
1

Paper 208-2009

Testing Your SAS Code Against Known Data
Sharon Schiro, University of North Carolina, Chapel Hill, NC

ABSTRACT
As SAS® code becomes more complex and is run on large databases, how do we know if our results are correct? It
is easy to assume that, if our code runs, it must be perfect. However, it is important to test SAS code against known
data to ensure that you are getting the results you expect.

This paper will describe a simple mechanism for testing SAS code that can be expanded easily. Methods for
generating the test database can cover quite a range—from the very simple spreadsheet to more complex random-
number generation. These data are then imported into SAS, the code to be tested is run against the sample
database, and the output is compared to expected results. This technique is a simple, but oft-forgotten method of
ensuring that what you see is what you expect.

INTRODUCTION
Good software development practice involves writing a specification for the software, designing software to meet the
specification, implementing the design as code, and testing the code. The development of SAS code to run queries
is often done in a fast-paced, need-it-yesterday environment. In this type of environment, formal specifications and
testing often get left out, which can lead to unexpected results.

Why is testing important? Large databases may contain millions of records. Seemingly small errors in the analysis
code can lead to large differences in the output. Also, since the data sets are large, “truth” is often unknown, so
results are assumed to be correct. This paper provides a simple technique for testing SAS code to ensure that your
code does what you expect it to do.

HOW IS TESTING DONE?
Software is often developed in units. Each unit represents a step in the process of going from point A to point B.
When all units are combined, the input to point A results in the output at point B. When an analysis is complex and
contains many steps, the analysis software may contain many units. Testing of the units independently allows the
source of errors to be more readily identified and fixed. Once each unit is functioning correctly, the units may be
tested in combination.

For each unit and for the software as a whole, the formal software specification contains documentation of the
functional requirements. This functional specification links inputs to software behaviors and outputs. These links
between inputs and outputs provide the basis for testing the software. Each link requires at least one test case to
ensure that the specification is met.

The steps involved in testing include using the specification document to (1) define the units to be tested, (2) identify
the inputs and expected outputs for each unit, and for the application as a whole, and (3) create a database that
contains inputs and expected outputs. The SAS code then is run against the test database (step 4), and (5) the
actual output of the SAS code is compared to the expected output. Each step is described in detail below. The SAS
code example used was developed as part of an injury surveillance project.. The code generates a value for two
fields, intent and manner, based on the value of the ecode field (an indicator of the cause of the injury). Since only
one unit will be tested in this example, step 1 is not described below.

STEP 2: IDENTIFYING INPUTS AND EXPECTED OUTPUTS
The functional specification for the unit to be tested links one input variable (ECode) to two output variables (intent
and manner). A partial listing of the relationships between the input and output variables is defined in the table

PostersSAS Global Forum 2009

2

below. Thus, this table from the functional specification provides the information needed for testing: the inputs,
expected outputs, and the relationships between them.

ECode Manner Intent
E820.0-E820.9 Cut/pierce Unintentional
E956 Cut/pierce Self-inflicted
E966 Cut/pierce Assault
E986 Cut/pierce Undetermined
E830.0-.9, E832.0-.9, E910.0-.9 Drowning Unintentional
E961, E968.0, E968..3, E979.3 Fire/burn Assault

This specification was implemented as a macro in SAS:

%macro Matrix (ilibref=, olibref=, inset=, outset=);
data CauseOfInjury;
set InjuryData;

*Intent;
if 'E800' le substr(ECode,1,4) le 'E869' or 'E880' le substr(ECode,1,4) le 'E929'
then intent = 'Unintentional';

else if 'E950' le substr(ECode,1,4) le 'E959' then intent = 'Self-Inflicted';

else if 'E960' le substr(ECode,1,4) le 'E969' or substr(ECode,1,4) = 'E979' or
ECode = 'E999.1' then intent = 'Assault';

else if 'E980' le substr(ECode,1,4) le 'E989' then intent ='Undetermined';

else if 'E970' le substr(ECode,1,4) le 'E978' or 'E990' le substr(ECode,1,4) le
'E998' or ECode = 'E999.0' then intent = 'Other';

else if 'E870' le substr(ECode,1,4) le 'E879' or 'E930' le substr(ECode,1,4) le
'E949' then intent = 'Other';

*Manner;
if substr(ECode,1,4) in ('E920' 'E956' 'E966' 'E986' 'E974') then manner =
'Cut/pierce';

else if substr(ECode,1,4) in ('E830' 'E832' 'E910' 'E954' 'E964' 'E984') then
manner = 'Drowning';

else if 'E880' le substr(ECode,1,4) le 'E886' or substr(ECode,1,4) in ('E888'
'E957' 'E987') or ECode in ('E968.1') then manner = 'Fall';

else if 'E890' le substr(ECode,1,4) le 'E899' or substr(ECode,1,4) in ('E924') or
ECode in ('E958.1' 'E958.2' 'E958.7' 'E968.0' 'E968.3' 'E979.3' 'E988.1' 'E988.2'
'E988.7') or substr(ECode,1,4) in ('E961') then manner = 'Fire/Burn';

run;
%mend Matrix;

STEP 3: CREATING THE TEST DATABASE
The purpose of the testing is to ensure that the results match those defined by the specification document, so the test
database should be developed from your specification document, not from the SAS code. The database required for
testing this macro is a simple database in that it includes just three datapoints. The three datapoints in the database
are the input variable (ECode) and the expected output variables. In the example below, the database was created in
Excel. Note that the two expected output datapoints (manner, intent) were named with a “t” (for test) as a prefix to
the name. In a later step, we will compare the output variables of the macro (manner and intent) to the expected
values (tManner, tIntent). In the interest of space, the full test database is not copied in to this paper. The actual test
database contains at least one record for each possible value of ECode. Because the if-then statements in the
macro contain large ranges of ECode values, and many ECode values can result in the same output, the number of
records in the actual test database is quite large.

PostersSAS Global Forum 2009

3

ECode tManner tIntent
E920 Cut/pierce Unintentional
E920.5 Cut/pierce Unintentional

E956 Cut/pierce
Self-
Inflicted

E964 Drowning Assault
E966 Cut/pierce Assault
E974 Cut/pierce Other
E986 Cut/pierce Undetermined

The test database is imported in to SAS as a SAS data set.

PROC IMPORT OUT=TestDB
 DATAFILE= "C:\MySAS\TestDatabase\TestDB.xls" DBMS=EXCEL REPLACE;
 SHEET="Sheet1$";
 GETNAMES=YES;
 MIXED=NO;
 SCANTEXT=YES;
 USEDATE=YES;
 SCANTIME=YES;
RUN;

If the SAS macro had contained more than one input variable, then the test database would need to consider all
possible combinations of the three input variables. For example, if a macro has three input variables (Alpha, Beta,
and Gamma), each of which has 2 possible values (0, 1), then the test database would need to have one record for
each of the following input variable value combinations.

Alpha Beta Gamma
1 1 1
1 1 0
1 0 1
1 0 0
0 0 0
0 1 1
0 1 0
0 0 1

As the number of variables, input or output, increase, and the number of values for each of these variables increase,
then the size of the test database also increases.

STEP 4: RUN SAS CODE AGAINST TEST DATABASE
In this step, the macro is run against the test database. The output data set is called TestMatrix.

%Matrix (ilibref = work, olibref = work, inset=TestDB, outset=TestMatrix);

The TestMatrix data set contains the input variable, ECode, the output variables generated by the SAS code (intent,
manner), and the expected output variables (tIntent, tManner).

STEP 5: COMPARE ACTUAL OUTPUT TO EXPECTED VALUES
Comparison of the actual values for the output variables against the expected values is made easier by having both
sets of output variables in the output data set. The comparison can be done by simply running a proc freq on the
output variables, looking for the records where the expected values and the output values are not the same.

PROC freq data=TestMatrix;
 where tManner ne Manner;
 tables ECode * Manner / norow nocol nopercent;
 title ‘Manner comparison’;
run;

PostersSAS Global Forum 2009

4

PROC freq data=TestMatrix;
 where tIntent ne Intent;
 tables ECode * Intent / norow nocol nopercent;
 title ‘Intent comparison’;
run;

If the intent or manner values do not match the expected values, then the code should be inspected to identify why
ECode values are not being mapped correctly. If changes are made to this unit of code, then steps 4 and 5 should
be repeated. If an ECode value is missing from the test data set, then return to step 3 and correct the test data set.

CONCLUSION
Testing software to be sure that the results are correct is crucial in any environment. It is a step often missed, due to
the pressure to get work done quickly, but the impact of not doing testing can be significant. The process
demonstrated in this paper only covered one unit with a very simple structure (single input variable). Testing of
complex software with multiple units and multiple input variables would be more involved and time-consuming.
However, as the complexity of the code increases, so does the probability of coding errors.

As software units are added for testing, the test database can be expanded to accommodate the new fields that are
needed. At the end of all of the unit testing, the resulting test database will allow the entire software package to be
tested, since the test database will contain all required fields.

By running these simple tests, you can increase your confidence that your code not only runs without errors or
warnings, but also that your results match what is expected from your specification document. .

CONTACT INFORMATION
Your comments and questions are valued and encouraged. Contact the author at:

Name: Sharon Schiro
Enterprise: University of North Carolina
Address: CB# 7228, Dept of Surgery
City, State ZIP: Chapel Hill, NC 27599-7228
Work Phone: 919-966-6263
Fax: 919-966-0369
E-mail: Sharon_Schiro@med.unc.edu
Web: n/a

SAS and all other SAS Institute Inc. product or service names are registered trademarks or trademarks of SAS
Institute Inc. in the USA and other countries. ® indicates USA registration.

Other brand and product names are trademarks of their respective companies.

PostersSAS Global Forum 2009

	2009 Table of Contents

