SAS Global Forum 2009 Posters

Paper 200-2009
PROC SQL and SAS® Macro: Beyond the Basics

Louie Huang, Baxter Healthcare Corporation, Westlake Village, CA
Norma Guzman-Becerra, Baxter Healthcare Corporation, Westlake Village, CA

ABSTRACT

SAS macro facility has been a very important tool in SAS programming for many years.
The CALL SYMPUT routine and DATA _NULL _ are the traditional methods to create
macro variables from SAS data. However, PROC SQL is much more powerful and
efficient in creating macro variables thanks to the in-line view capability and the
SELECT, INTO, GROUP BY, HAVING, and ORDER BY clauses. In clinical
programming practice, PROC SQL can solve a lot of programming problems, sometimes
it is even impossible to solve a problem without using PROC SQL. The purpose of this
paper is to demonstrate creation of macro variables from SAS data using PROC SQL.
Concrete examples are provided to illustrate the advantages of PROC SQL in creating
macro variables over the CALL SYMPUT routine.

INTRODUCTION

You often want to manipulate your SAS data and convert a list of unique values of one
variable, or the unique combinations of several variables by concatenation, or a list of
unique variables of one data file, or even a list of unique data file names of the entire
library into macro variables in order to efficiently run and maintain your SAS programs.
PROC SQL offers a lot of useful features, which includes, but is not limited to: 1)
combine the functionality of DATA and PROC steps into one single step, 2) sort,
summarize, join (merge) and concatenate datasets, 3) construct in-line views using the
FROM and SELECT clauses, 4) line up multiple macro variables using the INTO clause.
There are many efficient ways to create macro variables using PROC SQL. This
presentation will demonstrate the useful tricks and skills by a few practical examples.

EXAMPLE ONE

For example, you are asked to generate multiple graphs for the surgeons who have 100 or
more subjects. Your graphs will be generated from multiple SAS data files. The common
variable in these data files is the surgeon ID. However, the subject information is only
available from the demog data file. In order to avoid tedious coding, dynamically control
your output, and minimize your workload on each revision, it is helpful to create the
macro variables found in Table 1 by using the SAS code listed in Figure 1.

Table 1. List of the macro variable examples

Macro Value

&SURGLIST SB67#SB17#SB22#SB35#SD01#SD03#SD41#SD15#SB19#SD38#SB20#
SA32#SD33#SB77#SB63#SB93

"ED "SB67" "SB17" "SB22" "SB35" "SD01" "SD03" "SD41" "SD15" "SB19"
"SD38" "SB20" "SA32" "SD33" "SB77" "SB63" "SB93"

&PTNUMLST 731437543 73#327#325#283#232#229#158#151#149#144#138#129#121#103

&CT 16

SAS Global Forum 2009 Posters

Figure 1. SAS Coding Used to Creating the Macro Variables displayed in Table 1:
Comparison of PROC SQL and CALL SYMPUT in DATA _NULL_

PROC SQL CALL SYMPUT and DATA _NULL_
proc sql noprint; proc freq data=sugi.demg noprint;
select surgeon,obs, tables surgeon / out=surge_ID(drop=percent) nocum;
quote(trim(surgeon)),n(surgeon) run;
into :surglist separated by '#',
:ptnumlst separated by '#', proc sort data=surge_ID(where=(count>=100));
:quoted separated by ' ',:ct by descending count;
from (select surgeon,count(pt) as obs run;
from sugi.demg
group by 1 data _null_;
having calculated obs >= 100) length listl-1list3 $120;
order by obs desc; retain listi-list3 ' ';
quit; set surge_ID end=last;

if _n_=1 then sp=" ';

else sp="#'; /* sp separates macro variables */
listl=trim(left(list1))||sp||left(surgeon);
list2=trim(left(list2))||sp||left(put(count,3.));
list3=trim(left(1list3))||sp]|

left(quote(trim(surgeon)));

if last then do;

call symput('surglist',listl);

call symput('ptnumlst’',list2);

call symput('quoted’,list3);

call symput('ct',_n_);
end;
run;

Notice that in Table 1 and Figure 1, the obvious advantages of PROC SQL are : 1)
multiple macro variables are created with one step; 2) your coding is significantly
shorter; 3) the data values are summarized by an in-line view (highlighted with yellow
color) in PROC SQL. You have to rely on one PROC FREQ and one PROC SORT to
summarize the data if you use the CALL SYMPUT routine. In addition, the DATA
NULL STEP requires more coding to create the same types of macro variables.

EXAMPLE TWO

It is very common that your clients ask you to add some summarized information into a
well-refined table or graph in order to make the presentation more informative. Of
course, your favorite tools are macro variables, because you can conveniently display the
information in a footnote or title by revoking macro variables. As presented in Figure 2,
two macro variables are created for the surgeons who have the most and least patients.
You have to count the number of patients by surgeon and identify the maximum and
minimum counts before you make the macro variables. PROC SQL can perform a very
nice job with a few lines of coding only. However, CALL SYMPUT routine requires two
SORT procedures and two DATA STEPS (Figure 2).

SAS Global Forum 2009 Posters

Figure 2. Convert the Numbers of most and least patients into macro variables

PROC SQL CALL SYMPUT and DATA NULL _
proc sql noprint; proc sort data=sugi.demg out=demg;
select max(ptnum),min(ptnum) by surgeon;
into :maxnum, :minnum run;
from
(select surgeon,count(pt) as ptnum data counted(keep=surgeon ptnum);
from sugi.demg set demg;
group by 1); by surgeon;
quit; retain ptnum;
if first.surgeon then ptnum=0;
ptnum+1;

if last.surgeon;
run;

proc sort data=counted;
by descending ptnum;
run;

data _null_;
set counted end=last;
if _n_=1 then
call symput('maxnum’,left(ptnum));
if last then
call symput('minnum’,left(ptnum));
run;

EXAMPLE THREE

The SAS code displayed in Figure 3 can create five sets of macro variables, which are
used to create patient profiles for 53 subjects. The treatment start and end dates vary from
subject to subject. Therefore, you have to convert the date values into macro variables.
Set one (&ptl to &pt53) contains Subject Identifications. Set two (&bdayl to &bday53)
contains the value of Treatment Start Date. Set three (&eday1 to ebday53) contains the
value of Treatment End Date. The information for each subject displays within each
profile by creating an annotation dataset. The other two sets of macro variables specify
the tick marks of the horizontal axis by 30 days. Set four (&bdy1 to &bdy53) contains the
value of Treatment Start Date minus 3 days. The reason of doing this is to allow the first
date value a little away from the vertical axis. Set five (&edy1l to &edy53) contains the
value of Treatment End Date plus 54 days. The reason of doing this is to ensure the
Treatment End Date included in the horizontal axis.

As you review the code in Figure 3, you will realize that the value calculation and
grouping in PROC SQL is completed by a short nested query (marked with yellow color).
However, you need a PROC MEAN and a DATA STEP to perform the same task when
you use CALL SYMPUT routine to create the macro variables. Furthermore, the code
used to create the macro variables in the DATA _NULL step is more complicated.

SAS Global Forum 2009 Posters

Figure 3. Comparison of SAS Code in Creating Multiple Sets of Macro Variables

(PROC SQL and CALL SYMPUT)

PROC SQL

CALL SYMPUT and DATA _NULL_

proc sql noprint;
select pt,firstday format=date9.,
lastday format=date9.,firstday2,lastday2
into :pti1-:pt53,:bdayl-:bday53,
:edayl-:eday53, :bdyl-:bdy53,:edyl-:edy53
from (select pt,min(txdt) as
firstday,max(txdt) as lastday,

proc means data=datal80 noprint
maxdec=2 nway;
class pt;
var txdt;
output out=datal(drop=_type_ _freq_)
min=firstday max=lastday;
run;

min(txdt)-3 as firstday2,
max(txdt)+54 as lastday2
from datal8e set datal;
group by pt); firstday2=firstday-3;
quit; lastday2=1astday+54;
run;

data data2;

data _null_;

set data2 end=last;

by pt;

if last then call symput(‘cnt',_n_);

call symput(compress('pt'||_n_),pt);

call symput
(compress('bday’ | |_n_),put(firstday,date9.));

call symput
(compress('eday'||_n_),put(lastday,date9.));
call symput (compress('bdy'||_n_),firstday2);
call symput(compress('edy'||_n_),lastday2);
run;

EXAMPLE FOUR

This is an example on efficiency of PROC SQL in creating macro variables other than the
advantage of shortening the code. These two macro variables are used for two different
reasons. Macro trtdt2 is used to specify the tick marks of the horizontal axis by day.
However, macro trtdt is used to label the tick marks on the horizontal axis. The SAS code
used to create these two macro variables with PROC SQL and CALL SYMPUT routine
is shown in Figure 4.

Table 2. List of macro trtdt and macro trtdt2

Macro trtdt:

""30MARO3" '"31MARO3" "O1APRO3" "02APR0O3" "O03APR0O3" "04APRO3'" "O05APR0O3'" "O06APRO3"
""07APRO3" "08APRO3" "09APRO3" "10APRO3" "11APRO3" "12APR03" "13APR0O3" "14APR0O3"
""15APRO3" "16APRO3" "'17APRO3" "'18APRO3"

Macro trtdt2:

""30MAR0O3"d ""31MAR0O3"d ""01APR0O3"d "02APR03"d "03APR03"d "04APR03"d "05APRO3'‘d
""06APRO3"d "07APR0O3"d "0SAPR0O3"d "09APRO3"d "10APRO3"d "11APR03"d "12APR03'd
"13APR0O3"d "14APR0O3"d "15APR03"d "16APR03"d "17APR03"d "18APR0O3"d

SAS Global Forum 2009 Posters

Figure 4. Example of Programming Efficiency Other than Shortening SAS Code

PROC SQL CALL SYMPUT and DATA NULL _
proc sql noprint; proc sort data=sugi.try3 out=sorted
select quote(put(trt_dt,date7.)), nodupkey;
quote(put(trt_dt,date7.))|]|'d" by trt_dt;
into :trtdt separated by ' ', run;
:trtdt2 separated by ' '
from data _null_;
(select distinct trt_dt from sugi.try3); length listedl-listed2 $200;
quit; retain listedl-listed2 ' ';
set sorted end=eof;
by trt_dt;

listedi=trim(left(listed1))||" '||
left(quote(put(trt_dt,date7.)));
listed2=trim(left(listed2))||" '||
left(quote(put(trt_dt,date7.))||'d");
if eof then do;
call symput('trtdt’',listedl);
call symput('trtdt2',listed2);
end;
run;

Let us start with the DATA _NULL _ step and CALL SYMPUT routine. You need a
PROC SORT procedure to sort the data. But, this is not the only shortcoming. First of all,
the length of the dummy variables listed1 and listed?2 is specified at $200 by guessing.
When you check the log window, you are surprised because of missing the macro
variable trt_dt2. There are no error and warning messages available in the log window.
The warning and error messages display in the log window only if you execute the code
one more time. The messages say “WARNING: The quoted string currently being
processed has become more than 262 characters long. You may have unbalanced
quotation marks.” and “ERROR: Open code statement recursion detected.”. This tells
you that the actual length of the character string for the dummy variable listed2 is greater
than 200 characters long, and the unbalanced quotation marks are generated from the
truncation of the character string between the two quotation marks. You can figure out
the actual length by checking the length of one quoted treatment date. Alternatively, you
can avoid the problem by generously setting the length, i.e., setting the length of
listedland listed2 at $1000. Unfortunaltely, this lesson is expensive for you will not
realize it until a number of trials. Please understand that the length statement in the
DATA _NULL_step can’t be omitted. Otherwise the dummy variables listed1 and listed?2
would become blanks.

However, you can easily create these two long macro variables with PROC SQL without
having to worry about the actual length of the clustered text. You do not have to
experience the problems discussed above.

SAS Global Forum 2009 Posters

EXAMPLE FIVE

One day, your boss came to you with the output of Figure 5. He said “ This is a nice
graph. However, if you could display the real Subject ID along the y-axis and the total
study days at the end of last study for each subject it would be nicer.”

Figure 5 Subject study path without subject IDS and total study days

— - =
13 | —— m— Study 3
12 I
11 A I
10 I
—_ 9 ——
g . —_—— -
D | —
n 6 1 I —
5]
4 - § N §J ¥
3 T
2
1

NN B B B L L L B I
10SEPO3 19NOV03 28JAN0O4 07APRO4 16JUNO4 25AUG04 03NOV04 12JANOS 23MAR05

Study Date

You can accomplish the task very easily. First of all, you convert the values stored in the
data file to macro variables by using the following code:

proc sql noprint;
select
quote(put(subjid,z6.))
,totdays
,date_out
into :sublist2 separated by * *
,-totday separated by " *©
,-date_out separated by " *©
from
(select subjid,sum(days) as totdays,max(date out) as date out
from
time
group by 1)
order by 2 desc;
quit;

SAS Global Forum 2009 Posters

You do not have to type the assigned subject numbers and subject identifications in a
user-format. You can conveniently turn the assigned number into subject ID with the
following SAS code:

proc format;
value subj

%macro fmt;
%do i=1 %to &sqlobs;
&i=Y%scan(&sublist2,&i)
%end;

%mend ;
%fmt
run;

In order to label the total study days at the end of study, You can simply build the macro
values into an annotate dataset by using the SAS code as follows:

data anot;
length color $6.;
retain xsys ysys '2' hsys '1' when 'a' position '6' size 3 function 'label' color 'blue’;
%macro 1lbt;
%do i=1 %to &cnt;
%let mdt=%scan(&ndtlist,&i);
%let days=%scan(&totday,&i);
x=&mdt+6; y=&1i;
text=catx("' ',"&days", 'days');
output;
%end;
%mend;
%1bt
run;

Finally, you place the user-format subj and annotate dataset anot into the GPLOT
procedure, the graph output will be what your boss expects.

proc gplot data=sorted anno=anot2;
format date_out date7. subnum subj. ;
plot subnum*date_out / anno=_anot noframe
haxis=axisl hminor=9
vaxis=axis2 vminor=0
caxis=black nolegend;
run;
quit;

SAS Global Forum 2009 Posters

Figure 6. Subject study path with subject IDS and total study days

110226 — = 9] dayS | g%ﬂgg%
060226 E— 92 days m— Study 3
030226 —— 02 days
010227 —— 02 days
010228 —— 108 days
100227 —— 7/ days
-&)—’. 070226 A —— E—— — == 217 days
2 080226] 291 days
9 0102061 o — — - —— 313 days
100226 = 349 days
040226 cm xrx x 352 days
020226 - ———— O E—— 376 day's
090227 - 418 days
090226 - 418 days

04JULO3 12SEP03 21NOV03 30JANO4 09APRO4 18JUN04 27AUG04 05NOV04 14JANO5 25MARO05

Study Date

CONCLUSION

PROC SQL is a great joy of SAS programming. This paper only demonstrates a few
practical examples of creating macro variables with PROC SQL. These examples present
great flexibility and useful skills which offer some hints for you to create macro variables
in your real work.

CONTACT INFORMATION

You can send your comments, questions, and/or inquiries to:

Louie Huang, Senior Technical Specialist

Norma Guzman-Becerra, Bio-Statistician

Baxter BioScience, Baxter Healthcare Corporation

One Baxter Way

Westlake Village, CA 91362

Tel: 805-372-3487 (Louie), 805-372-3009 (Norma)

Fax: 805-372-3462

Email: louie_huang@baxter.com, norma_guzman_becerra@baxter.com

TRADEMARK INFORMATION

SAS and all other SAS Institute Inc. product or service names are registered trademarks
or trademarks of SAS Institute Inc. in the USA and other countries. ® indicates USA
registration.

mailto:louie_huang@baxter.com
mailto:norma_guzman_becerra@baxter.com

	2009 Table of Contents

