
1

Paper 260-2009

Automate Dummy Variable Creating from Large Longitudinal RDBMS Tables
--- A Pedagogical Example of the SAS/Connect® Piping Facility

Melissa Skanderson, VA Pittsburgh Healthcare System, Pittsburgh, PA
Xiaoqiang Wang, University of Pittsburgh, Pittsburgh, PA

ABSTRACT
Given a list of patient demographic characteristics and the patient lab records in RDBMS tables separated by years,
we can create a list of summary variables per specification per person almost automatically using 3 parallel
processes: process #1 selects all lab records only for the patients in our ID list and writes them into pipe #1; process
#2 reads records from pipe #1, cleans lab results into appropriate numeric values and writes them into pipe #2;
process #3 reads lab values from pipe #2 and aggregates them into person-level characteristics. Tricks of
SAS/Access for OLEDB, regular expression, Hash object, and macro programming are illustrated too. We also
discuss the advantages and limitations of our methods. This paper fills in the gap of the lack of a working example on
the piping facility.

INTRODUCTION
VA MEDICAL DATA
At the VA, data is collected at each facility and transferred to a national database that is available to researchers.
This paper is focused on the lab data, while our method can be applied on other types of data too. The lab files
contain one record per person, per day, per lab with inpatient and outpatient data in separate tables by fiscal year.
The patient identifier, common across datasets, is the variable SCRSSN. The number of records per file for fiscal
year 2001 through 2006 is in the table below, where the 2nd and 3rd rows are the # of records in our data warehouse,
inpatient and outpatient, respectively, and the 4th and 5th rows are the # of records to be selected for our test cohort of
436,726 subjects.

 2001 2002 2003 2004 2005 2006 All Years

Inpatient 20,437,865 22,497,163 24,423,976 31,020,196 32,563,079 38,336,414

169,278,693

Outpatient 68,952,442 82,777,951 94,613,667 108,401,326 117,194,510 152,371,988 624,311,884

Selected IP 1,513,850 1,921,066 2,103,567 2,238,530 2,307,208 2,180,509 12,264,730

Selected OP 4,341,442 5,208,076 5,965,452 6,689,988 7,033,834 7,496,893 36,735,685

Table 1. Sizes of lab tables and # or records to be selected.
For many projects, we’re asked to generate person-level summary dummy variables such as diseased or not, # of
occasions that a lab test is abnormal, the maximum values of a certain lab test, etc. from the lab tables (transactional
tables) for a list of SCRSSNs (master table). The business logic behind these variables are very similar, thus macro
programming is in general a great tool to create them in batch. But unfortunately those big transactional tables often
reside in a remote relational database system and consist of records for all hospital uses (of a size at least 10 times
as big as that of our target records). It takes hours just to select records of the target subjects out of the RDBMS.
What’s more, the selected records claim tens of gigabytes of hard drive space that clogs the file server, and may
cause some data security issues. The SAS piping facility comes into play because it only bypasses records via a TCP
socket without writing them to the hard drive. But this nice feature was only briefly covered in the SAS/Connect
reference, and we cannot find a good working example in the literature.

PIPELINE PARALLELISM
According to [7], “pipeline parallelism is when multiple steps depend on each other, but the execution can overlap and
the output of one step is streamed as input to the next step”. SAS 9 introduced a LIBNAME Engine SASESOCK to
facilitate data-flow from one process to another via a TCP/IP socket. The syntax of the piping facility is just as easy as

LIBNAME libref SASESOCK “port-specifier” <TIMEOUT=# of seconds>;

Where libref is a valid library name, port-specifier could be either a TCP port number (such as :7001 locally or
10.37.214.222:7001 for a port of machine with IP address 10.37.214.222) or an alias (such as :pipe1 locally or
10.37.214.222:pipe1 remotely) of a TCP port registered in file /etc/services under UNIX or
%WINNT%\system32\drivers\etc\services under Windows XP/Server. There’re some restrictions for SASESOCK
pipeline.

Systems ArchitectureSAS Global Forum 2009

2

• There must be only one process writing to the pipeline, and only one process reading from it.

• The pipeline can be viewed a queue such that one process always writes to the bottom and the other process
reads from the top, and it has only limited capacity, so

o One record in the pipeline is only written once and read once.

o If the reading process consumes records faster than what the writing process can produe, then the
reading process will pause for more records before TIMEOUT reaches.

o If the writing process has produced more records than what the writing process can consume, then the
pipeline will block the reading process from populating more records before TIMOUT reaches.

In other words, processes linked via pipelines are sequentially dependent on each other.

As a result, only the DATA step and a few procedures (refer to [7]) are supported by the piping facility. Still, the
pipeline parallelism enhances efficiency in certain ways as discussed in [5], [7], and [8]. We also noticed a nice
feature that one process can write multiple datasets into a pipeline for another process to read, as long as reading
and writing in the same order.

PREPARATION
In our example, we’re going to create two types of person-level dummy variables based on lab test values from fiscal
year 2001 through 2006. These variables are going to be part of the statistical models in the future, either directly or
after combination. Each variable of Type 1 basically counts the # of times that a lab value satisfies a certain condition
within a certain period of time; while each variable of Type 2 selects a lab value satisfying a certain criterion within a
certain period of time. There are some examples in the 2 tables as follows.

Variable Time w.r.t. baseline Lab # Condition Description

sercrt20_c ±∞ 31 result>2.0 # of times that Serum Creatinine > 2.0
within any time

alt40_c ±24 months 45 result>40 # of times that ALT > 40 between
baseline – 24 months and baseline + 24
months

hgb13_c (-∞, +31] 1 result<13 and sex=’M’
or result<12 and sex=’F’

of times that HGB<13 for men or <12
for women from ever to 31 days after
baseline

Table 2. Some Type 1 Variables

Variable Time w.r.t. baseline Lab # Criterion Description

hgb -12/+24 months 1 min(abs(date-baseline)) Hemoglobin closest to baseline

sercrtpr (-∞,0) 31 min(baseline-date) Serum Creatinine closest to baseline
but before baseline

hivrnahi ±∞ 38 max(result) Highest HIV Viral Load any time

Table 3. Some Type 2 Variables

Then we sort out all the inputs and outputs

INPUTS
After analyzing the requirements, we figured out there were 4 parts of input,

1. Cleaning directions --- table of the rules to clean text lab results.

Systems ArchitectureSAS Global Forum 2009

3

2. Variable specifications --- table of the detailed specifications of 32 variables. (Figure 2 shows the first 27 of them)

3. A demographics SAS dataset with the unique ID scrssn (char(9)) together with other necessary variables such
as refdt (SAS date), gender (1 for male or 0 for female), age (in years) and race (1=white, 2=black, 3=hispanic,
4=other).

4. 12 SQL Server tables --- LAR_IP_FY01 through LAR_IP_FY06 for inpatient labs, LAR_FY01 through LAR_FY06
for outpatient labs. Every LAR table has at least 10 million records. They were recorded chronologically without a
simple index on SCRSSN or a composite index with SCRSSN in the first position. We are going to use the
columns listed in Table 3.

Figure 1. Instructions to clean text lab results

Figure 2. Variable Specifications

Systems ArchitectureSAS Global Forum 2009

4

Column Description Type

SCRSSN Scramble social security number, which is the unique ID per person char(9)

DSSLARNO Lab test id, for example, 1=hemoglobin, 31=serum creatinine Integer

SVC_DATE Date of test Datetime

RESULT Lab result as a text string, for example, “13.0”, “POS”, “NEGATIVE” char(10)

Table 4. Columns of interest in the LAR tables

DESIRED OUTPUT
We’ll create a person-level dataset with unique ID with all the counters and critical values.

ASSUMPTIONS
We assume that,

1. We’re programming in SAS 9.1.3 under Windows XP.

2. The remote RDBMS is SQL Server 2005. We’ll use SAS/Access for OLE DB to connect to the database.

3. We’re granted only read access to the SQL server database.

4. No index on scrssn was created on any of the LAR tables.

MAIN PROGRAM DISSECTED
We need 3 steps to accomplish our task: step 1, select lab records for the subjects with given SCRSSNs’; step 2,
convert messy text lab results into numeric values; step 3, generate person-level summary variables. By using 3
parallel processes and pipes, data flows from one process to the next without creating intermediate datasets. The
figure below illustrates the system architecture.

The challenges we face in each step are, (1) querying efficiently, (2) converting messy text lab results into proper
continuous or binary values, and (3) generating person-level summaries with one-pass of data and without sorting by
SCRSSN.

We’ll address the key points in the 3 processes.

PROCESS #1
In the 1st process, the given list SCRSSNs’ is uploaded into the SQL Server before it’s joined with each of the 12 lab
tables.

signon1 task1 sascmd=’!sascmd’;
%syslput2 start_year = &start_year / remote=task1;
%syslput end_year = &end_year / remote=task1;
%syslput timeout = &timeout / remote=task1;
rsubmit3 remote=task1 wait=no inherit4=(work=locwork);
libname sqlsrv oledb init_string=”Provider=……” connection5=shared;
libname outLib sasesock6 ‘:3006’ timeout=&timeout7;
data sqlsrv.’#scrssn’n8 (insertbuff9=2000);

set locwork.demographics(keep=scrssn);
%macro union_all(start_year=, end_year=);
%do fy=&begin_year %to &end_year;
 %let yr = %substr(&fy, 3);
 create table outLib.ip&fy as ……;
 create table outLib.op&fy as

Figure 3. System Architecture

Systems ArchitectureSAS Global Forum 2009

5

 select a.scrssn, b.dsslarno, b.result as txtresult, b.svc_date, b.testunit
 from sqlslrv.’#scrssn’n as a, sqlsrv.lar_fy&yr as b
 where a.scrssn=b.scrssn and b.dsslarno in (&dsslarnolist);
%end;
quit;
%mend;
proc sql;
 select distinct dsslarno into :dsslarnolist10 separated by ‘,’
from locwork.vars_config;
%union_all(start_year=&start_year, end_year=&end_year)
quit;
endrsubmit;

Here we omitted the OLEDB connection string because it’s too long. Also we omitted the code to create table
outLib.ip&fy because it’s similar to the creation of outLib.op&fy. We had chosen LIBNAME instead of explicit SQL
Pass-Through to access the database because it’s much harder to upload the SCRSSN’s within the SQL Pass-
Through facility. We don’t have the right to bulk load, and we cannot insert multiple records per INSERT statement in
SQL Server 2005. By using the LIBNAME option, we’ll let SAS choose the SQL statements send to the database.
The following option displays the SQL statements generated by SAS in the log.

options sastrace=’,,,d’ sastraceloc=saslog nostsuffix;

For the sake of simplicity, we always signon to the local machine using the sascmd= option, but one can easily
change it to connect to a remote server.The marked points,

1. Before submiting a program as a separate process, we must sign on to either a remote SAS server or the local
SAS. For simplicity, all 3 processes here connect to the same PC as the parent session. For examples to
connect remotely, refer to [6].

2. Because the parent session and the 3 processes all have their own workspace including the macro symbol table,
%syslput has to be used to pass a macro symbol from the parent session to the other 3 processes.

3. What’s enclosed between ‘rsubmit’ and ‘endrsubmit’ is a program to be run by the remote SAS server specified
by the REMOTE= option.

4. ‘inherit=(work=locwork)’ will make the work library of the parent session accessible within process #1 by library
name ‘locwork’.

5. The CONNECTION=SHARED option instructs SAS/ACCESS not to issue a new connection for the update
operations. (refer to page 25 of [2])

6. SASESOCK is the engine name for the piping facility.

7. By default, the TIMEOUT= option is 10 seconds, which is not always enough time to upload all SCRSSN’s into
the SQL Server.

8. Remember that we don’t have the right to write into the SQL Server except the tempdb. And the name of a
temporary table must begin with a pound sign via OLEDB. (refer to page 16 of [1])

9. The INSERTBUFF= option is set at 1 by default. According to our experience, a number between 1000 and 2000
is optimal.

10. Macro symbol &dsslarnolist is generated as a comma-separated list of DSSLARNOs needed.

PROCESS #2
In the 2nd process, records are read out of pipe #1, then converted into either continuous or binary SAS numeric
values depending on the type of each lab test. The numeric values are then passed into pipe #2. The types of all lab
tests and their cutoff points are provided by SAS dataset ‘clean_directions’ in the WORK library of the parent session.

signon task2 sascmd=’!sascmd’;
%syslput start_year = &start_year / remote=task2;
%syslput end_year = &end_year / remote=task2;
%syslput timeout = &timeout / remote=task2;
rsubmit remote=task2 wait=no inherit=(work=locwork);
libname inLib1 sasesock ‘:3006’ timeout=&timeout;
libname outLib sasesock ‘:3007’ timeout=&timeout;
%macro cleanfile(start_year, end_year);
proc sql noprint;
 select dsslarno into :continuous_labs2 separated by ‘,’

from locwork.clean_directions where type eq ‘N’;
 select dsslarno into :Boolean_labs3 separated by ‘,’

Systems ArchitectureSAS Global Forum 2009

6

 from locwork.clean_directions where type eq ‘B’;
 select compress(put(count(*), best.)) into :N4 from locwork.clean_directions;
 select dsslarno,condition into :dsslarno1-:dsslarno&N5,:condition1-:condition&N6

from locwork.clean_directions;
quit;
data outLib.all_labs(keep=scrssn dsslarno result date);
 re7 = prxparse(‘/^(\+|-)?\d*(\.)?\d+/’);
 re_neg8 = prxparse(‘/(NEG)|(^(I|U)ND)|(^NO(T|N))|(^NDET)/’);
 re_pos9 = prxparse(‘/(POS)|(REA)|(^DET)/’);
 do until(eof);
 set
 %do fy=&start_year %to &end_year;
 inLib.IP&fy inLib.OP&fy
 %end;
 open=defer10 end=eof11;
 result = . 12;
 if dsslarno in (&continuous_labs) then do;
 call prxsubstr(re, txtresult, re_start, re_len) 13;
 if re_len>0 then result = input(substr(txtresult,1,re_len),10.);
 end;
 else if dsslarno in (&boolean_labs) then do;
 if prxmatch(re_neg, txtresult) 14 then result=0;
 else if prxmatch(re_pos, txtresult) 15 then result=1;
 end;

 select (dsslarno);
 %do k=1 %to &N;
 %if %length(&&condition&k) %then %do; 16

when (&&dsslarno&k) if (&&condition&k) then result = .;

 %end;

 %end;
 otherwise;
 end;

 if not missing(result) then do; 17
 date = datepart(longdate);
 output;
 end;
 end;
 stop;
run;
%mend cleanfile;
%cleanfile(&start_year, &end_year);
endrsubmit;

You may notice that the 12 datasets generated by process #1 are opened one by one in a single data step and
cleaned. The marked points,

1. inLib refers to TCP port # 3006, which is the output destination of process #1. A pipe must have exactly one
process that writes to it and one process that reads from it.

2. Macro symbol &continuous_labs is a comma-separated list of continuous lab #’s.

3. Macro symbol &boolean_labs is a comma-separated list of Boolean lab #’s.

4. Macro symbol &N is the # of records in table clean_directions.

5. Macro symbols &dsslarno1 through &&dsslarno&N are the unique lab #’s.

6. Macro symbols &condition1 through &&condition&N are the outlier conditions with one for each lab.

7. re is the pattern for a decimal number matched from the beginning of a text string.

8. re_neg is the pattern indicating negativity.

9. re_pos is the pattern indicating positivity.

10. Option ‘open=defer’ defers the opening of one dataset. Without it, SAS will attempt to open all 12 datasets at the
same time, but it is impossible because these 12 datasets are created one by one, sequentially.

Systems ArchitectureSAS Global Forum 2009

7

11. Option ‘end=eof’ will generate a Boolean variable eof to indicate whether the end of the 12 input datasets has
been reached.

12. Initialize the numeric result to missing.

13. The CALL PRXSUBSTR routine searches the variable txtresult with the pattern of a decimal number, returns
re_start as the position of the start of the substring and re_len as the length of the substring that is matched.

14. The PRXMATCH function searches the variable txtresult with the pattern of negativity, and returns the position at
which the match begins or 0 if not matched. The numeric result is 0 - if a match is found indicating a negative test
result.

15. Similar to 14, if a match of positivity is found, then assign 1 to numeric result.

16. If a range for acceptable values was specified, then set result to missing if result lies out of the range.

17. Only non-missing result gets populated into pipe #2.

PROCESS #3
In the 3rd process, numeric lab values are read from pipe #2 before we aggregate them into person-level
characteristics per specification. Like in the 2nd process, the variable specifications are given as a temporary dataset
in WORK library of the parent session.

signon task3 sascmd=’!sascmd’;
%syslput timeout = &timeout / remote=task3;
rsubmit remote=task3 wait=no inherit=(work=locwork);
libname inLib1 sasesock ‘:3007’ timeout=&timeout;
%macro doit(outset);
proc sql noprint;
 select compress(put(count(*), best.)) into :N2 from locwork.vars_config;
 select varname, dsslarno, window, condition, type into

:varname1-:varname&N3, :dsslarno1-:dsslarno&N4, :window1-:windows&N5,
:condition1-:condition&N6, :type1-:type&N7
from locwork.vars_config;

quit;
data &outset;
 set locwork.demographics;
 %do k=1 %to &N;
 length
 %if &&type&k eq 1 %then &&varname&k 3; %else &&varname&k 8 obj&k 8;; 8
 %if &&type&k eq 1 %then retain &&varname&k 0;; 9
 %end;
data temp;
 if 0 then set &outset;
proc contents data=temp noprint out=xxx(keep=name);
proc sql noprint;
 select cats(“’”, name, “’”) into :mycolumns separated by ‘,’ from xxx;
quit;

data _null_;
 if 0 then set temp;
 declare hash ht(dataset:”&outset”, hashexp:16);
 ht.definekey(‘scrssn’);
 ht.definedata(&mycolumns);
 ht.definedone();
 do until(eof);
 set inLib.all_labs end=eof;
 if ht.find(key:scrssn) = 0 then do;
 %do k=1 %to &N;
 if dsslarno eq &&dsslarno&k then
 %if %length(&&window&k) %then %str(if &&window&k then);
 %if &&type&k eq 1 %then %do;
 if &&condition&k then do;
 &&varname&k++1;
 ht.replace();
 end;
 %end;
 %else %do;
 if missing(obj&k) or (&&condition&k) lt obj&k then do;

Systems ArchitectureSAS Global Forum 2009

8

 &&varname&k = result;
 obj&k = (&&condition&k);
 ht.replace();
 end;
 %end;
 %end;
 end; *end if ht.find()=0;
 end; *end do until(eof);
 ht.output(dataset: “&outset”);
 stop;
run;
%mend doit;
%doit(locwork.labvars);
endrsubmit;

The marked points,

1. inLib refers to TCP port # 3007, which is the output destination of process #2.

2. Macro symbol &N is the # of records in table vars_config.

3. Macro symbols &varname1 through &&varname&N are names of the variables to be created.

4. Macro symbols &dsslarno1 through &&dsslarno&N are the underlying lab #’s corresponding to each variable.

5. Macro symbols &window1 through &&window&N are the time windows for each variable. &&window&k is either
empty or a logical expression.

6. Macro symbols &condition1 through &&condition&N are either the conditions or the criteria for the variables.
When &&type&k=1, &&condition&k is a logical expression and we should increment counter &&varname&k if
&&condition&k is true. When &&type&k=2, &&condition&k is an arithmetic expression and we should update
&&varname&k with the current lab result if &&condition&k becomes smaller.

7. Macro symbols &type1 through &&type&N are the types of all variables. &&type&k=1 for counter &&varname&k,
or &&type&k=2 means that variable &&varname&k is the lab result satisfying a certain criterion.

8. For each counter, we need only 1 numeric variable of length 3. But to select a critical value, we’ll need two
variables of length 8, one for the critical value and the other to keep the up-to-date smallest value of the objective
function.

9. Counters are initialized to 0.

TEST RESULTS
Due to the lack of indexes, the running-time of the above program is not very sensitive to the # of SCRSSN’s given. It
takes 10 minutes and 21 seconds to generate the variables for 10,000 subjects using 15MB memory, or 21 minutes
42 seconds for 436,726 subjects using 494MB memory.

CONCLUSION
Our implementation with multi-processing and piping has some advantages over the traditional way:

1. It bypasses intermediate datasets for the subset of patients with given SCRSSN’s, so saves hard drive space
and the hassle of data security.

2. Shorter running-time. The running-time is cut by at least half due to faster I/O via piping instead of hard drives.

3. The source code is easier to manage, because everything now is packed in a macro that requires only 3
datasets as inputs and all the variables will be done as if it were one step.

Of course there’re major limitations as well:

1. Because the piping facility allows only sequential one-pass of data, more complicated variables (that need at
least two passes of data) cannot be derived by our method.

2. The program is really hard to debug with multi-processing and intensive macro programming. There’s really an
alternative way using SAS views so opening tables can be deferred till the last step. The views will also
encapsulate codes by functionality thus clearly separate the 3 layers fore-mentioned. For example, instead of
creating dataset outLib.op&fy for pipe #1, we can create a view as follows.

create view op&fy as
select a.scrssn, b.dsslarno, b.result, b.svc_date
from sqlsrv.’#scrssn’n a, sqlsrv.lar_fy&yr

Systems ArchitectureSAS Global Forum 2009

9

where a.scrssn=b.scrssn and b.dsslarno in (&dsslarnolist);

And later when we clean the lab results, we create a view again, so the actual processing of the first 2 steps will
be deferred until the last step.

data all_labs / view=all_labs;
 set
 %do fy=2001 %to 2006;
 ip&fy op&fy
 %end;
 open=defer;

After all the change, the program is running just as efficient but appears much easier. But if the large raw data
tables were SAS datasets, then our approach will have some advantage.

3. We used the DATA step Hash object, so our program is subject to the memory limit. Usually it’s just fine,
because normally the cohort won’t be as big as the one we tested. Also by creating an index on SCRSSN in
every SQL Server lab table, we can then sort & merge to eliminate the use of Hash object. After this paper was
accepted, we finally talked our DBA into creating indexes on SCRSSN, and our program got an immediate boost,
especially when the cohort size is below 50,000.

4. We haven’t exploited all the potentials of multi-processing due to our system constraints. We tried to use one
sequence of processes to create variables with data from fiscal year 2001 to 2003, and another parallel
sequence of processes to create the same variables using fiscal year 2004 to 2006 data, but got no improvement
in running-time because our database server doesn’t support concurrent requests very well.

But anyway, it’s a good program to show how the piping facility works.

If you’re interested in our program, our source code is available at http://stat.wvu.edu/~xiawang/260-2009.zip.

REFERENCES
[1] SAS Institute Inc., SAS/ACCESS 9.1 Supplement for OLE DB,

http://support.sas.com/documentation/onlinedoc/91pdf/sasdoc_91/access_oledb_7366.pdf

[2] SAS Institute Inc., SAS/ACCESS 9.1.3 for Relational Databases: Reference,
http://support.sas.com/documentation/onlinedoc/91pdf/sasdoc_913/access_rdbref_9297.pdf

[3] SAS Institute Inc., SAS Programs and Macro Processing,
http://support.sas.com/onlinedoc/913/getDoc/en/mcrolref.hlp/a002047087.htm

[4] SAS Institute Inc., Hash and Hash Iterator Object Attributes, Methods, and Operators,
http://support.sas.com/documentation/cdl/en/lrdict/59540/HTML/default/a003143739.htm

[5] Russ Lavery, An Animated Guide to Basic Parallel Processing, http://www2.sas.com/proceedings/sugi30/224-
30.pdf

[6] Michael G. Sadof, Connecting Simply with SAS/CONNECT, http://www2.sas.com/proceedings/sugi30/023-30.pdf

[7] M. Michelle Buchecker, Pipeline Parallelism Performance Practices,
http://support.sas.com/rnd/papers/sugi30/pipeline.pdf

[8] Gerhardt Pohl, et al, Pipes and Threads: Performance Testing of Advanced Scalability Feature in SAS v9,
http://www2.sas.com/proceedings/forum2007/196-2007.pdf

ACKNOWLEDGMENTS
The authors owe thanks to Sunil Gupta, the section chair, for his assistance of all regards. Also thanks Dr. Adeel Butt,
whose big Hepatitis-C Virus cohort inspired our work.

RECOMMENDED READING
[1] Lois Levin, Methods of Storing SAS Data Into Oracle Tables, http://www2.sas.com/proceedings/sugi29/106-

29.pdf

[2] SAS Publishing, SAS Certification Prep Guide: Advanced Programming for SAS 9

Systems ArchitectureSAS Global Forum 2009

http://stat.wvu.edu/~xiawang/260-2009.zip�
http://support.sas.com/documentation/onlinedoc/91pdf/sasdoc_91/access_oledb_7366.pdf�
http://support.sas.com/documentation/onlinedoc/91pdf/sasdoc_913/access_rdbref_9297.pdf�
http://support.sas.com/onlinedoc/913/getDoc/en/mcrolref.hlp/a002047087.htm�
http://support.sas.com/documentation/cdl/en/lrdict/59540/HTML/default/a003143739.htm�
http://www2.sas.com/proceedings/sugi30/224-30.pdf�
http://www2.sas.com/proceedings/sugi30/224-30.pdf�
http://www2.sas.com/proceedings/sugi30/023-30.pdf�
http://support.sas.com/rnd/papers/sugi30/pipeline.pdf�
http://www2.sas.com/proceedings/forum2007/196-2007.pdf�
http://www2.sas.com/proceedings/sugi29/106-29.pdf�
http://www2.sas.com/proceedings/sugi29/106-29.pdf�
http://www.sas.com/apps/pubscat/bookdetails.jsp?catid=1&pc=61642�

10

CONTACT INFORMATION
Your comments and questions are valued and encouraged. Contact the author at:

Melissa Skanderson or Xiaoqiang Wang
VA Pittsburgh Healthcare System (646)
7180 Highland Drive (151C-H
Work Phone: (412) 954-5257
E-mail: xiw38@pitt.edu

SAS and all other SAS Institute Inc. product or service names are registered trademarks or trademarks of SAS
Institute Inc. in the USA and other countries. ® indicates USA registration.

Other brand and product names are trademarks of their respective companies.

Systems ArchitectureSAS Global Forum 2009

	2009 Table of Contents

