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ABSTRACT  

Most experiments are a part of a process, not an entity unto themselves, and designs that do not account for the 
restrictions of the process end up with inferior analyses. In this presentation the design of experiments are described 
as a process instead of a single entity. A design must first be approached by stepping back to evaluate how the 
design of the experiment fits into the whole process, identifying the process restrictions, and, finally, using the 
restrictions to develop an appropriate designed experiment and then the corresponding analysis. Only when the 
complete process involved with the design of the experiment is known can an appropriate model be constructed.  
Simple to complex designs have basic characteristics in common called design structures. Basic design structures 
are the building blocks of complex designs. The identification of the four basic structures and their restrictions is the 
basis of successfully identifying or classifying an experiment and of constructing the resulting analysis. This approach 
is a change to the paradigm for designing experiments, and the methodology is applicable to all areas of research 
from agriculture to manufacturing to social sciences. The following sections present a discussion of the design of 
experiment tools and will present several examples from agriculture, semi-conductor manufacturing, and the social 
sciences. 

INTRODUCTION  

The traditional methods design of experiments are taught and/or discussed in text books are not the ways design of 
experiments are or should be used for real world applications.  Design of experiments are taught as single entities 
such as a completely randomized design, randomized complete block, nested design, Latin square, etc..  In reality a 
study will generally consist of a series of individual steps that might require the use of a series of designs.  A typical 
experiment consists of assigning animals to the levels of a drug and then measuring one or more responses on each 
of the animals.  The analysis of the data obtained at the end of the process is generally based on the method of 
assigning the animals to the levels of the drug.  But, there are possibly many steps between the assignments of 
animals to drugs and the data one extracts at the end of the study.  Ignoring what possibly happens during these 
steps can result in inferior quality data analysis(data with a lot of unexplained variation). One or more tools of 
designed experiments might be used at each of the steps of the study.  For example, if blood samples are obtained 
from each animal, what order does one obtain the samples from the animals and then what order does one have the 
samples analyzed by the laboratory?   Will more than one technician be involved with obtaining the blood samples?  
Will more than one technician be involved with the analyses of the samples in the laboratory?  How long will it take 
the samples to be analyzed in the laboratory?  Will laboratory results vary from setup to setup or day to day or 
session to session? When discussing design of experiments, questions like these are generally not discussed.  And 
most surely, the consequences of the answers to those (or similar) questions are ignored.  The effect of ignoring the 
answers to the questions is to add variability to the data set.  An increase in the variability in the data set dilutes the 
evaluation of the means of the levels of the drug through an increase in the estimated standard error of a difference 
and results in increases of type I error rates. 
 
Each experiment is composed of a set of steps and the activities carried out at each step can have a big influence on 
the variability of the data set and unfortunately these causes often go unrecognized.  It is important for the statistician, 
biostatistician or data analyst to understand exactly what is happening (or has happened) at each step of the process 
so that a decision can be made as to if one or more tools should be used to understand sources of variability in the 
data set and then identify and account for them by an appropriate analysis.  Variability that can be accounted for by 
the analysis is variability that is removed from the error(s) of the model. 
 
This presentation starts out with a detailed example of a simple experiment that involves several steps with 
discussion as to when it may be important to incorporate a tool such as randomization, or identify which samples 
were processed by which technician, etc.  The second part of the discussion provides a description of a set of tools 
available for use at any step of the experiment.  The final sections provide discussions of case studies showing the 
effects of ignoring the intermediate steps of the process. 
 
It is important when one teaches design of experiments to inform the students that most designs consists of a set of 
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steps and that tools of design of experiments should be used at most of those steps to improve the quality of the data 
and resulting analyses.  Examples like those discussed below should be used in the class room so the students can 
be aware of all of the opportunities that can occur between the assigning of treatments to experimental units and the 
data listed on the data sheet.  Instructors need to get away from describing a design, its analysis, and the 
computations using software.  There is much more to be learned when the experiment is considered as a process 
with a set of steps. 

MOTOVATING EXAMPLE 

An example of a simple experiment is a study of swine influenza virus.  The experiment consists of evaluating two 
treatments, the control or placebo and the treatment as to their effect after the vaccinated pigs are challenged by a 
virus.  There are 20 pigs of age 3-4 weeks old available for the study so the process starts by assigning unique 
numbers to each of the pigs, as shown in the first section of Figure 1.  Next randomly assign 10 pigs to the two 
treatments as is demonstrated by the second section of Figure 1.  For simplicity, randomly order the pig numbers and 
assign the first 10 pigs in the random list to the control and the second set of 10 to the treatment (or vis versa).  At 
this point in the study, the design involves two treatments and a completely randomized design.  The next step in this 
study is to apply the treatments to the pigs.  This step must be blinded so the technician will not know which of the 
pigs receive the control and which receive the treatment.  Each pig will be vaccinated where the control pigs will be 
vaccinated with saline solution and the treatment pigs will be vaccinated with the active treatment.  The question is, 
“What order should be used to carry out the vaccination step of the study?”  One could vaccinate all of the pigs 
assigned to the control and then vaccinate all of the pigs assigned the treatment. Could this possibly induce some 
bias into the experiment?  If there is just a little possibility that part of the process could induce a little bias into the 
experiment, then use the randomization tool from the tool box.  The process is to take 10 pre-drawn syringes of the 
saline solution and write on each syringe a number corresponding to a pig assigned to the control group and repeat 
the process using 10 syringes of active treatment for the treatment group.  Complete this step by creating a random 
list of the numbers of the 20 pigs and vaccinate the pigs in that order, as shown in the third step of Figure 1.   
 
The pigs will be challenged with a particular viral strain 14 days after vaccination where the challenge material is 
included in the feed as in the fourth step of Figure 1.  All of the pigs are in the same pen and eat from the same 
feeder, so essentially all of the pigs are challenged at the same time. Nasal swabs and blood samples are to be 
obtained from each pig 21 days after the pigs have been challenged.  Again, what order should one use to carry out 
the sample collection part of the study?  A random order of the pigs should be used to obtain the samples as shown 
in the fifth box of Figure 1 where a set of swabs and tubes have the pig numbers attached so the researcher can 
keep track of which swab and tube contain the materials from each pig.  Finally the swabs and blood samples need to 
be process to determine the degree of viral infection.   
 

Set of 20 
pigs with #s 

→ 

Day 0, Randomize 
to treatments 

→ 

Order of vaccination 
(T or C before denote 
Treatment or Control) 

→ 
Challenge 
at Day 14 

→ 

Order to Collect 
samples at Day 
35 

1 2 3 4 5 6 7 
8 9 10 11 12 
13 14 15 16 
17 18 19 20 

Trt 3 5 6 7 9 12 14 
15 16 19 

T15 C17 C11 T14 
T19 C10 T7 C1 C8 
C4 T12 C18 T16 C2 
C20 T6 T5 C13 T3 T9 

17 4 6 1 10 9 5 
2 20 16 18 7 19 
14 11 12 3 13 
15 8 

Control 1 2 4 8 10 
11 13 17 18 20 

Figure 1.  Process for assigning pigs to treatments and collecting samples 

 
The swabs should be evaluated in a random order in the laboratory and the blood samples should be process in a 
random order in the laboratory.  But there are some other constraints in the laboratory.  The instrument used to 
evaluate the presence of viral titers from the blood samples can hold 10 tubes at a time, so it takes two instrument 
setup procedures to evaluate all 20 tubes.  How does one decide which 10 tubes to include in the first setup (and the 
second setup).  You could evaluate the 10 tubes from the control pigs in the first setup and the 10 tubes from the 
treated pigs in the second setup.  That is not a good idea as that scheme would have confounded setup with 
treatment.  So randomly select 5 tubes from control pigs and 5 tubes from treatment pigs and insert them into the 
instrument.  There could be a positional effect of processing which can be somewhat accounted for by randomly 
assigning the 10 tubes to the 10 positions within the instrument.  The samples and positions within the two setups of 
the instrument are displayed in Figure 2. 
 

Samples and order for Setup 1 Samples and order for Setup 2 

C12 T10 C5 T8 C6 C9 T11 T18 P19 T1 T13 C3 C7 T4 C16 T2 C14 T20 C15 T17 

C# and T# denote pig number from control and treatment respectively 
Figure 2. Pigs and order within each of the setups for the blood analysis. 
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The second constraint is the viral titers from the swabs are evaluated by using what is called a 96 well plate where 
each plate consists of 8 rows and 12 columns.  The rows are assigned a series of dilutions as 10

-2
 down to 10

-9
.  

Three subsamples from four swabs are assigned to the columns of the plate with columns 1-3, 4-6, 7-9, and 10-12 
containing the subsamples of swabs from four pigs respectively.  The assignment of four pigs (two from each group) 
to the columns of a plate is shown in Figure 3, where T7 and T3 are two pigs from the treatment group and C17 and 
C11 are two pigs from the control group.  Samples will be placed in each of the 96 wells (rectangles) of each plate. 
 

 3 swabs from T7 3 swabs from C17 3 swabs from T3 3 swabs from C11 

10
-2 

            

10
-3

             

10
-4

             

10
-5

             

10
-6

             

10
-7

             

10
-8

             

10
-9

             
Figure 3.  The arrangement for plate 1 with subsamples of swabs assigned to three consecutive columns 

 
Five plates are required to evaluate the titers from the swabs from the 20 pigs, so how should the swabs be assigned 
to the plates?  In this case, I would randomly select swabs from two control pigs and two treated pigs for each plate.  
Within each plate I would randomly assign the four swabs to the four sets of three columns.   Figure 4 contains the 
random assignment of pigs to columns of plates where two treatment pigs and two control pigs are evaluated on each 
plate. 
 

Plate Cols 1-3 Cols 4-6 Cols 7-9 Cols 10-12 

1 T7 C17 T3 C11 

2 C4 C13 T15 T6 

3 C10 T12 C8 T19 

4 T9 C18 C1 T16 

5 C2 T14 T5 C20 
Figure 4.  The assignment of 4 pigs per plate along with 

the assigned columns 
. 
 
From the onset, this simple study seemed like an application of the completely randomized design, but the complete 
study consists of a process of several steps.  At each step randomization was used to prevent possible biases from 
being introduced into the study.  Fatigue is the most common source of bias in studies that require a repetitive 
process to apply treatments or collect samples or evaluate samples.  For sure at no time should all of the control pigs 
be evaluated before evaluating any of the treated pigs. When evaluating the blood samples one must account for the 
limitations of the instrument.  And when evaluating the swab samples one must account for the fact that the 96 well 
plates are being used and that only four swabs can be handled on each plate.  A model generally used for the data 
from a study like this will be that of a completely randomized design with two treatments.  The analysis will have a 
source of variation associated with the difference of the two treatments (signal) and a source of variation associated 
with the unexplained variability (noise) which is generally designated as ERROR or RESIDUAL.  The variability 
between the two instrument runs to evaluate the titers from the blood samples will be included in the RESIDUAL  for 
the blood titer analysis and the variability among the five plates to evaluate the titers from the swabs will be include in 
the RESIDUAL of the swab titer analysis.  The five plates can be considered as blocks for the analysis of the data 
from the swabs and the two instrument setups can be considered as blocks for the blood titer analysis.  The analysis 
of variances are in Tables 1 and 2 where the left hand side provides the analysis ignoring the blocking factors and the 
analysis on the right provides the analysis where the blocking factors are taken into account. The two runs of the 
instrument form a blocking factor for the blood titer analysis and the five plates form a blocking factor for the swab 
titer analysis.  Failing to incorporate blocking factors into a model will provide an incorrect analysis and will usually 
provided comparisons of treatment effects where the estimated standard errors are too large, thus  producing higher 

type I errors than desired or wider confidence intervals than are appropriate. From Table 1,
2

1b  is the variance of the 

titer data from the blood without taking the setup process into account and 
2

2b is the variance of the titer data from 

blood with taking setup into account.  Generally, 
2

2b <
2

1b  as most likely
2 0setup  .  An identical comparison can 
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be made for the titer data obtained from the swabs and 96 well plates.  It is mighty important to be able to identify the 
extraneous blocking factors that just happen to occur because of the methods used to collect and evaluate the 
compounds in the samples.  Most researchers are not going to volunteer this type of information, so it is up to the 
statistician, biostatistician, or data analyst to develop a very good understanding of the process that generates the 
data.  This example demonstrates that within the same experiment there can be different blocking factors for different 
response variables. Tables 1 and 2 show the relationships between the variances of the responses with and without 
the blocking factors included in the analyses. 
 

Table 1.  Analysis of variance tables the titer data from the blood samples where 
2 2 25
1 2 9b b setup     

Without instrument setups as blocks With Instrument setups as blocks 

Source df EMS Source df EMS 

Treatment 1 2 2

1 ( )b trt   Treatment 1 2 2

2 ( )b trt   

Residual 18 2

1b  Setup 1 2 2

2 10b setup   

   Residual 17 2

2b  

 

Table 2.  Analysis of variance tables the titer data from the swab samples where 
2 2 22
1 2 9s s plate     

Without plates as blocks With plates as blocks 

Source df EMS Source df EMS 

Treatment 1 2 2

1 ( )s trt   Treatment 1 2 2

2 ( )s trt   

Residual 18 2

1s  Plate 4 2 2

2 4s plate   

   Residual 14 2

2s  

 
A study or experiment is a process that consists of a series of steps as shown by the pig vaccine example.  A new 
paradigm must be developed for the teaching of design of experiments where the initial design associated with the 
assigning treatments to the experimental units is not necessarily for the complete process as the complete 
experiment can involve many steps and principles of design of experiments may need to be used at many of these 
steps.   The new paradigm should consist of teaching a set of basic tools that can be used at any step of the process 

of a study and then teach that even a simple study can consist of a set of steps (process) where one or more tools 
can be applied at each step.  It is not sufficient to apply the tools to the steps of the process without connecting the 
steps together to provide a more appropriate model.  Finally the methodology of the paradigm is complete when the 
tool or tools used at each step are combined into a model that appropriately describes the process used to generate 
a set of responses.  Models or analyses that do not take into account all of the restrictions intrinsic to the process will 
provide a sub-optimal analysis that can possibly bestow very miss leading results.  Knowing as much about the 
process as possible enables the statistician or biostatistician to become aware of the steps where randomization 
and/or a blocking structure should be incorporated so those factors can be included in a model that will more 
appropriately describe the data. 
 
The approach to provide a basic change to the paradigm for designing experiments consists of three parts; (1) a set 
of tools for design of experiments, (2) an understanding of the process of the study to identify steps where tools can 
be applied (or should have been), and (3) knowledge of models that can be used to connect the structures 
constructed by using a tool at each step into an appropriate model.  This presentation consists of describing a set of 
tools for the design of experiments and uses examples to demonstrate how to use the tools in a process to provide 
an appropriate design and analysis of a study.  The tools are grouped into experimental unit concepts, design 
structures and treatment structures. There are four basic design structures that are demonstrated by using a two-way 
treatment structure with additional emphasis on the computation of the respective error terms.  The basic design 
structures are the building blocks of complex designs as most complex designs are a combination of the basic design 
structures applied in different ways or at different steps of the process.  Or to describe it another way, a complex 
design can be broken down into a collection of basic design structures that will enable a more appropriate model to 
be constructed.  Identification of appropriate design structures that take into account the restrictions of the process is 
the basis of a suitable design for the experiment and resulting analysis.  After the tools are presented, several 
examples are used to demonstrate the methodology.  Design and treatment structures are discussed in much more 
detail along with the analyses in Milliken and Johnson (1989, 2001, 2009) and Milliken, et.al. (1998). Additional 
information on the analyses can be found in Littell, et.at. (1996, 2006). 
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TOOLS FOR DESIGN OF EXPERIMENTS 

The design of experiments tool box contains several useful tools or groups of tools.  The experimental unit tools are 
experimental unit, replication, and randomization.  The other groups of tools discussed are treatment structure and 
design structure (Milliken and Johnson (2009)).   

The experimental unit is the entity to which a treatment can be applied, but as will be demonstrated a study can 
involve more than one size of experimental unit.   

The replication of a treatment or treatment combination is the entity to which treatments can be applied and observed 
independently of the other entities in the study or at that level of the study.  Sometimes the experimental units and 
replications are identical, but as will be demonstrated that is not always the case.   

Randomization is the process of assigning the levels of a factor to experimental units.  Randomization is the 
insurance policy for preventing bias to occur.  Biases can occur in many ways, such as subconsciously assigning the 
best pigs to the treatment and the worst pigs to the control.  Randomization is also a good way to establish the order 
experimental units or parts of experimental units are measured during process through the laboratory, etc.  As a 
general rule, if there is any doubt order can induce bias, then use randomization.. 

Design structures consist of methods of blocking the experimental units so that an effective experiment can be 
conducted.  Examples of designs structures are completely randomized, randomized complete block, incomplete 
block, split-plot, strip-plot, etc.   

Treatment structures consist of the combinations of levels of factors that are of interest to the researcher and are 
described in the protocol.  Examples of design structures are one-way, two-way, n-way, Latin square, D-optimal, 
nested, a two-way with controls, etc. 

A major assumption is that the factors describing the blocking in the design structure must not interact with the 
factors defining the treatments in the treatment structure.  Most descriptions of blocking factors indicate blocking 

factors are those factors that are not of interest to the researcher but possibly help describe or account for some of 
the variability in the system.  Describing variability in the system is not the only reason to select blocking factors, but 
those blocking factors in the design structure MUST NOT INTERACT with factors in the treatment structure.  If there 
are some factors in the design structure that you think will help describe part of the variability in the system, but some 
of those factors will possibly interact with the factors in the treatment structure, then those possibly interacting factors 
must be moved from the design structure to the treatment structure so the appropriate interactions may be evaluated. 

The total design of the experiment is determined by describing the treatment structure, describing the design 
structure, and describing the method of randomly assigning treatments from the treatment structure to the 
experimental units in the design structure as indicated by the schematic in Figure 5.   

The design and treatment structures can be identical for two studies, but the resulting designs can be very different 
because of the method of randomization used to assign treatments from the treatment structure to the experimental 
units in the design structure.  Different designs with the same design and treatment structures are described next and 
then the use of the set of tools is demonstrated by using a two-way treatment structure with sixteen treatments in 
different design structures all with thirty-two experimental units.  

 

 

 

 

 

 

TREATMENT 

STRUCTURE 

DESIGN 

STRUCTURE 

RANDOMIZE 

Figure 5 Process of assigning treatments from the treatment structure to 
experimental units in the design structure. 
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SIMPLE EXAMPLES WITH SAME DESIGN AND TREATMENT STRUCTURES 

Consider an experiment with four treatments in the treatment structure and six blocks of size two as shown in Figure 
6.  The experiment is not complete until one specifies how to assign the treatments in the treatment structure to the 
experimental units in the design structure.  The resulting design will be some sort of incomplete block as there are 
more treatments in the treatment structure than there are experimental units in the blocks of the design structure. 

 

   

There are three designs in Figure 7.  The first one is constructed by assigning each pair of treatments to one of the 
blocks and then randomly assigns the two treatments to the two experimental units within the block.   The design 

provides three replications of each of the treatments.   

 

The second design is constructed by assigning treatment 1 to each block and treatments 2, 3 and 4 each to 2 blocks.  
There are six replications of treatment 1 and two replications of treatments 2, 3, and 4.  Design 1 is optimal for 
comparing the equality of all four treatment means and design 2 is optimal for comparing the mean treatment 1 to the 
mean of treatment 2, to the mean of treatment 3 and to the mean of treatment 4.  Design 3 consists of three blocks 
containing treatments 1 and 2 and three blocks containing treatments 3 and 4.  The comparisons between the means 

Design 1 

1 2 

1 3 

1 4 

2 

2 

3 

3 

4 

4 

Design 2 

1 2 

1 3 

1 4 

1 

1 

3 

1 

4 

4 

Design 3 

1 2 

3 4 

1 2 

3 

1 

4 

3 

2 

4 

Figure 7 Three designs of experiments from identical treatment structures and identical design 
structures. 

Block 1 

Block 2 

Block 3 

Block 4 

Block 5 

Block 6 

Treatment 1 

Treatment 2 

Treatment 3 

Treatment 4 

Figure 6 One-way Treatment Structure and 6 Blocks of size 2 Design Structure 
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of treatments 1 and 2 and between the means of treatments 3 and 4 have smaller variances than the comparisons of 
any other pairs of means. The designs in Figure 7 provide the assignments of two treatments to each block.  To finish 
the design randomly assign the two treatments to the two experimental units within a block. 

 

Baking Bread Examples 

The process of baking bread provides a series of examples to demonstrate the four basic design structures and two 
to four way treatment structures.  The starting point is that there are four receipts for bread to be baked at four 
temperatures as shown in Figure 8. 

 

 
 

 
The baker wishes to observe two replications of each of the 16 treatment combinations, requiring 32 loaves of bread.  
The 32 loaves of bread are displayed in Figure 9.  The process is to make up a batch of bread dough using one of the 
recipes and then baking a loaf of bread in an oven set to a specified temperature.  The key to looking at different 
designs is to describe the order the loaves of bread are baked after the levels of temperature and recipe have been 
assigned as the laboratory only has one oven available to use for this study.  The collection of the experimental units 
used to form the design structure and the two-way treatment structure are displayed in Figure 10.  The following 
discussion demonstrates four different designs by describing how to assign the elements of the treatment structure to 
the loaves of bread. 
 

  

Experimental Units or loaves 17-32 

Experimental Units or Loaves 1-16 

Two Replications of Each of the 16 Treatment 

Combinations or need 16 loaves of bread 

Figure 9 32 loaves of bread to be baked 

TREATMENT STRUCTURE 

4 RECIPES BY  

4 TEMPERATURES 
 

Recipe 4 Recipe 1 Recipe 2 Recipe 3 

Temperature 1 

Temperature 2 

Temperature 4 

Temperature 3 

T1R1 T1R3 T1R4 T1R2 

T2R1 

T3R1 

T4R1 

T2R3 T2R4 T2R2 

T3R3 T3R4 T3R2 

T4R3 T4R4 T4R2 

Figure 8 Treatment structure for the bread baking examples 
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COMPLETELY RANDOMIZED DESIGN STRUCTURE 
 
The completely randomized design is constructed by completely at random assigning the 16 treatment combinations 
so that each treatment combination is observed twice.  The loaves are numbered 1-32 indicating the order a loaf will 
be baked after it is assigned a recipe and temperature.  Figure 11 is a graphic displaying the random assignment of 
each of the 16 treatment combinations to the 32 loaves of bread.  For example the first loaf to be baked is with recipe 
2 at temperature 3 (T3R2) and the last loaf to be baked is with recipe 1 at temperature 3.  The process is to randomly 
order the combinations of recipes and temperatures.  Using the random order, make a batch of dough with the 
specified recipe, form a loaf and put it into a container, and finally bake the loaf using the specified temperature.  For 
discussion, the volume of the loaf is used as the response variable. The process requires that 32 batches of dough 
be made and each loaf is baked independently in an oven at a given temperature.  That is, the completely 
randomized design requires 32 batches of dough and 32 bakes or uses of an oven. 
A model that can be used to describe the loaf volume data is 
 

1,2,3,4, 1,2,3,4,  and 1,2ijk ij ijkV i j k       

where one distributional assumption is 
2

residual(0, )ijk IID N  .  The variance 
2

residual is the process variance 

which includes batch to batch, oven to oven, loaf to loaf and possibly day to day variances.  The basic analysis of 
variance table is in Table 3 where there are 15 degrees of freedom for the treatment structure and there are 16 
degrees of freedom for the design structure.  The 16 degrees of freedom arise by computing the variation of the two 
replications of each of the treatment combinations and then pooling those degrees of freedom across the treatment 
combinations.  In general, error terms are computed from variation of experimental units treated alike and pooled 
across the entities within which the experimental units were treated alike. 
 

RANDOMIZED COMPLETE BLOCK DESIGN STRUCTURE 
 
The randomized complete block design structure is constructed by randomly assigning each of the 16 treatment 
combinations to loaves 1-16 (dashed lines) and then randomly assigning each of the 16 treatment combinations to 
loaves 17-32 (solid lines) as shown in Figure 11.  Thus, loaves 1-16 form block 1 and loaves 17-32 form block 2.  
One reason to form these blocks is that maybe only 16 loaves of bread can be baked during one day, thus requiring 
two days of baking so the loaves baked on day 1 form block1 and the loaves baked on day 2 form block 2.  Most 
importantly, one wants to make sure there should not be an interaction between the levels of the treatment structure 
and the levels of the factors used to form blocks.  A model that can be used to describe the loaf volume data in this 
blocked design is 

Recipe 4 Recipe 1 Recipe 2 Recipe 3 

Temperature 1 

Temperature 2 

Temperature 4 

Temperature 3 

T1R1 T1R3 T1R4 T1R2 

T2R1 

T3R1 

T4R1 

T2R3 T2R4 T2R2 

T3R3 T3R4 T3R2 

T4R3 T4R4 T4R2 

Experimental Units or loaves 17-32 

Experimental Units or Loaves 1-16 

Figure 10 Design and Treatment Structures for the bread baking example. 
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1,2,3,4, 1,2,3,4,  and 1,2ijk ij k ijkV b i j k        

where one set of distributional assumptions are 
2

residual_1(0, )ijk IID N   
2

block(0, )kb IID N  .  The 

variance 
2

residual_1 is the process variance which includes batch to batch, oven to oven, and loaf to loaf variances. 

The variance 
2

block is the block to block or day to day variance which has been removed from 
2

residual which means 

2 2

residual_1 residual   Table 4 contains the analysis of variance table for the two-way treatment structure in a 

randomized complete block design structure.  There are still 15 degrees of freedom associated with the treatment 
structure, but the 16 degrees of freedom associated with the design structure are assigned as 1 to Blocks and 15 to 
Residual_1.  The Residual_1 sum of squares is computed as the treatment (16 treatment combinations) by block (two 
blocks) interaction. 
 

 
 

Table 3.  Analysis of variance table for the completely 
randomized design for the bread baking example. 

Source df Expected Mean Squares 

Temperature 3 2 2

residual ( )T   

Recipe 3 2 2

residual ( )R   

Temperature*Recipe 9 2 2

residual ( )TR   

Residual 16 2

residual  

 
The process requires that 16 batches of dough be made where the loaves independently each day.  That is, the 
randomized complete block design requires 32 batches of dough and 32 bakes or uses of an oven. 
 
SPLIT-PLOT DESIGN STRUCTURE 
 
The ovens being used for the baking study are large enough that more than one loaf could be baked at a time.  In this 
case assume that four loaves of bread could be baked within an oven at the same time.  If four loaves are baked 
within the same oven at the same time, the resulting responses become correlated.  This correlation can occur  

Recipe 4 Recipe 1 Recipe 2 Recipe 3 

Temperature 1 

Temperature 2 

Temperature 4 

Temperature 3 

T1R1 T1R3 T1R4 T1R2 

T2R1 

T3R1 

T4R1 

T2R3 T2R4 T2R2 

T3R3 T3R4 T3R2 

T4R3 T4R4 T4R2 

Experimental Units or loves 17-32 

Experimental Units or Loaves 1-16 

Figure 11 Completely Randomized Design Structure for bread baking example 
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Table 4.  Analysis of variance table for the randomized 
complete block design for the bread baking example. 

Source df Expected Mean Squares 

Blocks 1 2 2

residual_1 2 block 
 

Temperatures 3 2 2

residual_1 ( )T   

Recipes 3 2 2

residual_1 ( )R   

Temperature*Recipe 9 2 2

residual_1 ( )TR   

Residual 15 2

residual_1  

 
for several reasons as a) the temperature was not set exactly to the specified temperature, b) the amount of time the 
loaves were to be baked were all the same, etc. So how does one carry out such a study where the data are useful?   

 
The process is to take the first four loaves and put them into the first oven where each loaf is made from one of the 
four recipes. In this case the oven becomes a block of size four which contains 4 treatment combinations where all 4 
are assigned the same temperature.  Figures 13 and 14 demonstrate the random assignment of the treatment 
combinations to the loaves.  In Figure 13 the levels of temperature are assigned to the rows which form an oven.  
Within each oven one loaf from each recipe is inserted where the loaf is from its own batch of dough.  The process 
generates an incomplete block design within each day which is similar to design 3 in Figure 7, which also generates 
two sizes of experimental units; the oven to which the levels of temperature are assigned and the loaf to which the 
levels of recipe are applied.  Each of the experimental units has an associated variance component, so there is a 
variance component due to batches and a variance component due to ovens.  Only part of the lines are presented in 
Figures 13 and 14 as there should be a set of lines assigning the levels of recipe to temperature 2, a set of lines 
assigning the levels of recipe to temperature 3 and a set of lines assigning the levels of recipe to temperature 4.  
Within each of the ovens, each loaf is obtained from its own batch of dough.  

 
This split-plot design involves making 32 batches of dough (one for each loaf) and baking them in 8 ovens or 8 bakes, 
so this design structure takes one-fourth the numbers of bakes as the completely randomized and randomized 
complete block design structures. A model that can be used to describe the loaf volume data in this blocked design is 
 

Recipe 4 Recipe 1 Recipe 2 Recipe 3 

Temperature 1 

Temperature 2 

Temperature 4 

Temperature 3 

T1R1 T1R3 T1R4 T1R2 

T2R1 

T3R1 

T4R1 

T2R3 T2R4 T2R2 

T3R3 T3R4 T3R2 

T4R3 T4R4 T4R2 

Experimental Units or loves 17-32—Block 2 

Experimental Units or Loaves 1-16—Block 1 

Figure 12 Randomized Complete Block Design Structure for the Bread Baking Example. 
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1,2,3,4, 1,2,3,4,  and 1,2

( )

ijk ij k ik ijk

ijk i k ik j ij ijk
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V T b o R TR

 

 

      

      

 

where one set of distributional assumptions are 
2

residual_2(0, )ijk IID N   
2

block(0, )kb IID N 
 
and

 
2

oven(0, )iko IID N    The variance 
2

residual_2 is the process variance which includes batch to batch and loaf to 

loaf variances. The variance 
2

block is the block to block or day to day variance which has been removed from 

2

residual and 
2

oven denotes the oven to oven variation. 

 

 

 
 

 
  Table 5 contains the analysis of variance table for the two-way treatment structure in a split-plot design structure.  
There are still 15 degrees of freedom associated with the treatment structure, but the 16 degrees of freedom 
associated with the design structure are assigned as 1 to Blocks, 3 to ovens nested within the levels of temperature 
and 12 to Residual_2.  The Ovens(Temperature) sum of squares is computed by the block by temperature 
interaction. The Residual_2 sum of squares is computed as the recipe by block interaction within a level of 
temperature pooled across the levels of temperature. 
One important feature of the split-plot design is that it is the basis of the repeated measures design.  The repeated 
measures design is constructed identically to that of a split-plot design, except the levels of the sub-plot factor cannot 
be randomized to the experimental units.  Time is a really good example of a repeated measurement where the 
measurements at time 1 must occur before those at time 2, etc.  Another example is position where the researcher is 
interested in what happens on the top, middle and bottom shelf of a freezer.  You cannot randomize those positions, 
thus they are called repeated measurements.  The topic of repeated measurements will not be discussed in detail, 
but there are numerous examples in Milliken and Johnson, 2009 and 2002 and Little,et.al. 2006.  The main difference 
between the analyses of a split-plot and a repeated measure is the modeling of the covariance among of the 
repeated measurements which is not much of a concern for the split-plot. 
 

STRIP-PLOT DESIGN STRUCTURE 
 
The baker had another problem with the above designs in that she was required to make up a batch of dough from 
which only one loaf could be extracted.  It does not take any more time to make a batch of dough that is large enough 
so more than one loaf could be extracted.  The process was then modified so that each batch of dough was made to 
be large enough that four loaves of bread could be formed and put into pans.   

Recipe 4 Recipe 1 Recipe 2 Recipe 3 

Temperature 1 

Temperature 2 

Temperature 4 

Temperature 3 

Experimental Units or Loaves 1-16—Block 1 

OVEN 

Figure 13 Block 1 of the split-plot design structure for the bread baking example where recipes are 
re-randomized within each temperature or oven. 

Statistics and Data AnalysisSAS Global Forum 2009

 



12 

 
 

 

Table 5.  Analysis of variance table for the split-plot design 
structure for the bread baking example. 

Source df Expected Mean Squares 

Blocks 1 2 2 2

residual_2 4 2oven block   
 

Temperatures 3 2 2 2

residual_2 4 ( )oven T     

Ovens(Temperature) 3 2 2

residual_2 4 oven 
 

Recipes 3 2 2

residual_2 ( )R   

Temperature*Recipe 9 2 2

residual_2 ( )TR   

Residual 12 2

residual_2  

 
The four loaves of bread are not independent as if she makes a little error in the ingredients, then that error is 
experienced by all four loaves.  This process also generates another size of experimental unit which is called the 
batch.  Figures 15 and 16 demonstrate the process of assigning the levels of temperature to the ovens (denoted by 
the rows) within each block and for assigning the levels of recipe to the batches (denoted by the columns).  Within 
each day 16 loaves of bread are arranged into a 4 by 4 rectangle forming rows and columns.  The levels of 
temperature are randomly assigned to the rows of the rectangle and the levels of recipe are randomly assigned to the 
columns of the rectangle.   

 
The oven is the experimental unit for the levels of temperature since the levels of temperature are randomly assigned 
to the ovens (rows) within a block.  The batch of dough (column) is the experimental unit for the levels of recipe since 
the levels of recipe are randomly assigned to the batches or columns of the rectangle.  An interaction among the 
levels of recipe and the levels of temperature are computed as comparisons within ovens and within batches.  Thus 
the experimental unit for a temperature by recipe interaction comparison is the loaf of bread.  The strip-plot design 
structure involves three different experimental units, the oven (row), the batch (column) and the loaf (cell) and each 
experimental unit has an associated error term and variance component. This strip-plot design involves making 8 
batches of dough (one for each column) and 8 baking of the loaves(one for each row), so this design structure takes 
one-fourth the number of bakes and one-fourth the number of batches as the completely randomized and randomized 
complete block design structures.   
A model that can be used to describe the loaf volume data in this blocked design is 
 

Recipe 4 Recipe 1 Recipe 2 Recipe 3 

Temperature 1 

Temperature 2 

Temperature 4 

Temperature 3 

Experimental Units or Loaves 17-32—Block 2 

OVEN 

Figure 14 Block 2 of the split-plot design structure for the bread baking example where recipes 
are re-randomized within each temperature or oven. 
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where one set of distributional assumptions are 
2

loaf(0, )ijk IID N 
,
 

2

block(0, )kb IID N 

2(0, )jk batchba IID N 
 
and

 

2

oven(0, )iko IID N   The variance 
2

loaf is that part of the process variance that 

is left over after the variation due to blocks  (day), ovens and batches have been accounted for by the analysis. The 

variance 
2

block is the block to block or day to day variance, 
2

loaf denotes the loaf to loaf variation, 
2

oven denotes the  

 

 
 

 
 

Recipe 4 Recipe 1 Recipe 2 Recipe 3 

Temperature 1 

Temperature 2 

Temperature 4 

Temperature 3 

Experimental Units or Loaves 17-32—Block 2 

Figure 16 Block 2 of the strip-plot design structure for the bread baking example. 

Oven 

Batch 

Experimental Units or Loaves 1-16—Block 1 

Recipe 4 Recipe 1 Recipe 2 Recipe 3 

Temperature 1 

Temperature 2 

Temperature 4 

Temperature 3 

Figure 15 Block 1 of the Strip-plot design structure for the bread baking example. 

Oven 

Batch 
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oven to oven variance, and 
2

batch denotes the batch to batch variance.  The total variance in the system or process 

is 
2 2 2 2

loaf oven batch block      .   

 
Most analyses involve making comparisons among the temperature, recipe and temperature by recipe means.  There 
are many methods for doing those comparisons, but they are not discussed here.  The new edition of the book by 
Milliken and Johnson (2009) provides a great discussion of the multiple comparison and multiple testing methods. 

 

Table 6.  Analysis of variance table for the split-plot design 
structure for the bread baking example. 

Source df Expected Mean Squares 

Blocks 1 2 2 24 2loaf oven block   
 

Temperatures 3 2 2 24 ( )loaf oven T     

Ovens(Temperature) 3 2 24loaf oven 
 

Recipes 3 2 2 24 ( )loaf batch R     

Batches(Recipes) 3 2 24loaf batch 
 

Temperature*Recipe 9 2 2 ( )loaf TR   

Residual 9 2

loaf  

 
Table 7 contains a comparison of the error terms associated with each of the designs and the sources of variability 
accounted for by the term.  As the design becomes more complex, going from the CR or RCB to the strip-plot design 
structures the degrees of freedom associated with the design structure are partitioned into more and more terms, but 
the terms become targeted an separate.  It is easily seen by observing the sources of variation associated with 
Residual, Residual_1, Residual_2 and Residual_3.  There are fewer degrees of freedom associated with the residual 
terms as the design becomes more complex, but the possible reduction in the magnitude of the residual variance 
very often more than accounts for the reduction in degrees of freedom when constructing confidence intervals and 
carrying out tests of hypotheses.  The other benefit of the complex design structure is the reduction in resources 
required to carry out the experiments, the strip-plot design structure is the most efficient of the four design structures. 

 

Table 7  Sources of variability attributed to each of the error terms for the designs associated with the bread baking 
designs. 

Design Structure Error Term Source of variance 

Completely Randomized  Residual Day, batch, oven, loaf 

Randomized Complete Block Residual_1 Batch, oven, loaf 

Slit-plot RCB whole-plot Design 
Structure 

Block Block or Day 

Oven(Temperature) Oven 

Residual_2 Batch, loaf 

Strip-plot Design Structure Block Block or Day 

 Oven(Temperature) Oven 

 Batch(Recipe) Batch 

Error(loaf) loaf 

 

FOUR-WAY TREATMENT STRUCTURE 
 
One thing that needs to be stressed while looking through the tools in your tool box is that most any treatment 
structure can be fit with most any design structure.  To demonstrate, assume the four recipes are constructed from 
combinations of two types of flour (whole wheat and white) with two types of yeast (fresh and stored) and the 
temperatures are constructed from combinations of two temperatures (335 and 365 degrees F) and two types of 
ovens (conventional and confection).  This treatment structure consists of four factors each at two levels.  Figure 17 is 
a graphical display of the treatment structure where FLOUR has two levels, YEAST has two levels, TEMPERATURE 
has two levels and STOVE type has two levels. This four-way treatment structure can be applied in any of the above 
design structures.  Table 8 contains the analysis of variance table for applying this four-way treatment structure in a 
strip-plot design structure where the four combinations of TEMP by STOVE are assigned to the rows and the four 
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combinations of FLOUR by YEAST are assigned to the columns as in Figures 15 and 16.  The analysis of variance 
table is in Table 8 where there are 15 degrees of freedom associated with the treatment structure (4 factors each with 
two levels providing 15 main effects and interactions) and 16 degrees of freedom associated with the design structure 
assigned to blocking, error for ovens, error for batches and error for loaves. 
 

 

 
 
 
The treatment structure has a more complex composition than that for the initial bread making examples with just 
Temperature and Recipe.  Now with the four-way treatment structure, the analysis of variance table is greatly 
expanded as each entry has only one associated degree of freedom.  On the other hand the design structure stays 
the same as is displayed in Table 8.  A very important tool in the tool box is demonstrated in that the treatment 
structure can change (simpler or complex) within the same design structure.  For the four-way treatment structure, it 
is by far easier to work with temperatures and recipes than it is to work with the four-way treatment structure.  This 
structural effect is shown by the first column in the table with the different shading patterns for the temperature 
analysis, for the recipe analysis and for the recepie by temperature analysis. 

 
SUMMARY OF DESIGN TOOLS IN TOOL BOX 
 
The first point to remember is there is no substitute for knowledge of the process used to generate the data and there 
is no substitute for the knowledge of how the tools in the tool box work. To this point three types of tools have been 
described, 1) Experimental Unit tools, 2) Treatment Structure and 3) Design Structure that can be used to help design 
a study or help determine how an existing experiment was conducted so the process of the total design of the 
experiment can be incorporated into an appropriate analysis.  It is important to notice that the experimental unit tools 
are used to connect the elements in the treatment structure to the elements in the design structure and the 
combination of all three are used to construct an appropriate model. The bread making experiment and the pig 
vaccination study provide really good examples of how important it is to be able to use the tools.  The next set of 
examples are presented in an attempt to help you understand the structures or concepts and how to use the tools to 
enable you identify more appropriate designs and thus provide more appropriate analyses of the resulting data.  The 
tools are more easily used when one can help design the study, but it is much more important to have an 
understanding of the tools when someone brings data and you have to determine the steps in the process of running 
the experiment in an attempt to salvage information from the collected data.  
 
 

Whole Wheat Flour White Wheat Flour 

Fresh yeast Fresh yeast Stored yeast Stored yeast 

365F
o 

335F
o 

335F
o 

365F
o 

Confection 

Conventional 

Figure 17 Temperatures by recipe represented as a four-way treatment structure 

Statistics and Data AnalysisSAS Global Forum 2009

 



16 

Table 8.  Analysis of variance table for 4-way treatment structure in a strip-plot design structure for 
the bread making study with shaded errors relating to the original two-way treatment structure. 

 Source  df EMS 

 BLOCK 1 2 2 24 2loaf oven block   
 

Temperatures STOVE 1 2 2 24 ( )loaf oven S     

 TEMP 1 2 2 24 ( )loaf oven T   
 

 STOVE*TEMP 1 2 2 24 ( )loaf oven ST     

 OVEN(STOVE TEMP) 3 2 24loaf oven 
 

Recipes FLOUR 1 2 2 24 ( )loaf batch F     

 YEAST 1 2 2 24 ( )loaf batch Y     

 FLOUR*YEAST 1 2 2 24 ( )loaf batch FY     

 BATCH(FLOUR YEAST) 3 2 24loaf batch   

Temperatures*Recipes STOVE*FLOUR 1 2 2 ( )loaf SF   

 STOVE*YEAST 1 2 2 ( )loaf SY   

 STOVE*FLOUR*YEAST 1 2 2( )loaf SFY   

 TEMP*FLOUR 1 2 2 ( )loaf TF   

 TEMP*YEAST 1 2 2 ( )loaf TY   

 TEMP*FLOUR*YEAST 1 2 2( )loaf TFY   

 STOVE*TEMP*FLOUR 1 2 2( )loaf STF   

 STOVE*TEMP*YEAST 1 2 2( )loaf STY   

 STOVE*TEMP*FLOUR*YEAST 1 2 2( )loaf STFY   

 LOAF ERROR 9 2

loaf  

 

SCHOOL BASED PHYSICAL ACTIVITY STUDY 
 
A hot topic in elementary schools is to try to influence school obesity by using a randomized control trial.  The 
process is to select a set of schools and assign an intervention to half of the schools and then compare the effect of 
the intervention by some measure of physical activity (denoted by PA) or some measure of obesity (such as body 
mass index, denoted by BMI).  This type of design seems like a simple process, so let’s start.  The first step is to 
identify the types of students one wants to evaluate, which in this case are third, fourth and fifth graders, and to 
identify the population of schools in the area of interest.  The population of schools are stratified into four groups 
based on ethnicity (more than 50% white and less than 50%) and income (low income where there are at least 50% 
are receiving assistance and high income there at least 50% are not receiving assistance), as shown in Figure 18.  
Next, randomly select four schools from each stratum of schools to be included in the study.  Within each stratum, 
randomly select two schools to receive the intervention program and the other two will not receive the intervention 
program.  As a side note, a research group may not stratify the schools prior to selection and uses income and 
ethnicity variables as covariates in the modeling process.  The group has devices that the student can wear to 
measure the intensity and duration of activity where they wear the device for one week.  They only have enough 
devices so that students at four schools can be measured during the same time.  It will take 4 weeks to obtain the 
data.  The physical activity is to be measured at three time points, baseline, end of the first semester and the end of 
the second semester.  The baseline data can be treated for modeling in one of two ways.  Baseline could be one of 
the levels of time or baseline could be considered as a covariate.  Either way, the baseline data must be incorporated 

Statistics and Data AnalysisSAS Global Forum 2009

 



17 

into the analysis.  The baseline for this example is considered as a level of time where time has three levels, 
baseline, 1

st
 semester and 2

nd
 semester.  Within each school there are students from three grade levels, 3

rd
, 4

th
 and 

5
th

 as well there are both female and male students.   
 
The process started with the selection of 16 schools as shown in Figure 18.  The second step of the process is to 
randomly select four schools to be evaluated during week 1 with sets of 4 more schools to be evaluated during weeks 
2, 3 and 4.  Without some careful planning as to which schools are evaluated during each week there can be a great 
loss of information.  It was decided that income level was the least important factor so schools were to be assigned to 
weeks so that income was confounded with week. The process is to randomly select either a low or a high income 
stratum.  Next, randomly select one of the intervention schools from the two schools in the low ethnicity group and 
randomly select one of the intervention schools from the two schools in the high ethnicity. Repeat the process for the 
non-intervention schools.  At this point, four schools with the same income classification have been selected to have 
the PA of the students evaluated during week one.  Repeat the process for each of the three other weeks providing a 
structure as shown in Figure 19.  The process of using the devices to obtain the PA of the students generates a 
blocking factor and the levels of income are completely confounded with those blocks. All of the students within a set 
of four schools will be given a device and will be trained to use the device the first day.  The devices will be returned 
at the end of the fifth day where the data will that is stored on the device will be down loaded to a computer file. 
 
The discussion now revolves around the identification of the factors in the treatment structure and the factors of the 
design structure.  There are schools that are classified in two ways, by income (high and low) and by ethnicity (high 
and low).  Two schools within each stratum will be assigned to a level of intervention (yes, no). The groups of 
students within each school are classified as to being in a particular grade (3

rd
, 4

th
, or 5

th
) and the students are 

classified as to their gender, (male or female).  The students within a school are evaluated three times during the 
year. 

  
 
 
Within each school there is a strip-plot structure and a split-plot structure.  Figure 20 shows that within a school there 
are three grades and these schools are measured three times.  This generates a strip-plot design structure and then 
within each of the grades there are male and female students, which are a split-plot structure of the grade.  There are 
5 experimental units.  The first one is the set of four schools that are evaluated for PA during the same week.  The 
second experimental unit is a single school that is from a level of ethnicity assigned to the intervention or non-
intervention.  Then there are three grades per school which are split-plots (or subgroups) of the schools, there are 
three times (time intervals) which are split-plots of the schools where the grades and times form a strip-plot on each 
school, and there are males and females within each class which are split-plots of the grade and strip-plots of the 
time intervals. The treatment structure has 6 factors with income by ethnicity by intervention by grade by sex by time.  
The design structure has 7 different sizes of experimental units with (1) four schools assigned to levels of income, (2) 
a single school assigned to levels of ethnicity and intervention, (3) a group of students assigned to a grade, (4) time 
interval measured within each school, (5) a time interval of a group of students within a grade, (6) male and female 
students are within a grade, and (7) a time interval of a female or male student on which the value of PA is 
determined. 
 

Income 

Ethnicity 

Low High 

Low 

High 
Four 

schools 

Four 

schools 

Four 

schools 
Four 

schools 

Figure 18 Structure of population of schools for the PA study 
denoting four schools to be randomly selected from each stratum 
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Some could decide that time is a repeated measurement on the student instead of the school.  The reality is that it is 
probably somewhere in between as the student is at home (away from school) for about as much time as they are in 
the school setting during each day.  Moving time to a repeated measurement on the student would provide a different 
analysis and its construction is left to the reader. 
 
The above describes the woven structures of this study so the next step is to break the structures down and provide 
an analysis for each.  The overall analysis can be obtained by putting the analyses of the parts together to get one. 
 

Level of Income and 
week 

Ethnicity=low 
Intervention 

Ethnicity=high 
Intervention 

Ethnicity=low 
No Intervention 

Ethnicity=low 
No Intervention 

Week 1 Income =low 1 10 3 7 

Week 2 income=high 9 4 8 12 

Week 3 Income=low 16 2 13 11 

Week 4 Income= low 6 15 5 14 

Figure 19.  Assignment of schools (renumbered from 1-16) to income*ethnicity*intervention combinations. 

 

 
 
The structure of the schools is a three-way treatment structure in a split-plot design structure where the four schools 
assigned to an income is the large experimental unit and the individual schools are the small size experimental unit 
as displayed in Figure 20.  The corresponding split-plot design structure analysis of a measurement on each school is 
displayed in Table 10 where there are two errors, one for a group of 4 schools grouped together to obtain the PA 
measurements during a single week and the single school from an level of ethnicity and intervention that is measured 
within a week. 
 

Table 10.  Four school and one school analyses in a split-plot design 
structure 

Source df Tester 

Income(In) 1 Error(4 Schools) 

Error(4 Schools) 2  

Ethnicity(E) 1 Error(school) 

Intervention(I) 1 Error(school) 

Ethnicity*Intervention 1 Error(school) 

Ethnicity*Income 1 Error(school) 

Intervention*Income 1 Error(school) 

Ethnicity*Intervention*Income 1 Error(school) 

Error(school) 6  

 

Ethnicity 

     Low 

     High 

High Income 

Intervention 2 
schools 
 

Intervention 
2 schools 
 

Intervention 
2 schools 
 

Intervention 
2 schools 
 

Non 
Intervention 
2 schools 
 

Non 
Intervention 
2 schools 
 

Non 
Intervention 
2 schools 
 

Non 
Intervention 
2 schools 
 

Figure 20 Distributions of the 16 Schools 

Low Income 
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Ignoring the time intervals (left hand side of Figure 21), the grades form split-plots of the schools so a split-plot 
analysis is needed with grade and the three factors assigned to the schools as shown in the first two columns in 
Table 11.  Ignoring the grades (middle of Figure 21), the three times are split-plots of the schools and the split-plot 
analysis with the three factors assigned to schools are in the two center columns of Table 11.  Then Grade and Time 
form a strip-plot on the schools (right side of Figure 21), so the Grade by Time interaction analysis is in the last two 
columns of Table 11. 
 

Table 11.  Grade and time for a strip plot within each school, but individually they are subplots within each school 

Grade analysis a subplot of school Time analysis a subplot of school Grade*time analysis a strip-plot of 
school 

Source df Source df Source df 

 G 1 T 1 T*G 1 

In* G 1 In*T 1 In*T*G 1 

E* G 1 E*T 1 E*T*G 1 

I* G 1 I*T 1 I*T*G 1 

I*E* G 1 I*E*T 1 I*E*T*G 1 

In*E* G 1 In*E*T 1 In*E*T*G 1 

I*In* G 1 I*In*T 1 I*In*T*G 1 

I*E*In* G 1 I*E*In*T 1 I*E*In* T*G 1 

Error(grade)  Error(time)  Error(grade*time)  

 

 
 

 
 

Grades  

3  4  5  

Time  

bl  

1st  

2nd  

Gender striped with time within each grade 
of a school 

F     G  F     G  F     G  

Figure 22 Gender is sub-plot of grade and strip plot of time within grade 

Time  

bl  

3  4  5  

Grades  

3  4  5  

1st  

2nd  

Time  

bl  

1st  

2nd  

Grades within School 
Grades by Times within 

School 
Times within School 

Figure 21 Split-plot for grades and time and strip-plot within a school 
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The students are split-plots of each of the grades and the levels of gender are assigned to the students (see Figure 
22).  The split-plot analysis for students is left hand side two columns in Table 12.  The levels of time are strip-plots 
on the students within the grades.  The time by gender analysis is in the right two most columns in Table 12 where 
the error term is the variability of the time intervals within a student. 
 
 

Table 12. Gender is sub-plot of a grade and gender within a grade and time are strip-plots of grades  

Gender(S) is sub-plot of grade Gender and time are strip-plot of grades 

 S 1   S*T 1 

In* S 1 In*  S*T 1 

E* S 1 E*  S*T 1 

I* S 1 I*  S*T 1 

I*E* S 1 I*E*  S*T 1 

In*E* S 1 In*E*  S*T 1 

I*In* S 1 I*In*  S*T 1 

I*E*In* S 1 I*E*In*  S*T 1 

 G*S 1  G* S*T 1 

In* G*S 1 In* G* S*T 1 

E* G*S 1 E* G* S*T 1 

I* G*S 1 I* G* S*T 1 

I*E* G*S 1 I*E* G* S*T 1 

In*E* G*S 1 In*E* G* S*T 1 

I*In* G*S 1 I*In* G* S*T 1 

I*E*In* G*S 1 I*E*In* G* S*T 1 

Error(student)  Error(student*time)  

 
This complex design involving six factors arranged in many ways can be broken down into its sup-parts all of which 
are tools in the tool box discussed above.  This total design consists of a completely randomized, split-plot and strip-
plot design structures. 
 

CHOCOLATE CANDY DISSOLVING EXPERIMENT 
 
Persons dissolve substances in their mouths at different rates and different types of substances dissolve at different 
rates.  A study was devised where 24 persons that were able to eat chocolate were randomly selected from a class of 
49 students.  Two brands of large chocolate chips were used in the study where the brands were designated as A 
and B.  Twelve students were randomly assigned to each of the brands.  The process of measurement is to put the 
chocolate chip in your mouth and dissolve the chip as fast as possible by putting it on your tongue and rubbing it 
across the top of your mouth as fast as you can.  A researcher was on hand to provide the specified chip to the 
person and use a stopwatch to determine the time required to dissolve their chip.  The data are in Table 13 and a 
graph of the distributions for each treatment or brand is in Figure 23.  The treatment structure is a one-way with two 
brands of chocolate chips in a completely randomized design structure.  A simple one-way analysis of variance model 
can be used to compare the means of the two brands. A one-way analysis for comparing the means of the two types 
of chips is in Table 14 where the item of interest is the estimated standard between the difference of the two means.  
The difference between the two means is -3.09 sec with estimated standard error of 1.80 sec.  The significance level 
for testing the equality of the means (assuming equal variances) is 0.1002, indicating the difference between the 
mean times of the two brands is not significantly different at a 0.05 type I error rate.   
 

Table 13.  Data for candy dissolving time where dissolve_t is number of seconds. 

Obs Brand dissolve_t Brand dissolve_t Obs Brand dissolve_t Brand dissolve_t 

1 A 45.0 B 39.1 7 A 28.4 B 39.5 

2 A 39.5 B 36.5 8 A 32.7 B 30.1 

3 A 31.8 B 33.2 9 A 28.5 B 32.8 

4 A 31.0 B 33.8 10 A 29.7 B 37.0 

5 A 33.2 B 32.2 11 A 25.3 B 33.9 

6 A 31.9 B 34.5 12 A 26.6 B 38.1 
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Figure 23 Distributions of times to dissolve type A and B chocolate chips 
 
 

Table 14 Analysis of variance of time to dissolve two brands of 
chocolate chips ignoring order 

Source DF 
Sum of 

Squares Mean Square F Value Pr > F 

Model 1 57.3504167 57.3504167 2.94 0.1002 

Error 22 428.4758333 19.4761742   

Corrected Total 23 485.8262500    

Source DF Type III SS Mean Square F Value Pr > F 

Brand 1 57.35041667 57.35041667 2.94 0.1002 

Brand 
dissolve_t 
LSMEAN 

H0:LSMean1=LSMean2 

Pr > |t| 

A 31.9666667 0.1002 

B 35.0583333  

Parameter Estimate 
Standard 

Error t Value Pr > |t| 

A-B -3.09166667 1.80167396 -1.72 0.1002 

 

 

At this point one should step back and really study how the experiment was conducted.  The process was to 
randomly assign the brands to the 24 persons.  There was only one stopwatch so the 24 persons had to be evaluated 
one at a time.  The 24 persons were randomly assigning an order and they dissolved their chocolate chip in the order 
assigned as shown in Table 15.In addition to the order of evaluation, the elapsed time from the beginning of the study 
was controlled so that one person was evaluated every 3 minutes.  A complication was discovered in that the 
chocolate chips were brought to the class room in a cooler and they were taken out of the cooler as the start of the 
trial and not replaced.  So the chips gradually warmed up to room temperature during the study.  It was thought that 
warmer chocolate chips would dissolve faster than cooler chips.  So the data were re-analyzed there the start time 
was used as a covariate to see if in fact the time to dissolve the chip did in fact depend on the temperature. 

Table 16 contains the analysis of covariance table for comparing the brand means adjusted for the time chips were 
out of the cooler.  The significance level associated with the slope (start_t) is 0.0031, indicating there is a linear 
relationship between the time to dissolve the chips and the elapsed time from the beginning of the trial.  Figure 24 
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contains the graph of the two lines for the brands and the respective data points.  The least squares means are the 
evaluation of the two regression lines at the mean starting time (34.5 min) and the difference between line A minus 
line B at 34.5 minutes is -3.45 sec with an estimated standard error of 1.49 sec. The significance level for testing the 
difference between the means to be zero is 0.0311, indicating there is a significance difference between the mean 
times to dissolve the brands of chocolate chips. 

 

Table 15 Data for candy dissolving time where dissolve_t is number of seconds 
order is the order the person evaluated his/her chocolate chip and start_t is the 
elapsed time from the start of the study until the person started their part of the 
process.. 

Order Brand dissolve_t start_t Order Brand dissolve_t start_t 

1 A 45.0 0 13 B 39.5 36 

2 B 39.1 3 14 A 28.4 39 

3 A 39.5 6 15 B 30.1 42 

4 A 31.8 9 16 A 32.7 45 

5 B 36.5 12 17 B 32.8 48 

6 A 31.0 15 18 A 28.5 51 

7 A 33.2 18 19 A 29.7 54 

8 B 33.2 21 20 B 37.0 57 

9 A 31.9 24 21 B 33.9 60 

10 B 33.8 27 22 B 38.1 63 

11 B 32.2 30 23 A 25.3 66 

12 B 34.5 33 24 A 26.6 69 

 

 

Table 16  Analysis of covariance of the time to dissolve the chocolate 
chip using the elapsed time (start_t) as a covariate. 

Source DF 
Sum of 

Squares Mean Square F Value Pr > F 

Model 2 206.0883974 103.0441987 7.74 0.0030 

Error 21 279.7378526 13.3208501   

Corrected Total 23 485.8262500    

Source DF Type III SS Mean Square F Value Pr > F 

Brand 1 71.1348300 71.1348300 5.34 0.0311 

start_t 1 148.7379808 148.7379808 11.17 0.0031 

Brand 
dissolve_t 
LSMEAN 

H0:LSMean1=LSMean2 

Pr > |t| 

A 31.7863782 0.0311 

B 35.2386218  

Parameter Estimate 
Standard 

Error t Value Pr > |t| 

A-B -3.45224359 1.49391626 -2.31 0.0311 
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There is a very important message to be learned.  If we understand exactly how the study was conducted including 
the conditions under which the samples were obtained there is a greater chance we can do a better job in getting 
closer to an appropriate analysis of the resulting data. 
 

  
Figure 24 Graph of time to dissolve a chocolate chip vs. elapsed time for types A and B 

 
 

SEMICONDUCTORS 
 

The construction of semiconductors or computer chips is a multiple step process where at each step one is either 
adding a layer of material or removing a layer of material.  This study involves looking at the process during six steps 
toward the end of construction.  The six steps are denoted by 1, 2, 3, 4, 5, and 6.  The unit of construction is called a 
wafer.  During many steps the sets of wafers are treated together and during some of the steps wafers are treated 
individually.  In this study six wafers from a set of 24 wafers were being used to evaluate the effects of small changes 
in the process.  In this case the six wafers are treated together during steps 1 and 2. During step 3, the wafers are 
treated individually and during steps 4, 5 and 6 they are treated as a group.  During step three, three of the wafers 
were randomly assigned to the current voltage and three of the wafers were randomly assigned to a lower voltage.  
The graphic in Figure 25 denote which wafers (chips) were assigned to treatment a and which were assigned to 
treatment b during step 3.  Figure 26 is a display of a region of interest on the wafer there are three line sizes, two 
row treatments, four column treatments where two rows are nested within the levels of trt, 1 or 2.  The wafers or chips 
are assumed to represent a population of wafers that are yet to be produced, so the chips are considered as random 
effects. 
The construction of an appropriate analysis can be done is a straight forward manner if the design is broken down 
into its parts.  Figure 25 represents the application of the levels of the treatment at step 3 providing a one-way  
treatment structure in a completely randomized design structure and the entries in the analysis of variance table are 
in Table 17. 
 

Table 17.  The chip level of the 
analysis of the computer chip data 

Source df 

Trt3 1 

Chips(trt3)=Error(chip) 4 
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The levels of the row treatments are applied to the rows of each of the chips.  Thus the chips are divided in half as 
shown in Figure 26 and the levels of the row treatment are assigned to the rows. The chips are blocks for the row 
treatments, but since the blocks are stratified by the application of the levels of TRT3, the resulting design is that of a 
split-plot.  The half chip analysis is provided in Table 18.  Likewise each chip is divided into four columns where two 
columns are assigned to column treatment 1 and two are assigned to column treatment 2.  Within the two columns of 
treatment 1 there are two other levels of the column treatment and another two levels of the column treatment are 
applied to the levels of treatment 2.  Thus this part of the treatment structure is nested as the levels of Column 
treatment are nested within the levels of treatment.  The chips are blocks, but since blocks are cofounded with TRT3, 
the design structure is a split-plot.  The ¼ chip analysis is for a split-plot design structure with a two level nested 
treatment structure, which is displayed in Table 19.  The sub-plot treatments are the levels of the column treatments 
nested within the levels of the square treatments.  The fixed effects are square treatments, column treatments nested 
within the square treatments and the interaction with the third step treatment.  The error term is constructed by 
pooling the chip by square treatment interaction pooled across the levels of the third step treatment pooled with the 
chip by column treatment nested within square treatment pooled across the levels of the third step treatment.  

 

Table 18.  The row analysis where the entry Chip 
consists of the 5 df from Table 1. 

Chip 5 

Row 1 

Row*TRT3 1 

Error(1/2 chip)=row*chip(trt3) 4 
  

 

Table 19. One fourth chip analysis for a split-
plot design structure with a nexted treatment 
structure.  The df for Chip are from Table 1 

Source df 

Chip 5 

T 1 

C(T) 2 

TRT3*T 1 

TRT3*C(T) 2 

Error(1/4 chip) 12 
 
The levels of the row treatment and the levels of the column treatments nested within the square treatment form a 
strip-plot over the chip.  The analysis of variance will include fixed effects that involve a term from the row interaction 
of a term from the column and their interactions with the third step treatment.  The analysis of variance table for the 
1/8

th
 part of a chip is in Table 20.  Remember this part of the analysis only involves the interaction of the rows and 

Chip1 Chip4 Chip6 

Chip3 Chip2 Chip5 

Trt a at step 3 

Trt b at step 3 

Figure 25 Random assignments of chips to the levels of step three treatment 
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columns.  

 

 
 

 
 

Table 20.  The strip-plot analysis for the 
row and column treatments for the chips 

Source df 

R*T 1 

R*C(T) 2 

TRT3*R*T 1 

TRT3*R*C(T) 2 

Error(1/8 th chip) 12 
 
Finally, there are three widths of circuits within each square which provide a split-plot with the squares.  The 
remaining analysis involves the size and the interaction of all of the treatment structure effects in all of the other 
analyses.  The circuit part of the analysis is in Table 21. 

 

A CHIP 

ROW 1 

ROW 2 

Figure 27 Split-plot of a chip for the row treatment 
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Figure 26 Structure within each of the chips with rows, treatments, columns within 
treatments and sizes within cells 
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Table 21.  The circuit level the analysis of variance 
which includes the levels of size (S) and the 
interactions of size with all of the other effects in 
the treatment structure 

Source df 

S (size) 2 

TRT3*S 2 

Row*S 2 

 Row*TRT3*S 2 

T*S 2 

C(T)*S 4 

TRT3*T*S 2 

TRT3*C(T)*S 4 

R*T*S 2 

R*C(T)*S 4 

TRT3*R*T*S 2 

TRT3*R*C(T)*S 4 

Error(circuit) 64 
 

The SAS®  system code that can be used to carry out the complete analysis to combine the above analyses of 

variance tables is  

 
 proc mixed ; 

 class t3 cp r co t s; 

 model y=   t3   

         r r*t3   

  t co(t) t*t3 t3*co(t)   

  r*t r*co(t) r*t*t3 r*t3*co(t)   

         s s*t3 s*r s*r*t3 s*t s*co(t) s*t*t3 s*t3*co(t) 

         s*r*t s*r*co(t) s*r*t*t3 s*r*t3*co(t) ; 

Col 1 Col 2 Col 3 Col 4 

Trt 1 Trt 1 Trt 2 Trt 2 

A CHIP 

Figure 28 Split-plot design structure for column treatments nested within treatments 
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 random cp(t3) cp*r(t3) cp*t3*co(t) cp*r*co(t t3); 

 
where t3, cp, r, co,t and s denote the levels of the third step treatment, the chips, the rows within a chip the columns 
of a chip nested within the treatments and the size of the circuits respectively.  The terms in the random statement 
define the respective error terms with the exception of the residual. 

CONCLUSION  

The teaching of design of experiments by presenting the material for one  design at a time as if it is its own entity, such as split-
plot or Latin square, misses out on the application of designs to the real world where experiments are conducted in several 
steps.  Making sure the students understand these steps exist and how to use the tools of design of experiments to connect 
these steps in order for an appropriate analysis to be constructed is a recipe for successfully educating students about how 
designs of experiments work or are needed in the real world.  In our teaching of the design of experiments we have failed to 
inform our students of these importance connections and that additional design features can be generated while the experiment 
is being executed.  As a final point, we must stress to the researcher that all of the information is important to improve the quality 
of the data and resulting analyses.  

REFERENCES  

 Milliken, G. A., Shi, X., Mendicino, M., and Vasudev, P.K. 1998. “Strip-plot design for two step processes”, 
Quality and Reliability Engineering International, 14: 1-15. 

 
 Milliken, G. A. and D. E. Johnson. 1992. Analysis of Messy Data, Volume 1:  Designed Experiments.  Chapman 

& Hall/CRC, New York. 
     
 Milliken, G. A. and D. E. Johnson. 1989. Analysis of Messy Data, Vol. 2: Nonreplicated Experiments. Chapman &  
  Hall/CRC, New York.   
 
 Milliken, G. A. and D. E. Johnson. 2001. Analysis of Messy Data, Vol. 3: Analysis of Covariance.  
  Chapman & Hall/CRC, New York. 
 
 Milliken, G. A. and D. E. Johnson. 2009. Analysis of Messy Data, Vol. 1: Designed Experiments, 2

nd
 Edition.  

  Chapman & Hall/CRC, New York. 
 
 Littell, R, G.A. Milliken, W. Stroup, R. Wolfinger. 1996. SAS System for Mixed Models. SAS Institute Inc. Cary NC., 1996.  

 
 Littell, R, G.A. Milliken, W. Stroup, R. Wolfinger, O. Schabenberger. 2006. SAS for Mixed Models, 2

nd
 Edition.   

  SAS Institute Inc. Cary NC.   

CONTACT INFORMATION  

Your comments and questions are valued and encouraged. Contact the author at: 

Name:  George A. Milliken 
Enterprise: Milliken Associates, Inc. 
Address: 1401 Deep Creek Lane 
City, State ZIP: Manhattan, KS 66502 USA 
Work Phone: 785 539 9469 
Fax:   785 776 0630 
E-mail:  Milliken@ksu.edu 
Web: stat911.com 
 

SAS and all other SAS Institute Inc. product or service names are registered trademarks or trademarks of SAS 
Institute Inc. in the USA and other countries. ® indicates USA registration.  

 

Statistics and Data AnalysisSAS Global Forum 2009

 


	2009 Table of Contents



