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ABSTRACT   

The purpose of this series of articles is to present simple discussion and to present SAS 

programming techniques specifically designed to simulate the steps involved in time series data 

analysis. Part I of this series will cover the Augmented Dickey-Fuller (ADF) test of time series 

variables (stationarity test). Part II will continue the discussion on how to move further beyond 

the ADF testing and will focus discussion on examining time series variables long-run 

relationships (cointegration). A third part of this series is intended and will discuss how to 

develop an error correction model (ECM), a mechanism and concept discussed by many authors 

including Granger (1983), and Banergee et al 1993,  that is utilized by many to determine time 

series short-run deviations from long-run equilibrium. The simplified SAS techniques covered in 

all 3 parts of this series can be used with the more complex SAS routines such as PROC ARIMA, 

which require high level of research and analysis expertise (Bails & Peppers, 1982).  
 

INTRODUCTION 
 

Time series data analysis has many applications in many areas including studying relationship 

between wages and house prices, profits and dividends, and consumption and GDP. Many 

analysts erroneously use the framework of linear regression (OLS) models to predict change over 

time or extrapolate from present conditions to future conditions. Extreme caution is needed when 

interpreting the results of regression models estimated using time series data. Statisticians and 

analysts working with time series data uncovered a serious problem with standard analysis 

techniques applied to time series. Estimation of parameters of the Ordinary Least Square 

Regression (OLS) model produces statistically significant results between time series that contain 

a trend and are otherwise random. This finding led to considerable work on how to determine 

what properties a time series must possess if econometric techniques are to be used. One basic 

conclusion was that any times series used in econometric applications must be stationary 

(Granger and Newbold, 1974). This paper will discuss a simple SAS framework to assist SAS 

programmers in understanding and modeling time series data on a univariate series.   
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Basics and Terminology 

 

Time series datasets are different from other ordinary datasets in that their observations are 

recorded sequentially over equal time increments (daily, weekly, monthly, quarterly, 

annually …etc). A simple example of a time series dataset (RawData) is illustrated below.  

Each of x and y is called a series, while the combination of the 2 variables YEAR and QTR 

represent the sequential equal time increments. If x and y series are both non-stationary random 

processes (integrated), then modeling the x, y relationship as a simple OLS relationship as in 

equation 1 will only generate a spurious regression. Granger and Newbold (1974) introduced the 

notion of a spurious regression which they argued “produces statistically significant results 

between series that contain a trend and are otherwise random”. Time series stationarity is the 

statistical characteristics of a series such as its mean and variance over time.  If both are constant 
 

 

 



YEAR    QTR        X                Y 
1987       4       -0.05294    0.067891 
1988       1       -0.14696    0.063533 
1988       2       -0.12600    0.065794 
1988       3       -0.14656    0.060760 
1988       4       -0.06056    0.062053 
1989       1       -0.02644    0.057527 
1989       2       -0.05778    0.049068 
1989       3        0.01924    0.061497 
1989       4       -0.10823    0.060421 
.    .  . . 
.    .                  .               . 

 

 

 

 

 

 

 

 

 

 

x and y are two time series variables 

 

 

over time, then the series is said to be a stationary process (i.e. is not a random walk/has no unit 

root), otherwise, the series is described as being a non-stationary process (i.e. a random walk/has 

unit root). Differencing techniques are normally used to transform a time series from a non-

stationary to stationary by subtracting each datum in a series from its predecessor.  As such the 

set of observations that correspond to the initial time period (t) when the measurement was taken 

is describes as the series level. Differencing a series using differencing operations produces other 

sets of observations such as the first-differenced values, the second-differenced values and so on.  

    x level     xt 

    x 1
st
-diiferenced value   xt - xt-1 

    x 2
nd

-diiferenced value  xt - xt-2 

 

If a series is stationary without any differencing it is designated as I(0), or integrated of order 0. 

On the other hand, a series that has stationary first differences is designated I(1), or integrated of 

order 1. Stationarity of a series is an important phenomenon because it can influence its behavior. 

For example, the term ‘shock’ is used frequently to indicate an unexpected change in the value of 

a variable (or error). For a stationary series a shock will gradually die away. That is, the effect of 

a shock during time ‘t’ will have a smaller effect in time ‘t+1’, a smaller effect in time ‘t+2’, etc. 

Since the data used in this paper assumed to represents time series data. Each series in equation 1 

namely, x and y requires examinations at level for stationarity before proceeding further to 

investigate the relationship between the two variables (the OLS regression analysis). In this 

specification, because the data used by the paper is a quarterly series, stationarity testing will be 

conducted at level for up to 5-lagged periods. The stationarity test will utilize the Augmented 

Dickey-Fuller (ADF) technique (Dickey and Fuller (1981) which is a general auto-regression 

model formulated in the following regression equation (Dickey and Fuller (1981)   
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The model hypotheses of interest are: The Series is 

        HO: Non-stationary 

HA: Stationary 

ADF Statistics is compared to Critical values to draw conclusions about Stationarity (see Dickey 

and Fuller, 1979 for the critical values) 

 



 

An anatomy of an ADF Equation 
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The above elements can be easily seen in the following chart. 

 

 

 

 

 

 

 

 

 

 

 

SAS Techniques 

As it was mentioned earlier that our sample data is quarterly spaced, this dictates that five lagged 

differences have to be included in testing of stationarity of both series (x and y) for more 

explanatory power. The following SAS Data step creates the first lagged, the first differenced and 

the five lagged-differenced values of the x series. Similar step is needed to create the same 

variables form the y series.  The SAS Data step exploits the power of SAS LAG and DIF 

functions to create the set of the lagged and differenced values of x. SAS LAG function simply 

looks back in the dataset n
th
 number of records and allows you to obtain a previous value of a 

variable and store it in the current observation. 'n' refers to the number of records back in the data 

and can be an integer from 1 to 99. Many times the only thing you want to do with a previous 

value of a variable is to compare it with the current value to compute the difference. It is always 

recommended that the LAG and DIF functions not to be executed conditionally because they 

could cause unexpected results.  If you have to use them with conditional processing of a dataset, 

first execute the functions and assign their results to a new variable, then use the new variable for 

the conditional processing. 

The DIFn function works the same way as LAGn, but rather than simply assigning a value, it 

assigns the difference between the current value and a previous value of a variable. The statement 
)( X

n
DIF

t
A =  

tells SAS that At’ should equal the current value of x minus the value x had n
th 

number of records 

back in the time. 



DATA TimeSeries;  

     SET RawData; 

 

  x_1st_LAG    = LAG1(x);  

  x_1st_DIFF    = DIF1(x); 

  x_1st_DIFF_1st_LAG  = DIF1(LAG1(x));  

  x_1st_DIFF_2nd_LAG  = DIF1(LAG2(x)); 

  x_1st_DIFF_3rd_LAG  = DIF1(LAG3(x));  

  x_1st_DIFF_4th_LAG  = DIF1(LAG4(x)); 

  x_1st_DIFF_5th_LAG  = DIF1(LAG5(x)); 

RUN;  

Both LAG and DIF functions should only be used on the right hand side of assignment statements 

and again should not be executed conditionally. 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Simple SAS Data Step creates lagged, differenced, and differenced lagged variables from x series 

 

 

SAS Output – (partial): 1
st
_lagged, 1

st
_differenced, and the 1

st
 – 5

th
_lagged values of the 

1
st
_differenced value of x  

 

Next the SAS REG procedure, one of many regression procedures in the SAS System is used in 

the analysis to regress the lagged and differenced values of x generated by the above data step. 

The regression model used here was set as a relationship in which the value of x at the preceding 

time period (lagged value of x) is the dependent variable and the independent variables are the set 

of 5 previous-differenced values of the x series. This analysis provides a "best-fit" mathematical 

equation for the relationship exhibited in Eq (2). 

 

 

 

 

 



PROC REG DATA = TimeSeries;  

    MODEL x_1st_DIFF = x_1st_LAG     

             x_1st _DIFF_1st _LAG        

                x_1st _DIFF_2nd_LAG    

                      x_1st _DIFF_3rd_LAG        

                      x_1st _DIFF_4th_LAG        

                      x_1st _DIFF_5th_LAG; 

RUN; 

 

 

 

 

 

 

 

 

 

 

 

SAS REG procedure showing Stationarity test at level, with fixed 5 Lag Length and a Constant   

 

Discussion  

 

The ‘x_1
st
_LAG’  t-value generated by the above regression model corresponds to the 

Augmented Dickey-Fuller test (ADF) Statistics. Compare this t-value to the Critical Values (see 

Dickey and Fuller, 1979 for the critical values) to test the 2 Hypothesis that the x series is: 

 

       HO: Non-Stationary 

HA: Stationary 

 

In our example the t-value of (-1.83) is greater than the Critical Values (CVs) at 1%, 5%, and 

10% significant level (-3.524233, -2.902358, and -2.588587 respectively). We would fail to reject 

the null hypothesis and conclude that the x series is a non-stationary process when tested at level.  

 

What is Next? 

 

If we fail to reject the null hypothesis, and concluded that x and perhaps y are non-stationary  

series, we would have to difference each series once, create set of lagged and differenced 

variables as shown in the earlier SAS data step this time from the differenced-values of each 

series, and finally carry out the ADF test (testing the series stationarity at its first-differenced 

value). Differencing of a series normally transforms it from non-stationarity to stationarity. A 

differenced stationary series is said to be integrated and is denoted as I(d) where ‘d’ is the order 

of integration. The order of integration is the number of unit roots contained in the series, or the 

number of differencing operations it takes to make the series stationary. For our purpose here, 

since we will difference our example series once, there is one unit root, so it is an I(1) series.   

Once both x and y determined non-stationary at their level, we will move further to examine the 

nature of their linear combination. Specifically we will be interested in examining the linear 

combination between the non-stationary x and y, if such a linear combination exists, then x and y 

series are said to be cointegrated. The linear combination between them is the cointegrating 

equation and may be interpreted as the long-run equilibrium relationship among the 2 variables. 

Fortunately, this test can also be accomplished using the Augmented Dickey-Fuller test and will 

be the subject of discussion of the second part of this series of articles. 
 

 

 



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

SAS Output – Regression Analysis (Unit Root Test) –Level with 5 Lags 
 

EVIEWS
1®

 code and output for comparison 

Code Uroot(adf,const,lag=5,save=mout) 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

                                                 
1
 EVIEWS

®
 is an econometrics & Time Series Analysis software package by Quantitative Micro Software. 

http://www.eviews.com/index.html 
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