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ABSTRACT  
Count data regression models are used when the dependent variables are non-negative integers. The 
standard count data models are limited in their ability in handling the data distributions.  Poisson and 
negative binomial distributions are commonly used in count models. Poisson distributions assumes equi-
dispersed data (variance equals to the mean); and negative binomial regression models over-dispersed 
data (variance greater than the mean).  While there are studies (Liu and Cela 2008; Tin 2008) provide 
zero-inflated and hurdle count data models in SAS, no study has provided a SAS program that allows for 
a comprehensive list of data distributions and modeling strategies.  This paper presents a SAS® macro 
program that allows for a wide variety of count data distributions which can be used to model both under- 
and over-dispersed data. In addition, our SAS® macro program can handle data that has excess zeros 
(zero-inflated) in the sample. This SAS® macro is flexible in allowing one to estimate a variety of count 
regression models including:  zero-inflated, hurdle, censored, truncated, finite mixture, semi-parametric, 
squared polynomial expansion, and generalized heterogeneous.  We demonstrate this SAS® macro 
procedure by applying it to the number of takeover bids received by targeted firms. We also evaluate 
count models performance using goodness-of-fit test, Vuong’s test, and information criteria test.   

1. INTRODUCTION  
Count data regression models are used when the dependent variable takes on non-negative integer 
values. Cameron and Trivedi (1996) and Long (1997) provide good overviews of count regression 
models.  Count data models are widely used in empirical studies.   Some recent research used count 
models are as follows. Yang (2007) uses a Poisson distribution count model to explore factors affecting 
the potential entry into an industry. Hellström and Nordström (2008) using the count data modeling to  
analyze household’s  choice of total number of nights to spend on monthly recreational trips. Nelson and 
Young (2008) studies the effects of various factors on alcohol advertising in magazines using the Poisson 
and negative binomial count regressions.  Czado et al. (2007) proposed an extension of zero-inflated 
generalized Poisson regression models for count data. Guikema and Goffelt (2008) presents a count 
model based on Conway-Maxwell Poisson (COM) distribution that is useful for both underdispersed and 
overdispersed count data. Our paper presents a count regression model written in SAS macro that is 
capable of handling various types of count data distribution.     
 
Applying linear regression to count data leads to inconsistent standard errors and may produce negative 
predictions for the dependent variable.  Even with a logged dependent variable, the least squared 
estimates have these problems and are biased and inconsistent (King, 1989). Therefore count dependent 
variables require different modeling. The most common assumption of count data distribution is the 
Poisson distribution which restricts the data distribution to be equal-dispersion (the conditional variance 
equals the conditional mean). This stringent restriction cannot handle many empirical applications.   Other 
modeling distributions have been developed.  Mixed-Poisson distributions and negative binomial 
distributions have been widely used in situations where counts display overdispersion (conditional 
variance exceeds the conditional mean). For underdispersion (conditional variance is less than 
conditional mean) there are fewer modeling options.  Since there is no model that handles only the 
underdispersed data, with underdispersed data we need to consider models that are flexible enough to 
cover both over- and under-dispersed data. Models that provide this flexibility include: the generalized 
event count (GEC(k)) model (Winkelmann and Zimmermann,1991 and 1995), double Poisson (Efron 
1986), Poisson polynomial expansion, hurdle models (Mullahy 1986), and  the generalized Poisson 
models (Famoye 1993, Famoye and Singh 2003) .   
 
Another common problem with count model is that the number of zeros in a sample often exceeds the 
number predicted by the regression model.  This happens because zeros may arise from two conditions.  
Zeros could represent things that would never occur or the events that would occur but did not during the 
time the data was collected. Zero-modified count models, namely, the zero-inflated model and hurdle 
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models are useful in addressing this issue and they can handle over- and under- dispersed data. We 
discuss the zero-modified count models in section 3 of this paper. 
 
Many count variables are often censored or truncated. Zero truncated samples occur when observations 
enter the sample only after the first count occurs. While truncation can occur at any value, truncation at 
zero occurs most often in practice. Models allowing for censoring are required if observations (yi ,xi )  are 
available only for a restricted range of yi, while those for xi are always observable for all range of yi. 
Hence, censored data involves loss of information less serious than truncated data. For censored and 
truncated count date, the model’s log likelihood function needs to be specified accordingly.   
 
To resolve the above problems with count data modeling, we developed a flexible count model using 
SAS® macro called %countreg. This macro allows one to select from a variety of count data distributions 
and techniques that treat overdispersion, underdispersion, zero-inflated, censored, and truncated count 
data. Although there are several procedures within the SAS software can be used to estimate count 
models, most of them are limited in some ways. The GENMOD, GLIMMIX and COUNTREG procedures 
are limited to the Poisson and the negative binomial distributions. The NLMIXED provides greater 
flexibility by specifying the log likelihood function of discrete count distributions.  Using the NLMIXED 
procedure, Liu and Cela (2008) provided the hurdle, zero-inflated, and zero-inflated (tau) count models in 
addition to the Poisson and negative binomial regressions.  They evaluate these five count models 
though an example of healthcare utilization.    
 
In addition to specifying the five count data distributions presented in Liu and Cela (2008), our SAS® 
macro program specifies many other count data distributions such as:  double Poisson, generalized 
Poisson, generalized Poisson constrained finite mixture, Poisson-Normal mixture, Poisson-inverse 
Gaussian mixture (Folks and Chhikara 1978), Poisson semi-parametric (Gurmu et. al. 1998), Poisson 
polynomial expansion, geometric Poisson (Polya-Aeeppli), negative binomial finite mixture, negative 
binomial constrained finite mixture, negative binomial polynomial expansion,  Neyman Type A 
(Neyman,1939), and the generalized event count (GEC(k)) model.  We specify these data distributions 
through the log likelihood option in the Model statement in PROC NLMIXED procedure in a SAS® macro.   
This SAS® macro program provides count models that handle a wide variety of data distributions. It offers 
the flexibility of selecting specific count data distributions and modeling techniques from a list of 
seventeen data distributions.    
  
We demonstrate this macro procedure by applying it to a takeover bid data set provided by Jaggia and 
Thosar (1993) and assess the performance of the count models.  Description and the capabilities of the 
SAS®macro %countreg can be found in the appendix A. 
 
Section 2 discusses several count modeling distributions and their properties which are modeled in our 
%countreg macro. In section 3, we describe discuss two models commonly used when data has excess 
zeros —zero-inflated model and hurdle model.  Methods of modeling count data that are flexible in 
covering various types of data distribution are discussed in section 4. Section 5 provides application 
results and evaluations of various count models, and concluding remarks are presented in section 6. 
 

2. COUNT MODELING DISTRIBUTIONS AND THEIR PROPERTIES 
 
There are many distributions that deal with count dependent variables. The SAS procedures: GENMOD, 
GLIMMIX and COUNTREG are limited to the Poisson and negative binomial distributions. Our SAS 
macro, %countreg, is flexible in allowing for a wide variety of data distributions and modeling techniques.  
Some of these count data distributions are discussed as follows.  

2.1   POISSON DISTRIBUTION AND MIX-POISSON DISTRIBUTION 
The starting point for cross-section count data analysis is the Poisson regression model. Poisson 
distribution assumes the equality of the conditional variance and the conditional mean (equidispersion).  
The density function of   a Poisson distribution is: 

                 
!i

ii y i)|( ieyf
i μμ−

=x ,        ,....2,1,0=y

with mean and variance parameters 
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The Poisson log-likelihood function is  
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Equi-dispersion implied by the Poisson distribution is very restrictive. Often the conditional variance 
of is equal to  and exceeds the conditional mean (overdispersion). Two statistical sources may 
cause overdispersion: positive contagion and unobserved heterogeneity. To address these issues, 
mixed-Poisson model includes an unobserved specific effect

iy 2
ii τμμ +

iε into the iμ parameter; this specific effect 
can be treated as random or fixed. In the case of random effects, the relationship between iμ~  and iμ  
becomes: 
                  iiiiiii vμεβεβμ ==+= )exp()exp()exp(~ xx                                          (2.1.1) 

The random term iε takes into account possible specification errors. The precise form of the distribution of 

the mixed Poisson model depends upon the specific choice of the probability distribution of . Let 

be the density of then the conditional density is 
iv

( )ivg iv
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2.2  NEGATIVE BINOMIAL (POISSON-GAMMA MIXTURE) DISTRIBUTION 
The most common mixed Poisson model is the negative binomial model.  This occurs when in (2.1.1 
and 2.1.2) is gamma distributed.  The most common implementation of the negative binomial is the NB(2) 
model  with probability density function given by: 
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When 0=α , it is the Poisson distribution. A statistically significantα implies overdispersion. Cameron 
and Trivedi (1986) considered NB(p) models with mean iμ and variance function , p=2 is the 
standard formulation of the negative binomial model. Models with other values of p have the same 
density as (2.2.1) except that  is replaced everywhere by − .The negative binomial log-
likelihood function is given by  

p
ii αμμ +
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−2μ
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One could also further specify the negative binomial by allowing theα term to vary systemically 
(generalized negative binomial). This allows the dispersion to vary observation by observation.  
Let )exp( γα iz= , were could be the all or a subset of the explanatory variables or completely 
different variables. 

iz ix

 

2.3 POISSON- INVERSE GAUSSIAN MIXTURE 
The Poisson Inverse Gaussian ( model is an attractive alternative to the negative binomial models 
when a longer tailed distribution is present.  An inverse Gaussian distribution (Folks and Chhikara 1978) 
for vi, has density 

)PIG

 

               ( ) ( ) ivvevvg φπφ 21213 2
2)( −−−

= ii    for v > 0     where  [ ] [ ] φ== vVvE ,1 ii          ( 2.3.1) 
 
The probability generating function for ),( φμPIG is  
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Where we have written p(y) for Pr(Y = y). Probabilities may be calculated recursively using the 
established results. 

The log-likelihood function is  where  stands for ( ) ( i
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Manipulation of (2.3.3), and (2.3.4) shows that log-likelihood function can be expressed as: 
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2.4 POISSON-NORMAL MIXTURE 
This model assumes the heterogeneity term  in 2.1.1 as a normally distributed variable with mean zero 
and standard deviation

iv
σ , which we introduce into the model explicitly by standardizing iε  then, the 

density is  
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Where here and in what follows, ( )iεφ  denotes the standard normal density. The log likelihood function 
is 
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2.5 POISSON-SEMIPARAMETRIC (LAGUERRE POISSON) 
Poisson-semiparametric model is a flexible model proposed by Gurmu, Rilestone and Stern (1998). It 
avoids strong parametric assumptions about the distribution of . From 2.1.1 where iv ( )βμ ii xexp=  
and i iivμμ =~ , then from 2.1.2 we have  
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where μ−
)

is the moment generating function for and is the yth-order derivative of iv ( i
y

vM μ−)( )
iv (M μ− . The log likelihood function for semiparametric Poisson model is given by 

               ( ) ( ) ( )( ) ( ) ( )( )( )∑ −++Γ−=
n

i
y

viiiKc MyycccL 1 log1loglog,..,,, μμαβ
=i 1

After a long and tedious derivation it can be shown that 
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This conditional density can generate the Poisson model if ( )1010 0
1 ≥∀==→− jcc j ,,,α , the geometric 

model if ( )1011 0 ≥∀=== jcc j ,,,α , and the negative binomial 2 model if ( )1010 ≥∀== jcc j ,,  
 

2.6 GENERAL EVENT COUNT GEC(K)  (KATZ SYSTEM) 
Some extensions of the Poisson model that permits both over- and under-dispersion can be obtained by 
introducing a variance function with an additional parameter. Winkelmann and Zimmermann (1991, 
1995), developed a more flexible conditional variance than the NB(p). They developed the General Event 
Count Model (GEC(k)), which is based on a new parameterization of the Katz family. The conditional 
variance of the GEC(k) model is 
               ( ) ( ) ( ) ( ) 1|1|| +−+= k
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Where ς and , represent the dispersion parameter and the non-linearity in the conditional variance. 
This more general full parametric specification allows for overdispersion

k
1>ς , and 

underdispersion 10 << ς . Furthermore, it encompasses the Poisson model (for 1=ς ), NB(1) (for 1>ς  
and k=0), NB(2) (for 1>ς  and k=1), and NB(p) for ( 1>ς and k=p-1) as special cases. By letting 
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2.7 DOUBLE POISSON  
The double Poisson distribution (Efron 1986) is obtained as an exponential combination of two Poisson 
distributions that has a probability density function given by:    
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Where φ  is a dispersion parameter, and ( )φμ,K  is a normalizing constant that ensures the 
density ( )φμ,,yf
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This distribution has μ=| , and ( ) φμiii xyV =| , The Poisson model is nested in the double 
Poisson model for 1=φ . The double Poisson model also allows for overdispersion ( )1<φ  as well as 
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underdispersion ( )1>φ . Because the constant ( )φμ,K  is a source of significant nonlinearity, this term 
may be suppressed in the maximum likelihood estimation. The log likelihood function for the double 
Poisson model is. 
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2.8 GENERALIZED POISSON 
Famoye (1993) proposed the generalized Poisson distribution that can accommodate both over- and 
under-dispersion. Famoye and Singh (2003) further discussed the inflated generalized Poisson 
distribution model. This distribution has a probability density function given by 
 

( ) ( )                  
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
+

+−+
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
+

=
i

ii

i

y

i

i
i

y
y
yyf

ii

φμ
φμφ

φμ
μ

1
1

exp
!

1
1

1−y
i

i φμ ,,    

 
If 0=φ then the generalized Poisson model reduces to the Poisson model. Also the parameterφ is 
restricted to 1 0>iφμ+ and 01 >+ iyφ , the model is sometimes called the restricted generalized Poisson 
model. The mean of generalized Poisson model is ( ) iii xyE μ=|  and variance 

( ) ( )2
iφμ+1iμ=| ii xyV .Clearly, when 0>φ , the variance is overdispersed and when 0<2 <μ φi the 

variance is underdispersed. The log likelihood function of the generalized Poisson model is given by 
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2.9 NEYMAN TYPE A (POISSON-STOPPED-SUM-POISSON) 
The Neyman type A distribution is a two-parameter distribution which describes discrete data generated 
by a clustering effect that is commonly observed in the biological science. Such data often has an 
excessive frequency of zeros and very few counts of one. These distributions can be thought of as 
compound distributions that involve two processes.  The distribution was developed by Neyman (1939) to 
describe the number of larvae in a field. The distribution is also known as a Poisson-stopped-summed-
Poisson distribution. Let λ  be the average number of clusters of occurrences, and iφ  be the average 
number of occurrences per cluster then the Neyman Type A distribution has probability density function 
given by 
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response in the Neyman Type A model is ( )xyE iiiii μφλ ==| and variance iii λμμ 2+  
The log likelihood function of the Neyman Type A model is given by 
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2.10    POLYA-AEPPLI (GEOMETRIC POISSON) 
The Polya-Aeppli distribution (Johnson, Kotz and Kemp 1992) describes a model where the 
objects/events occur in clusters, the clusters follow a Poisson distribution with shape parameter iλ , and 
the number of objects within a cluster follows a geometric distribution with shape parameter 0 1<< τ . For 
this reason, this distribution is sometimes referred to as a geometric Poisson distribution with a probability 
density function given by. 
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The mean of the response in the Polya-Aeppli model is ( ) ( )τλ −= 1| iii xyE and variance ( ) ( )211 ττλ −+i  
The log likelihood function of the Polya-Aeppli model is given by 
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3. ZERO MODIFIED COUNT MODELS 
 
3.1   HURDLE AND ZERO-INFLATED REGRESSION   
Zero modified count models address the situation when the observed data displays a higher fraction of 
zeros than can be explained through a standard count regression model. There are two ways of handling 
this situation. First, the hurdle model (Mullahy 1986) or two-part model where the first part is a binary 
outcome model (logit or probit) and the second part is a truncated count model. The two parts permit the 
interpretation that positive observations arise form crossing the zero hurdle or threshold. The hurdle 
model is appealing because it reflects a two-part decision-making process. For example, in the case of 
the demand for health care,  in the first stage, it is up to the patient to decide whether to visit the doctor 
(contact analysis—probability that the threshold is crossed) and then it is essentially up to the doctor to 
determine the intensity of the treatment (frequency analysis—truncated count model). The probability 
density function of the hurdle model is given by 
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Where ( )γiF z

iz
 Pr(y=0) is the CDF of the logistic or probit regression selection model with explanatory 

variables and parameter estimatesγ . The may be the same explanatory variables as a subset of 
them or completely different variables.

iz ix
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f is the probability density  function of a 

truncated count regression model. The macro %countreg allows for any truncated probability density 
function mentioned in section 2. The log likelihood function for the hurdle model is given by 
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Where β  is the parameter estimates for the explanatory variables in the truncated count regression 
model and based on the count data distribution selected, is any additional parameter estimates. Θ
 
3.1 ZERO-INFLATED MODELS 
Another way to model excess zeros in the count modeling is the zero-inflated count models (Lambert 
1992). A zero-inflated count model is a special case of a finite mixture model (section 4.2). Zero-inflated 
model assumes that the zero counts come from two sources, not one source as in the hurdle model. An 
example of a zero-inflated model may be the number of fishing trips taken over a specified time period. 
There are people who would never choose to go fishing and others that would but did not go fishing 
during the sample period. A logit or probit model is used to determine the probability count outcome to be 
zero. The zero-inflated probability density function is given by   
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Where ( )γiF z

iz

 Pr(y=0) is the CDF of the logistic or probit regression selection model with explanatory 

variables and parameter estimates γ . The may be the same explanatory variables as a subset of 
them or completely different variables. is the density of a count regression model with 
explanatory variables . The macro %countreg allows for any probability density function mentioned in 
section 2. The log likelihood function for the zero-inflated model is given by 

iz
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Where β is the parameter estimates for the explanatory variables in count regression model and based 
on the count data distribution selected, Θ is any additional parameter estimates. 
 
For the zero-inflated (tau) model, the are the same as the and the parameters in the binary model are 
assumed to be scalar multiple of the parameters in the count model. Based on these assumptions, the 
zero-inflated (tau) model reduces the number of parameters to be estimated. The log likelihood function 
for the zero-inflated (tau) model is  

iz ix
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4. FLEXIBLE COUNT MODELING METHODS 
 

4.1   POLYNOMIAL EXPANSION REGRESSION  
For under-dispersed data, polynomial expansion regression models (Cameron and Johansson 1997) are 
used to estimate the parameters.  Polynomial expansion count models can handle both under- and over-
dispersed data. These models are based on squared polynomial expansions around a baseline density. 
For underdispersed data the GEC(k) and the generalized Poisson models are limited in restricting the 
range of the dependent variable. The double Poisson model involves an approximation so that the 
probabilities do not sum to exactly one. The hurdle model (section 3.1) is another possible model for 
underdispersed data, however it is not parsimonious- the number of parameters to be estimated is 
usually doubled. For underdispersed data the series expansion model provides a parsimonious model 
without restrictions on the range of the dependent variable, while for overdispersed data these models 
provide an alternative to the negative binomial or other Poisson mixture distributions.  
 
Any count data baseline density could be used for this modeling procedure. However, only the Poisson 
and the NB(2) densities are supported in the %countreg macro. Consider a count variable  with 
baseline density

iy
( ,| )λiyf  Define the pth-order polynomial as 

                       ( ) k
i

p

k
kip yayh ∑

=

=
0

| a

  Where a = ( )paaaa ,..,, 210  and . The density based on a squared polynomial series expansion is 10 =a

               ( ) ( ) ( )
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a
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,
|

||
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ip

ip
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yh
yfyg

λη
λ=                                           (3.1.1) 

Where ( a,ip )λη  is a normalizing constant term that ensures the density ( a,| iip yg )λ  sums to unity, and 
squaring the polynomial ensures that the density is non-negative.  

                ( ) lkl
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Where ( )itr mm λ= denotes the rth non-central moment of the baseline density ( )iiyf λ| . 
The log likelihood function for the series expansion polynomial model is given by 
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4.2   FINITE AND CONSTRAINED FINITE MIXTURE REGRESSION    
The finite mixture models provide a natural and intuitive representation of heterogeneity, usually small 
number of latent classes, each of which may be regarded as a ‘type’ or ‘group’. In a finite mixture model, 
a random variable is postulated as a draw from a super-population that is an additive mixture of C distinct 
populations in proportions Cπππ ,...,, 21 .  The finite mixture probability density function is given by 

                            Where  ( ) ( ) ( ΘΘΘ |||
1

iCCjij

C

j
ii yfyfyf ππ +=∑

=

) ∑
=

>=
C

j
jj
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In general the jπ are unknown and have to be estimated along with all other parameters. could 
be any count distribution. The finite mixture approach is semiparametric: It does not require any 
distributional assumptions for the mixing variables

( Θ|iyf )

jπ . The log-likelihood function for the finite mixture 
model is given by 

                   ( ) ( )( )∑
=

=
n

i
iyfL

1

|,log ΘΘ

Constrained finite mixture model or random intercept model are models in which the jth component of the 
density has intercept parameter jθ and the slope parameters are restricted to be equal. That is, the 
subpopulations are assumed to differ randomly only with respect to their location parameter. 
 
5. APPLICATIONS 

5.1   DATA  
We apply the SAS macro to a takeover bid data set provided by Jaggia and Thosar (1993). The data set 
include the number of bids received by 126 U.S. firms that were targets of tender offers during the period 
of 1978-85, and those firms were actually taken over within 52 weeks of the initial offer. The dependent 
count variable is the number of bids after the initial bid (NUMBIDS) received by the target firm. The 
independent variables included: defensive actions taken by management of the target firm, firm-specific 
characteristics, and government intervention.  The defensive actions taken by the target firm include: 
indicator variables for legal defense by lawsuit (LEGALREST), proposed changes in asset structure 
(REALREST), proposed changed in ownership structure (FINREST), and management invitation for 
friendly third-party bid (WHITEKNIGHT). The firm-specific characteristics are: bid price divided by price 
14 working days before bid (BIDPREM), percentage of stock held by institutions (INSTHOLD), total book 
value of assets in billions of dollars (SIZE), and book value squared (SIZESQ). The Intervention by 
federal regulators (REGULATION) is a dummy variable. The summary statistics of all variables are given 
in Table 5.1 and the frequency distribution of the number of bids is in table 5.2.  
 
Table 5.1 Variable Summary Statistics                                     Table 5.2 Number of Bids Frequency 
Distribution                                              

Variable Mean Variance Min Max Number of 
Bids Frequency Percent of 

Bids
Cumulative % of 

Bids

NumBids 1.74 2.05 0.00 10.00 0 9 7.1% 7.1%
BidPrem 1.35 0.04 0.94 2.07 1 63 50.0% 57.1%
InstHold 0.25 0.03 0.00 0.90 2 31 24.6% 81.7%
Size 1.22 9.59 0.02 22.17 3 12 9.5% 91.3%
Sizesq 11.00 3589.78 0.00 491.46 4 6 4.8% 96.0%
LegalRest 0.43 0.25 0.00 1.00 5 1 0.8% 96.8%
RealRest 0.18 0.15 0.00 1.00 6 2 1.6% 98.4%
FinRest 0.10 0.09 0.00 1.00 7 1 0.8% 99.2%
Regulation 0.27 0.20 0.00 1.00 10 1 0.8% 100.0%
WhiteKnight 0.60 0.24 0.00 1.00
  
The data has two interesting features—under-dispersion and relatively few zeros (7.1%). There is only a 
small amount of over-dispersion (20.5/1.74)=1.18, which may disappear as regressors are added.  While 
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the sample average number of bids received after the firs bid is only 1.74 bids, virtually all target firms do 
receive at least one bid.  
 
5.2   RESULTS 
Since the data exhibits under-dispersion, the commonly used negative binomial model is not applicable in 
this case.  For underdispersed data, the Poisson, generalized Poisson, double Poisson, GEC(k) (general 
event count model), Poisson hurdle, Poisson finite mixture w/ two classes and the Poisson polynomial 
models are used to estimates the parameters.  We apply all the above models to the takeover bid data 
except for the GEC(k) model due to the convergence problem with the GEC(k) model.  Table 5.3 provides 
the coefficient estimates of all models. 
 
 
Table 5.3 Takeover Bids: Parameter Estimates Comparisons 

Poisson Generalized Double Poisson
Regression Poisson Poisson Logit Poisson Class 1 Class2 Polynomial

Intercept 0.986 0.969 0.986 -2.148 1.136 1.092 1.205 0.330
legalrest 0.260 0.265 0.260 -0.971 0.436 0.228 0.249 0.370
finrest 0.074 0.063 0.074 1.467 0.265 -0.360 0.627 0.084
realrest -0.196 -0.177 -0.196 2.723 -0.004 -0.484 -0.150 -0.230
size 0.179 0.181 0.179 -0.348 0.238 0.090 0.261 0.200
sizesq -0.008 -0.008 -0.008 -0.013 -0.010 -0.004 -0.011 -0.009
whiteknight 0.481 0.480 0.481 -1.193 0.878 0.428 0.542 0.833
bidprem -0.678 -0.669 -0.678 -0.825 -1.347 -0.619 -0.957 -0.906
regulation -0.029 -0.031 -0.029 1.141 -0.057 -0.061 0.053 -0.091
insthold -0.362 -0.365 -0.362 1.839 -0.661 -0.549 -0.191 -0.605
Alpha -0.021 1.422
p 0.664
a1 3.636
a2 -1.341
a3  1.422** 0.174
Log-Likelihood -185.0 -184.6 -181.5 -159.5 -180.9 -165.7
AIC 389.9 391.2 384.9 359.0 403.7 357.4
BIC 418.3 422.4 416.1 415.7 463.3 394.3

Variable Poisson Hurdle Poisson Finite Mixture

 
* Bolded coefficients are significant at 10% 

)(#** parametersoodLogLikelihAIC 22 +−=  
parametersnsobservatioLogLikelihoodLogBIC )#(#+−−= 2  

 
For the double Poisson model, the dispersion parameter 42.1=α  is significant at the 5%. Since the 
variance of the double Poisson distribution ( ) αμiiiy =x|V , with 1>α , it implies that number of bids is 
underdispersed.  
 
The coefficient of WHITEKNIGHT indicates that an invitation for a friendly third-party bid has a positive 
effect on the number of takeover bids. Another defensive action variable that is statistically significant is 
the legal defense by lawsuit (LEGALREST), which has a surprising positive sign. It indicates that the legal 
defense lawsuit invites more bids. The bid-premium has a significant negative effect on the number of 
takeover bids which is expected. The size of the firm matters, with number of bids increases with the size 
then decreases with the size squared.  
 
Since the coefficients of the Poisson model and PP3 model are scaled differently, they are not directly 
comparable. To check the accuracy of the PP3 parameter estimates we compared the mean marginal 
effects (partial derivative of  with respect to ) of the PP3 with those from the Poisson model (not 
reported). There is relatively little difference, with the mean effects for all variables being within 10% of 
each other. 

( xYE | )

)

kx

  
Using the likelihood ratio test the Poisson model is 
rejected at 5% when testing against the Poisson Polynomial of order 3 (PP3) model. The Poisson model 
is also rejected at 5% when tested against the double Poisson and Poisson hurdle model but not rejected 
against the generalized Poisson or the Poisson finite mixture models.  

( ) ( 5.3872.16595.18422 3 =−−−=−− PPPoisson LLLL
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Two commonly used model selection criteria are the Bayesian information criterion (BIC) and Akaike’s 
information criterion (AIC). Based on the AIC and BIC,  the PP3 fits the takeover bids data the best. 
Although the Poisson hurdle model has better likelihood value it is not parsimonious. The Poisson hurdle 
model needs to estimate 20 parameters vs. 13 parameters of the PP3 model. Furthermore, one should 
only use a hurdle model if there is strong theoretical reason for treating zero counts differently from 
positive counts. 
 
The differences among models lie in their predictive accuracy and aspects of the distribution. Table 5.4 
provides the predicted counts of the Poisson, generalized Poisson, double Poisson, Poisson hurdle, 
Poisson finite mixture with two classes, and the PP3 models along with their Pearson test value. 
The Pearson’s chi-square test is: 
           

                    
( )∑

=

−=
J

j
Pearson predicted

predictedActual

1

2
2χ  where J  is the number of categories 

 
Table 5.4  Takeover Bids: Pearson Chi-Square Goodness of Fit Actual vs. Predicted Counts 

Takeover Bids 
Category Actual

Poisson 
Predicted

Generalized 
Poisson 

Predicted

Double 
Poisson 

Predicted

Poisson 
Hurdle 

Predicted

Poisson Finite 
Mixture 

Predicted

Poisson 
Polynomial 
Predicted

0 9 27 26 18 9 28 9
1 63 38 38 42 62 38 6
2 31 29 30 33 30 29 3
3 12 17 18 18 14 16 1
4 6 9 9 8 6 8

5+ 5 7 5 7 5 7 6
Chi-Square 32.0 30.4 18.7 0.3 31.9 1.1

1
4
2

4

 
 
Clearly, Table 5.4 indicates that the Poisson model significantly over predicts the number of zeros and 
under predicts the number of ones. The Pearson chi-square for the Poisson model is 32.01 compared to 
a  critical value of 9.24 at 5%. The Poisson model is rejected. ( )52χ
 
Comparing to other models, both the Poisson hurdle and PP3 models provide superior predicted results.  
Both models are accepted based on Pearson chi-square test.   These results indicate that Poisson hurdle 
and PP3 models are better than Poisson model when the count data is under-dispersed.  Alternative 
count models should be considered when the underlining data distribution is different from the Poisson 
distribution.      
 
 
6. CONCLUSION 
 
This paper provides a flexible SAS macro program that specifies a variety of count data regression 
models.  Although the SAS software provides some procedures for count regression models (e.g. 
GENMOD, GLIMMIX, COUNTREG), they are restricted to the Poisson and negative binomial 
distributions.  The proposed macro, %countreg, is capable of handling many types of data distributions in 
addition to the Poisson and negative binomial distributions.  Furthermore, the SAS macro program is 
flexible in dealing with count data that exhibits: excessive zeros, under-dispersion, truncation, or 
censoring.   
 
The various types of data distribution and their respective log likelihood functions were discussed in 
section 2.  We further discussed count models that deal with excessive zero counts and models that are 
flexible enough to handle both over- and under-dispersed data. Our empirical results confirm that not all 
data sets can be best analyzed with the Poisson or negative binomial distributions. Depending on the 
data distribution, different count regression models may provide the best results. For the takeover bids 
data, that exhibited few zeros and was under-dispersed the Poisson model perform poorly. The Poisson 
hurdle and Poisson Polynomial of order 3 models were the ones with the best predicted counts.   Our 
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macro provides a flexible program that takes into account a variety of distributions.  Its flexibility allows 
one to use it to analyze any type of count data.      
 

  
 

APPENDIX A 
%macro countreg(indata=,method=,nb=,depend=,indep=,zindep=,gindep=,censor=, 
               lcensor=,rcensor=,ctype=,trunc=,ltrunc=,rtrunc=,ttype=,hurdle=, 
               zip=,zipt=,poly=,order=,nclass=,summary=,gofcut=,vuong=,vdata1=, 
               vdata2); 
*----------------------------------------------------------------------------*  
|  Macro countreg performs count regression modeling using the Proc NLMIXED  | 
|  procedure. The macro incorporates many different count distributions that | 
|  you can choose from. The inputs into the macro include:                   | 
*----------------------------------------------------------------------------*  
|                                                                            | 
|  indata =  The name of the SAS data set that contains the count data       | 
|  method =  Method used to estimate the count data regression model.        | 
|            Choices of methods include:                                     | 
|            1  Poisson                                                      | 
|            2  Generalized Poisson                                          | 
|            3  Poisson-Normal Mixture                                       | 
|            4  Poisson-Inverse Gaussian Mixture(k)                          | 
|            5  Double Poisson                                               | 
|            6  GEC(k) Generalized Event Count                               | 
|            7  Negative Binomial(1 or 2) Poisson-Gamma Mixture              | 
|            8  Generalized Negative Binomial(p)                             | 
|            9  Poisson Finite Mixture                                       | 
|            10 Negative Binomial(1 or 2) Finite Mixture                     | 
|            11 Poisson Constrained Finite Mixture                           | 
|            12 Negative Binomial(1 or 2) Constrained Finite Mixture         | 
|            13 Poisson Semi-Parametric(k)                                   | 
|            14 Poisson Polynomial Expansion(k)                              | 
|            15 Negative Binomial(1 or 2) Polynomial Expansion               | 
|            16 Polya-Aeppli                                                 | 
|            17 Neyman Type A                                                | 
|  nb =      The order of the Negative Binomial(1 or 2)                      | 
|  depend =  Name of the dependent variable                                  | 
|  indep  =  Name of the explanatory variables                               | 
|  zindep =  Name of the independent variables that are used in the hurdle   | 
|            or the zero-inflated model (selection equation)                 | 
|  gindep =  Name of the independent variables that are used in the alpha    | 
|            parameter in the generalized negative binomial or the variables |  
|            used for the phi parameter in the Neyman Type A model           |      
|  censor =  If the data is censored(0=No,1=Yes)                             | 
|  lcensor=  If data is left censored what value is it censored at           | 
|  rcensor=  If data is right censored what value is it censored at          | 
|  ctype  =  What direction is the data censored (Left, Right or Both)       |  
|  trunc  =  If the data is truncated(0=No,1=Yes                             | 
|  ltrunc =  If data is left truncated what value is it truncated at         | 
|  rtrunc =  If data is right truncated what value is it truncated at        | 
|  ttype  =  What direction is the data truncated (Left, Right or Both)      |  
|  hurdle =  If you want to estimate a hurdle model(0=No,1=Yes)             |                  
|  zip    =  If you want to estimate a zero-inflated model(0=No,1=Yes)       | 
|  zipt   =  If you want to estimate a zero-inflated(tau) model(0=No,1=Yes)  | 
|  poly   =  Order of the Poisson-Semi-Parametric model                      | 
|  order  =  Order of the (Poisson or NB) series expansion model             | 
|  nclass =  The number of latent classes that are used for the Poisson and  | 
|            Negative Binomial Finite Mixture and Constrained Finite Mixture | 
|  summary=  Summary statistics on the dependent and independent variables   | 
|            (0=No,1=Yes)                                                    | 
|  gofcut =  Number of categories-1 you want for the Pearson Chi-Square test | 
|  vuong  =  Test two non-nested models with the Voung test (0=No,1=Yes)     | 
|  vdata1 =  data set name that contains the log-likelihood values for the   | 
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|            first model you want to use with the Vuong test.                |                 
|  vdata2 =  data set name that contains the log-likelihood values for the   | 
|            second model you want to use with the Vuong test.               |  
*----------------------------------------------------------------------
------*;    
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