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ABSTRACT 
 
Previous statistical studies have indicated that dichotomizing a continuous confounding variable in 
multivariate regression analyses can lead to biased estimation of the effect of exposures, treatments, and 
risk factors on outcomes. We suggest that, prior to entry in the multivariate analysis, one should test 
whether or not the continuous confounding variable is linearly related to log-odds of the binary outcome or 
hazard ratios of the time-to-event binary outcome. If there is a linear relationship, we encourage that the 
variable not be dichotomized. We illustrate this issue using clinical data that we recently published in the 
New England Journal of Medicine (NEJM). The linearity assumption is tested by restricted cubic splines 
using SAS/Stat® procedures.  
 
 
 
 
INTRODUCTION 
 
In clinical studies, investigators are frequently interested in determining the association between risk 
factors and binary outcomes (e.g., dead or alive at discharge) or time-to-event binary outcomes (e.g., time 
to death, time to readmission) after adjusting for confounding variables. Continuous confounders (such as 
patient age, blood pressure, glucose, etc.) are often dichotomized prior to entry in the multivariate 
regression model (e.g., old vs. young, high vs. low blood pressure). Dichotomization is widespread in 
clinical studies (Del Priore 1997), as such simplicity simplifies the statistical analysis and leads to easy 
interpretation and presentation of the results.  
 
Dichotomization assumes that the relationship between the predictor and the outcome is flat within 
intervals, i.e., a discontinuity in outcome as interval boundaries are crossed, however, this assumption is 
far less reasonable than a linearity assumption in most cases. From a statistical point of view, 
dichotomization reduces statistical power, primarily due to the reduction in the inherent variability of the 
predictor variable. It is known that dichotomizing continuous predictor variables may result in biased 
estimation, either in ordinary linear regression (Cumsille et al. 2000), or in logistic regression (Becher 
1992; Schulgen et al. 1994), or in Cox proportional hazards regression (Altman et al. 1994; Buettner et al. 
1997; Royston et al. 2006). Furthermore, it may result in inflation of the type-I error of the risk factor 
(Altman et al. 1994; Austin and Brunner 2004). In this paper, we emphasize this issue based on a 
previous clinical study of time-to-event outcome of heart failure that we conducted (Bhatia et al. 2006). 
 
 
CASE STUDY: OUTCOME OF HEART FAILURE WITH PRESERVED EJECTION FRACTION 
 
We conducted a study to compare the features and outcomes of patients with heart failure with preserved 
ejection fraction (n=880) with those of patients with heart failure with reduced ejection fraction (n=1570).  
 
We used Cox proportional-hazards regression analysis to identify factors associated with an increased 
risk of death after hospitalization for heart failure. Backward variable elimination was used to create a 
parsimonious model for predicting mortality. Systolic blood pressure was one of the variables selected for 
inclusion in the final Cox model. By forcing the variable denoting ejection-fraction group into the final 
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model, we determined the adjusted hazard ratio for death among patients with reduced ejection fraction 
as compared with those with preserved ejection fraction.  
 
Systolic blood pressure is a continuous variable. However, it is often dichotomized to determine its 
association with mortality outcomes in cardiovascular studies. An interesting finding is that if we 
dichotomized systolic blood pressure ( >120 versus <=120 mmHg) in the Cox model, then we find that the 
adjusted hazard of mortality for patients with reduced ejection fraction was significantly higher than that of 
patients with preserved ejection fraction (hazard ratio: 1.202, 95%CI, 1.004-1.440, p-value=0.0445, Table 
1). However, if systolic blood pressure was treated as a continuous variable in the Cox model, then the 
adjusted hazard rate was not significantly different (hazard ratio: 1.131; 95%CI, 0.943-1.355, p-
value=0.1847). Thus, the final conclusion about the differences in the risk of death between the two heart 
failure groups may depend on how systolic blood pressure was treated in the regression model. Which 
hazard ratio should we report? 
 
 
 
Table 1. Adjusted hazard ratio of 1-Year mortality in heart failure patients with reduced ejection 
fraction versus preserved ejection fraction 
 

Adjusted Confounder 
Hazard Ratio  

(95% Confidence 
Interval) 

P-value 

Adjusted for dichotomized systolic blood pressure  
(>120 versus <=120 mmHg) 

1.202  
(1.004-1.440) 0.0445 

Adjusted for dichotomized systolic blood pressure  
(>140 versus <=140 mmHg) 

1.173  
(0.979-1.405) 0.0830 

Adjusted for systolic blood pressure, age as continuous scale 1.131  
(0.943-1.355) 0.1847 

Adjusted for dichotomized age (>70 versus <=70 years old) 1.086  
(0.907-1.301) 0.3702 

 
 
 
LINEARITY ASSUMPTION TEST FOR CONTINUOUS PREDICTORS: RESTRICTED CUBIC SPLINES 
 
To address this problem, we tested the linearity assumption of the relationship between systolic blood 
pressure and the log-hazard of mortality. The linear relationship was assessed by the use of restricted 
cubic splines (Harrell 2001). A Wald chi-square test showed there was a linear relationship between 
systolic blood pressure and the log-hazard of mortality (Wald Chi-square=5.6547, p=0.1297, Figure 1). 
Therefore, we reported the hazard ratio 1.131 in our NEJM paper (Bhatia et al. 2006, Table 1), stating 
that the survival of patients with heart failure with preserved ejection fraction was similar to that of patients 
with reduced ejection fraction. 
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Figure 1. Functional relationship (and 95% pointwise confidence band) between systolic blood 
pressure and the hazard ratios of 1-year mortality in heart failure patients, estimated by a 
restricted cubic spline function with 5 knots at 120, 130, 150, 170 and 210 mmHg 
 
 
 
SAS MACRO: %RCS 
 
Restricted Cubic Splines can be done easily using Heizel and Kaider’s SAS macro, %RCS (Heinzl and 
Kaider 1997). Visit www.meduniwien.ac.at/msi/biometrie/programme/Rcs.htm (accessed on January 23, 
2009) to download the macro and its manual. 
 
Before running the %RCS, we selected 5 knots with fixed percentiles (Harrell 2001). The following SAS 
program shows how to create a macro variable (&SBP) for the five knots of systolic blood pressure. 
 
 proc univariate data=chf; 

  var SysBP; 
  output out=BP pctlpts=5 27.5 50 72.5 95 pctlpre=bp; 
run; 
 
proc transpose data=BP out=BP; 
run; 
 
proc sql; 
  select col1 into: SBP separated by " " 
  from BP; 
run; 
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We then called %RCS like this. 
 

%include "c:/SASmacros/rcs.sas"; 
 
%rcs( 
title=%str(restricted cubic splines: entire cohort), 
data=CHF, 
dirdata=%str(C:/SASData/CHF), 
program=%str(C:/SugiPaper/sugi_paper_rcs.sas), 
time=survival_1yr, 
status=mortality_1yr, 
cov1=SysBP, what1=0, knots1=&SBP, 
graph=both, 
timeunit=mmHg 
); 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Running this macro will generate another SAS program, called sugi_paper_rcs.sas. Its first part is for the 
linearity assumption test.  
 

TITLE ' restricted cubic splines: entire cohort ';  
  
PROC PHREG DATA=CHF COVOUT OUTEST=__RCS;  
 MODEL survival_1yr*mortality_1yr(0) =  SysBP  __1_1  __1_2  __1_3  /RL;  
  
 ********** spline modelling of fixed covariate SysBP;  
 ********** with 5 knots located at;  
 ********** 102 130 150 170 210;  
 __1_1=((SysBP-102)**3)*(SysBP>102)  
     -((SysBP-170)**3)*(SysBP>170)  
     *(210-102)/(210-170)  
     +((SysBP-210)**3)*(SysBP>210)  
     *(170-102)/(210-170);  
 __1_2=((SysBP-130)**3)*(SysBP>130)  
     -((SysBP-170)**3)*(SysBP>170)  
     *(210-130)/(210-170)  
     +((SysBP-210)**3)*(SysBP>210)  
     *(170-130)/(210-170);  
 __1_3=((SysBP-150)**3)*(SysBP>150)  
     -((SysBP-170)**3)*(SysBP>170)  
     *(210-150)/(210-170)  
     +((SysBP-210)**3)*(SysBP>210)  
     *(170-150)/(210-170);  
  
 *--------- Testing variable: vs_sysbp ---------;  
 EFFECT1: TEST  SysBP, __1_1, __1_2, __1_3; 
 NONLIN1: TEST  __1_1, __1_2, __1_3; 
 RUN;  
*==================== End of PROC PHREG ====================; 
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The following SAS output shows linearity between systolic blood pressure and 1-year mortality. 
 
 The PHREG Procedure 

  
Analysis of Maximum Likelihood Estimates 
 
                 Parameter      Standard 
Variable  DF      Estimate         Error    Chi-Square    Pr > ChiSq 
 
VS_SYSBP   1      -0.01409       0.00464        9.2041        0.0024 
__1_1      1    -1.2346E-6    3.16071E-6        0.1526        0.6961 
__1_2      1     0.0000108     0.0000144        0.5567        0.4556 
__1_3      1    -0.0000193     0.0000222        0.7583        0.3839 
 
                  Analysis of Maximum Likelihood Estimates 
 
            Hazard   95% Hazard Ratio 
Variable     Ratio   Confidence Limits  Variable Label 
 
VS_SYSBP     0.986     0.977     0.995  Systolic blood pressure on admission 
__1_1        1.000     1.000     1.000 
__1_2        1.000     1.000     1.000 
__1_3        1.000     1.000     1.000 
 
 
     Linear Hypotheses Testing Results 
 
                  Wald 
 Label      Chi-Square      DF    Pr > ChiSq 
 
 EFFECT1       72.1239       4        <.0001 
 NONLIN1        5.6547       3        0.1297 
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Run the second part of sugi_paper_rcs.sas is to draw the graph of relative hazard ratio function (see 
Figure 1). 
 

*-------------------- Graph for SysBP --------------------; 
PROC IML;  
 NPOINTS=101;   * Number of points to build the graphic; 
 LOWEREND=102;     *Smallest value for X-axis;  
 UPPEREND=210;     *Largest value for X-axis;  
 REF=(102+210)/2;     *Reference value for X-axis;  
 X=T(DO(LOWEREND,UPPEREND,(UPPEREND-LOWEREND)/(NPOINTS-1)));  
 S1=((X-102)##3)#(X>102)  
     -((X-170)##3)#(X>170)  
     #(210-102)/(210-170)  
     +((X-210)##3)#(X>210)  
     #(170-102)/(210-170)  
     -((REF-102)##3)#(REF>102)  
     +((REF-170)##3)#(REF>170)#(210-102)/(210-170)  
     -((REF-210)##3)#(REF>210)#(170-102)/(210-170);  
 S2=((X-130)##3)#(X>130)  
     -((X-170)##3)#(X>170)  
     #(210-130)/(210-170)  
     +((X-210)##3)#(X>210)  
     #(170-130)/(210-170)  
     -((REF-130)##3)#(REF>130)  
     +((REF-170)##3)#(REF>170)#(210-130)/(210-170)  
     -((REF-210)##3)#(REF>210)#(170-130)/(210-170);  
 S3=((X-150)##3)#(X>150)  
     -((X-170)##3)#(X>170)  
     #(210-150)/(210-170)  
     +((X-210)##3)#(X>210)  
     #(170-150)/(210-170)  
     -((REF-150)##3)#(REF>150)  
     +((REF-170)##3)#(REF>170)#(210-150)/(210-170)  
     -((REF-210)##3)#(REF>210)#(170-150)/(210-170);  
 XMAT=(X-REF)||S1||S2||S3; 
 HV={ SysBP __1_1 __1_2 __1_3 };  
 USE __RCS;  READ ALL VAR HV INTO C;  
 READ ALL VAR { _NAME_ } INTO HC;  CLOSE __RCS;  
 B=C[1,]` ;  HC=REPEAT(HC,1,NCOL(HV));  
 HV=REPEAT(HV,NROW(HC),1);  
 HV=(upcase(HC)=upcase(HV))[,+];  
 HV=LOC(HV#(1:NROW(C))`);  C=C[HV,];  
 F=XMAT*B; FU=XMAT*C*XMAT`; FREE XMAT; 
 FU=SQRT(VECDIAG(FU));  FO=F+1.96*FU;  FU=F-1.96*FU;  
 Z=J(NROW(F),1,1)//J(NROW(F),1,2)//J(NROW(F),1,3);  
 F=F//FO//FU; FE=EXP(F);  X=REPEAT(X,3,1);  
 CREATE __RCS1 VAR { F FE Z X };  APPEND;  CLOSE __RCS1;  
 QUIT;  
  
 SYMBOL1 C=RED  L=1 I=JOIN WIDTH=5;  
 SYMBOL2 C=BLUE L=2 I=JOIN WIDTH=5;  
 SYMBOL3 C=BLUE L=2 I=JOIN WIDTH=5;  
  
PROC GPLOT DATA=__RCS1;  
 PLOT FE*X=Z / VREF=1 LV=3 NOLEGEND;  
LABEL FE=HAZARD RATIO;  
RUN;  
QUIT; 
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EXTENSIONS  
 
The decision of whether or not to dichotomize a continuous predictor variable does not always lead to 
differences in the significance of a given risk factor. Similar to systolic blood pressure, the confounding 
variable age was also linearly associated with the log-hazard of mortality in the present case study (Wald 
Chi-square=1.2807, p=0.7337). However, the 95% confidence interval of the hazard ratio after adjusting 
for the dichotomized age variable (cut-off at 70 years old) still crossed 1 (Table 1).  
 
In addition, if the systolic blood pressure was dichotomized at 140 mmHg instead of 120 mmHg, the 
hazard ratio turned out to be not significantly different from 1 (Table 1), suggesting that the results of an 
analysis may vary depending on the cutoff points that are used, and the use of different cutpoints may 
make comparisons across studies extremely difficult (Buettner et al. 1997; Royston et al. 2006). The 
simplicity achieved by dichotomization is gained at a cost; dichotomization may create rather than avoid 
problems (Royston et al. 2006). See Altman and Royston (2006) for a brief review on the cost of 
dichotomizing a continuous variable. 
 
 
CONCLUSIONS 
 
The present case-based study suggested that when a continuous independent confounding variable is 
dichotomized prior to entry in a multivariate regression analysis, the conclusion about the effect of a risk 
factor on the outcome might be biased, especially when the confounder had a linear relationship to the 
log-odds of binary outcome or the hazard ratios of time-to-event binary outcome. Investigators are 
encouraged to first test the linearity of the relationship between the confounder and the binary outcome 
prior to dichotomization. If there is a linear relationship, treat the confounder as a continuous variable. 
Failure to do so could result in an inflated assessment of the statistical significance of the association 
between one of the variables and the outcome of interest. 
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