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ABSTRACT 
  
This paper presents practical guidance on three common survey data analysis techniques: repeated replication methods 
for variance estimation, subpopulation analyses, and techniques for handling missing data. A number of new features in 
the SAS® 9.2 survey procedures are demonstrated: Jackknife and Balanced Repeated Replication methods for variance 
estimation, subpopulation analysis with use of the DOMAIN option and the subsetting approach and the use of the 
NOMCAR (not missing completely at random) and multiple imputation options for handling missing data. Descriptive 
statistics as well as logistic regression are demonstrated. The analytic techniques presented can be used on any 
operating system and are intended for an intermediate level audience.  
 
INTRODUCTION  
 
Three important features of the SAS® v9.2 SURVEY analysis procedures are demonstrated: Repeated Replication 
methods, use of the DOMAIN statement for subpopulation analysis, and use of the NOMCAR statement for handling 
missing data.  The Jackknife Repeated Replication and Balanced Repeated Replication methods are compared to the 
default Taylor Series linearization method for variance estimation.  Use of the DOMAIN statement for correct subgroup 
analysis of survey data is compared to a “BY” group or sub-setting approach.  Finally, the use of the NOMCAR option for 
including missing data as a domain subgroup in survey data analysis is demonstrated and subsequently compared to a 
multiple imputation approach with PROC MI and PROC MIANALYZE.   
 
                                            
BACKGROUND INFORMATION ON COMPLEX SAMPLE SURVEYS AND DATA SETS 
 
Complex surveys are comprised of data derived from sample designs that adjust for non-response and differing 
probabilities of selection.  Complex samples differ from simple random samples (SRS) in that SRS designs assume 
independence of observations while complex samples do not.   Most SAS® procedures assume a simple random sample 
and under-estimate variances when analyzing data from complex samples.  Therefore, analysis of data from complex 
surveys should include methods of variance estimation that account for these sample design features (Kish, 1965 and 
Rust, 1985). 
 
The analyses in this paper use data from the National Comorbidity Survey Replication, a nationally representative sample 
based on a stratified, multi-stage area probability sample of the United States population (Kessler et al, 2004 and 
Heeringa, 1996) and the NHANES 1999-2000 data set, with a focus on the medical examination data.  In the NHANES 
data set, replicate weights constructed by the project staff are provided instead of strata and cluster variables. For each 
data set, weights that adjust for non-response and differing probabilities of selection are routinely used in analyses.  Both 
data sets also include variables that allow analysts to incorporate the complex survey design into variance estimation 
computations: the stratum and SECU (Sampling Error Computing Unit) for the NCS-R data and replicate weights in the 
NHANES data.   
 
Many projects elect to publish replicate weights rather than stratum and/or cluster variables.  The rationale is often due to 
concerns about protecting respondent confidentiality.  For the data analyst, however, providing only replicate weights 
places a limitation in the choice of appropriate variance estimation methods in that a replication approach must be 
employed.  Although some users had programmed a JRR or BRR approach via SAS®  MACRO language (Berglund, 
2001), with the advent of Jackknife Repeated Replication and Balanced Repeated Replication options in SAS®  v9.2, the 
analyst can easily perform both any of the linearization or repeated replication methods directly in the SURVEY 
procedures of SAS®  v9.2.  
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VARIANCE ESTIMATION METHODS AND COMPLEX SAMPLE DESIGN VARIABLES 
  
THE TAYLOR SERIES APPROACH 
 
The Taylor Series Linearization approach (Rust, 1985) is based on a method that derives a linear approximation of 
variance estimates that are in turn used to develop corrected standard errors and confidence intervals for statistics of 
interest.  A major advantage of the Taylor Series method is that it is very efficient computationally and is available for use 
with most important analyses of survey data including descriptive estimation of population statistics as well as linear and 
logistic regression.   The SAS® SURVEYMEANS, SURVEYFREQ, SURVEYREG and SURVEYLOGISTIC procedures 
all use the Taylor Series method as the default.    
 
RESAMPLING APPROACHES 

 
Resampling approaches follow a specified method of selecting observations defined as probability sub-samples or 
replicates from which variance estimates are derived.  Because the formulation of the probability samples is based upon 
the complex design, unbiased, design-corrected variance estimates can be derived.   
 
Commonly used methods of resampling include Balanced Repeated Replication (BRR) and Jackknife Repeated 
Replication (JRR), (Wolter, 1985).   Balanced Repeated Replication is a method that reduces the number of sub-samples 
needed by dividing each stratum into halves.  Once the statistic of interest is derived from the half samples, the design 
corrected variance estimations can be developed through use of the usual formulas for variance.  The Jackknife 
Repeated Replication method is similar to the BRR in that it performs replicate calculations of interest after developing 
replicates by deletion of a small and different portion of the total sample for each of the sample subsets.   The repeated 
replication approaches are preferred for some non-linear statistics and in situations where the coefficient of variation 
exceeds 0.2 from the Taylor Series linearization method (Kish, 1965).  Additional advantages of repeated replication 
methods are the simplicity of the process and applicability to a wide range of statistics.  
 
 
COMPARISON OF LINEARIZATION AND REPEATED REPLICATION APPROACHES WITH STRATA 
AND CLUSTER VARIABLES  
 
This section compares the means and standard errors for lifetime major depressive episode derived from three variance 
estimation methods: linearization (Taylor Series), JRR and BRR.  The data set used is the NCS-R and weights, strata, 
and SECU (Sampling Error Computing Unit) variables are employed to account for the complex sample design.  Use of 
the VARMETHOD option in the procedure statement allows specification of the variance estimation method desired. 
 
SAS® CODE AND RESULTS 
 
The following code illustrates how to use the VARMETHOD option in the procedure statement of PROC 
SURVEYMEANS.  The default is the Taylor Series linearization method with the JRR and BRR as additional available 
options.   The first set of statements perform a default Taylor Series variance estimation method and use the strata and 
cluster variables called “str” and “secu” along with the weight (“finalp1wt”) to account for the complex sample design.  
The use of the optional “cv” statistic requests the coefficient of variation from the Taylor Series method.   

 
proc surveymeans data=ncsr mean stderr cv; 
strata str; 
cluster secu; 
weight finalp1wt; 
var dsm_mde; 
run; 

 
The next set of statements use the “VARMETHOD=JACKKNIFE” option to specify the JRR method.  Replicate weights 
are automatically generated with the number of replicates equal to the number of PSU’s or 84 in this data set.   
 

proc surveymeans data=ncsr varmethod=jackknife; 
strata str; 
cluster secu; 
weight finalp1wt; 
var dsm_mde;  
run ; 
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The following code uses the “VARMETHOD=BRR” for the Balanced Repeated Replication method and also requests an 
optional printout of the Hadamard matrix generated for  the BRR.  
    

proc surveymeans data=ncsr varmethod=brr (printh); 
strata str; 
cluster secu; 
weight finalp1wt; 
var dsm_mde; 
run; 

  
 

Table 1.1 Statistics  

Variable Label Mean 
Std Error 

of Mean 
Coeff of 

Variation 

DSM_MDE DSM-IV Major Depressive Episode(Lifetime) 
(Method=Taylor Series)  

0.191711 0.004877 0.025438 

 DSM-IV Major Depressive Episode(Lifetime) 
(Method= JRR) 
DSM-IV Major Depressive Episode(Lifetime) 
(Method= BRR) 
 

0.191711 
 

0.191711 
 

0.004879 
 

 0.004952 

NA 
 

NA 

  

 
Source: National Comorbidity Survey Replication, coefficient of variation for the Taylor Series = 0.025438.  
 

Table 1.2 Variance Estimation 

Method  

Number of Replicates 
BRR 
Number of Replicates JRR 

 
44 
84 

 
Analysis of Table 1.1 shows very little difference in the SE’s between the three variance estimation methods and as 
expected, the exact same weighted point estimates of the mean of MDE (19.2%).  The coefficient of variation (CV) for the 
Taylor Series method is well below .2, implying that any of the three methods are appropriate for a means analysis of 
MDE.   Table 1.2 details the number of replicates produced by the  JRR method with 84 replicates (42*2=84) and BRR 
with 44 replicates  (42 +2 =44,  BRR requires a multiple of 4 for the Hadamard matrix).  See SAS®/STAT documentation 
on details of Balanced Repeated Replication and Hadamard matrices. 
 
REPEATED REPLICATION WITH REPLICATE WEIGHTS   
 
This section demonstrates the use of replicate weights for a means analysis of diastolic blood pressure.  The data is from 
the interview and medical examination portions of the NHANES 1999-2000 survey.  Only one of the three variance 
estimation methods, JRR is demonstrated here as the NHANES replicate weights are specifically labeled as Jackknife 
Repeated Replication weights.  The replicate weights are the only design related variables published in this particular 
data set and as explained previously, repeated replication methods are the appropriate choice for a data set with solely 
replicate weights.   The NHANES documentation explains more on how these variables were constructed and how they 
should be used in analysis (http://www.cdc.gov/nchs).   
 
SAS® CODE AND RESULTS 
 
The following code illustrates how to use the REPWEIGHTS statement in PROC SURVEYMEANS along with the 
VARMETHOD=JACKKNIFE option in the procedure statement.       

 
proc surveymeans data=nhanes9900 varmethod=jackknife; 
repweights wtmrep01-wtmrep52; 
weight wtmec2yr; 
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var bpxdi1; 
run; 
 

Table 2.1 Variance Estimation  

Method Jackknife 

Number of Replicates 52 

Replicate Weights Data Set DEMO_BPX_NHANES9900 
 

Table 2.2 Statistics 

Variable Label N Mean 
Std Error 

of Mean 95% CL for Mean 

BPXDI1 Diastolic: Blood pres  (1st rdg) mm Hg 6457 70.233553 0.518031 69.1940482 71.2730571 
 
           Source: NHANES 1999-2000 data  
 
Tables 2.1 and 2.2 present results for the JRR analysis using the 52 replicate weights, (wtmrep01-wtmrep52).  The mean 
for diastolic blood pressure is 70.23 with a standard error of .518.  The 95% confidence limits are calculated using the  
corrected standard error with the usual formula for confidence limits around a mean (see SAS® documentation for details 
and formulae).   

 
SUBPOPULATION ANALYSIS AND THE DOMAIN STATEMENT   
 
Analysis of subpopulations is a common analytic practice. Confusion about how to correctly analyze subpopulations from 
survey data persists however, but with the addition of a DOMAIN statement in PROC SURVEYREG and PROC 
SURVEYLOGISTIC (new in SAS® 9.2), the analyst can correctly perform DOMAIN analyses in each of the main survey 
analysis SAS® procedures: SURVEYMEANS, SURVEYFREQ, SURVEYREG, and SURVEYLOGISTIC.    
 
The temptation to merely subset the data to the subpopulation of interest through use of a “BY or WHERE” statement 
and then analyze the subgroup of interest is seemingly sensible yet statistically incorrect.  One mistake made with this 
approach can be potential problems with strata with “singleton” clusters due to the sub-setting step rather than including 
the entire sample in the analysis.  A second mistake is that a “BY” group or conditional approach analyzes only a part of 
the original sample and ignores the variability of the domain sample sizes across the strata of the sample design 
(Cochran, 1977).  The result of these issues is generally under-estimated variances.   
 
In summary, a subpopulation analysis should use the entire sample in the analysis and also take the sample size of the 
created domain into account.  This is important because created domains are often not related to the original sample 
design.  Use of the “domain” statement in the SAS® Survey procedures ensures that the correct use of the entire data 
set occurs and separate analyses per domain are performed while accounting for the random variability introduced by 
domain sample sizes unrelated to sample design.  

 
SAS® CODE AND RESULTS 
 
The following example compares a subpopulation analysis that uses a DOMAIN statement versus a WHERE or subset 
approach.  As previously stated, the use of the DOMAIN statement produces statistically correct standard errors for 
analyses for subpopulations.  Consider a domain defined as those people with each of the following disorders: General 
Anxiety Disorder, Major Depressive Episode, and Drug Abuse.  This domain would then be analyzed and compared to all 
other people in the data set.  The selected domain group is defined by having each of three disorders and the disorder 
variables of interest are not included in the original sample design of the data set, (Kessler et al, 2004).   The analysis is 
first run with a DOMAIN statement to perform a subpopulation analysis in each domain while including the entire data set 
in the analysis and secondly, with a “where” statement that effectively subsets the data prior to analysis.      
 
The following code performs a means analysis of lifetime alcohol abuse and dependence with a DOMAIN statement for 
subpopulation analysis of those with lifetime General Anxiety Disorder, Major Depressive Episode, and Drug Abuse 
(n=88).  An examination of a cross-tabulation (not shown) of the strata*cluster variables indicates that only 33 strata with 
46 clusters exist in the subpopulation yet due to the use of the DOMAIN statement, all 42 strata and 84 clusters are still 
used in the analysis.   
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proc surveymeans data=ncsr; 
strata str; 
cluster secu; 
weight finalp2wt; 
domain gad_mde_dra; 
var dsm_ala dsm_ald; 
run; 
 

   

Table 3.1 Data Summary 

Number of Strata 42 

Number of Clusters 84 

Number of Observations 9836 

Number of Observations Used 5692 

Number of Obs with Nonpositive Weights 4144 

Sum of Weights 5692.00049 
 
  

Table 3.2 Domain Analysis 

gad_mde_dra Variable Label Mean 
Std Error 

of Mean 

0 DSM_ALA DSM-IV Alcohol Abuse(Lifetime) 0.125227 0.005485 

DSM_ALD DSM-IV Alcohol Dependence(Lifetime) 0.049645 0.003283 

1 DSM_ALA DSM-IV Alcohol Abuse(Lifetime) 0.836008 0.039781 

DSM_ALD DSM-IV Alcohol Dependence(Lifetime) 0.513451 0.051268 
      
Table 3.1 details the number of observations, strata and clusters used in the analysis.  Since this is a DOMAIN analysis, 
the full strata and cluster array is used.  Table 3.2 shows that 83.6% (4.0%) of those with GAD, MDE, and Drug Abuse 
have Alcohol Abuse and 51.3% (5.1%) are diagnosed with Alcohol Dependence.   
 
In the second demonstration of a subpopulation analysis, the data set is subset through use of a “where” statement .  
This approach reduces the number of records included in the analysis to n=88 with only 33 stratum and 46 clusters 
present in the subpopulation analyzed.   
            

proc surveymeans data=ncsr mean stderr; 
strata str; 
cluster secu; 
weight finalp2wt; 
where gad_mde_dra=1; 
var dsm_ala dsm_ald; 
run; 
    
 

Table 3.3 Data Summary 

Number of Strata 33 

Number of Clusters 46 

Number of Observations 88 

Sum of Weights 54.2420583 
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Table 3.4 Statistics 

Variable Label Mean 
Std Error 

of Mean 

DSM_ALA DSM-IV Alcohol Abuse(Lifetime) 0.836008 0.032639 

DSM_ALD DSM-IV Alcohol Dependence(Lifetime) 0.513451 0.036225 
 
Analysis of the output from the two approaches (Tables 3.1-3.4) shows a difference in the number of strata and clusters 
used: 42 strata and 84 clusters in the DOMAIN approach but only 33 strata and 46 clusters with the “where” approach.  
This is an issue because the second approach excludes those stratum/clusters that do not happen to exist (“Sampling 
Zeros”) in the subset of 88 people with GAD, MDE and Drug Abuse (DSM-IV definitions), though they theoretically could.   
 
Note that this exclusion also has an impact on the size of the standard errors for the second approach in that the SE’s 
are smaller than those from the DOMAIN analysis.  For example, the SE for Alcohol Abuse is .0397 for the DOMAIN 
method and .0326 for the “where” group method and for Alcohol Dependence the DOMAIN method SE is .0513 and 
.0362 for the “BY” group method.  This illustrates how use of a subset rather than the full data set with a DOMAIN 
analysis incorrectly underestimates the variance through the exclusion of strata/clusters.    
 
The concepts presented in this section would also apply to other types of analysis procedures such as frequency tables, 
quantiles, and regression.  See Appendix A for an example of a domain analysis using PROC SURVEYLOGISTIC. In 
summary, for subgroup analyses use of the DOMAIN statement provides a statistically appropriate approach and is 
available in each of the SAS® SURVEY analysis procedures in version 9.2.   
 
 
MISSING DATA, PROC MI/MIANALYZE AND THE NOMCAR OPTION 
 
Analysts have various options for handling missing data in survey data sets.  The first and default in nearly all SAS®  
standard and survey procedures is to exclude missing data from the analysis, yet this is clearly incomplete and can lead 
to erroneous conclusions.    
 
 A second and new feature included in SAS® v9.2 is the use of the NOMCAR (Not Missing Completely at Random) 
option.  The NOMCAR feature includes and analyzes missing data cases as a separate domain rather than simply 
excluding these cases from the analysis.  This assumption is built upon the notion that often there is reason to believe 
that the missing data is not completely random.  Or, that the missing data differs from the full data on the statistic of 
interest and inclusion of the missing data as a separate domain will provide valuable information that would otherwise be 
excluded.  The advantage of this approach is that the entire data set is still analyzed and the complex sample is fully 
accounted for.  By including the missing data as a separate domain and not assuming the data are missing completely at 
random, the analyst can examine the impact of the missing data as a group and the effect on the variance estimates.   
 
A third option is to use multiple imputation to impute missing data prior to analysis, analyze imputed data sets using 
standard or survey SAS®  procedures, and then use tools for correctly analyzing imputed data sets.  See Rubin, (1987) 
or Shafer, (1999) for more information.  SAS® offers PROC MI for multiple imputation and PROC MIANALYZE for 
subsequent analysis of the multiply imputed data sets (see SAS® documentation for details on these procedures).   
PROC MIANALYZE is fully capable of analyzing point estimates and standard errors produced by SAS® survey 
procedures and will therefore account for both the variability introduced by multiple imputation as well as the complex 
sample design features.  
 
The next section of the paper demonstrates and compares three approaches for handling missing data in the NCS-R 
dataset via a means analysis for respondent income. The approaches considered are 1. exclusion of missing data 
(default in PROC MEANS and PROC SURVEYMEANS), 2. use of the NOMCAR (not missing completely at random) 
where missing data is analyzed as a separate domain in PROC SURVEYMEANS, and finally 3. multiple imputation of 
missing data using PROC MI and subsequent analysis of imputed data sets using PROC SURVEYMEANS and PROC 
MIANALYZE.  The final approach combines multiple imputation of missing data, analysis of the imputed data using 
PROC SURVEYMEANS to account for the complex sample of the NCS-R data, and use of PROC MIANALYZE to 
analyze the imputed and complex sample adjusted variance.  A comparison of the variances among the three 
approaches will illustrate how the way missing data is handled can affect variances. 
 
 
SAS® CODE AND RESULTS 
EXAMPLE 1A - SIMPLE RANDOM SAMPLE MEANS ANALYSIS WITH MISSING DATA EXCLUDED 
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This code uses a simple random sample variance estimation approach but is weighted using the “finalp2wt” in the data 
set.  The personal income variable “inc_rsp” is analyzed and use of the nmiss statistic shows that there are 857 cases 
with missing data on the respondent income variable.  This is from an overall n of 5692 (from part 2 of the survey) and 
the missing data is limited to stratum 35-42 and SECU=1.   The missing data in this example was simulated to 
demonstrate analysis of data not missing completely at random (NOMCAR).   
                

proc means data=ncsr nmiss sum mean std stderr min max; 
var inc_rsp; 
weight finalp2wt; 
run; 

 
Table 4.1  

Analysis Variable : Respondent Income  

N 
Miss Sum Mean Std Dev Std Error Minimum Maximum 

857 114812102 24837.02 26886.18 395.4440844 0 125000.00 
 
Table 4.1 shows the mean for respondent income of $24837.02 with a standard error of 395.44.  This standard error is 
based on a simple random sample assumption but is weighted.  Given that this data is from a survey data set, the 
standard error is under-estimated.  Also, the nmiss column shows 857 cases are excluded from the analysis, due to 
missing data on respondent income. 
 

 
EXAMPLE 1B - PROC SURVEYMEANS ANALYSIS WITH MISSING DATA EXCLUDED 
 
Example 1b builds on Example 1a in that it uses a correct approach for a means analysis of survey data but still excludes 
missing data on the respondent income variable (default setting in PROC SURVEYMEANS).  Use of the weight and 
complex sample design variables ensures correct standard errors but still excludes missing data from the analysis.   If 
the missing data is not completely missing at random, there is reason to believe that if the missing data is included in the 
analysis, it will affect the variance estimates.   

     
proc surveymeans nmiss mean stderr data=ncsr; 
strata str; 
cluster secu; 
weight finalp2wt; 
var inc_rsp; 
run; 
 

Table 4.2 Data Summary 

Number of Strata 42 

Number of Clusters 84 

Number of Observations 9836 

Number of Observations Used 5692 

Number of Obs with Nonpositive Weights 4144 

Sum of Weights 5692.00 
 

Table 4.3 Statistics 

Variable N Miss Mean 
Std Error of 

Mean 

inc_rsp 857 24837 783.534079 
 
Tables 4.2 and 4.3 present the results of the PROC SURVEYMEANS analysis with missing data again excluded. Table 
4.2 details the strata and clusters in the sample as well as the number of observations and sum of weights.   Table 4.3 
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shows the Statistics from the means analysis of respondent income.  Note that the mean for respondent income remains 
the same (compared to Table 4.1)  but the standard error now includes the effect of weighting and the design 
stratification and clustering and thus, is much higher than the SRS standard error. 
 
EXAMPLE 2 - PROC SURVEYMEANS ANALYSIS WITH THE NOMCAR OPTION  
 
The second example extends Examples 1a and 1b through use of the NOMCAR option.  This option includes the missing 
data as a separate domain and analyzes the missing data along with the non-missing data.  The implication of this 
approach is that there is a meaningful difference in respondent income between the full and missing data cases and that 
the missing is not completely at random.  In this situation, the missing data is restricted to stratum 35-42 and SECU=1 so 
that the missing at random assumption is violated.    
 
The code is essentially the same as Example 1b with the exception of the NOMCAR option on the procedure statement.  
This specifies that the missing data be analyzed as a separate domain.     

 
proc surveymeans data=ncsr nomcar nmiss mean stderr; 
strata str; 
cluster secu; 
weight finalp2wt; 
var inc_rsp; 
run; 
 
 

Table 4.4 Data Summary 

Number of Strata 42 

Number of Clusters 84 

Number of Observations 9836 

Number of Observations Used 5692 

Number of Obs with Nonpositive Weights 4144 

Sum of Weights 5692.00 
 

Table 4.5 Variance Estimation 

Method Taylor Series 

Missing Values Included (NOMCAR) 
 

Table 4.6 Statistics 

Variable N Miss Mean 
Std Error of 

Mean 

inc_rsp 857 24837 910.410784 
 
Tables 4.4-4.6 show that the inclusion of the missing data as a separate domain increases the standard errors 
substantially from 395.44 (SRS) to 783.53 (Taylor Series with missing data excluded) to 910.41 (Taylor Series with the 
NOMCAR option).  This implies that the exclusion of the missing data would incorrectly reduce variance by excluding the 
missing strata and SECU’s with missing data on respondent income.  Note the message displayed in Table 4.5 
“Included(NOMCAR)”; indicating the use of the NOMCAR option of PROC SURVEYMEANS.   
 
EXAMPLE 3 - MULTIPLE IMPUTATION AND ANALYSIS WITH PROC MI, PROC SURVEYMEANS, AND 
PROC MIANALYZE  
 
The final example compares the previous results (Examples 1a,1b, and 2) with output from multiple imputation and 
subsequent analysis of imputed data sets using PROC SURVEYMEANS and PROC MIANALYZE.  The advantage of 
this approach is that missing data is imputed using a regression based approach prior to analysis in PROC 
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SURVEYMEANS and PROC MIANALYZE. Imputation eliminates the need to include missing data as a separate domain 
and addresses imputation through use of a statistically valid approach (Rubin, 1987). 
 
Multiple imputation and analysis of imputed data generally follow three distinct steps when implemented in SAS®:  1. 
imputation of missing data using PROC MI, 2. analysis of imputed data sets using standard SAS procedures, and 3. 
analysis of the point estimates and standard errors from step 2 using PROC MIANALYZE.   
 
This demonstration illustrates how to code and implement these steps: the use of PROC MI for the imputation step, 
analysis of the 5 imputed data sets with PROC SURVEYMEANS, and finally, use of PROC MIANALYZE for analysis of 
the SURVEYMEANS point estimates and standard errors.  The output from last step provides a comparison to the other 
methods of handling missing data presented in examples 1a, 1b, and 2.  Given three differing methods of handling 
missing data, users can examine the impact on the variance from each approach. For users unfamiliar with multiple 
imputation, see SAS® documentation on PROC MI/MIANALYZE and publications such as Rubin, 1987 and Schafer, 
1999. 
 
SAS® CODE AND RESULTS 
 
Step1:  Use PROC MI with number of imputations=0 (nimpute=0) to examine missing data patterns.  The type of missing 
data pattern is important for understanding where missing data occurs in the data set as well as informed specification of 
an appropriate imputation method.  PROC MI output is shown in Table 4.7 and indicates 857 missing data on respondent 
income and a monotone missing data pattern.   
 

proc mi data=ncsr nimpute=0; 
run; 
 

Table 4.7 Missing Data Patterns 

Group SEXF Age inc_rsp Freq Percent 

Group Means 

Age inc_rsp 

1 X X X 4835 84.94 43.174354 25470 

2 X X . 857 15.06 44.527421 . 
 

 
Step 2:  Use PROC MI to multiply impute missing data (monotone pattern) on respondent income using a regression 
method for continuous variables (monotone method=reg;). Note that the imputation is unweighted and “sexf” is declared 
a class variable (“class sexf;”) and sexf and age are full data and therefore, donor variables that contribute to the 
imputation of respondent income.  Also, the order of the variables in the var statement is important since variables are 
imputed from left to right.  The statement  “Out=outmi1” creates an output data set called  “outmi1” and this data set 
contains 5 imputed data sets of n=5692 each “(nimpute=5)”.  A variable called _imputation_ is generated and retained for 
identification of each imputed data set.  In this case, _imputation_ has values from 1 to 5.  
Output is shown in Tables 4.8 and 4.9.  Note that the mean respondent income is $25,464 with a standard error of 
$375.60 (based on analysis of the 5 imputed data sets).  This standard error accounts for the variability introduced by 
imputation but not for the complex sample design. It is also unweighted. 

 
proc mi nimpute=5 data=ncsr out=outmi; 
class sexf;  
monotone method=reg; 
var sexf age inc_rsp; 
run; 
 

Table 4.8 Model Information 

Data Set WORK.FOUR 

Method Monotone 

Number of Imputations 5 

Seed for random number generator 659887001 
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Table 4.9 Parameter Estimates 

Variable Mean Std Error 95% Confidence Limits DF Minimum Maximum Mu0 
t for H0: 

Mean=Mu0 Pr > |t| 

inc_rsp 25464 375.602876 24725.46 26201.70 458.29 25327 25607 0 67.79 <.0001 
 
 

Step 3:  Use PROC SURVEYMEANS to analyze the “outmi1” data set by the variable _imputation_ (automatically 
generated SAS®  variable used to define each imputed file).  A means analysis of the imputed “inc_rsp” variable is 
performed while taking the complex sample into account.  The means and standard errors for each domain (or imputed 
data set) are stored for further analysis in PROC MIANALYZE via “ods output domain=outsummary” statement.  (Output 
shown in Table 4.10). Note that this standard error is now corrected taking the complex sample into account and the 
results are also weighted, hence producing a slightly different mean value for “inc_rsp” ($25,039.00). 

 
ods output domain=outsummary; 
proc surveymeans data=outmi1; 
domain _imputation_; 
var inc_rsp; 
strata str; 
cluster secu; 
weight finalp2wt; 
run; 
ods output close; 
 
 

Table 4.10 Statistics 

Variable N Mean 
Std Error of 

Mean 95% CL for Mean 

inc_rsp 28460 25039 786.893470 23450.5317 26626.5623 
 
 

Step 4:  Use PROC MIANALYZE to analyze the output from Step 3 and account for the variability introduced by the 
imputation step.  Because the standard errors used in Step 4 are derived from PROC SURVEYMEANS, the complex 
sample design variance adjustment is included in the variance produced here.  The data set (data=outsummary) from 
step 3 is used with the “modeleffects mean” and “stderr stderr “ statements, which refer to the mean and standard errors 
from the PROC SURVEYMEANS analysis.  Note that this data set contains 5*5692 or 28460 records due to the 5 
imputed data sets being analyzed together.  Output is shown in Tables 4.11 and 4.12.  

 
 
 
proc mianalyze data=outsummary; 
modeleffects mean; 
stderr stderr; 
run; 

 
  Table 4.11 Variance Information 

Parameter 

Variance 

DF 

Relative 
Increase 

in Variance 

Fraction 
Missing 

Information 
Relative 

Efficiency Between Within Total 

Mean 23731 660362 688840 2340.4 0.043124 0.042160 0.991639 
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Table 4.12 Parameter Estimates  

Parameter Estimate Std Error 
95%  

Confidence Limits DF Minimum Maximum  

Mean 25039 829.963570 23411.01 26666.09 2340.4 24896 25276  

 
Table 4.13 Summary of Four Approaches  

(PROC MEANS, PROC SURVEYMEANS WITHOUT NOMCAR, PROC SURVEYMEANS 
WITH NOMCAR, AND MULTIPLE IMPUTATION APPROACH) 

Variable (Method)  N Miss Mean 
Std Error of 

Mean 

Inc_rsp (Proc Means with Missing Data Excluded) 
Inc_rsp (Proc SurveyMeans without NOMCAR) 
Inc_rsp (Proc SurveyMeans with NOMCAR) 
Inc_rsp (Imputed and Analyzed with Proc MI and 
MIANALYZE) 

857 
857 
857 

None 

24837 
24837 
24837 
25039  

395.444 
783.534 
910.411 
829.964 

 
A side-by-side comparison of the means and standard errors on respondent income (Table 4.13) indicates that the use of 
the NOMCAR and multiple imputation approaches produce the highest and likely the most accurate standard errors 
along with very similar means.  It should be noted that the mean values are slightly different due to the production of 5 
multiply imputed data sets that are then analyzed together, thus producing a mean of $25039 from the imputed files with 
n=28460.  The standard errors for the two methods that either recognize the missing data (NOMCAR) in the estimation of 
standard errors or impute the missing data (PROC MI) are similar and represent the square root of the variance under 
complex sample and in the case of the imputed data analysis, also the variability introduced by the imputation step.  
 
CONCLUSION 
 
The focus of this paper is to provide the survey data analyst with practical guidance on use of a variety of features in the 
SAS® v9.2 survey procedures.  Repeated Replication methods, subpopulation analysis, and techniques for handling 
missing data were discussed and demonstrated using public-use data sets such as NCS-R and NHANES.      
 
 
APPENDIX A 
 

proc surveylogistic data=ncsr; 
strata str; 
cluster secu; 
weight finalp2wt; 
domain gad_mde_dra; 
model dsm_ala (event='1')= sexm; 
run; 
 
proc surveylogistic data=ncsr; 
weight finalp2wt; 
where gad_mde_dra=1; 
model dsm_ala (event='1')= sexm; 
run; 
 

These two PROC SURVEYLOGISTIC code samples illustrate how to use a DOMAIN statement within PROC 
SURVEYLOGISTIC along with design variables “str” and “secu” and the final weight “finalp2wt”.  This is contrasted with a 
“conditional” subpopulation analysis using a WHERE statement to subset the data.  As previously explained, the 
DOMAIN approach provides statistically correct subpopulation analyses. 
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Appendix Table 1.1  
Analysis of Maximum Likelihood Estimates from Domain 

Analysis  

Parameter DF Estimate 
Standard 

Error 
Wald 

Chi-Square Pr > ChiSq 

Intercept 1 0.5785 0.3690 2.4580 0.1169 

SEXM 1 3.1678 0.9020 12.3338 0.0004 
 

Appendix Table 1.2  
Analysis of Maximum Likelihood Estimates from WHERE 

Analysis  

Parameter DF Estimate 
Standard 

Error 
Wald 

Chi-Square Pr > ChiSq 

Intercept 1 0.5785 0.3741 2.3916 0.1220 

SEXM 1 3.1678 0.8257 14.7190 0.0001 
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