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Abstract 
 
Development of SAS

®
 linear models procedures over the past several years has led to a number of easily accessible 

methodological statistical advances for experimental data analysis.  The original linear models program, GLM, was a 
fixed model procedure for analysis of normally distributed data with homogeneous variances.  The GENMOD 
procedure extended the fixed linear model analysis to a number of non-normal distributions.  With the use of GEE, 
GENMOD was able to address correlated repeated measures data.  The MIXED procedure permitted the user to 
model both fixed and random effects for normally distributed variables.  Because modeling of random effects permits 
multiple residual error terms, it is frequently possible to model heterogeneous residual variances.  The most recent 
linear models procedure, GLIMMIX, has the capabilities of GLM, GENMOD and MIXED in one procedure.  This 
presentation looks at the unique features and appropriate applications of each of these linear model procedures.       

 
 
Introduction 
 
The development of SAS

®
 linear models procedures over the past several years has led to a number of easily 

accessible methodological statistical advances for experimental data analysis.  GLM, GENMOD, MIXED and 
GLIMMIX are linear models procedures developed for the analysis of experimental data from designed experiments.  
GLM and GENMOD were developed to model fixed effects, while MIXED and GLIMMIX were developed to model 
both fixed and random effects.  GLM and MIXED are limited to normally distributed data, while GENMOD and 
GLIMMIX were developed to analyze data from the exponential family of distributions.  Because GLIMMIX was 
developed to analyze both fixed and random effects and data from the exponential family of distributions, which 
includes the normal distribution one would expect GLIMMIX to appropriately analyze data that could be appropriately 
analyzed by any of the other three linear model procedures. 
 
This paper will include a brief description of fixed versus mixed models and identify some of the common members of 
the exponential family of distributions.  A discussion of the four linear models procedures, with examples to illustrate 
their limitations and features that make them useful for certain analysis situations.  The remaining portion of the paper 
will present a number of examples illustrating data analyses using GLIMMIX.  The objective of this paper is to make 
users of these SAS linear models procedures aware of their limitations, as well as, their appropriate use for the 
analysis of a broad range of experimental data. 

 
 
Overview of Linear Models 
 
The following figure illustrates the relationship between these linear model procedures. 
 
        Exponential 
     Normal   family of 
          distributions  distributions 
 
 Fixed models   GLM   GENMOD 
       
 Mixed models   MIXED   GLIMMIX 
 
Factors in an experiment and in a linear model can be partitioned into two categories.  Treatment structure which 
consist of factor levels that the researcher wishes to examine and/or compare.  These include the usual treatment 
factors such as drugs, drug levels, levels of dietary nutrients, type or level of exercise, etc. and are known as fixed 
effects.  Design structure which consists of factors that identify how experimental units were grouped to create more 
homogeneous sets of experimental units.  These include factors such as blocks, days, locations, lab technicians, pen, 
etc. and are known as random effects. 
 
A simple formulation of fixed model would be: 
 

Y = {treatment structure components} + {error structure} 
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A similar formulation of a mixed model would contain one addition set of components: 
 

Y = {treatment structure components} + {design structure components} + {error structure} 
 
In the mixed model error terms are normally defined as interactions of treatment structure and design structure 
factors. 
 
 A factor is fixed when the levels of the factor are selected by researcher.  A fixed factor is one that is 
repeatable.  Because the levels of a fixed effect are selected by the researcher exactly the same factor levels could 
be repeated.  That is, if you or other scientists repeat your experiment, they would be estimating the same differences 
among treatment means, the same covariate regression coefficients or the same differences among regression 
coefficients.  For a random effect the levels are randomly selected from a population of possible levels.  The levels of 
a random effect could not be repeated, because another random sample of levels would result in different levels of 
the factor.  That is, if you or other scientists repeat your study you would not (probably could not) estimate the same 
effects, but could provide an estimate the same variance of the random factor.  The distinction is that a repetition of a 
random factor would include different levels of the random factor, while repetition of a fixed factor would include 
exactly the same levels of the factor.   
 
Suppose that an experiment is conducted at three locations (clinics).  Locations should be modeled as fixed if a 
repetition of the experiment would be conducted at the same locations.  The statistical inference would be restricted 
to those three locations.  Locations should be modeled as random if a repetition of the experiment would result in a 
different set of locations. The statistical inference would be to the population the locations would reasonably 
represent.  For example, if the experiment includes three clinics from Atlanta and a repetition of the experiment would 
be conducted on other Atlanta clinics, than model the location as random and limit the inference to Atlanta clinics.   
 
GLM and MIXED are known as general linear models procedures.  General linear models are a specific case of a 
larger class of models known as generalized linear models.  GENMOD and GLIMMIX are generalized linear models 
procedures.  Generalized linear models allow us to analyze data where the distribution is a member of the 
exponential family of distributions.  The normal distribution is a member of the exponential family of distributions.  
Generalized linear models include error distributions for modeling normal, binary, binomial, negative binomial, 
Poisson, multinomial and several other distributions.  These models allow the treatment means to be modeled by 
selection of an appropriate link function and the error probability distribution.  
 
 

Appropriate Applications and Limitations 
 
GLM was available in the earliest versions of SAS and was for years the mainstay of linear models analysis of 
experimental data.  GLM, an ordinary least squares procedure, was developed for balance or unbalanced fixed model 
analysis of variance.  The assumptions of normality, homogeneity of variances and independence were required.  
The only design structure that could be reasonably characterized as a fixed effects model is a completely randomized 
design structure with equal treatment variability and uncorrelated errors.  If this is your data than GLM is appropriate. 
 
What are some of the problems commonly encountered using GLM? 
 
GLM was frequently used for mixed model analysis.  SAS made an effort to improve GLM capabilities for mixed 
model analysis with the addition of various options and statements.  The E=option on the TEST, CONTRAST and 
LSMEANS statements and the TEST option on the RANDOM statement are examples.  At the time, these attempts 
resulted in significant improvements in our ability to analyze mixed models using available statistical software 
packages.  In the mid 80’s a book by Milliken and Johnson (The Analysis of Messy), pointed out the problems 
associated with using GLM for mixed model analysis by illustrating ways to correct GLM’s output when analyzing 
mixed models. 
 
Even for the simplest mixed model analysis, a randomized complete block design, GLM can not compute the 
appropriate standard errors of the mean.  The standard errors of differences, t and F ratios are correct.  So at least 
our tests of hypotheses are correct, but the SEM does not include the block variance as it should when blocks are 
random.   
 
Standard errors should reflect the variation in the statistic that would be expected in repetitions of the study.  
Therefore, variances associated with random effects, not just the residual variance, may contribute to the magnitude 
of the standard errors.  Because GLM was developed as a fixed model program, GLM will not correctly compute 
standard errors that involve more than one random source of variation.  Thus, except for the simplest designs (fixed 
models) some GLM standard errors are incorrect.  The E= option is limited to the specification of one, and only one, 
random source of variation, while some tests require the combination of two or more random sources of variation.  
Although the TEST option of the RANDOM statement will combine variation from multiple sources of variation, it is a 
post model fitting fix-up that is applied only to the F tests in the analysis of variance.  
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F ratios and standard errors are presented in table 1 to illustrate which common statistics are incorrectly computed for 
a relatively simple mixed model analysis.  The design was a completely randomized split plot design with four dietary 
treatments assigned to subjects and data were recorded at two times (pre and post treatment).  Incorrect values are 
underlined.  The values in the first column are those from a completely balanced experiment (no missing data).  
Although the ANOVA tests of significance are correct, the contrasts testing the difference between diets within a time 
are incorrect.  Tests of significance using the PDIFF option of the LSMEANS statement generates the same incorrect 
tests (not shown).  In addition, the standard error of the differences, generated by the ESTIMATE statement, are 
incorrect for both the differences between diet main effect means and between diet means within a time.   
 
To generate the last two columns four observation were deleted from the data set.  The column labeled 2WU, 
indicating that two whole unit were deleted (both pre and post observations).  The incorrect statistics in this case are 
the same ones that were incorrect for the completely balance data set.  However, if four observations (pre or post) 
are deleted each from a different whole, column labeled 4SU, all of the F ratios and standard errors are incorrect.    
 
 

Table 1:  Selected statistics from GLM analysis of a completely randomized split plot design with incorrect 
values underlined. 

___________________________________________________________________ 

                                F ratios                                                                                     
  ANOVA   Completea    2WUb    4SUc    
    D               18.16   15.42   19.36 

    T                   271.35          259.30  152.52 
   D*T                6.54    8.01    5.71 
   
                                    F ratios                                                                                  

  CONTRAST  Complete    2WU      4SU    
    d1-d2              6.35         4.16        5.05 
    t0-t1               271.35            259.30  152.52 
  d1-d2 @ t1             50.26        49.37     22.69 

  t0-t1 @ d1       56.35       61.71         28.47 
  
                            Standard errors of the difference                                                           

  ESTIMATE  Complete    2WU      4SU   
    d1-d2             .565       .604       .893 
    t0-t1              .400        .427        .557 
  d1-d2 @ t1          .800        .854    1.575 

  t0-t1 @ d1             .800        .764    1.031 
  
                              Standard errors of the mean                                                                

  LSMEANS  Complete         2WU      4SU   
    d1              1.216       1.322     1.349 
    t0       .283        .302       .298 
    d1t0             .565        .540       .595 
 ___________________________________________________________________     

                                                                                                                                                        
 a

 No missing observations, completely balanced designed. 
 b

 Four missing observations, both observations (pre and post) on two whole units. 
 c

 Four missing observations, one each from 4 four different whole units. 
 
 
Non-estimability of least squares means occurs when a treatment combination(s) is missing in a factorial treatment 
structure.  Suppose that in a 2x3 factorial, the treatment combination representing the last level of each factor (a2b3) 
is missing.  Since a main effect mean for one factor is obtained by averaging across all levels of the other factor, the 
main effect means for last level of each factor (a2 and b3) are by definition non-estimable.  GLM or MIXED would 
correctly report in place of the least squares means the message ‘NON-EST’ and a dot (.) for corresponding standard 
errors and tests significance.  Because GLM considers all factors as fixed when fitting the model, the same result 
occurs in GLM when the interaction of a random and fixed effect, with a missing combination, is included in the model 
to define an error term.  MIXED will in this case estimate the main effect least squares means for all levels of the fixed 
effect.         
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Another example incomplete mixed model output with GLM would be the addition of a pretreatment covariate to the 
model, where the covariate was measured once on each subject prior to the start of the experiment where it is also 
necessary to include the animal effect in the model.  In this case the covariate is confounded with the animal effect 
and although the animal and treatment sources are adjusted for the covariate, no tests of significance about the 
covariate are provided by GLM.  MIXED will provide appropriate test of significance about the covariate effect. 
 
Correlated Data (Temporal or Spatial):   A commonly taught assumption of ANOVA is the ‘Independence of model 
residuals’.  Although GLM has a repeated measures statement that may provide correct results in some cases, in 
most cases it is either inefficient or not the most appropriate analysis.  The GLM repeated measures tests are based 
on assumptions that are frequently not true.  However, contrasts are available which, if appropriate for your data, are 
correct, but conservative.  MIXED allows you to model the variances and covariances (correlations) among 
temporally or spatially correlated data and makes use of the variances and covariances to estimate the standard 
errors and to test hypotheses.  Repeated measures could be analyzed in GLM as a multivariate analysis of variance 
using the MANOVA statement.  However this analysis would be conservative if a simpler covariance structure was 
appropriate. 
 
Heterogeneous variances:  The residual variance in GLM is pooled across all treatment groups, which leads to the 
assumption of homogeneity of variances among groups.  MIXED contains features which allows the user to fit 
separate variances for different groups, such as different treatments and/or different time periods.  For some 
analyses, partitioning the residual variance may be reasonable, thus in those cases the data may be analyzed without 
a transformation. 
 
Negative estimates of variance components:  In least squares analysis of variance F ratios less than one result from 
a negative estimate of a variance component.  A negative component for a fixed source is of little concern for tests of 
fixed sources since small ratios simply indicate ‘no effect’.  However a negative variance component for a random 
source is of concern if the negative component becomes part the test of a fixed effect.  The technique used in MIXED 
to fit the random effects portion of the model restricts the variance component estimates to be zero or positive values, 
although the estimates of variance are now biased.   
 
GENMOD was developed to analyze data from the exponential family of distributions.  The normal distribution is a 
member of the exponential family of distributions.  Therefore, data appropriately analyzed with GLM could also be 
appropriately analyzed by GENMOD, although GLM may contain options that would make GLM’s usage preferred.  
Generalized linear models include error distributions for modeling normal, binary, binomial, Poisson, negative 
binomial, Poisson, multinomial and several other distributions.  These models allow the treatment means to be 
modeled by selection of an appropriate link function and the error probability distribution.  GENMOD was developed 
for the analysis of balance or unbalanced data using fixed linear models procedures as described by Nelder and 
Wedderburn (1972).   
 
Generalized estimating equations (Liang and Zeger, 1986) were added to GENMOD to deal with correlated data in 
generalized linear models.  Although GEE’s may provide an appropriate way to deal with correlated data in 
GENMOD, users may find techniques associated with mixed model techniques more satisfactory.      
 
The only design structure that could be reasonably characterized as fixed effects model is a completely randomized 
design structure.  If your data can reasonable be described by a member of the exponential family of distributions and 
the design structure is simple completely randomized experiment, then GENMOD is likely to provide an appropriate 
analysis.  An additional limitation is that test statistics rely on asymptotic theory for some distribution.  That is large 
samples may be needed.   
 
The MIXED procedure permits the user to model both fixed and random effects for normally distributed variables.  
While the major limitation of the mixed procedure is the required normality probability distribution for the residual 
errors, it does contain many useful features for modeling normal data.  Because modeling of random effects permits 
multiple residual error terms, it is frequently possible to model heterogeneous residual variances and the REPEATED 
statement allow us to model correlated data.  Mixed also contains a rich set of influence statistics (similar to those in 
the REG procedure) that can assist the user in identifying observations or sets of observations that may be exerting 
undue influence on the results.     
 
The features that make the MIXED procedure a valuable tool in linear models analysis are primarily controlled with 
the RANDOM and REPEATED statements.  Unlike the random statement in GLM, the MIXED RANDOM statement 
allows the user to appropriately model the design structure of the experiment.  With the REPEATED statement the 
user can model heterogeneous residual variances among treatments.  If appropriate a different residual variance may 
be assigned to each treatment, rather than a single pooled residual variance as with GLM.  The major use of the 
REPEATED statement is to model correlated residuals as in repeated measures analyses or for spatial correlated 
data.  I will discuss repeated measures in the GLIMMIX section, but for mixed I have selected an example fitting 
heterogeneous variance using MIXED. 
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This experiment examines the growth curves of bacteria on different growth media.  The experiment was a repeated 
measures design.  However, since the researcher was interested in specific parameters of growth, non-linear growth 
curves were fit to each time series and the estimates of the growth parameters were analyzed using the MIXED 
procedure.  In this case a repeated measures analysis is not necessary, since each time sequence is now 
represented by sample estimates that incorporate the time effects.  The experiment is a CRD with 3 to 6 replications 
(rep) and six different growth media (medium).  The dependent variable is the asymptotes (k) from the non-linear 
growth curve. 
 

A one way analysis of variance, with 27 residual df, was run to generate residuals for examination of the ideal 
conditions of the analysis.  Plots of the residuals indicated that some treatments had variances that were several 
times larger than those for the treatments with the smallest variance.  The plots did not indication of a serious 
departure from normality.   The following mixed model analysis was run to further examine the heterogeneous 
variability. 
 
 

TITLE3 The dependent variable is K; 

TITLE4 Fitting separate variances for each medium; 

PROC MIXED DATA=est CL; 

 CLASS rep medium; 

 MODEL k  = medium / DDFM=KR; 

 REPEATED / GROUP=medium; 

 LSMEAN medium; 

 

 

                        Growth Media Study                  
                Bacterial Growth Curve Parameters 
        K are asymptotes for the non-linear growth curves 

 
                    Obs    rep   medium    k 
                      1     1     CO     8.82 

                      2     1     CU     6.05 
                      3     1     PE     8.59 
                      4     1     RA     8.94 
                      5     1     SO     8.28 

                      6     1     SU     7.99 
                      7     2     CO     8.99 
                      8     2     PE     8.56 

                      9     2     RA     7.75 
                     10     2     SO     8.19 
                     11     2     SU     7.82 
                     12     3     CO     8.91 

                     13     3     PE     8.73 
                     14     3     RA     8.88 
                     15     3     SO     8.14 

                     16     3     SU     7.29 
                     17     4     CO     9.45 
                     18     4     CU     6.69 
                      .     .      .      . 

                      .     .      .      . 
                      .     .      .      . 
                     32     6     SO     8.22 
                     33     6     SU     8.23 
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The following selected results were generated. 
 

                        Growth Media Study                  
                Bacterial Growth Curve Parameters 

                   The dependent variable is K 
            Fitting separate variances for each medium 
 

 
                  Class Level Information 
 
         Class     Levels    Values 

         rep            6    1 2 3 4 5 6 
         medium         6    CO CU PE RA SO SU 
 

 
                 Covariance Parameter Estimates 
 
 Cov Parm    Group       Estimate    Alpha      Lower      Upper 

 Residual    medium CO     0.2479     0.05    0.09659      1.4912 
 Residual    medium CU     0.4560     0.05     0.1236     18.0124 
 Residual    medium PE   0.008377     0.05   0.003264     0.05039 
 Residual    medium RA     0.7111     0.05     0.2771      4.2774 

 Residual    medium SO   0.005787     0.05   0.002255     0.03481 
 Residual    medium SU     0.1261     0.05    0.04913      0.7584 

 

 
These are the estimates of the random variances (Estimate) for the six media.  The advantage of this analysis of 
variance is that the assumption of homogeneity of residual treatment variances is not required, since no variances 
are being pooled.  However, normality is still an assumption.  Remember that the assumption of normality is that each 
treatment mean was from a normally distributed population of treatment means.  The disadvantage of using this 
model is that it results in smaller number of degrees of freedom for test of significance then when variances are 
partitioned (6.8) as compared to degrees of freedom for a single pooled variance (27) for the experiment.  
 
 

                         Fit Statistics 
 

             -2 Res Log Likelihood            16.4 
             BIC (smaller is better)          37.4 
 

 
                Null Model Likelihood Ratio Test 
 
                DF    Chi-Square      Pr > ChiSq 

                 5         31.44          <.0001 

 

The chi-square value is the difference between the -2 Res Log Likelihood (-2LL) for the two models and the degrees 
of freedom is the difference in the numbers of random variance parameters fit in the two models.  The results indicate 
that we should reject the null hypothesis (p<.0001) that the variances are homogeneous.  This does not mean that six 
residual variances are the best way to fit the random variance, but that it is a significantly better fit than a single 
pooled estimate of experimental variance. 
   
There are two other candidate models that could be considered for these data.  1) Two variance groups: PE and SO 
pooled with one experiment variance and the other four media pooled to form a second variance.  2) Three variance 
groups of two media each, forming a small, an intermediate and a large variance group.  To illustrate the fitting 
process I will present the two variance grouping. 
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DATA vargrp; 

 SET est; 

 IF medium IN('PE','SO') THEN vargrp=1; 

 IF medium IN('CO','CU','RA','SU') THEN vargrp=2; 

 

 PROC MIXED DATA=vargrp CL; 

 CLASS rep medium vargrp; 

 MODEL k  = medium / DDFM=KR OUTP=resids; 

 REPEATED / GROUP=vargrp; 

LSMEAN medium / PDIFF; 

 

 
                        Growth Media Study                 
                Bacterial Growth Curve Parameters 

                   The dependent variable is K 
        Fitting two separate experimental variance groups 
 
 

                   Covariance Parameter Estimates 
 
  Cov Parm    Group      Estimate    Alpha      Lower      Upper 

  Residual    vargrp 1   0.007082     0.05   0.003457    0.02181 
  Residual    vargrp 2     0.3728     0.05     0.2099     0.8378 

 

 

These are the estimates of variances for the two media groups.  The variance for group 2 is ~50 times greater than 
the variance for group 1. 
 

 

                        Fit Statistics 
 

             -2 Res Log Likelihood            20.4 
             BIC (smaller is better)          27.4 

 

 

The model fitting information provides statistics for evaluating the fit of the two parameter model as compared to the 
six parameter model. 
 

        Number of parameters 

   Criteria   Two     Six  

 

   -2LL            20.4    16.4 

   BIC    27.4    37.4 

   DF                  19.2     6.8 

 
 
AIC and BIC are penalized residual log likelihood (-2LL) statistics.  -2LL is similar to an R-squared value in multiple 
regression.  The more parameters added to the model the better the fit (smaller value).  Just like R-square, the -2LL 
does not take into account the number of parameters (simplicity) in the model.  BIC is more like an adjusted R-
square, because their values have been increased (penalized) depending on the number of parameters in the model.      
In this case BIC supports the two as compared to the six variance model.   
 

 

 
 

                Null Model Likelihood Ratio Test 

 
                DF    Chi-Square      Pr > ChiSq 
                 1         27.44          <.0001 
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                 Type 3 Tests of Fixed Effects 
 
                       Num     Den 
         Effect         DF      DF    F Value    Pr > F 

         medium          5    19.2      22.14    <.0001 
 
                      Least Squares Means 
 

                                   Standard 
 Effect    medium   Estimate     Error    DF   t Value   Pr > |t| 
 medium     CO        9.3317    0.2493    17     37.44     <.0001 

 medium     CU        6.0267    0.3525    17     17.10     <.0001 
 medium     PE        8.5783   0.03436    10    249.70     <.0001 
 medium     RA        8.0400    0.2493    17     32.26     <.0001 
 medium     SO        8.2367   0.03436    10    239.75     <.0001 

 medium     SU        7.9400    0.2493    17     31.85     <.0001 

 
 
 
Because GLIMMIX was developed to analyze both fixed and random effects and data from the exponential family of 
distributions, which includes the normal distribution one should expect GLIMMIX to appropriately analyze data that 
could be analyzed by any of the other three linear model procedures. 
 
MIXED and GLIMMIX both have a full suite of variance-covariance matrices for analysis of repeated measures 
experiments.  The example presented below was from an experiment examining the effects flyicides on numbers of 
flies on cattle.  The treatments are control (0) and three flyicides.  Fly counts associated with each animal were taken 
at 2, 4 and 6 months post treatments.  Because the dependent variable (flies) is a count, Poisson repeated measures 
should be considered.  
 
               data flyicide; 
 input animal$ treatment month flies; 

 datalines; 

     a           0          2       13 

     a           0          4       10 

     a           0          6       13 

     b           2          2       10 

     b           2          4        8 

     b           2          6        8 

     c           3          2       10 

     .           .          .        . 

     .           .          .        . 

     .           .          .        . 

  

     p           2          6        6 

 run; 

 
 
One choice for analysis would be to use a normalizing transform and use MIXED to analyze the transform data.  
Using this approach would require the following MIXED code to fit the data to an unstructured variance-covariance 
matrix. 
 

 

 PROC MIXED DATA=flyicide; 

 CLASS animal treatment month; 

 MODEL transform_flies = treatment month treatment*month / DDFM=KR; 

 REPEATED month / SUBJECT=animal(treatment) TYPE=un; 

 LSMEANS treatment month treatment*month; 

 
 
GLIMMIX does not have a REPEATED statement.  The functionality of the repeated statement has been incorporated 
into the RANDOM statement of GLIMMIX.  To analyze fly counts as Poisson distributed repeated measures, the 
GLIMMIX procedure would require the following code. 
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 PROC GLIMMIX DATA=flyicide; 

 CLASS animal treatment month; 

 MODEL flies = treatment month treatment*month / DDFM=KR DIST=POISSON LINK=LOG; 

 RANDOM month / RESIDUAL SUBJECT=animal(treatment) TYPE=un; 

 LSMEANS treatment month treatment*month / ILINK; 

 
 
The resulting unstructured variance-covariance matrix. 
 
  Repeated                Repeated Measure   

  Measure     month2     month4      month6 

  month2     1.0493     0.6321     0.9688 

  month4    1.1029     0.8778 

  month6           1.1274 

 
The covariance matrix has been scaled such that if the data were exactly Poisson then the diagonal values would be 
1.0.  The diagonals are estimates of the overdispersion parameter.  For the Poisson distribution, Variance=Mean, for 
overdispered Poisson the Variance=Overdispersion x Mean.  The covariances are also scaled and reflect the relative 
magnitude of the correlation among residuals.   
 
The results of the unstructured variance-covariance matrix suggest that compound symmetry might be another 
possibility.  The following are results of the CS analysis.  I have also included a number of options to illustrate some 
of the mean comparison features available in GLIMMIX.  I have included ODS graphics statements to generate a two-
way plot of the treatment means with their confidence limits that would be especially useful for examination of 
interactions.  
 

ODS HTML; 

ODS GRAPHICS ON; 

ODS SELECT MEANPLOT; 

TITLE2 Compound Symmetry; 

PROC GLIMMIX DATA=flyicide; 

CLASS animal treatment month; 

MODEL flys = treatment month treatment*month/ DDFM=KR DIST=POISSON LINK=LOG; 

RANDOM month / RESIDUAL SUBJECT=animal(treatment) TYPE=CS; 

LSMEANS treatment*month / plot=MEANPLOT (SLICEBY=treatment JOIN CL); 
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A second lsmeans statement includes the ILINK option that request that the inverse link be applied to provide a mean 
on the original scale along with SEM using the delta method.  The LINES option assigns letters to the means 
identifying significant differences among the least squares means.  The SLICEDIFF=month computes the tests of 
simple effects between treatments for each month (18 comparisons).   
 

LSMEANS treatment*month / ILINK LINES SLICEDIFF=month; 

 

The high lighted columns are the result of the ILINK option and are on the original count scale. 
 

                          treatment*month Least Squares Means 

                                                                             Standard 

                               Standard                                         Error 

   treatment  month  Estimate     Error     DF  t Value  Pr > |t|      Mean      Mean 

   0          2        2.4423    0.1542   16.8    15.84    <.0001   11.5000    1.7728 

   0          4        2.3749    0.1594   16.8    14.89    <.0001   10.7500    1.7140 

   0          6        2.4423    0.1542   16.8    15.84    <.0001   11.5000    1.7728 

   1          2        2.2246    0.1719   16.8    12.94    <.0001    9.2500    1.5900 

   1          4        2.2513    0.1696   16.8    13.27    <.0001    9.5000    1.6113 

   1          6        2.0794    0.1848   16.8    11.25    <.0001    8.0000    1.4786 

   2          2        1.7492    0.2180   16.8     8.02    <.0001    5.7500    1.2536 

   2          4        1.5041    0.2464   16.8     6.10    <.0001    4.5000    1.1090 

   2          6        1.4469    0.2536   16.8     5.71    <.0001    4.2500    1.0777 

   3          2        2.0477    0.1878   16.8    10.90    <.0001    7.7500    1.4554 

   3          4        1.9810    0.1942   16.8    10.20    <.0001    7.2500    1.4076 

   3          6        1.8326    0.2091   16.8     8.76    <.0001    6.2500    1.3069 

 

 

The letters indicating significance among the treatment means are the result of the LINES option 
 

             T Grouping for treatment*month Least Squares Means (Alpha=0.05) 

 

             LS-means with the same letter are not significantly different. 

 

                   treatment    month    Estimate 

 

                   0            2          2.4423              A 

                   0            6          2.4423              A 

                   0            4          2.3749    B         A 

                   1            4          2.2513    B         A    C 

                   1            2          2.2246    B         A    C 

                   1            6          2.0794    B    D    A    C 

                   3            2          2.0477    B    D    A    C 

                   3            4          1.9810    B    D    A    C 

                   3            6          1.8326    B    D         C 

                   2            2          1.7492         D         C 

                   2            4          1.5041         D 

                   2            6          1.4469         D 
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Tests of simple effects resulting from the SLICEDIFF= option of the LSMEANS statement. 
 

       Simple Effect Comparisons of treatment*month Least Squares Means By month 

 

  Simple 

  Effect                                        Standard 

  Level     treatment   _treatment   Estimate      Error      DF   t Value   Pr > |t| 

  month 2   0           1              0.2177     0.2309    16.8      0.94     0.3591 

  month 2   0           2              0.6931     0.2670    16.8      2.60     0.0190 

  month 2   0           3              0.3947     0.2430    16.8      1.62     0.1229 

  month 2   1           2              0.4754     0.2776    16.8      1.71     0.1052 

  month 2   1           3              0.1769     0.2546    16.8      0.69     0.4966 

  month 2   2           3             -0.2985     0.2877    16.8     -1.04     0.3143 

  month 4   0           1              0.1236     0.2328    16.8      0.53     0.6024 

  month 4   0           2              0.8708     0.2935    16.8      2.97     0.0087 

        .   

        . 

        . 

  month 6   1           3              0.2469     0.2791    16.8      0.88     0.3889 

  month 6   2           3             -0.3857     0.3287    16.8     -1.17     0.2570 

 

 

 

LSMESTIMATE treatment*month 'Month=6, trt 1 vs control' 0 0 1  0 0 -1  0 0 0  0 0 0; 

 

ESTIMATE 'Month=6, trt 1 vs control' treatment 1 -1 0 0; 

         treatment*month 0 0 1  0 0 -1  0 0 0  0 0 0; 

RUN; 

ODS GRAPHICS OFF; 

ODS HTML CLOSE; 

 
The following was generated using the new LSMESTIMATE statement.  The same results could have been obtained 
the ESTIMATE statement.  The LSMESTIMATE simplifies the writing of contrasts because the coefficients are 
applied to the LSMEANS rather that to the estimate of effects as with the ESTIMATE statement. 
 

                             Least Squares Means Estimates 

 

                                                     Standard 

Effect           Label                     Estimate    Error    DF  t Value  Pr > |t| 

 

treatment*month  Month=6, trt 1 vs control   0.3629   0.2407  16.8     1.51    0.1502 

 
 
 
The following output is from the compound symmetry repeated measures analysis and is for comparison to the 
unstructured repeated measures analysis to determine how best to model these repeated measures data. 
 

                       Using MIXED for Repeated Measures Analysis                       

                                   Compound Symmetry 

 

                                 The GLIMMIX Procedure 

                                     Fit Statistics 

 

                        -2 Res Log Pseudo-Likelihood       26.09 

                        Generalized Chi-Square              9.61 

                        Gener. Chi-Square / DF              0.27 
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                            Covariance Parameter Estimates 

 

                                                              Standard 

                 Cov Parm    Subject              Estimate       Error 

                 CS          animal(treatment)      0.8262      0.3745 

                 Residual                           0.2669     0.07706 

 

 

                            Type III Tests of Fixed Effects 

 

                                     Num      Den 

                 Effect               DF       DF    F Value    Pr > F 

                 treatment             3       12       3.94    0.0362 

                 month                 2     24.6       2.94    0.0714 

                 treatment*month       6    24.51       0.81    0.5704 

 
 

 
The second GLIMMIX example examines a set of binary observations.  Data were collected on a single herd of 
~1000 dairy animals.  The variable of interest was evidence of infection with Neospora coded 1 if infected and 0 if not 
infected.  Neospora is a serious problem in infected herds because infected animals abort their calves.  Of interest 
was the infection rate of neospora as a function of gender, location and differences in age within location. 
 

 

                               NEOSPORA DATA                              

 
        Obs    ID         Inf    Elisa    Age_mo    Location    Sex     adj_age 
 

          1    1015HNB     1       474       2.0        1        F        0.056 
          2    1018HNB     0       474       0.8        1        F       -1.144 
          3    1041HNB     0       948       1.1        1        F       -0.844 
          4    1067HNB     0       441       1.3        1        F       -0.644 

          5    1086HNB     0       640       2.3        1        F        0.356 
          6    1101HNB     0       731       2.6        1        F        0.656 
          7    1115HNB     0      1707       1.5        1        F       -0.444 

          8    1117HNB     0       492       2.8        1        F        0.856 
          9    1126HNB     0       200       2.5        1        F        0.556 
          .                 
          . 

          . 

 

 
For the first example the model will include location and gender effects in a 2x2 factorial.  The data are binary and 
logistic analysis will be used to model the response variable.  The error distribution will be defined as binomial and 
the link as logit.  The GLIMMIX program was as follows: 
 

proc glimmix; 

where location in(1,2); 

class location sex; 

model Inf = location sex location*sex 

  / dist=bin link=logit; 

lsmeans location sex location*sex / ilink; 

run; 
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Now let’s look at selected results of the analysis. 
 

                                    NEOSPORA DATA                            

                                The GLIMMIX Procedure 

 

                                  Model Information 

                   Response Variable            Inf 

                   Response Distribution        Binary 

                   Link Function                Logit 

 

                               Class Level Information 

                             Class       Levels    Values 

                             Location         2    1 2 

                             Sex              2    F M 

 

                                    Fit Statistics 

                         -2 Log Likelihood             365.62 

                         Pearson Chi-Square / DF         1.01 

 

 

                           Type III Tests of Fixed Effects 

                                   Num      Den 

                  Effect            DF       DF    F Value    Pr > F 

                  Location           1      342       2.56    0.1104 

                  Sex                1      342       1.64    0.2012 

                  Location*Sex       1      342       0.02    0.8768 

 

 

                            Location Least Squares Means 

                                                                           Standard 

                        Standard                                              Error 

  Location   Estimate      Error      DF   t Value   Pr > |t|       Mean       Mean 

  1           -1.5208     0.2545     342     -5.98     <.0001     0.1793    0.03746 

  2           -1.0348     0.1656     342     -6.25     <.0001     0.2622    0.03204 

 

 

                               Sex Least Squares Means 

                                                                            Standard 

                    Standard                                                   Error 

 Sex    Estimate       Error       DF    t Value    Pr > |t|        Mean        Mean 

 F       -1.0833      0.2036      342      -5.32      <.0001      0.2529     0.03847 

 M       -1.4722      0.2253      342      -6.54      <.0001      0.1866     0.03419 

 

 

                          Location*Sex Least Squares Means 

                                                                          Standard 

                            Standard                                         Error 

   Sex  Location  Estimate     Error     DF  t Value  Pr > |t|      Mean      Mean 

   F    1          -1.3499    0.2999    342    -4.50    <.0001    0.2059   0.04903 

   M    1          -1.6917    0.4113    342    -4.11    <.0001    0.1556   0.05403 

   F    2          -0.8168    0.2755    342    -2.96    0.0032    0.3065   0.05855 

   M    2          -1.2528    0.1839    342    -6.81    <.0001    0.2222   0.03179 
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For the second example the model will include location a class variable, age linear, age quadratic and the location by 
age linear interaction.  Age is adjusted to a mean of zero for each location.  In the GLIMMIX the error distribution will 
be defined as binomial and the link as logit.  The GLIMMIX program was as follows: 
 

proc glimmix; 

where sex='F'; 

class location; 

model Inf = location 

             adj_age 

             adj_age*adj_age 

            location*adj_age 

  /solution dist=bin link=logit; 

lsmeans location / pdiff at mean ilink; 

quit; 

 
 
Now let’s look at the results of the analysis. 
 

                                  Model Information 

                   Response Variable            Inf 

                   Response Distribution        Binary 

                   Link Function                Logit 

 

                               Class Level Information 

                            Class       Levels    Values 

                            Location         4    1 2 3 4 

 

                                    Fit Statistics 

                         -2 Log Likelihood             959.88 

                         Pearson Chi-Square / DF         1.01 

 

 

                                 Parameter Estimates 

                                             Standard 

 Effect              Location    Estimate       Error       DF    t Value    Pr > |t| 

 Intercept                        -0.8890      0.1224      804      -7.26      <.0001 

 Location            1            -0.5112      0.3364      804      -1.52      0.1290 

 Location            2            0.06819      0.3025      804       0.23      0.8217 

 Location            3             0.4409      0.1851      804       2.38      0.0174 

 Location            4                  0           .        .        .         . 

 adj_age                          0.02409    0.006746      804       3.57      0.0004 

 adj_age*adj_age                 -0.00027    0.000128      804      -2.08      0.0380 

 adj_age*Location    1            -0.4424      0.3287      804      -1.35      0.1788 

 adj_age*Location    2            -0.1116      0.1450      804      -0.77      0.4419 

 adj_age*Location    3           -0.07230     0.03260      804      -2.22      0.0269 

 adj_age*Location    4                  0           .        .        .         . 

 

 

                           Type III Tests of Fixed Effects 

                                     Num      Den 

                Effect                DF       DF    F Value    Pr > F 

                Location               3      804       3.45    0.0163 

                adj_age                1      804       2.16    0.1421 

                adj_age*adj_age        1      804       4.32    0.0380 

                adj_age*Location       3      804       2.42    0.0648 
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                            Location Least Squares Means 

                                                                            Standard 

                              Standard                                         Error 

 Location  adj_age  Estimate     Error     DF  t Value  Pr > |t|      Mean      Mean 

 1            0.00   -1.4002    0.3133    804    -4.47    <.0001    0.1978   0.04971 

 2            0.00   -0.8208    0.2768    804    -2.97    0.0031    0.3056   0.05873 

 3            0.00   -0.4481    0.1399    804    -3.20    0.0014    0.3898   0.03327 

 4            0.00   -0.8890    0.1224    804    -7.26    <.0001    0.2913   0.02528 

 

 

                     Differences of Location Least Squares Means 

                                              Standard 

   Location   Location   adj_age   Estimate      Error      DF   t Value   Pr > |t| 

   1          2             0.00    -0.5794     0.4181     804     -1.39     0.1661 

   1          3             0.00    -0.9521     0.3431     804     -2.77     0.0056 

   1          4             0.00    -0.5112     0.3364     804     -1.52     0.1290 

   2          3             0.00    -0.3727     0.3101     804     -1.20     0.2297 

   2          4             0.00    0.06819     0.3025     804      0.23     0.8217 

   3          4             0.00     0.4409     0.1851     804      2.38     0.0174 

 

 

Previous in the paper I have addressed the analysis of response variables with only 2 possible outcomes (binary).  
What if our response variable has more than two possible outcomes (multinomial).  The common approach is to use 
a chi-square contingency table analysis, which is equivalent to a one-way anova.  But what if the treatment structure 
is a factorial?  Glimmix provides an analysis for multi-way treatment structures when the response variable is 
multinomial.  
 
The experiment was a survey examining the effects of air pollution (Low, High), job air quality (Good, Poor) and 
smoking status (Non, Ex, Current).   
 
The response variable is Respiratory Disease Level (I, II, III or IV), with I being no symptoms and IV being the most 
severe.   
 
The DIST= multinomial and LINK=cumlogit for an ordered multinomial response variable. 
 

 

Chronic Respiratory Disease Data 
 
******************************************************************************************************* 
Ordered Response Variable Definition 
 I = no symptoms,   
 II = cough or phlegm less than three months per year 
 III = cough or phlegm more than three months per year 
 IV = cough and phlegm plus shortness of breath more than three months per year 
 
 Air pollution status (Low, High) 
 Job air status (Good, Poor) 
 Smoking is smoking status (Non, Ex, Current) 
******************************************************************************************************** 
 

There are 48 lines of data (combinations of air, job, smoking and respiratory disease level).  Count represents the 
number of time each combination occurred in the survey.  Count will be use as a frequency variable in the glimmix 
analysis.  The total count (number of subjects in the survey is 2090.  The data are presented below in two way tables. 
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Data frequencies for Smoking by RespiratoryLevel, Air=High and Job=Good 

 

      Smoking     RespiratoryLevel 

 

      Frequency‚I       ‚II      ‚III     ‚IV      ‚   

      Current  ‚     77 ‚     48 ‚     39 ‚     51 ‚   

      Ex       ‚     39 ‚     11 ‚      4 ‚      2 ‚   

      Non      ‚     32 ‚      3 ‚      6 ‚      1 ‚   

 

 

Data frequencies for Smoking by RespiratoryLevel, Air=High and Job=Poor 

 

      Smoking     RespiratoryLevel 

 

      Frequency‚I       ‚II      ‚III     ‚IV      ‚   

      Current  ‚    184 ‚     65 ‚     33 ‚     36 ‚    

      Ex       ‚     67 ‚      8 ‚      4 ‚      3 ‚    

      Non      ‚     94 ‚      7 ‚      5 ‚      1 ‚    

 

 

Data frequencies for Smoking by RespiratoryLevel, Air=Low and Job=Good 

 

      Smoking     RespiratoryLevel 

 

      Frequency‚I       ‚II      ‚III     ‚IV      ‚  

      Current  ‚     94 ‚     48 ‚     46 ‚     60 ‚  

      Ex       ‚     38 ‚     12 ‚      4 ‚      4 ‚  

      Non      ‚     26 ‚      5 ‚      5 ‚      1 ‚  

 

 

Data frequencies Smoking by RespiratoryLevel, Air=Low and Job=Poor 

 

      Smoking     RespiratoryLevel 

 

      Frequency‚I       ‚II      ‚III     ‚IV      ‚ 

      Current  ‚    307 ‚    102 ‚     83 ‚     68 ‚ 

      Ex       ‚    167 ‚     19 ‚      5 ‚      3 ‚ 

      Non      ‚    158 ‚      9 ‚      5 ‚      1 ‚ 

 

 

 

TITLE2 Multinomial distribution, Cumulative Logit; 

PROC GLIMMIX DATA=Respiratory; 

FREQ count; 

CLASS Air Job Smoking; 

MODEL RespiratoryLevel(DESCENDING) = Air Job  Smoking  Job*Smoking 

  / SOLUTION DIST=MULTINOMIAL LINK=CUMLOGIT; 
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      Chronic Respiratory Disease Data 

Multinomial distribution, Cumulative Logit 

 

                     Model Information 

 

   Response Variable            RespiratoryLevel 

   Response Distribution        Multinomial (ordered) 

   Link Function                Cumulative Logit 

 

                 Class Level Information 

        

    Class      Levels    Values 

           Air             2    High Low 

           Job             2    Good Poor 

           Smoking         3    Current Ex Non 

 

                   Response Profile 

 

           Ordered    Respiratory        Total 

           Value    Level          Frequency 

               1    IV                   231 

               2    III                  239 

               3    II                   337 

               4    I                   1283 

 

The GLIMMIX procedure is modeling the probabilities of levels of RespiratoryLevel 

having lower Ordered Values in the Response Profile table. 

 

 

                              Parameter Estimates 

 

            Respiratory                            Standard 

Effect      Level       Air  Job  Smoking Estimate    Error    DF t Value Pr > |t| 

Intercept   IV                             -3.9848   0.2128  2081  -18.73   <.0001 

Intercept   III                            -3.0653   0.2062  2081  -14.86   <.0001 

Intercept   II                             -2.1868   0.2019  2081  -10.83   <.0001 

Air                     High              -0.04467  0.09380  2081   -0.48   0.6340 

Air                     Low                      0        .     .     .      . 

Job                          Good           1.2091   0.3207  2081    3.77   0.0002 

Job                          Poor                0        .     .     .      . 

Smoking                           Current   1.9725   0.2095  2081    9.41   <.0001 

Smoking                           Ex        0.4642   0.2596  2081    1.79   0.0740 

Smoking                           Non            0        .     .     .      . 

Job*Smoking                  Good Current  -0.4009   0.3377  2081   -1.19   0.2352 

Job*Smoking                  Good Ex       -0.2587   0.4102  2081   -0.63   0.5283 

Job*Smoking                  Good Non            0        .     .     .      . 

Job*Smoking                  Poor Current        0        .     .     .      . 

Job*Smoking                  Poor Ex             0        .     .     .      . 

Job*Smoking                  Poor Non            0        .     .     .      . 
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       Type III Tests of Fixed Effects 

               Num     Den 

 Effect         DF      DF  F Value    Pr > F 

 Air             1    2081     0.23    0.6340 

  Job             1    2081    48.40    <.0001 

 Smoking         2    2081    95.26    <.0001 

 Job*Smoking     2    2081     0.77    0.4616 

 

 
The initial model was the full factorial model.  I deleted the least significant high order sources first.  In practice I 
would also delete the Job*Smoking, but elected to leave it in this example to show that interactions can be include in 
multinomial glimmix models. 
 

The following are examples code for estimate statements was used compute the cumulative percentages for Job 
Status = Poor.  
 

ESTIMATE 'Job=Poor IV'         INTERCEPT 6 0 0  Air 3 3  Job 6 0  Smoking 2 2 2  

 job*smoking 2 2 2 0 0 0 / ILINK DIVISOR=6; 

ESTIMATE 'Job=Poor III+IV'     INTERCEPT 0 6 0  Air 3 3  Job 6 0  Smoking 2 2 2 

 job*smoking 2 2 2 0 0 0 / ILINK DIVISOR=6; 

ESTIMATE 'Job=Poor II+III+IV'  INTERCEPT 0 0 6  Air 3 3  Job 6 0  Smoking 2 2 2 

 job*smoking 2 2 2 0 0 0 / ILINK DIVISOR=6; 

 

 

The cumulative percentages for Job Status Poor are in the Mean column in the following output.    

 

     Estimates 

                                                                             Standard 

                               Standard                                         Error 

 Label               Estimate     Error     DF  t Value  Pr > |t|      Mean      Mean 

 Job=Poor IV          -2.2057    0.1235   2081   -17.86    <.0001   0.09924   0.01104 

 Job=Poor III+IV      -1.2862    0.1141   2081   -11.28    <.0001    0.2165   0.01935 

 Job=Poor II+III+IV   -0.4077    0.1105   2081    -3.69    0.0002    0.3995   0.02651 

 

 

Summary of Respiratory Level percentages by Job Status generated using estimate statements   

 

      Cumulative Percentage 

   Job  I II III IV 

   Poor  100 40 22 10 

   Good  100 20  9  4 

 

       Percentage   .   

   Job  I II III IV 

   Poor  60 18 12 10 

   Good  80 11  5  4 
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Summary of applications and features 
 
GLIMMIX can correctly perform most of the analyses that are can be appropriate analyzed using GLM, GENMOD 
and MIXED.  In addition it is the most comprehensive of the linear models programs, since it can appropriately 
analyze both fixed and mixed models, and data from the exponential family of distributions.  GLIMMIX’s ods graphics 
output, statements and options for examining means are very useful additions.   Also the use of log-linear models for 
mixed model analysis of multidirectional frequency data is a welcome tool.  For some probability distributions, small 
samples may result in difficult fitting some models and a reduction in sensitivity.  MIXED is limited to data with 
normally distributed errors.  Influence statistics and the associated ods graphics output for examining assumptions of 
the analysis and identifying influential observations or set of observations, is not available in the other procedures.  
Both GLIMMIX and MIXED have a very comprehensive set of variance-covariance structures for analyzing correlated 
data, while GENMOD includes the GEE technique for correlated count data.  GLM does include a MANOVA 
statement for fixed model multivariate analysis of variance.  GLIMMIX and MIXED can conduct a form of multivariate 
analysis using the variance-covariance structures incorporate the correlation among response variables.             
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