supported external sources (such as Excel), and managing macros. This tutorial will
explore some of the work-arounds that we have come to rely on while using the application. We will also explore the
latest version of SAS Data Integration Studio to see if any of our pet peeves have been fixed.

INTRODUCTION

Over the last few years, our company has built various SAS warehouses using SAS® Data Integration Studio (DI
Studio). We have found that the tool can be used to good effect, and that features like Impact Analysis, and some
standard transformations, are valuable in implementing a warehouse. That said, the 3.4 version of DI Studio has
some drawbacks that need consideration. Version 4.2 of DI Studio has a great many improvements in these areas,
and is in our opinion, a superior tool. This paper explores both versions of these tools and provides a set of Tips and
Tricks that can be leveraged in both versions. We hope that you will be able to use these techniques to help you get
your job done and that you find them helpful. They have proven invaluable to us.

We will cover the following areas and provide tricks that can be used in various situations:

e Replacing an incorrect table in a job

e Reading and writing to the same table in a job

e Tricks to avoid the expression limit in the SQL transform
e Extract node tricks

e Custom date assignment in the SCD transform

e Leveraging external options files to customize jobs

e Using empty transform to set macro variables

e Managing macros and formats

e Managing metadata using an external source

Note, with these tricks, your mileage may vary. They work well for us, but you must decide based on your situation if
they are applicable or not. And now, onto the show!

REPLACING AN INCORRECT TABLE IN A JOB
THE SETUP

Let's say that there are several similarly named and similarly structured tables, and the wrong one has been used in a
job. Or, let's say that there is a single job one wishes to reuse across multiple studies. In both cases it is now
necessary to replace the table in a pre-extant job.

SAS Global Forum 2010 Beyond the Basics

SAS 9.1.3, DI VERSION 3.4

rocess Designer : Demo Job 2 : SASMain

8 E e > [

Table_1 SAS Extract Extract Table Loader Table_2
Target-

WATKZHKD

Process Editor [| Source Editor [| Log |

Above is a trivial example job in SAS 9.1.3. Table_1 is extracted and loaded into Table_2. The problem is that the
source for the extract needs to be Table_3. This could be achieved by deleting the linkage between Table_1 and the
extract node, and replacing the table with the correct one. However, this would discard the extract node’s mappings,
as well as messing up any assigned expressions. However, there is a better way: exporting and importing the job.

To export the job, simply right click on the job and select Export.

E— |4 Repositories
¥ Foundsation SAS*® Data Integration Studio
i@ BIP Tree

L_Ipe =] Properties
cermolf Wiew Job
[=] Takle_ ’
= [=] Table_ Yiew Code
[Demalin2 % Submit Job
=P dernolil
E?ji Stored Process »
5 Takile_
[Integration Tec web Service »
y Portal Applicati scheduing..,
|| samples

| SAS Data Integ Copy

|| SASDrug Deve [Paste

|| shared Data Paste Spedial,..
Rename

75 Delete

Move ko Folder. ..

Sy trport,, [Exports the selected objects to a file

i_hange Management »

Refresh

This will allow you to choose an appropriate export location and file name for the exported “spk” file. After selecting
Export, proceed through the export process. It doesn’t really matter what one names the export file, or where one
puts it, so long as the file is easy to get back too and doesn’t overwrite anything one would rather keep. After saving,
select Import:

SAS Global Forum 2010 Beyond the Basics

= ﬁ' Repositories
¥ Foundstion This wizard helps yauto impart a collection of objects.
13 BIP Tree

‘, Import Wizard

IO Enter the location of the input SAS package file:

E FProperties
De . Reqgister SDTM Domains

Erowsze..

I- Include access controls
Mews Folder

E ? e Object. . Impuort Option:

% All Objects
D De @ Pews Stored Process Objects that already exist in the destination metadsta repository will be oververiten

I: =3 Copy " Hew Objects Only

= Paske Ohijects that already exist in the destination metadata repositary will not be imported.
D Integra

Paste Special. ..
[Portal 4
D Sammple Renarmes
&S D 75 Delete

| |sasm Mowve bo Folder, ..
Sharec
l’:@ Expork...

ﬁ"-i Im Importart: tis strongly recommended that you create a backup copy of the destination metadata repository before
cotmpleting this import.
Change Managerm| Imports of

Refresh | Help Carcel | = Bk | Mesd = | Firigh |

As one proceeds through the import dialogue, they will be asked to select values for the values in metadata. This will
include the tables. By clicking on the box with the ellipses next to a table name, one will be given a dialogue to select
a table. Whichever table is selected will replace the original. As long as that table shares column names with table
being replaced, the mapping and expressions will be preserved.

Selecttarget tables that correspond to the original tables. Selecttarget tables that correspond to the original tables.

[Select atable... B
- Tahles - Tables —
e EHG‘ Repostories a|
Original / I—
RS -0 Foundstion I
Table_t [& Tables ;
Tetie2 {_|BPTree .
=H_| Dema Folder —
Dependent Objects | Praperies | Depencer _?!:L 4
|| Derma Folder Deme Tahle_2
L3 bemo Job 2 o Demolib?
J—D Integration Technologies
]—D Portal Application Tres
Samples
]—D 545 Data Integration Studio Custom Tree

J—D SAS Drug Development
SRS e

fo

Selected table ITabIe_3 Clear

OK | Cancel | Help |

Help Cancel < Back | Mext = I Firristy Help Cancel = Back | Mext = I Finish

SAS 9.2, DI VERSION 4.2

SAS 9.2 makes this very easy. This is the same job as before, butin 9.2.

SAS Global Forum 20

|

kW @ 1 @wx EmE

Diagram | Cods |- Log | <[cupu |+

Details =-0OX

Status | warnings and Errars | Statistics | Control Flow|

Last Run: Feb 22, 2010 12:05:38 PM §§g Clear all

Mame Status Details
1 [Precode @ Completed successfully
2|5 Extract @ Completed successfully
3|[§] Table Loader @ Completed successfully
4 Postcode @ Completed successfully
5% Demo Job @ Completed successfully

[Completed successfully

Simply right click on the table and choose replace.

B | pronomstor B3RP oy ‘E|4f§ =R

-
— mili = E
Tahld‘_ Properties 'WF Extract > Table Loader — Table_2 14
Open
Connections
Update Metadata
[Analyze
[5] Histary — 84
[k]®| @ —J— @ 100w 8F =
Use as Web Stream —
Diagram -
o I o
Colurins | Status M ¥ Delete onkrol Flow |
Find In » Last Run: Feb 22, 2010 12:05:38 PM 5% Clear Al
Mame Skatus Details
1 Precode (@ Completed successfully
2|5 Extract @ Completed successfully
3|[3] Table Loader @ Completed successfully
4 Postcode @ Completed successfully
‘%} Demo Jab @ Completed successfully

[Completed successfully

From the Table selector dialogue that comes up, choose the replacement table.

Replace Table

Folders | Irventaory |

= L& My Folder

i 2 [Demo Folder
- demolibi
= [demolibz
dernolib2 =
(=

[cars

¥ E TargetCars

[Products [|
|_] shared Data

| _71_Swskem M

2

—J

Selected table: | Table_3 | [Clear

[(a4][Cancel][Help]

SAS Global Forum 2010 Beyond the Basics

It's important to note that replace works best, in both 9.1.3 and 9.2, when the tables that are being swapped share
column names. Only when this is the case will mappings and expressions survive the procedure. If there is
only a partial sharing, only the mappings of those columns and the expressions involving only those shared columns
will survive.

Final note: this procedure can be used to swap any accessible table. That being the case, it can be used to swap to
the same table located in a different library, if that was the goal.

READING AND WRITING TO THE SAME TABLE
THE SETUP

In base SAS it is a relatively common thing to perform operations in place on a table. However, this operation is not
intuitively obvious in DI Studio circa 9.1.3. A job allows only one reference to a given table. Any attempt to link the
same table as both input and output will result in a system error. If you would like to use the table for both input and
output you must instead register the same table metadata twice.

SAS 9.1.3, DI VERSION 3.4

¢¢ Process Designer : Demo Job 3 : SASMain *

EE > E r~ ! Place table ortransform
i i i here :

Eiihi s]
Tahle_1 SAS Exract Extract
Target-

WATKAENR

Process Editor E} | Source Editor I;E' | Log EE’ |

According to the DI Studio help file, the secret lies in library names. By creating two different libnames which each
point to the same physical location, a single table can be defined in metadata twice. However, there is a much
simpler solution: using copy and paste to duplicate a table’s definition in metadata.

Simply copy the table in question and paste it. Give the “new” table an arbitrary name (or leave it as “Copy of ..."),
preferably a name different than the name of the original table (there are many reasons for this, but the specifics are
beyond the scope of this paper). Now, simply choose the new table as the target of the process. You will have two
copies of metadata to maintain but the job will be simpler for it.

EE » E L‘{Eiihi' E‘a - EE

Tahle_1 SAS Extract Extract Tahle Loader Copy of Table_1
Target-

WETKABNR

Process Editor [| Source Editor [| Log [|

SAS Global Forum 2010 Beyond the Basics

SAS 9.2, DI VERSION 4.2

In SAS 9.2, reading and writing to the same table is as simple as dragging the table object onto the job twice, as this
picture indicates. Just route the data from one, into the other.

¥ Demo Job 3 * EJ@EI
B srnmsoo 3R P B (e BE R

~

- Table_1

s Qo= oo -

[R]®| e 0 @ gFE

Diagram | Cods || log [=] Oupk |=

Details -0 x

Status | Warnings and Ervors | Stattics | Contrel Flow |

r=y Last Run: Feb 22, 2010 1:23:11 PM &3 Clear All
Order | Name: Status Details
1 [Precode Completed successully
2|[& Extract Completed successfully
3|[4f] Table Loader Completed successhully
4[pasteads Completed successully
l: Demo Job 3 Completed successFully

|Completed successfully

| Using these techniques may cause one minor problem that DI users might -not be familiar with. Essentially, most DI
transformations output as a View, which is fine, until one attempts to append that view to the table the view is based
on. That being the case, unless planning a direct load, one must make one of the temporary views before the loading
step into a table. Un-checking this option causes the temporary output to be written to a table, and avoids the
problem.

¥ Demo Job 3 *
B bRy mStop B> 38 O OGE R g ol

me a2k

>

Table_1 -— Extract E ' rup.e-rties T - [S Table_1 J
Open |
Connections

Metadata

|%

k]| @ 1 @ too|zem

Reqister Table...

Diagram ‘ Code || Log |=| oOupur | =

| Replace. ..
Details WEE N EE
P - 3 | X Delete |
| Columns | 3tatus | iarnings and Errors | Statistics | Control Flow| |
Last Run: Feb 22, 2010 1:23:11 PM % Clear all
Order Mame Status Details
1|Precode @ Completed successfully
2| E—“‘v Extract @ Completed successfully
3 Eﬁj Table Loader @ Completed successfully
4|Postcade @ Completed successfully
§§’é Demao Job 3 & Completed successfully

|Completed suceassfully

AVOIDING THE EXPRESSION LIMIT
THE SETUP

Consider the following Case statement:

Case
when A = 1 then "Supercallafragalisticexpialladociousl"
when A = 2 then "Supercallafragalisticexpialladocious2"
when A = 3 then "Supercallafragalisticexpialladocious3"
when A = 4 then "Supercallafragalisticexpialladocious4"

SAS Global Forum 2010 Beyond the Basics

when A = 5 then "Supercallafragalisticexpialladocious5"

when A = 6 then "Supercallafragalisticexpialladocious6"

when A = 7 then "Supercallafragalisticexpialladocious7"
else "dociousallaexpiciousfragacallarupes"

End

The code above is notable for 2 reasons. First, it is completely pointless. Second, it will not fit inside the expression
box in the select tab of the SQL join in SAS 9.1.3, as it exceeds 254 characters.

SAS 9.1.3, DI VERSION 3.4

The error here is a peculiar one, especially since the extract node is not so encumbered and the underlying code
written by both is an SQL step. The expression box on the mapping tab of the extract node can support a seemingly
unlimited number of characters. Thus an obvious way of getting around the limitation of the SQL node is to follow it
with an extract containing the expression needed. However, this is not always convenient, or efficient, and so we
investigate the obvious alternatives:

e Case statement writer
e Locally defined formats

e Renaming tables, columns

CASE STATEMENT WRITER

Generally, when expression statements get longer than 254 characters, it is because a case statement is being
written. A case statement is effectively an “if case x then do y else if case z ...” statement that is used with SQL.
Throwing these into the expression node is a quick and easy way of conditionally setting values.

The expression box of an SQL join node has the option of using the CASE dialogue to write these statements.

f& Case Expression

Operand: || Calumn.... |

4 Target tale: waTHavYG WHEN Condition THEM Resutt |
Column Expressioh | Column Descrigtion | ;I
1 [da [l D
2 @ B Choose column(s)...
| 3|@
4@ 2 z
Enter a CASE expression
Advanced,.,
[
e | et | Irpott Yalues | ey | Delete |
ELZE Rezult: I Acvanced... |

Ok I Cancel | Help |

While we find the Case Expression box more tedious to use than simply writing the case expression ourselves, it
does have its advantages. First, it allows the contents of the Case statement to be presented in an ordered fashion,
increasing the reusability of the process. Second, the use of it allows one to bypass the 254 character limit. We have
yet to find an upper limit to the number of when conditions we can create using the Case dialogue.

SAS Global Forum 2010 Beyond the Basics

LOCALLY DEFINED FORMATS

Another way of cheating the character limit is to type fewer characters, and allow for a substitution to take place. If
the data is set up properly, one could simply create a custom format and use the put function to output the column
that way.

For example, if one established a format like so:

proc format;
picture super

1 -7 =9 (prefix="Supercallafragalisticexpialladocious")
other = "dociousallaexpiciousfragacallarupes";
run;

One could simulate the case statement above simply placing “put(A,super.)” in the expression box.

Since formats designed solely for the sake of convenience are not likely to be widely useful, they should be defined
locally, with a scope only as large as the current job. We suggest that they be added to the pre-process code section
of the job.

'¢¢ Demo Job 6 Properties *

Pararneters | Qptiohs | wetes | Futender Attrib tes | Advanced
General Process Pre and Post Process Status Hancling

rPre and Post Proce

¥ Pre Processing
Type: |Metadeta -
Marne: IPredecessor process
Description: I
% Edit Source Code E1
™ Post Proces:
1 proc format 1=
Type: [Metac 2 walue super
3 1 - 1 = "Supercallafragalisticexpialladocious”
4 other = "dociousallaexpiciousiragacallarupes";
Harme: 5 | run:
[
Description

|
Ok I Cancel | Help |

RENAMING TABLES, COLUNMNS

When the difference between an expression length and the allowed length is small, it is often possible to reduce the
length of table and column names in order to get in under the limit. Given the way that DI studio works, it will often
decorate columns referenced in an expression in the format “table_name.column_name”. Depending on the tables
and columns involved, this can eat up a lot of space.

A considerable space savings can be garnered by giving the temporary table leading into the join a shorter name.
However, this comes at the tradeoff of having less descriptive names (which gets even worse when one does the
same thing with column names).

Changing table names is as simple as selecting the Properties of the temporary table that feeds the SQL join,
switching to the Physical Storage tab, and replacing the randomly assigned moniker with a shorter one. One should
take care to make sure that they do not replicate another table name while doing this. Similarly, column names can
be changed in the columns tab of the same table.

SAS Global Forum 2010 Beyond the Basics

EEutract Target Properties 19 [=1 E3

General| Columns | Indlewes Physicel Storage | potes | Extendest attrioutes | Advanced| General| Columne | Indexes Physicel Storage | Hotes | Extended Aftrioutes | Advanced|

DEMS: |sas =l DEMs: [sas |

Ubrary: [enones Tl tew Edit Library: |=nane= x| mew i

Name: [WaTKMIES Name: |al

Scheme: I ;I Tew Edit Schems I ﬂ Pl Ecitt
I Eriabile case-sensitive DEMS ohject names ™ Enable case-sensitive DEMS object names
I™ Eriabsle special characters within DEMS oklect names ™ Ensble special characters within DEMS object hames:

Table Options Table Options |
oK I Cancel | Anply | Help | Ok I Cancel | Apply | Help |

[Extract Target Properties * 1 [=] B8 Extract Target Properties *
General Columns | Indexes | Physical Storage | Notes | Extended Attrioutes | Advanced | General Columns | Indexes | Physical Starage | Notes | Extenced attributes | Acvanced |
Harme Descrigtion Length Type # | Mame | Description Length Type
1 Ay Brcvark 8lCharacter q A a 8lcharacter
2 é\) Beluga &|Character 2 A B|Chatacter
3 8 Mumeric 5 i@ 1 8 Mumeric
4 3 Mutneric 4 @ 2 3Mumeric
| | i | | i
al|w Mewe | Import.. | Delete | -l - e | Irport... | Delete I

0K I Cancel | Apply | Help | oK | Cancel | Apply | Help |

SAS 9.2, DI VERSION 4.2

This SQL expression bug has been fixed in 9.2. It is no longer necessary to trick the system into shorter expressions.
As such, add any expression that you would like, including extra long case statements.

EXTRACT NODE TRICKS

The extract node is one of the simplest tools that DI Studio 9.1.3 provides. The code it generates is generally just
creating a view as a SQL select. However, it has a behavior in DI studio that allows one to perform some interesting
tricks with it. Namely, the extract node can be dropped into the middle of an existing flow, and deleted, without
breaking the flow.

CHANGING JOIN ORDER
THE SETUP

After completing a job containing a join of three or more tables you might find that it was necessary to change the
order of the internal sub-joins in an attempt to minimize the behind the scenes sorts that SAS will use. This problem

SAS Global Forum 2010

Beyond the Basics

can be solved by splitting tables from the merge and carefully planning their reentry. So why should we bother with
extract nodes? In this case, deleting linkages to the SQL node can have negative consequences - especially as jobs
grow larger. Nodes can be lost and linkages can mysteriously disappear. Expressions can be literally destroyed... As
well, we must take into consideration the time necessary to sort everything out. Breaking joins can have profound
implications. What we would like is a way to reorder things without destroying the work that we have already done.

SAS 9.1.3, DI VERSION 3.4

Below is an example job in 9.1.3. Three tables are merged and then loaded into a fourth.

Tahble_1

]

Table_2 SAL Join
o o o

]

Table_4

S0OL Target

WATKAVYG

Table Loader

B

Table_3

Process Editor [| source Edtor [[Log B |

Double clicking on the SQL join node and then selecting the designer tab exposes the join specifics. As can be seen,
Table_1 and Table_2 are joined, before the result is joined with Table_4. There is no way to manipulate the order of
these joins from this screen. This is unfortunate, because the goal is to merge Table_4 with Table_1 first.

S0 oin Propertics

Genernl Detigrar | Status Haresieg | Parameters | Procass | potes | Extenea atriades | advanced |

] | Tabie_1 - Tabtet

]) Table_2 - Table2

Cupsm

GG Tanget-
= JwsThas

crnata ¥ [Source P [L [

Oulmdl

Returning to the main menu, drop an extract node between Table_2 and the SQL node.

10

SAS Global Forum 2010 Beyond the Basics

S0L Target
WS TRAAG

' Process Editor 3 [Source Edtor e [Log [P |

Now, delete the extract node and return to the designer page of the SQL join to see what has happened. Note that

now Table_2 is being joined in second, but that it has gone from being a left join to an inner join. Consequently, a
where clause node has also been added.

| M 50L Juis: Properties

Geners Designer | tatus Honcaen | psrameters | process | noses | taensea smoouses | aavanceal

5]) rante_1- Tabier [E7) vavie_4- Tabie_a

204 Targnt
WATKAVYG

M&lwmalwk’

o | ose | s | we |

Fixing the join structure leaves the state as so, with Table_2 and Table_4 swapped. Unfortunately, this destroys any

kind of special join conditions that might have been set up, but it does not break the flow. You must redo the join logic
and remove the where statement node by hand.

11

SAS Global Forum 2010 Beyond the Basics

‘ i 501 Jain Properties * 1 [=1 E3

General Desioner | Staus Handing | Peremeters | Pracess | otes | Extended stiriautes | savenced |

[5] Table_1-Tablet [E] Table_4-Table_4¢

[E3 | Table_2- Tahle2

Left Propertics

Mame Walug
Tyre Left
Implicit Mo

Parentheses Mo
User Witten Mo
Description

d Jselect

e) SOL Target -
; WISTKAWYG

Create [| Source Ifr | Log

oK I Cancel | Apply | Help |

This illuminates a broader principle. The last table to enter a SQL node will be the last one joined in. This means that
with careful planning, SQL joins can be designed correctly the first time. Alternatively, if something changes, this
behavior can be triggered by placing and deleting extract nodes.

SAS 9.2, DI VERSION 4.2
This is the same job as before, but in SAS 9.2.

2 Demo Job 5

Br vrnEss PP QEE G (@5 68 R

[£3

: a & 1
mnhng =\ FOsnuaom = > [3] vable Laader '—’@ Table_3

—_—a

Table_3 [’
L]

[R]» @ —J @wm g m

Diagram | Code | ~| Log |~ cutpt |+

Details -0Ox

ngs | Status | warnings and Errars | Statistics | Control Flow|

% Clear Al

Order | Hame | Status Details

12

SAS Global Forum 2010 Beyond the Basics

In SAS 9.2, configuring the order of the joins is done very simply. Double clicking the SQL node exposes the
specifics of the join.

¥ Demo Job 5 -> SQL Join *

Buw promsop 30 Bl @ B @ES

Mavigate

= [Create
+-{] 5L Join

o [l select
Eﬂ Table_1 =] %ﬂ ? Jain - = (- From
R — / ~ ol L[Table_t
o] dola L0 Join
7 L[] Table_2
_ ro L3 Jain
et i +-[7 Table_4

Table_2 L/ Eﬂ Table_ 4]- 1 5P where

SQL Clauses

= Clauses
T where
54 Group by
7 Having
21 order by =
(1) Subquery

= Joins
G0 Inner

SQL Join Properties X

Name Walue
Create SYSLAST Mac... Wes
Automatically create .. [Ves

>

T

System Options -
i . I Sl |am | @ — @ 100% 88 User Wiritten Mo
|_| } i Pass Through No

Diagram \vl Code v log |+ Target Table is Pass ... |Yes -

By right clicking on the line joining Table_2 to the Join node and choosing delete, one can remove the linkage.

¥ Demo Job 5 > SOL Join ™
B prnmsten 30 B @ - @ES

Mavigate

=[] Create

P SGL Join

-] Select

~. =L From
L [T Table_t

.) —

Table_2 o E‘ﬂ Table_#]-'

SOL Clauses
= Clauses
T where
£ Group by
37 Having
£0 order by =
(D) Subauery
= Joins
0 Inner
SQL Join Properties
Narne Value
Create SYSLAST Mac... [Ves
Automatically create ... [ves
System Options =
& M |] ‘El@) @ ,7:'7 @ to0% | 29 H User Written Mo
— Pass Through o
Diagram |~ | Code || Log v Target Table is Pass ... [Ves 2

|2

i

Positioning the mouse near the node causes the cursor to transform into a 4 sided arrow. This tool allows one to
move linkages.

13

SAS Global Forum 2010 Beyond the Basics

Demo Job 5 -> SOL Join * [(=3
@ promsop 30 @B B @ED

Mavigate
] 5GL Jain

=[] Create

+ eff] 5oL Join

_ .E)) [l Sekect
Table_1 = a0 Jeim - &-L3 From

SQL Clauses

= Clauses ~
P where
24 Group by
37 Hawing
£l orderby =
() Subquery

E Joins
D Inner

Ci Properties x

Hame Value

& J k] \EH"} @ — 1 @ g2 E

Diagram | +| Code || Log |~

After pulling the linkage from Table_4 to the first join node, move the cursor towards the right edge of Table_2, where
it becomes a pencil. Using the pencil tool draw the linkage to the second join node. Unfortunately, in the case of left
joins, the where-clause statements will not be preserved.

¥ Demo Job 5 -> SOL Join ™
B prnmse 30 | @ @ B ®EB

Mavigate
L 5QL Join
=-{J Create
— 8 _—
Eﬂ Table_1 |-D:%: % e -
i _Hf Join

et - N

SOL Clauses

= Clauses
P where
£l Group by
37 Having
20 order by =
(D) Subquery

= Joins
(35 Inner

CreateSelect Properties x

Name | value

|

G| | & |E‘@ @ — 1 @toow 39]

Diagram | v | Code || log |+

BUFFERING SELECTIONS AND MAPPINGS

A well placed extract node can operate as a buffer, allowing the mappings of the node after it to survive, even if
structure of the job behind it were to change. This can be useful in preserving work if you combine it with the extract
node’s ability to be dropped into, and taken out of most flows.

14

SAS Global Forum 2010 Beyond the Basics

SAS 9.1.3, DI VERSION 3.4

Q‘, Process Designer : Demo Job 7 : SASMain

» G >

Tahle_1 Tahle Loader Tahle_4

' Process Editor EE' | Source Editar Eﬁ' | Log Ea' |

In the simple job above, Table_1 is being directly loaded into Table_4. Table_1 and Table_4 do not share any
column names, so all the mappings were manually defined. However, something is about to change in the job.
Another table (which also does not share any mappings with Table_1) will be replacing Table_1. This could mean
that all of those mapping would need redoing, and depending on the complexity of the expressions involved, this
could be quite tedious. Alternatively, an extract node could be used.

Tahle_1 SAS Extract Extract Tahle Loader Tahle_4
Target-
WETKPEL

Al |»]

[Process Editor E} | Source Editor E} | Log D’ |

The table loader's mappings are unperturbed, and if Table_1 is removed, all that happens to the extract is as follows:

‘ SAS Extract Properties ! IE[B
Generall Wherel Order Eiyl Group Eiyl Process Mapping I Optionsl Notesl Extended Aﬂributesl Advancedl
Source table: 4 Target table: WSTHPSL)
Colurnn | Column Description | Type | Ler # Column Expression
i
2 |ABe
EICH
4 |@ 2
| | | 1] | |

Ok I Cancel | Apply | Help |

You can place anything you want feeding into the extract, map it to the values on the right, and the mappings would
flow through to the table loader intact. Alternatively, if one were creating a larger structure, the end result of which
directly mapped to the extract node’s target, they could then erase the extract node, and things would continue to
flow through.

SAS 9.2, DI VERSION 4.2

Since the flow from one node to another in SAS 9.2 is now user defined, things have changed. Essentially, if column
names aren’t shared between the two tables, as soon as the linkage between Table_1 and the Table Loader node is

15

SAS Global Forum 2010 Beyond the Basics

disrupted, the manually produced mappings are lost. One cannot use extract nodes to buffer in the same way that
one could in 9.1.3.

CUSTOM DATE ASSIGNMENT IN THE SCD TRANSFORM
THE SETUP

You would like to use the SCD transform to track effective dates, but you would like to assign a different start date for
the first record. Often, this is result of including existing data into the slowly changing dimension. This data already
has a predefined start time window. Using the default datetime() call does not allow setting the proper start date and
time.

SAS 9.1.3, DI VERSION 3.4

The SCD transform has some issues. There are times when the code that it generates is not the most efficient or
works the way you would like. In this case, we would like to assign different dates to the start date field tracking
SCD’s. The following is an example of a simple job that tracks slowly changing dimensions:

5 Process Designer : New Job 92011 : SASMain * =10 =l

O |
£l - i .
Ll 1
CUSTOMER SC0 Type 2 CUSTOMER_Dih
Loader

Process Editor |;§' | Source Editor E? | Lo |;§' |

After setting the appropriate values we have the following for the options necessary to track an SCD:

(8500 rypeztonderproperties ST

Proceszs | Mapping | Options | Statuz Handdline | Notes | Extended Attributes | Advanced
Gerersl I Change Tracking Businezs Hey I Genersted Key I Detect Changes

Select one or mare calumns from the target table to be designated as the business or natural key. The business
or natural key is an identifier used by the operational systems.

Column Mame Description

CLUSTOMER_ID CUSTOMER_ID

Mews | Celete |

Ok I Cancel | Afaply | Help |

16

SAS Global Forum 2010 Beyond the Basics

—_— .

||l 5CD Type 2 Loader Properties =10l x|
Process | happing | Optiohs | Status Handling | Mrites: | Fytrnded Aftriputes | Advanced
General Change Tracking Business Key Generated Key Detect Changes

Selectthe target column to use as a generated key. The expressions are used to generate new values for new and
changed dimension records. The macron variable "Newiaxkey' is used to hold the maximum key value.

Calurm: ICUSTOMER_KEY LI

[T Generate retained key Define Max Key |

[Generate unigue keve for esch calumin the business key

Mesy recard: Isum(NewMaxl»{ev, 1 2
Changed recard: Isum(NewMaxKey, 1]]
Cancel Apply | Help |
? I—
|/l SCD Type 2 Loader Properties =l8fxl
Process | Mataping | Ciptions | Status Handling | Motes | Extended Attribntes | Lrlvanirend
General Change Tracking Business Hey I Generated Key Detect Changes

The selected columns will be used to detect changes in the target tahle. If no columns are selected, all columns
are used except for the columns selected in the Change Tracking, Business Key, and Generated Key tabs.

Available columns: Selected columns:

COUNMTRY _CD ;
Available columns
CUSTOMER_MAME

CUSTOMER_MUMBER

il
»|

=

Cancel | Apply | Help

The issue at hand is the information on the Change Tracking panel. This panel gives the ability to assign the columns
used in tracking the effective dates. It also allows you to override the logic used in assigning the values. The
expression field on the right defaults to DATETIME(). This means that the effective start date for any record in the
table will be set to the current time when the job is first run. In the case where we would like to set the start date to
some date in the past for the first record this approach does not work.

17

SAS Global Forum 2010 Beyond the Basics

fisco ez onerproperies RI=TET

Process I hatninn | Oirtinns | Status Handling I Motes I Extended Attributes I Advanced
Genetal Change Tracking Business Key | Genersted Key | Detect Changes

Select the method and the target column or columns to track changes.

* Lse beginning and end dates

Diate Column Marne Expression
Beginning Date EFF_START_DATE DA TETIMEL)
End Date EFF_EMD_DATE 01 JARNSI99: 00; 00:00'0T

" Lse version number

eSO Aumker colume; I vI

" Use current indicator

Current indicstor colttmr I LI

O I Cancel Ay | Help |

What we would like to do is replace the DATETIME() with an expression that allows us to switch on whether or not
the record is the first record to be added, per brand new Business Key. To do this, we need to know when a record is
brand new versus an update of an existing record. After doing some code spelunking, it turns out that you can take
advantage of some generated code variables to let you know if the record is brand new or already exists. Note, this
trick is what one might call a hack, but it works for us. Remove the comments before you assign to the expression:

/* Add this to the Pre and Post Options tab */
/* Needed to silence the DROP warnings */
Options dkrOCond=noWarning;

/* replace DATETIME () with the following (or something similar) */
sstr(

/* if inSort and inXref do not exist then assign missing */
ifn(missing(inSort) and missing(inXref), .,

/* else, if inSort and not inXref then new record */
ifn(inSort and not inXref,

/* value for a new record */
'01JAN1900:00:00:00"dt,

/* value for an existing record */
DATETIME ()
)
) ;

/* drop these created variables */

/* needed for the 1°° dataset, not the 2°¢ */
drop inSort inXref;

18

SAS Global Forum 2010 Beyond the Basics

SAS 9.2, DI VERSION 4.2
The code that is generated for an SCD is very similar to the 9.1.3 code. This tweak will work for 9.2 as well.

LEVERAGING EXTERNAL OPTIONS FILES TO CUSTOMIZE JOBS

THE SETUP

A DI job is mostly hard coded. That is, unless you use the built in parameterization options via an input data set, you
are basically stuck with whatever hard coded values you have set in your job. Oftentimes however, we want to run a
job with different setups — perhaps with user configurable date ranges — and we want to be able to changes inputs
easily via a text editor. What we really want is something more akin to the —autoexec option. In this scenario | just
pass in a file that has configuration information and the system does what is right.

SAS 9.1.3, DI VERSION 3.4

In Version 3.4, you can leverage auto-created macro variables in the job to switch on the repository you are running
from. If you look at the generated code for a job you will see that the following macro variables are created:

/* Create metadata macro variables */
$let IOMServer gnrquote (SASMain) ;

$let metaPort = %nrquote (8561) ;
$let metaServer = %nrquote (localhost);
%let metaRepository = %nrquote (sasdemo) ;

The last macro variable is the repository that you are running the job under. If you are running from a Project
repository then you will have the name of a project repository. If | then write some code that leverages this macro
variable in a path to an options file | can load a set of macro variables that | can use to configure my job. Note, this is
somewhat similar to modifying the SAS launch command in the SAS® Management Console. From the SMC, | can
declare the SAS launch string to include a relative path autoexec. For instance,

=T

File Edit Wiew Ackions Tools FRoadmaps Help

B @%@ X[x|

Repository: |8 Foundsation General Options I Mates | Extended attributes | Authorization |

I'{\..a EM4E Management Consale
=1 = Ervvironmert hManagement
G_i Study Manager 5 . .
higjor wersion Rumber:
@ ALthorization Manager ! IEl
2@ Bl Manager . .
= LTl i Plurmber:
~H Data Library Manager inar Arersion BUmeer I‘I
hMetadata Manager s . .
Scheduls Manager e SN, I9'1
S_erver Manager
= S SASMain
H -5 SaSMain - Logical Workspace S

ery

Wendor: ISAS Institute

X . . y— Launch Comrmancls
SASMain - Logical SAS Data Ste|
SASMan - Logical SAS/CONMES Commancd: Isas —autoexec ~myvauto sas -config "fsas_applSASERETLServerilewl s
" SASMain - Spawner
i (@5 sasmain - Connect Spawner Chiect Server Parameters: I
- 'g-j.\ SaEMain - SAZEHARE Server

Advanced Options...

[Job Scheduler
- @; DracleSugi
= [#% =00 Hitps
- [@5 Test
User Manager
HMLMap Manager
Publishing Framework
Foundsation Services Manager
= g hﬂnnitnring
- I@ Application Monitor
El_ﬂ_| Maintenance
. License Manager
EI Application Management
| |
(s34 I Cancel Help

19

SAS Global Forum 2010 Beyond the Basics

This would allow a per-person inclusion of the autoexec in the logged in users home directory. However, it requires
that jobs run from a non-project repository setup to have their own Unix or Windows logins. For jobs run from the
Foundation repository you would need a special account to run in production mode versus project mode.

Another solution is to use the &metaRepository macro variable that is defined for us. If you have access to the
Workspace server, a Samba mapped directory (for Unix installations), or a mapped drive (for Windows installations)
then you can write a macro that reads an external options file and auto-loads macro variables based on the repository
we are running from. For instance, if you add the following to the “Pre and Post Process” tab for a job:

%eoptions (file=adw.opt, repo=&metaRepository)

And you had options files created in the following locations:

/samba_mount/configs/Foundation/adw.opt
/samba_mount/configs/ProjectReposl/adw.opt
/samba_mount/configs/ProjectRepos2/adw.opt

Then you could create macro variables using by reading the directives of the following form:

Sample config file. All values here will be created as macro vars in the
referenced SAS session

controls the initial pull of data and number of months
OPT RANGE_START 2009/10/01
OPT RANGE MONTHS = 3

Start and end date for Period dimension
OPT PERIOD START = '01JAN1900'd
OPT PERIOD END '31DEC2040'd

Start and End for Age Sex dimension

OPT AGE INCS = 0.5 1.5
OPT AGE START = 0
OPT AGE END = 130

These macro variables can be used anywhere in the job. The macro itself must be stored in a location that is part of
the macro auto-call concatenation. The easiest place to store the macro is in the following location. This location is by
default part of auto-call path concatenation for a workspace server

SAS/EntBIServer/Levl/SASApp/SASEnvironment/SASMacro

See the appendix for the eoptions() macro.

SAS 9.2, DI VERSION 4.2

In DI Studio 4.2, the metaphor is changed. Project repositories do not exist in the same form as they did in 9.1.3.
Instead, you get macro variables generated in the following format:

/* General macro variables */

%let jobID = %quote (ASM82C5K.A7000003);

%let etls jobName = %nrquote(Test Job);

%let etls userID = Snrquote (colinger@d-wise);

Here, the setup is very much like our —autoexec example. That is, you only have the user account to switch on. In this
case, you could use either the —autoexec trick or change the eoptions() macro to read from a path generated from a
user account name. Either way, a flat file editable from a text editor is a much easier parameter import source than a
parameterized job.

20

SAS Global Forum 2010 Beyond the Basics

USING EMPTY TRANSFORMS TO SET MACRO VARIABLES
THE SETUP

Suppose you create a multi-input custom transform. You decide it is going to take two inputs, and will be populated
with custom code to append the two datasets together with a multi-set data step. How do you accomplish this using
the auto-created macro variables for _INPUT1-_INPUT2?

SAS 9.1.3, DI VERSION 3.4

In DI 3.4 this scenario is broken. If you create a custom transformation and add your own code then your code must
create the input macro variables. The code that auto-generates the macro variables is not run for multiple inputs. For
instance:

Process Designer : New Job 92011 : SASMain * Ol x|

o e

I

E} ol s ! Place table ortransform

e o L : here |

CUSTOMER: Multiple Input Set lnferEem R e R e
O O & WATLWILA

£

COUNTRY?2

Process Editor l;a' | Source Editar l;a' | Log l} |

If the Process for the transform is set to “Automatically Create Source Code” then you get the following:

'#__3. Source Editor: Multiple Input Set =0l x|
10 |

11 /% Access the data for J0URCEZ #/

12 LIENAME S0URCEZ BASE O \SUGT\sources™ ;
13 trelRekissvslibrc)

14

15 /% Access the data for TARGET +/

16 LIENAME TARGET BA3ZE "C:A\SUSIV\target™ ;

17 trelRekissvslibrc)

15

15 (let trans_rc = 0;

20

21 A% Bource table(s)fview(s) ¥/

22 3let. _INPUTL = S0URCEZ.CUSTOMER:
23 (let _INPUTZ = TARGET.COUNTEYZ;
24

25 /% Target table/fwiew(z) %/

26 (ler _OUTPUT = work.WSTL¥3L9:

27 Y¥let OUTPUTL = work.WSTLW3ILD;

s | -
Source Editor I

Notice that both Input and Output macros are created. If, however, you choose to add your own code to the transform
via the “User Written” option then you get the following:

21

SAS Global Forum 2010 Beyond the Basics

“&.3 Source Editor: Multiple Input Set =10l x|

1z -]
13 #* Ahocess the data for J0URCEZ */

14 LIENAME S0URCEZ BASE "C:\SUSIhsourcel™ ;

15 Frcletiszyslibre)

1A

17 /% bhocess the data for TARGET */

18 LIENAME TARGET BASE "CrA\SUSI\Earget™ ;

19 Frcletiszyslibre)

20

21 5let trans_rc = 0:

22

23 (let OUTPUT = 3nroquote(work.WSTLVILS) !

24

25 f¥-——--— Ftart of Uzer Written Code -—---%/

26

27 data &_output;

28 set &_inputl &_inputz;

29 run;

30 hd|

SuurceEdHurI

And the Input macro variables have disappeared. You can get around this by using the Multi-Input transform just to
declare the macro variables and then following that node with a User Written code node. For instance,

Process Designer : New Job 92011 : SASMain * =10 x|
CUSTOMER Multiple Input Set FAKE- UserWritten Code
- Declarations UMNUSED
anly
COUNTRYZ2
4 | i

Process Editor |;§' | Source Editor EE' | Log l;?r |

The generated code would then look like this:

22

SAS Global Forum 2010 Beyond the Basics

=10l x]
79 AF Fource table(s)/wview(z)] */ _:J
50 %let _INPUT1 = SOURCEZ.CUSTOMER:
81 %let _INPUTZ = TARGET.COUNTRYZ:
82
83 A% Target table/view(s) %/
84 %let _OUTPUT = work.UNTSED:
85 %let OUTPUT1 = work.UNUSED:
=13
57 A% Delete target table(s) ¥/
88 proc datasets lib=work nolist nowarn memtype = [(data wiew);
89 delete TMITSED;
20 quit:
91
a2
23
a4 let SVSLAST = Inrogquote (work.TNUSED) :
a5 %let transformID = Hquote (AS1SROEJ.$0000149) ;
a5 3let trans_rc = 0;
a7 let OUTPUT = inrguote (work.WSTLWVALS) :
el
a3 FhoemhgtaEE bE Userlleiceen Cade ===y
100
101 data & output:
1oz set &_inputl & inputz;
103 | runf]
104 =1
Process Editor i% Source Editor [I Lag [I

Basically, you have used two nodes to fake DI Studio into doing what it should have done to start with.

SAS 9.2, DI VERSION 4.2

There is good news on this front. DI Studio 4.2 fixes all of these code generation issues. In fact, you can tell DI Studio
if just the body of the code should be user written, or all of it is. The generated code also contains much more
information in macro variables than in DI Studio 3.4. You have options for variables that will be kept, engine
information on the table, and other header information like labels and paths. As well, macro variables are created for
every column in the mapping!

o3 MultiInput Properties B3
Seneral | Mappings | Options | Table Options “ode I Precode and Postcode | Parameters | Motes | Extended Attributes |
Code generation mode: ([tE I Exclude transformation From run
[= =l »= Ba (B
%letc INPUT1 = TESTLIE.EMPLOYEE:?
%let _INPUT1l_ comnect = ;
slet INPUTl engine = BASE: E]
let _TNPUT1 memtype = DATA:
Zlet _INPUT1_options = Znroguotel) :
%Zlet INPUT1l_ alter = Znrouotel]:
%let TINFPUT1l path = Users sChris 0lingers /My Folder/SGFZ010/EMPLOYEE (Table] ;
%Zlet _INPUT1l type = 1:
Zlet TINPUT1 label = Znrouotel);
%¥let TINPUTZ = TESTLIE.EMPLOYEE:
%let _INPUTZ_ comnect =
Zlet INPUTZ engine = BALSE:
%let INPUTZ memtype = DATA:
Zlet INPUTZ options = Snrgquotel):
Zlet TINPUTZ alter = Inrocuotel):
Zlet INPUTzZ path = /Users/Chris Olinger/My Folder/ 3GFZ010/EMPFLOYEE DIM(Table] ;
Zlet INPUTZ type = 1:
%let _INPUTZ_ label = %Fnroguotel] : S
=] | _>l_I
Metadata Mame: SourceCode
Server: I<deFau|t> vI wWiews Step Code |
(] 4 I Cancel I Help I

23

SAS Global Forum 2010 Beyond the Basics

MANAGING MACROS AND FORMATS
THE SETUP

You want to add macros or formats to the system for an individual job or for all jobs.

SAS 9.1.3, DI VERSION 3.4

On an individual job basis, add any macros or formats to the "Pre and Post Process” area of the job:

#% New Job 92011 Properties * |0l x|
Status Handling I Parameters I Cptions I Mrtes I Fxtenrder Atribnfes I Advancerd
General I Process Pre and Post Process

—Pre ahd Post Process

¥ Pre Processing

Type: Irl.detadata

Marne: IF'redeu:essu:ur process

Description: I

[Post Processing

Type: [Metadata =l Ed..
W= IF'::ust process
Description: |

Ok Cancel Apaly Helg

For a set of global macros or formats, your best bet is adding them to the standard install directories for the
Workspace server:

SAS/EntBIServer/Levl/SASApp/SASEnvironment/SASMacro
SAS/EntBIServer/Levl/SASApp/SASEnvironment/SASFormats

You will need an Administrator that has access to these locations. If you are using the —autoexec trick
(~/autoexec.sas) described earlier then you can add a personal directory under your home location that can store
your global macro variables (if you have login authority to the server).

For formats, you can build your formats to the standard format library (in the SASFormats directory) by specifying:

proc format lib=library;

run;

24

SAS Global Forum 2010 Beyond the Basics

In order to make this work, you need to run as the SAS installer account. This may not be possible unless you are
friends with the SAS administrator. However, once the formats are part of the standard library the system will work
much better.

SAS 9.2, DI VERSION 4.2

There is no change in macro support for DI Studio 4.2. The same rules as above apply.

MANAGING METADATA USING AN EXTERNAL SOURCE
THE SETUP

You would like to use MS Excel or some other tool to manage metadata outside of DI Studio. You would like to be
able to create an initial table set and load the metadata into the system.

Note, the solution to this problem is a non-trivial task. As such, there are incremental ways of looking at this, each
with increasing difficulty:

1) You would like to create initial table stubs (0 record tables) that then you can load metadata from using the
standard Source Designer

2) After initial creation, you would like to download existing metadata to an external tool, make changes, and
then re-upload the changed metadata

3) You would like have a DI Studio plugin that manages this process for you

We are going to talk about option 1, as options 2 and 3 are outside the scope of this paper. We have built and
deployed solutions for options 2 and 3 using both Java and SAS to manage the metadata. These efforts are time
consuming but they can be done, and are worth it if you want to invest the resources. If you are interested in more
details then please contact us.

SAS 9.1.3, DI VERSION 3.4

The best way to tackle this problem is to use the transform generator to create a ‘Stubs’ generator. This transform will
take a spreadsheet as input along with an input table that you can use to reference the appropriate libname to write
to. For instance:

#*Process Designer : Table Stubs : SASApp |Z §|fz|
DUAL_LIE
i = > 5
Tahle Stubs Input File Reader File Reader Stub Generator
Target-
WaROHYDC

. Process Editor |;5‘ | Source Editor [I Log I Output [I

25

SAS Global Forum 2010 Beyond the Basics

Notice that there are no outputs from the Stub Generator transform. The idea is that the SAS library of the input table
DUAL_LIB will be used to build all tables that are described in the ‘Table Stubs Input’ source. To get the library in the
Stubs code, simply parse the input _INPUT2 variable:

%let lib=%scan (& INPUTZ,1,.);
%let mem=%scan (& INPUTZ,2,.);

Using this trick means that you can add a table reference to the job stream only for the reference to the libname —
which, by the way, causes the libname to be generated in the actual code. Simply ignore any columns in any
mapping that came from the dummy table.

You can now use &lib to create a set of tables that are written to the DUAL_LIB location. The input source (Excel in
this case) would possibly look like:

Table Column Length [Format PrimKey |BusKey |Unique|NotNull |[NdxOnly
Dim_Customer Customer_Key |6 Yes Yes
Dim_Customer |Name $40

Dim_Customer CreateDate 5 date9.

Dim_Region Region_Key 6 Yes Yes
Dim_Region Region $10

Dim_Region Description [$120

Dim_SCD_Group |Group_Key 6 1

Dim_SCD_Group |Groupld $12 2 1

Dim_SCD_Group |SubGroupld [$3 3 2

Dim_SCD_Group |Accountld $7

Dim_SCD_Group |EffStartDate |8 datetime20.

Dim_SCD_Group |EffEndDate |8 datetime20.

The stub generator will read through these records and create table stubs using CALL EXCECUTE commands. After
the tables have been created, use the Source Generator to create the metadata for the tables. Going forward, any
metadata can be hand managed or you can recreate the stubs (wiping out any tables) and use ‘Update Table
Metadata’ to refresh the table metadata.

See the appendix for the code for the sub generator.

SAS 9.2, DI VERSION 4.2

In DI 4.2, the Source Generator is replaced by the “Register Table” action off of the File menu. Other than that, this
technique should still work.

26

SAS Global Forum 2010 Beyond the Basics

CONCLUSION

SAS® Data Integration Studio is a powerful tool for building warehouses and processing data. However, a certain
amount of clever work-arounds are necessary to smooth the edges. We encourage all of you to upgrade to Version
4.2 as in our experience it has proven to be superior is most cases.

We hope these tips and tricks prove as useful to you as they have to us.

ACKNOWLEDGMENTS

Hats off to the DI Studio team for Version 4.2. A much needed improvement.

CONTACT INFORMATION

Your comments and questions are valued and encouraged. Contact the authors at:

Name: Chris Olinger

Enterprise: d-Wise Technologies, Inc.
Address: 4020 Westchase Blvd, Suite 527
City, State ZIP: Raleigh, NC, 27607

Work Phone: 919-600-6235

E-mail: colinger@d-wise.com

Web: http://www.d-wise.com

Name: David Kratz

Enterprise: d-Wise Technologies, Inc.
Address: 4020 Westchase Blvd, Suite 527
City, State ZIP: Raleigh, NC, 27607

Work Phone: 919-600-6233

E-mail: dkratz@d-wise.com

Web: http://www.d-wise.com

SAS and all other SAS Institute Inc. product or service names are registered trademarks or trademarks of SAS
Institute Inc. in the USA and other countries. ® indicates USA registration.

Other brand and product names are trademarks of their respective companies.

27

http://www.d-wise.com/
http://www.d-wise.com/

SAS Global Forum 2010 Beyond the Basics

APPENDIX

EOPTIONS MACRO

/* macro to read an external file and create macro variables */

$macro eoptions (file=,
base=/samba mount point/Configs,
repo=,
delim=/,
extopts=EXTOPTS,
prefix=0PT

)7

%1if %length(%quote(&file)) Sthen %do;
%$local f;

$let f=g&base;
%$if %$length (%quote (&repo)) S%S$then %do;
%$1if %length (%quote (&f)) S%then
$let f=&f&delim&repo;
%else
$let f=&repo;
%$end;
$if %$length(%quote (&f)) %$then
$Slet f=sfsdelims&file;
%else
$let f=&file;

%1if %sysfunc(fileexist (&f)) %$then %do;
filename opts "&f";
data &extopts;

length buf $1032 option $32 value $1000;

infile opts lrecl=2000;

input;

if N =1 then do;
retain re;
re = prxparse ('/"([A-Za-z_][A-Za-z0-9]1*)\s*=\s* (.*?2)\s*$/");
if missing(re) then do;

putlog "ERROR: Invalid regexp: parseOptions";
stop;

end;

end;

buf=strip(_infile);

if prxmatch(re, buf) then do;
call prxposn(re, 1, pos, len);
option = substr (buf, pos, len);
option = upcase (option);
if lengthn (option) < %length (%quote (&prefix))
or substr (option,l,%length (%quote (&prefix))) ne upcase ("&prefix") then

option = upcase ("&prefix") | |left (option);

call prxposn(re, 2, pos, len);
value = substr (buf, pos, len);
drop buf re pos len;

output;
end;
run;
filename opts;
%end;

%else %do;

28

SAS Global Forum 2010 Beyond the Basics

Sput NOTE: External option file does not exist: &f;
%end;

%end;

* create the macro vars;
%1f %sysfunc(exist (&extopts)) S%$then %do;
/* possibly delete macro vars here to flush old ones */
data null ;
set &extopts;
call symputx(option,value,'G');
run;
%$end;
%$else %do;
$put NOTE: Options data set does not exist. No options loaded.;

%end;

$mend;
TABLE STUBS MACRO

/* Macro vars, table options referenced

Table Name: _SGTABLE
Table Filter: _SGFILTER
Column Name: _ SGCOLNAME
Column Length: _SGCOLLEN
Column Format: _ SGCOLFMT
Column Informat: _ SGCOLNFMT
Primary Key: _SGPK
Index Only: _SGIO
Business Key: _SGBK
Unique: _SGUN

Not Null: __SGNN

*/
%macro generateStubs;
%local _SGTLIB;

%* libname is the first arg of the dummy input;
%let SGTLIB=%SCAN (& INPUT2,1,.);

proc sort data=&_ INPUT1 out=_tbl;
by & SGTABLE

run;

/* first delete any existing table */
data null ;
set _tbl end=eof;
by & SGTABLE;
%1if (%quote (& SGFILTER) ne) S%then 3%do;
where & SGTABLE in (%unquote (& SGFILTER));
$end;
if n =1 then do;
call execute ("proc datasets nolist lib=& SGTLIB.;");
end;

if first.& SGTABLE then do;
call execute("delete "||strip(& SGTABLE) ||[';");
end;

if eof then do;
call execute("run; quit;");
end;
run;

29

SAS Global Forum 2010 Beyond the Basics

/* create the tables */
data null ;
set tbl;
by & SGTABLE;
%1if (%quote (& SGFILTER) ne) %then %do;
where & SGTABLE in (%unquote (& SGFILTER));

%end;
if first.& SGTABLE then do;

call execute("data & SGTLIB.."||strip(& SGTABLE)||';');
end;

/* process the columns */
call execute('length '||strip(& SGCOLNAME) | |' '||strip (& SGCOLLEN) |[|';");

%1if (%quote (& SGCOLFMT) ne) S%then %do;

if & SGCOLFMT ne ' ' then do;
call execute('format '||strip(& SGCOLNAME) | |' '||strip (& SGCOLFMT) ||';");
end;
%end;
%1if (%quote (& SGCOLNFMT) ne) S%then %do;
if & SGCOLNFMT ne ' ' then do;
call execute('informat '||strip(& SGCOLNFMT) ||"' '||strip(& SGCOLNEMT) ||';"');
end;
%end;

if last.& SGTABLE then do;
call execute("stop; run;");
end;
run;

$* primary keys;
%1f %length (%quote (& SGPK)) %then %do;

proc sgl noprint;

create table pk as
select * from _tbl
where %unquote (& SGPK) is not null
%1if (%quote (& SGFILTER) ne) %then %do;

and & SGTABLE in (%unquote (& SGFILTER))

%end;
order by %unquote (& SGTABLE), S%unquote (& SGPK)

quit;

data null ;
set pk end=eof;
by & SGTABLE;

if n =1 then do;
call execute ("proc datasets lib=& SGTLIB. nolist;");
end;

if first.& SGTABLE then do;
call execute("modify "||strip(& SGTABLE) | |"; ic create PRIMARY KEY (");
end;
call execute (strip (& SGCOLNAME) ||' ');
if last.& SGTABLE then do;
call execute("); run;");
end;
if eof then do;
call execute ("quit;");
end;
run;

proc datasets nolist lib=work; delete pk; run; quit;

%end;

30

SAS Global Forum 2010 Beyond the Basics

%* not null;
%1f %length(%quote (& SGNN)) %then %do;
data null ;
set tbl end=eof;
by & SGTABLE;
where upcase (& SGNN) = 'YES'
%1if (%quote (& SGFILTER) ne) %then %do;
and & SGTABLE in (%unquote (& SGFILTER));

%end;
if n_ =1 then do;

call execute ("proc datasets lib=& SGTLIB. nolist;");
end;

if first.& SGTABLE then do;

call execute("modify "||strip(& SGTABLE) ||[";");
end;
call execute("ic create NOT NULL ("||strip (& SGCOLNAME) |[|');");

if last.& SGTABLE then do;
call execute("run;");
end;

if eof then do;
call execute("quit;");
end;
run;
%end;

$* unique;
%1f %length (%quote (& SGUN)) S%then %do;
data null ;
set _tbl end=eof;
by & SGTABLE;
where upcase (& SGUN) = 'YES'
%1f (%quote (& SGFILTER) ne) S%then %do;
and & SGTABLE in (%unquote (& SGFILTER));

%end;
if n_ =1 then do;

call execute ("proc datasets lib=& SGTLIB. nolist;");
end;

if first.& SGTABLE then do;

call execute("modify "||strip(& SGTABLE) ||";");
end;
call execute("ic create UNIQUE ("||strip (& SGCOLNAME) ||');");

if last.& SGTABLE then do;
call execute("run;");
end;

if eof then do;
call execute ("quit;");
end;
run;
%end;

%* index only;
%1f %length(%quote (& SGIO)) %then %do;
data null ;
set tbl end=eof;
by & SGTABLE;
where upcase (& SGIO) = 'YES'
%1if (%quote (& SGFILTER) ne) S%then 3%do;
and & SGTABLE in (%unquote (& SGFILTER));

%end;
if n_ =1 then do;

31

SAS Global Forum 2010 Beyond the Basics

call execute ("proc datasets lib=& SGTLIB. nolist;");
end;

if first.& SGTABLE then do;

call execute("modify "||strip(& SGTABLE) ||";");
end;
call execute ("index create "||strip (& SGCOLNAME) ||';"');

if last.& SGTABLE then do;
call execute("run;");
end;

if eof then do;
call execute("quit;");
end;
run;
%end;
proc datasets nolist lib=work; delete _tbl; run; quit;

%RCSET (&syserr) ;

$mend;

32

	2010 Table of Contents

