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ABSTRACT  
Quasi-least squares (QLS) is an alternative computational approach for estimation of the correlation parameter in the 
framework of generalized estimating equations (GEE). QLS allows for easier implementation of some correlation 
structures that are not available for GEE. We describe a user-written SAS® macro called %QLS, and demonstrate 
application of our macro using a clinical trial example for the comparison of two treatments for a common toenail 
infection. %QLS also computes the lower and upper boundaries of the correlation parameter for analysis of 
longitudinal binary data that were described by Prentice (Biometrics 44 (1988), 1033–1048). Furthermore, it displays a 
warning message if the Prentice constraints are violated. This warning is not provided in existing GEE software 
packages and other packages that were recently developed for application of QLS (in Stata, Matlab, and R). %QLS  
allows for analysis of normal, binary, or Poisson data with one of the following working correlation structures:  
the first-order autoregressive (AR(1)), equicorrelated, Markov, or tri-diagonal structures. 

INTRODUCTION  
Quasi-least squares (QLS) is a two-stage approach for analysis of longitudinal data that is based on the popular 
generalized estimating equations (GEE) (Liang and Zeger, 1986). GEE and QLS are identical in their approach to 
estimation of the regression parameter, but differ with respect to estimation of the correlation parameter α . QLS was 
motivated by Dunlop (1994) and was developed in several stages: in Chaganty (1997) (stage one, for balanced and 
equally spaced data); Shults (1996) and Shults and Chaganty (1998) (stage one, for unbalanced and unequally 
spaced data); and Chaganty and Shults (1999) (stage two, for unbalanced and unequally spaced data).  

 
QLS has several attractive features. First, Crowder (1995) constructed simple examples to demonstrate that feasible 
estimates of α may fail to exist when the correlation structure is not correctly specified in the analysis. In contrast, the 
QLS estimates of α are guaranteed to be feasible for several structures, including the first-order autoregressive 
(AR(1)), equicorrelated, Markov, and tri-diagonal structures. In addition, QLS allows for relatively straightforward 
implementation of more complex structures than are currently available for GEE. For example, Shults (1996) and 
Shults and Chaganty (1998) implemented the Markov correlation structure that is a generalization of the AR(1) 
structure for measurements that are unequally spaced in time. Furthermore, QLS has been successfully implemented 
in multi-outcome longitudinal studies with multiple sources of correlations, e.g. correlations between multiple 
outcomes as well as within subject for each outcome over time, using Kronecker product correlation structures (Shults 
& Morrow, 2002; Chaganty & Naik, 2002; and Shults, Whitt, & Kumanyika, 2004). (However, it is important to note 
that the prior manuscripts on the KP structure only considered data that were totally balanced or that were balanced 
within subjects.) In addition, Shults, Mazurick & Landis (2006) also implemented a banded Toeplitz structure for 
analysis of multiple bouts of repeated measurements.  
 
QLS has been implemented in several major statistical software packages. For example, Shults, Ratcliffe & Leonard 
(2007) developed the xtqls procedure for use in Stata statistical software. Xie and Shults (2008) developed the 
qlspack for implementation of QLS in R software. Finally, Ratcliffe and Shults (2008) developed GEEQBOX for 
implementation of both GEE and QLS in Matlab; Prior to GEEQBOX, there was no software available for application 
of GEE in Matlab. In this manuscript, we present our user written SAS macro called %QLS version 1 for 
implementation of QLS in SAS version 9.1 using SAS/IML. We demonstrate our software using a randomized clinical 
trial reported by Debacker et al 1994). %QLS can be used for analysis of longitudinal data whose outcome follows a 
normal, binary, or Poisson distribution, with an AR(1), equicorrelated, Markov, or tri-diagonal correlation to describe 
the pattern of association among the repeated measurements on each subject, or cluster. 

 
A unique feature of %QLS, which is not available in current GEE packages and other user-written QLS software, is 
that it computes the so called `Prentice boundary' (Prentice, 1988) of the estimate of α  for analysis of binary data.  
In addition to our discussion of %QLS version 1, we note that we have recently extended %QLS for analysis of 
multiple outcomes that are measured on subjects over time.  Our SAS procedure %QLS version 2 can be used to 
apply the KP structure that was proposed by Lefkopoulou M, Moore D, Ryan L. (1989) and Galecki (1994) and 
implemented by Roy and Khattree (2005). Unlike the previous work on the KP structure, our software can handle 
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unbalanced data, which result when study investigators planned for an equal number of measurements to be 
collected on several outcomes on each participant, but some measurements were missed on some subjects. In this 
manuscript we briefly describe QLS and the structures that can be applied with our software. We then demonstrate 
application of %QLS version 1, including a demonstration of an analysis that results in a violation of the Prentice 
constraints, in addition to an application of the Markov structure that currently is unavailable for GEE. For additional 
details regarding QLS and %QLS version 1 and 2, please see Kim et al. (2008a) and Kim & Shults (2008b, 2008c). 

DESCRIPTION OF QLS 
For data with one level of association (e.g. within serial measurements on independent subjects or within families in a 
cross-sectional study), we assume that our data comprise independent vectors of measurements 

1 2( , ,..., )
ii i i inY y y y′ =  collected on cluster (or subject) i at times 1 2, ,...,

ii i int t t , for 1,2,..., .i m=  We do not 

specify the full distribution of outcomes, but assume that the mean and variance satisfy ( )ij ijE y u= and 

( ) ( )ij ijVar y h uφ= , where 0φ >  is a known or unknown scale parameter and ( )h D  is a known variance function. 

When we observe ijy we also collect a vector of explanatory variables 1 2,( , ,..., )ij ij ij ijpx x x x′ = . We examine the 

association between the covariates and marginal mean of the outcome variable via the relation 1( )ij iju g x β− ′= , 

where pβ ∈ℜ  is a vector of unknown regression coefficients and ( )g D  is an invertible link function. To describe 

the pattern of association among observations within clusters (subjects), we apply a working covariance matrix for iY , 
1/ 2 1/ 2( ) ( ) ( ).i i i iA F Aβ α βΣ =  Here ( )iF α  is the i in n×  working correlation matrix of iY ; qα ∈ℜ  is a vector of 

parameters that fully characterizes ( )iF α ; and { }1 2( ) ( ), ( ), , ( ) .
ii i i inA diag h u h u h uβ = …  Because the working 

structure ( )iF α  may be misspecified, we assume that the true correlation structure of iY  has form ( )iT ρ , where 
qρ ∈ℜ  is the vector or parameters that characterizes ( )iT ρ . We define the generalized error sum of squares :    

                                                        1

1
( , ) ( ) ( ) ( )

m

i i i
i

Q Z F Zβ α β α β−

=

′= ∑                                                            (1) 

for 1/ 2( ) ( )( )i i i iZ A Y Uβ β−= −  and 1 2( , , , ).
ii i i inU u u u′ = …   Also define ( ) / .i iD Uβ β= ∂ ∂  

 
The QLS stage one estimate of α  is obtained by minimizing ( , )Q β α  over the feasible region for α , which we 

define as the set q∫ ∈ℜ  such that ( )iF α  is a positive definite correlation matrix for α ∈ ∫ . The QLS estimating 

equations forβ  and α , respectively, are given by: 

                                                        1/ 2 1

1
( ) ( ) ( ) ( ) 0

m

i i i i
i

D A F Zβ β α β− −

=

′ =∑                                                           (2) 

and 

                                  1

1

( ) ( ) ( ) 0 1,2, , .
m

i i i
ij

Z F Z for j qβ α β
α

−

=

∂ ⎡ ⎤′ = =⎢ ⎥∂ ⎣ ⎦
∑ …                                                    (3)                

                                                        

The first-stage QLS estimates 1̂β  and α̂  are obtained by choosing a starting value for β , or for α , and alternating 

between solving (2) and (3) until the estimates converge. However, α̂  is asymptotically biased. The second stage 

yields consistent estimates ρ̂  and β̂  of ρ and β  that are based on α̂  and 1.β̂  To obtain ρ̂  according to 

Chaganty and Shults (1999), we solve the following equation for ρ : 

                                                                
,0),ˆ( =ραb
                                                                                           (4)     
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where ( , )b α ρ  .
1
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Note that QLS yields a solution to  ( )
1( )

( ) 0
1 1

m Fitrace Z Z Ti i i
ji q

α
φ ρ

α

−∂
′− =

∂= ×

⎡ ⎤⎧ ⎫⎪ ⎪⎢ ⎥∑ ⎨ ⎬
⎢ ⎥⎪ ⎪⎩ ⎭⎣ ⎦

, which is the equation we obtain if 

(3) is modified so as to make it unbiased.  QLS thus yields a solution to an unbiased estimating equation for ρ  that 

does not depend on estimation of φ , which would be required were we to attempt to directly obtain a solution to an 

unbiased estimating equation for .ρ  The final estimate β̂  is then obtained by solving equation (2) for β , evaluated 

at ρ̂  and what we believe to be the true correlation structure. Confidence intervals for linear functions of β  can then 

be constructed using the following estimate of the covariance matrix: 

( )
1 1

1/ 2 1 1/ 2 1/ 2 1 1 1/ 2 1/ 2 1 1/ 2

1 1 1

ˆ ˆ ˆ ˆ ˆ ˆ ˆˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆˆ ,
m m m

i i i i i i i i i i i i i i i i i i
i i i

Cov D A F A D D A F Z Z F A D D A F A Dβ
− −

− − − − − − − − − −

= = =

⎧ ⎫ ⎧ ⎫⎧ ⎫′ ′ ′ ′= ⎨ ⎬ ⎨ ⎬⎨ ⎬
⎩ ⎭ ⎩ ⎭⎩ ⎭
∑ ∑ ∑  where ˆ ,iD  

ˆ ,iA  ˆ ,iF  and ˆ
iZ  are evaluated at ( )ˆˆ ,ρ β .  The parameter φ can be estimated consistently by                             

1
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i i
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Z Z
m n
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′
= ∑  or (with bias correction) 
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Z F Z
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φ
−

=

′
=

− ∑ .                                                                   (5) 

Note that the QLS estimating equation (2) for β  is the same as the GEE estimating equation, so that QLS is a 

method in the framework for GEE. The QLS and GEE estimators of β  have the same asymptotic covariance matrix 

so that, as m →∞ , the asymptotic relative efficiency of the QLS estimate of β  with respect to the GEE estimate is 
thus 1. Desmond (1997) discussed equation (2) in the context of optimal estimating equations and noted that it is 
optimal according to the optimality criteria of Godambe and Kale (1991, p. 14).  When considering data with more 
than one level of association, the notation and implementation of QLS can be generalized, as in Shults and Morrow 
(2002, in appendix) and Kim and Shults (2008b).  For a further comparison of QLS with other approaches based on 
unbiased estimating equations, see Sun et al (2009). 

CORRELATION STRUCTURES THAT CAN BE IMPLMENTED IN %SAS 
%QLS version 1 currently allows for application of the AR(1), equicorrelated, Markov, and tri-diagonal structures that 
can be used to describe the correlation between measurements ijy and iky , that are measured on subject i at times 

ijt and ikt .  The first-order autoregressive (AR(1)) structure: This assumes that ( , ) j k
ij ikCorr y y α −= . The 

AR(1) structure is often applied for analysis of longitudinal measurements that are equally spaced in time, because it 
assumes that the correlation between two measurements only depends on the measurement occasion. For example, 
it might be appropriate for measurements collected at baseline, and then at 6 and 12 months post baseline. 

The Markov structure: This structure assumes that ( , ) ij ikt t
ij ikCorr y y α −= . The Markov structure generalizes 

the AR(1) to measurements that are unequally spaced in time. This is an extremely useful structure because 
balanced data are rare. For example, even if the study design planned for measurements to be collected at baseline, 
and then at 6 and 12 months post baseline, there could be variability (sometimes extreme) in the temporal spacing of 
measurements. The Markov and AR(1) structures force the correlation between measurements to decline with 
increasing separation in time, which is often anticipated for biological measurements.  

The equicorrelated structure: This structure assumes that all pair-wise correlations on a subject or cluster are 

identical, so that ( , )ij ikCorr y y α= . This structure is often applied for analysis of clustered data, e.g. for analysis 

if a cross-sectional study of rats within litters, or of subjects within classrooms.  
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The tri-diagonal correlation structure: This structure assumes that all correlations on a cluster are zero, except for 

the adjacent measurements, so that 1( , )ij ijCorr y y α+ = . This structure is one of the original structures that was 

implemented by Liang and Zeger (1986) and is available in the current software packages that implement GEE, e.g. 
in PROC GENMOD in SAS.  

Kronecker product structures: We also note that %QLS version 2 allows for application of correlation structures 
that are formed by taking Kronecker products between the exchangeable structure and the AR1, exchangeable, 
Markov, or tri-diagonal structures for multiple outcomes. Please see Kim and Shults (2008b) for more discussion of 
the KP structures and their application. The Kronecker product structures are appropriate for data with multiple 
sources of correlation, e.g. for multiple measurements collected on subjects within families. 
 

We note that %QLS does not allow for application of the independent structure (identity matrix) because QLS is 
identical to GEE for this structure. In addition, application of the unstructured  matrix is complex for QLS. In SAS, we 
therefore suggest application of PROC GENMOD with the repeated statement and the option corr=ind for application 
of the independent correlation structure, or corr=un for application of the unstructured correlation matrix for GEE. 

PRENTICE CONSTRAINTS FOR LONGITUDINAL BINARY DATA 
Prentice (1988) described additional constraints for the correlation parameter, in addition to the usual restrictions 
required for the correlation matrix to be positive definite. The Prentice constraints are due to the fact that the GEE 
analysis of binary outcomes provides estimates of the marginal probabilities that the measurements ijy take value 1 

(or zero); If we consider any pair of measurements ijy and iky on a subject, the GEE analysis provides estimates of 

the correlation between the outcomes, in addition to estimates of the marginal probabilities. The bivariate distribution 
of ijy and iky can then be expressed as a function of the estimated marginal probabilities and correlation. Prentice 

(1988) showed that the correlations must satisfy certain constraints, in order for the bivariate distributions to be valid, 
i.e. for all the pair wise probabilities to be non-negative. Please see Prentice (1988) and Kim and Shults (2008b) for 
more details.  

Prior software for implementation of GEE did not check for a potential violation of the Prentice constraints, although it 
is well known that violation of these bounds may be problematic for GEE (Rochon, 1988). However, %QLS does 
check the boundary conditions, and issues a warning if they are not satisfied. (We note that there is some current 
discussion in the literature regarding the implications of a violation of bounds. For example, Shults et al. (2009) 
suggest that a violation could be helpful in assessing the correctness of the choice of working correlation structure.) 

PARAMETERS IN %QLS 
A complete list of the parameters in %QLS is as follows: 
     %QLS(data=, 
      y=, 
      x=, 
      id=, 
      time=, 
      link=, 
      corr=, 
      robust=, 
      dispersion=, 
      alpha=, 
      initialout=, 
      stage1out=, 
      stage2out=, 
      cmatrix=, 
      reference=, 
      converge=, 
      maxiter=) 
where 
 
• data is the name of the data set in the usual longitudinal data format to be 
               read in PROC GENMOD. The data set must not contain any missing values.  
• y is the outcome variable.  
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• x are the predictors (covariates) in the regression model.  
• id is the ID variable; time is the  time variable.  
• link equals 1 for the identity link; 2 for the logit link; and 3 for the log link (default is 1).  
• corr equals 1 for the AR(1); 2 for the Equicorrelated; 3 for the Markov; 4 for the Tri-diagonal (default is 1).  
• robust equals 1 for robust sandwich-based standard errors; 2 for model-based standard errors (default is      
              1).  
• dispersion equals 1 for bias not corrected; 0 for bias-corrected (default is 1).  
• alpha is the significance level to be used in testing each regression coefficient (default is 0.05).  
• initialout equals 1 creates a SAS permanent data set in the current work space for the initial        
               output; 0 otherwise (default is 0).  
• stage1out equals 1 creates a SAS permanent data set in the current work space for the stage 1 
              output; 0 otherwise (default is 0).  
• stage2out equals 1 creates a SAS permanent data set in the current work space for the stage 2 
               output; 0 otherwise (default is 0).  
• cmatrix equals 1 creates a SAS permanent data set in the current work space for the stage 2 
               correlation matrix; 0 otherwise (default is 0).  
• reference equals 1 prints out the reference information; 0 otherwise (default is 0).  
• convergence is the convergence criterion for estimation of β and of α  (default is 0.0001).  

• maxiter is the maximum number of allowable iterations for estimation of β and of α (default is  
              100). 
 
Note that many of the parameters have default values, so that they do not have to be specified. %QLS assumes the 
usual longitudinal data format to be read in PROC GENMOD without any missing observation contained in the data. If 
there are missing observations in the data that are coded as missing, these must be deleted prior to implementation 
of %QLS; This is equivalent to assuming that the observations are `Missing Completely At Random' 
(MCAR), as in the usual GEE analysis implemented by PROC GENMOD with the repeated statement. 
 

CLINICAL TRIAL EXAMPLE 
It is important to note that the following example is also provided in Kim and Shults (2008a): De Backer (1996) 
reported a 12-week, randomized, double-blind, multi-center comparative trial for the comparison between the 
standard oral drug (terbinafine 250mg daily) and the experimental oral drug (theritraconazole 200mg daily) in the 
treatment of a common toenail infection called dermatophyte toe onychomycosis (DTO). The data was also described 
in Monleberghs & Verbeke (2006), and can be downloaded from the web-site for the LADP project: 
www.cceb.upenn.edu/~sratclif/QLSproject.html. 
 
A total of 189 patients were randomized to each treatment group and followed over 12 weeks, with measurements 
taken at baseline, and at months 1, 2, 3, 6, 9, and 12. The primary outcome measure was the severity of the toe nail 
infection, that was defined as 1 if the infection was severe, and 0 otherwise. For the purpose of demonstration, we 
first consider a simple logistic regression model for comparison of the time-averaged treatment difference between 
the standard treatment group and the experimental treatment group. The toenail data, toenail.txt, contains a total of 4 
variables: time, treatment, y, and id where time is the time variable, treatment is the treatment indicator (1 for the 
standard arm, and 0 otherwise), y is the outcome variable (1 if the infection is severe, and 0 otherwise), and id is the 
ID number assigned to each patient. Let ijy follow the Bernoulli distribution with ( 1)ij ijP y p= = such that 

                                                               0 1ln
1

ij
ij

ij

p
treatment

p
β β

⎛ ⎞
= +⎜ ⎟⎜ ⎟−⎝ ⎠

                                                          (6) 

where ijtreatment is the treatment indicator that equals 1 if the thi  subject is assigned to the standard drug and 0 

otherwise. One advantage of implementing (6) is that the upper limit of the Prentice constraint for α will be 1 for this 
model. In general, any model that involves cluster level covariates will have an upper Prentice boundary of 1, due the 
fact that the estimated bivariate probabilities do not vary within subjects (clusters) when only cluster level covariates 
are considered in the model. 
 
Before we demonstrate %QLS to fit the model , we must first read the data, toenail.txt, into the current SAS 
workspace, e.g. 
      
      data toenail; 
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      infile "D:\toenail.txt"; 
      input time treatment y id; 
      run; 
 
where we assume that the toenail.txt is stored in D directory. 
 

EXAMPLE OF APPLICATION OF THE AR(1) CORRELATION STRUCTURE 
 
The following codes can be used to analyze the toenail data using the QLS regression model (6) with the AR1 
structure: 
 
       %QLS(data=toenail, y=y, x=treatment, id=id, time=time, link=2, corr=1); 
 
The estimated standard errors are the robust sandwich-based estimates that are set by default. The outputs from the 
code are as follows: 
 

Quasi-Least Squares SAS Macro Version 1.0 
 
            Regression Analysis using Quasi-Least Squares (QLS) 
 
   QLS Model Information 

 
Variance Function  : Binomial 

                Link Function   : Logit 
                Dependent Variable  : Y 
                Correlation Structure  : AR(1) 
 
                Number of Observation Read :      1907 
                Number of Clusters  :       294 
                Maximum Cluster Size  :           7 
                Minimum Cluster Size  :           1 
                Correlation Matrix Dimension :           7 
                Number of Distinct Time Points :           7 
 
                    TIME   0   1   2   3   6   9  12 
 
                Number of Events :       408 
                Number of Trials  :       1907 
 
                    Analysis of Initial Parameter Estimates 
 
    Parameter     Estimate  Stand Err        Z        Pr>|Z|    [95% Con. Interval] 
 
    INTERCEPT  -1.217433 0.0778205    15.64   0.0000 -1.369958 -1.064908 
    TREATMENT -0.168861 0.1118004     1.51    0.1309 -0.387985  0.050264 
 
%QLS is modeling the probability that Y=1 
 
Correlation  converged after   1 iterations  ( tolerance =               0 ) 
Reg. coeffi. converged after   2 iterations  ( tolerance = 0.0000605 ) 
 
                Analysis of Stage 1 QLS Parameter Estimates 
 
    Parameter       Estimate  Stand Err        Z      Pr>|Z|   [95% Con. Interval] 
 
    INTERCEPT  -1.200902 0.1409324    -8.52   0.0000 -1.477125  -0.92468 
    TREATMENT -0.169826 0.1971473    -0.86   0.3890 -0.556228   0.2165757 
 
                Stage 1  Correlation Parameter  Estimate 
                                                                 0.4423849 
 

Statistics and Data AnalysisSAS Global Forum 2009

 



7 

                Dispersion Parameter Estimate at Stage 1 
                                                                                 1 
                    Stage 1 Working Correlation Matrix 
 
        1.0000   0.4424   0.1957   0.0866   0.0383   0.0169   0.0075 
        0.4424   1.0000   0.4424   0.1957   0.0866   0.0383   0.0169 
        0.1957   0.4424   1.0000   0.4424   0.1957   0.0866   0.0383 
        0.0866   0.1957   0.4424   1.0000   0.4424   0.1957   0.0866 
        0.0383   0.0866   0.1957   0.4424   1.0000   0.4424   0.1957 
        0.0169   0.0383   0.0866   0.1957   0.4424   1.0000   0.4424 
        0.0075   0.0169   0.0383   0.0866   0.1957   0.4424   1.0000 
 
Correlation  converged after   1 iterations  ( tolerance =         0 ) 
Reg. coeffi. converged after   3 iterations  ( tolerance = 4.0938E-9 ) 
 
                Analysis of Stage 2 QLS Parameter Estimates 
 
    Parameter      Estimate  Stand Err        Z       Pr>|Z|    [95% Con. Interval] 
 
    INTERCEPT  -1.178475 0.1392601    -8.46   0.0000 -1.451419  -0.90553 
    TREATMENT -0.170937 0.1938719    -0.88   0.3779 -0.550919   0.2090446 
 
                            Prentice Boundary 
                            -.259393 1.000000 
 
                Stage 2  Correlation Parameter  Estimate 
                                                                 0.7399569 
 
                Dispersion Parameter Estimate at Stage 2 
                                                                                 1 
 
                    Stage 2 Working Correlation Matrix 
 
        1.0000   0.7400   0.5475   0.4052   0.2998   0.2218   0.1641 
        0.7400   1.0000   0.7400   0.5475   0.4052   0.2998   0.2218 
        0.5475   0.7400   1.0000   0.7400   0.5475   0.4052   0.2998 
        0.4052   0.5475   0.7400   1.0000   0.7400   0.5475   0.4052 
        0.2998   0.4052   0.5475   0.7400   1.0000   0.7400   0.5475 
        0.2218   0.2998   0.4052   0.5475   0.7400   1.0000   0.7400 
        0.1641   0.2218   0.2998   0.4052   0.5475   0.7400   1.0000 
 
The output of %QLS contains the model information followed by the estimates of the stage one and two estimates of 
β  and ofα . As noted earlier, the  upper limit of the Prentice interval is equal to 1 in the above output. From the 
stage two output, the p-value corresponding to the time-averaged treatment effect is equal to 0.38, which suggests 
that there is no significant time-averaged treatment difference between treatments. 

EXAMPLE OF APPLICATION OF THE MARKOV CORRELATION STRUCTURE 
Here we demonstrate application of the Markov correlation structure, which is currently unavailable for GEE. This is 
important because the toenail data is unequally spaced in time, e.g. the variable time in this data set indicates the visit 
number and takes value in {0, 1, 2, 3, 6, 9, 12 } for each subject. Therefore, the Markov correlation structure would be 
preferable for the analysis. The following code can be used to fit model (6) with the Markov correlation structure: 
 
      %QLS(data=toenail, y=y, x=treatment, id=id, time=time, link=2, corr=3); 
 
To save space, we omit the stage one and initial outputs and only present the stage two output. 
 
                Analysis of Stage 2 QLS Parameter Estimates 
 
    Parameter      Estimate   Stand Err      Z      Pr>|Z|    [95% Con. Interval] 
 
    INTERCEPT  -1.345997  0.141525    -9.51   0.0000 -1.623381 -1.068613 
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    TREATMENT -0.204626 0.1969105  -1.04   0.2987 -0.590564 0.1813111 
 
                            Prentice Boundary 
                            -.212116 1.000000 
 
                Stage 2  Correlation Parameter  Estimate 
                                                                 0.7942784 
 
                Dispersion Parameter Estimate at Stage 2 
                                                                                 1 
                    Stage 2 Working Correlation Matrix 
 
        1.0000   0.7943   0.6309   0.5011   0.2511   0.1258   0.0630 
        0.7943   1.0000   0.7943   0.6309   0.3161   0.1584   0.0794 
        0.6309   0.7943   1.0000   0.7943   0.3980   0.1994   0.0999 
        0.5011   0.6309   0.7943   1.0000   0.5011   0.2511   0.1258 
        0.2511   0.3161   0.3980   0.5011   1.0000   0.5011   0.2511 
        0.1258   0.1584   0.1994   0.2511   0.5011   1.0000   0.5011 
        0.0630   0.0794   0.0999   0.1258   0.2511   0.5011   1.0000 
 
The results are similar to those for the AR(1) structure, with an estimated α  in stage two (α̂ = 0.79) versus 

α̂ =0.74 for the AR(1) structure. Further, the p-value with respect to the time-averaged treatment effect is 0.30; 
hence the same conclusion follows as with the AR(1) structure. 

EXAMPLE OF APPLICATION OF THE EQUICORRELATED AND TRI-DIAGONAL CORRELATION 
STRUCTURES 
Although the equicorrelated and tri-diagonal structures may not be best candidate correlation structures for the toenail 
data, we include the implementation of theses structures for the purpose of demonstration. Here we only present the 
codes for fitting the model (6) with the equicorrelated and tri-diagonal correlation structures, but omit their outputs. 
 
For the equicorrelated correlation structure, we have 
       
      %QLS(data=toenail, y=y, x=treatment, id=id, time=time, link=2, corr=2); 
 
For the tri-diagonal correlation structure, we have 
 
      %QLS(data=toenail, y=y, x=treatment, id=id, time=time, link=2, corr=4); 
 

EXAMPLE OF APPLICATION OF VIOLATION OF THE PRENTICE BOUNDARY 
Here we briefly demonstrate violation of the Prentice constraints using the toenail data. Consider the following model 
for testing the treatment effect over time: 
 

0 1 2 3ln
1

ij
ij

ij

p
treatment time time treatment

p
β β β β

⎛ ⎞
= + + + ×⎜ ⎟⎜ ⎟−⎝ ⎠

                                                          (6) 

where ijtreatment is the treatment indicator that equals 1 if the thi  subject is assigned to the standard drug and 0 

otherwise; ijtime  represents the time of the measurement collected on subject i at the thj  measurement occasion, 

and math treatment×  is the treatment by time interaction. To fit the model in (6) using %QLS, a new variable 
corresponding to the interaction term must be created first, e.g. 
          
        data toenail; 
        infile "D:\toenail.txt"; 
        input time treatment y id; 
        interaction=treatment*time; 
        run; 
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To fit the model (6) with the AR(1) structure, we use 
 
        %QLS(data=toenail, y=y, x=treatment time interaction, id=idnum, time=time,link=2, corr=1); 
 
To save space, here we provide the stage two output for the AR(1) structure. 
 
                Analysis of Stage 2 QLS Parameter Estimates 
 
    Parameter         Estimate    Stand Err        Z       Pr>|Z|    [95% Con. Interval] 
 
    INTERCEPT    -0.649358   0.1702276     -3.81   0.0001  -0.982998 -0.315718 
    TREATMENT    0.1213252 0.2510978      0.48   0.6290  -0.370817 0.6134679 
    TIME                 -0.141402  0.0285992     -4.94   0.0000  -0.197455 -0.085348 
    INTERACTION -0.120551  0.0555837     -2.17   0.0301  -0.229493 -0.011609 
 
                            Prentice Boundary 
                            -.037683 .3076519 
 
                Stage 2  Correlation Parameter  Estimate 
                                                                0.7054869 
              

Dispersion Parameter Estimate at Stage 2 
                                                                                1 
                    Stage 2 Working Correlation Matrix 
 
        1.0000   0.7055   0.4977   0.3511   0.2477   0.1748   0.1233 
        0.7055   1.0000   0.7055   0.4977   0.3511   0.2477   0.1748 
        0.4977   0.7055   1.0000   0.7055   0.4977   0.3511   0.2477 
        0.3511   0.4977   0.7055   1.0000   0.7055   0.4977   0.3511 
        0.2477   0.3511   0.4977   0.7055   1.0000   0.7055   0.4977 
        0.1748   0.2477   0.3511   0.4977   0.7055   1.0000   0.7055 
        0.1233   0.1748   0.2477   0.3511   0.4977   0.7055   1.0000 
 
    Warning!  Correlation parameter estimate is not within the boundary. 
    The existence of a multivariate binary distribution is questionable. 
From the stage two output, the estimated stage two α̂  is 0.71, which exceeds the upper limit (0.31) of the Prentice 
constraints. It is also important to note that although the results are not shown here, application of GEE for the AR(1) 
structure would also  result in a severe violation of the Prentice constraints. The above results suggest something 
different than the time-averaged model, which is that there is a difference in the likelihood of high severity between 
the two treatment conditions. However, graphical displays (not shown) suggest that the assumption of linearity in the 
logit is not appropriate for these data. For an extensive discussion of approaches for assessment of the linearity in the 
logit assumption, see Hilbe (2009).   
 
For demonstration purposes, we now present a model that did not violate the linearity in the logit assumption, and that 
also did not result in a violation of the Prentice bounds forα . This model contains indicator variables for the second 
(1 month), third (2 month), fifth (6 month), and seventh (12 month) measurements on each subject; an indicator 
variable for the standard treatment; and a visit seven (12 month) by treatment indicator variable (all other treatment by 
visit indicator variables did not differ significantly from zero). The corresponding data set, toenail2.txt, can be also 
downloaded from www.cceb.upenn.edu/~sratclif/QLSproject.html. Here we present the code, and the  stage two 
output. 
 
        %qls(data=toenail2, y=y, x=time2 time3 time5 time7 treatment time7_trt, id=id, time=time, link=2, corr=1); 
 
The stag two output for this analysis is as follows: 
 
                Analysis of Stage 2 QLS Parameter Estimates 
 
    Parameter     Estimate     Stand Err        Z         Pr>|Z|       [95% Con. Interval] 
 
    INTERCEPT -1.140052    0.1428558    -7.98   0.0000    -1.420044  -0.86006 
    TIME2             0.1103149 0.0699347     1.58   0.1147    -0.026755 0.2473844 
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    TIME3             0.1702156 0.0794198     2.14   0.0321     0.0145556 0.3258757 
    TIME5            -0.48106     0.0954562    -5.04   0.0000    -0.66815 -0.293969 
    TIME7            -0.236975   0.1379387    -1.72   0.0858    -0.50733 0.0333794 
    TREATMENT -0.093147   0.2003516    -0.46   0.6420    -0.485829 0.2995349 
    TIME7_TRT   -0.318485   0.1752016    -1.82   0.0691    -0.661874 0.0249039 
 
                            Prentice Boundary 
                            -.173521 .7220668 
 
                Stage 2  Correlation Parameter  Estimate 
                                                                 0.7161348 
 
                Dispersion Parameter Estimate at Stage 2 
                                                                                 1 
 
                    Stage 2 Working Correlation Matrix 
 
        1.0000   0.7161   0.5128   0.3673   0.2630   0.1884   0.1349 
        0.7161   1.0000   0.7161   0.5128   0.3673   0.2630   0.1884 
        0.5128   0.7161   1.0000   0.7161   0.5128   0.3673   0.2630 
        0.3673   0.5128   0.7161   1.0000   0.7161   0.5128   0.3673 
        0.2630   0.3673   0.5128   0.7161   1.0000   0.7161   0.5128 
        0.1884   0.2630   0.3673   0.5128   0.7161   1.0000   0.7161 
        0.1349   0.1884   0.2630   0.3673   0.5128   0.7161   1.0000 
 
For the above model, the Prentice constraints are not violated. In addition, the results seem more in agreement with 
the time-averaged model, which also did not identify a significant difference between the two treatment conditions with 
respect to severity of toenail infection. 

CONCLUSION  
%QLS can fit a model to longitudinal data using the method of quasi-least squares, and can consider data which 
follows the normal, binary, or Poisson distribution with the AR(1), Markov, equicorrelated, and tri-diagonal structures. 
The syntax and the output of %QLS are similar to the existing GEE procedures in SAS, i.e. PROC GENMOD with the 
repeated statement, that would be familiar to SAS users. %QLS assumes that there are no missing observations in 
the dataset; hence any observations that are coded as missing should be deleted prior to the implementation of the 
macro. As noted earlier, this is equivalent to assuming that the data is missing completely at random (MCAR), which 
is a typical assumption in a GEE analysis. 

In this manuscript we focused on the application of %QLS version 1. However, as noted earlier, we have also 
developed %QLS version 2, that allows for implementation of the Kronecker product correlation structures. Please 
see Kim et al. (2008a) and Kim & Shults (2008b, 2008c) for additional details regarding %QLS version 1 and 2. 
Further updates of %QLS will be made to allow for implementation of other correlation structures that are currently 
unavailable for GEE, including the familial correlation structure that is described in Gleseer (1992). 
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