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ABSTRACT   
The purpose of this series of articles is to present simple discussion and SAS programming 
techniques specifically designed to simulate the steps involved in time series data analysis. Part I 
of this series covered the Augmented Dickey-Fuller (ADF) test of time series variables 
(stationarity test). Part II will continue the discussion on how to move further beyond the ADF 
testing and examine the time series variables long-run relationships (cointegration). A third part of 
this series is intended and will discuss how to develop an error correction mechanism (ECM), a 
concept discussed by many authors including Granger (1983), and Banergee et al 1993,  that 
used to determine time series short-run deviations from long-run equilibrium. The simple SAS 
techniques covered in all 3 parts of this series can be used with the more complex SAS routines 
such as PROC ARIMA, which require high level of research and analysis expertise (Bails & 
Peppers, 1982).  

INTRODUCTION 
 
Empirical research in financial economics and many others sectors is largely based on time 
series data. Such data represents a phenomenon is collected over long and different periods of 
time. Many analysts erroneously use the framework of linear regression (OLS) models to model 
variables of such data and to predict change over time or extrapolate from present conditions to 
future conditions. Part I of this series cautioned against interpretation of the results of regression 
models estimated using time series data and suggested a simple framework to assist SAS 
programmers in understanding, modeling, and carrying out Stationarity testing (ADF) using a time 
series data on a univariate series (Mohamed, 2008)  
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Part I introduced a simple discussion on how to use a simple SAS data step together with SAS 
PROC REG  to conduct a staionarity test on time series variables (ADF test). It also examined 
and discussed the regression results and related them to the ADF testing in details.  Part II will 
start by suggesting a general framework (shown in the above table) to determine the path forward 
with time series analysis after concluding the ADF testing. For useful issues associated with unit 
root testing please refer to Phillips and Xiao (1998). First we will establish some criteria to 
differentiate three possible outcomes of the ADF results which either will lead us to move with our 
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 A set of statements are logically consistent if and only if it is possible for all of them to be true at the same time.  
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analysis forward to the next step or will simply suggest to us to stop (refer to Table 1 above for 
simple summary) 
 

i. If both x and y determined to be stationary at their level I(0), it is not necessary to 

proceed further since standard time series methods apply to stationary variables i.e. we 
will simply apply a classical OLS regression analysis. 

ii. If both x and y determined to be non-stationary at their level, and further examination 

revealed they are integrated of same order; usually integrated of the first order I(1), that  
is they become stationary after we apply a first differencing, we will have to examine the 

nature of x and y linear combination. Specifically we will be interested in examining the 

linear combination between the non-stationary x and y, if such a linear combination exists, 

then x and y series are said to be ‘cointegrated’. The linear combination between them is 

the ‘cointegrating equation’ and may be interpreted as the long-run equilibrium 
relationship among the 2 variables. In this case we say both x and y are integrated of the 

same order and consequently, we have to proceed with our analysis further to estimate x 
and y long-run equilibrium relationship 

iii. If x and y are integrated of different order, it is inevitable to conclude that they are not 

cointegrated (refer to Table 1 and footnote on page 1) 

 

BASICS AND TERMINOLOGY 
 
Part I introduced and defined the concepts of time series, spurious regression, stationarity, 
differencing techniques, order of integration, and stationarity. Part II will start by reiterating  that 
time series datasets are different from other ordinary datasets in that their observations are 
recorded sequentially over equal time increments (daily, weekly, monthly, quarterly, 
annually …etc). For simplicity we introduce this example of a time series dataset (REG_SERIES).  

 
       YEAR    QTR         xxxx                                                                                yyyy 

1987       4       -0.05294    0.067891 
1988       1       -0.14696    0.063533 
1988       2       -0.12600    0.065794 
1988       3       -0.14656    0.060760 
1988       4       -0.06056    0.062053 
1989       1       -0.02644    0.057527 
1989       2       -0.05778    0.049068 
1989       3        0.01924    0.061497 
1989       4       -0.10823    0.060421 

.    .  . . 
x and y are two time series variables 

 
Each of x and y is called a series, while the combination of the 2 variables YEAR and QTR 

represent the sequential equal time increments. If x and y series are both non-stationary random 

processes (integrated), then modeling the x, y relationship as a simple OLS relationship as in 

equation 1 will only generate a spurious regression, introduced by Granger and Newbold (1974) 
who argued that “spurious regression produces statistically significant results between series that 
contain a trend and are otherwise random”. Time series stationarity is the statistical 
characteristics of a series such as its mean and variance over time.  If both are constant over 
time, then the series is said to be a stationary process (i.e. is not a random walk/has no unit root), 
otherwise, the series is described as being a non-stationary process (i.e. a random walk/has unit 
root).  
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Stationarity testing uses the Augmented Dickey-Fuller (ADF) technique (Dickey and Fuller (1981) 
which is a general auto-regression model formulated in the following regression equation (Dickey 
and Fuller (1981) and was introduced and discussed in simple details in Part I.  
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In this Part we introduce the concept ‘cointegration’ in simple terms by simply stating that if there 
exists a stationary linear combination between 2 non-stationary time series,  the 2 variables 
combined are said to be ‘cointegrated’ (Granger (1981, 1983). In other words, the 2 series are 
cointegrated when each has been differenced once and both become stationary at that point, and 
the 2 variables move together in the long-run (co-move) 
 

SAS TECHNIQUES 
The stationarity of a time series has important implication for regression analysis since the 
classical tests of regression analysis, such as the t-test and f-test, are based on the assumption 
that time series are stationary.  Consequently, the validity of coefficients on explanatory variables 
is based on stationary series. If, however, a time series process exhibit non-stationarity, standard 
test statistics are no longer valid and concerns arise over interpreting coefficients that are 

spurious. If the ADF testing indicates that both x and y series are non-stationary then modeling 

the cointegration between non-stationary variables such as in equation 3, provides one approach 

for obtaining useful regression results. Despite the two variables x and y being individually non-

stationary, a linear combination of the two can be stationary.  In this case a conintegrating link is 
said to exist and suggests there is a long run, or equilibrium, relationship between the two 
variables.  After testing the variables for their order of integration using the Augmented Dickey-
Fuller tests (ADF) discussed in details in Part I we will use Engle and Grager (1987) two-step 

procedure to test for cointegration between the two variables x and y.  In the first step we will 

model relationship between the two variables (cointegration equation) such as in equation (1) In 
the second step, the ADF test will be used to test for stationarity of the residual or the leftover 

deviations resulted after fitting the regression model. The significance of this is that, if y and x are 

linked by a long-run relationship, the coefficient of the regression is valid though slightly bias. To 
summarize the Engle and Grager (1987) 2-step procedure: 

 
i. Estimate a relationship' yt =a + bxt   and get the residuals series (et) of the regression 

ii. Apply stationarity test on the residuals series (et): If (et) series is non-stationary then we 
will reject cointegration.   
 

For illustration purposes we will use the hypothetical dataset REG_SERIES (partial data table) 

Step 1: Estimate the long-run relationship yt = a + bxt   and extract the residuals (et) 

 
PROC REG DATA= REG_SERIES; 
MODEL y = x; 
OUTPUT OUT = RESIDS 
R = y_residuals; 
RUN; 
QUIT; 
SAS codes to model the long-run relationship' yt = a + bxt    

The above PROC REG with OUTPUT OUT = RESIDS option will create a SAS data set RESIDS 
that will save residuals ‘y_residuals’, calculated as ‘actual’ minus ‘predicted’ and produces the 
following dataset (partial table): 
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                  YEAR   QTR         x                        y         yyyy_residuals 
1987   4     -0.05294   0.067891    0.038569 

1988   1     -0.14696   0.063533  -0.063425 

1988   2     -0.12600   0.065794  -0.038328 

1988   3     -0.14656   0.060760  -0.068098 

1988   4     -0.06056   0.062053    0.020268 

1989   1     -0.02644   0.057527    0.046107 

1989   2     -0.05778   0.049068  -0.000710 

1989   3      0.01924   0.061497    0.099050 

1989   4     -0.10823   0.060421  -0.030388 

1990   1     -0.04056   0.050771    0.019626 

1990   2  -0.03390  0.036702    0.000545 

1990   3  -0.06903  0.016959  -0.070708 

1990   4    0.07547  0.002585    0.047493 

 

Estimated Residual series resulted from fitting the x and y regression in step 1 

 

 
For each observation in our original dataset, we now have a corresponding residual - 

yyyy_residuals (or an error term). Remember that this residual represents the unexplained (or 

residual) variation after fitting the regression y and x model. It is the difference (or left over) 

between the observed value of the variable and the value suggested by the regression model for 

each observation. It is what is binding our 2 series x and y in their long life journey. Now since we 

have Year and Quarter we can look at this error at different time points (residuals as a function of 

time). If these deviations from the long-run equilibrium are found to be stationary, then xt and yt 

are said to be cointegrated. 
 
 
Step 2: stationarity test on the residuals series (et) - residual ADF testing 
In order to determine if x and y are actually cointegrated, denote the estimated residual sequence 

from this equation by et. Thus et is the series of the estimated residuals of the long-run relationship. 
The fact is since the residual et is also a time series, then we can perform an ADF test of 
stationarity on it. The form of the ADF test is similar to the one that was discussed in Part I and 
can be expressed as follows: 
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The model hypotheses of interest are: The residuals series et is 

 
            HO: et is Non-stationary  
    HA: et is Stationary 
 
ADF Statistics is compared to Critical values to draw conclusions about Stationarity (see Dickey 
and Fuller, 1979 for the critical values).  
Similar to what we did in Part I we will use the same SAS techniques to conduct the ADF test. 
The SAS Data step below creates the first lagged, the first differenced and the five lagged-
differenced values of the y_residuals series. The SAS Data step exploits the  
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DATA TimeSeries;  

     SET RESIDS; 

    y_residuals_1st_LAG          = LAG1 (y_residuals);  

    y_residuals_1st_DIFF    = DIF1 (y_residuals); 

    y_residuals_1st_DIFF_1st_LAG = DIF1 (LAG1(y_residuals));  

    y_residuals_1st_DIFF_2nd_LAG = DIF1 (LAG2(y_residuals)); 

    y_residuals_1st_DIFF_3rd_LAG = DIF1 (LAG3(y_residuals));  

    y_residuals_1st_DIFF_4th_LAG = DIF1 (LAG4(y_residuals)); 

    y_residuals_1st_DIFF_5th_LAG = DIF1 (LAG5(y_residuals)); 

RUN;  

SAS LAG and DIF functions to create the set of the lagged and differenced values of y_residuals 

 
 Next we will use SAS PROC REG again in the analysis to regress the lagged and differenced 

values of y_residuals generated in the above step. The regression model used here was set as a 

relationship in which the value of et at the preceding time period (lagged value of y_residuals) is 
the dependent variable and the independent variables are the set of 5 previous-differenced 
values of the y_residuals series. This analysis provides a "best-fit" mathematical equation for the 
relationship exhibited in Eq (2). 

  
 
 
PROC REG DATA = TimeSeries;  

     MODEL y_residuals_1st_DIFF = y_residuals_1st_LAG    

                 y_residuals_1st_DIFF_1st_LAG        

            y_residuals_1st_DIFF_2nd_LAG  

      y_residuals_1st_DIFF_3rd_LAG         

                 y_residuals_1st_DIFF_4th_LAG        

                 y_residuals_1st_DIFF_5th_LAG; 

RUN; 

QUIT;  

 
SAS PROC REG for residuals ADF (stationarity) test at level, with fixed 5 Lag Length and a constant  

 

 

       
y_residuals_ y_residuals_ y_residuals_ y_residuals_ y_residuals_ 

     
y_residuals_ y_residuals_ 1st_DIFF_ 1st_DIFF_ 1st_DIFF_ 1st_DIFF_ 1st_DIFF_ 

YEAR QTR X Y y_residuals 1st_LAG 1st_DIFF 1st_LAG 2nd_LAG 3rd_LAG 4th_LAG 5th_LAG 

1987 4 -0.05294 0.067891 0.038569 . . . . . . . 

1988 1 -0.14696 0.063533 -0.063425 0.038569 -0.10199 . . . . . 

1988 2 -0.126 0.065794 -0.038328 -0.063425 0.0251 -0.10199 . . . . 

1988 3 -0.14656 0.06076 -0.068098 -0.038328 -0.02977 0.0251 -0.10199 . . . 

1988 4 -0.06056 0.062053 0.020268 -0.068098 0.08837 -0.02977 0.0251 -0.10199 . . 

1989 1 -0.02644 0.057527 0.046107 0.020268 0.02584 0.08837 -0.02977 0.0251 -0.10199 . 

1989 2 -0.05778 0.049068 -0.00071 0.046107 -0.04682 0.02584 0.08837 -0.02977 0.0251 -0.10199 

1989 3 0.01924 0.061497 0.09905 -0.00071 0.09976 -0.04682 0.02584 0.08837 -0.02977 0.0251 

1989 4 -0.10823 0.060421 -0.030388 0.09905 -0.12944 0.09976 -0.04682 0.02584 0.08837 -0.02977 

1990 1 -0.04056 0.050771 0.019626 -0.030388 0.05001 -0.12944 0.09976 -0.04682 0.02584 0.08837 

1990 2 -0.0339 0.036702 0.000545 0.019626 -0.01908 0.05001 -0.12944 0.09976 -0.04682 0.02584 

SAS Output – (partial): 1st_lagged, 1st_differenced, and the 1st – 5th_lagged values of the 1st_differenced value of y_residuals 
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DISCUSSION  
 
The ‘y_residuals_1st_LAG’  t-value generated by the above  regression model corresponds to the 

Augmented Dickey-Fuller test (ADF) Statistics. Compare this t-value to the Critical Values (see 

Dickey and Fuller, 1979 for the critical values) to test the 2 Hypothesis that the et  (y_residuals)  

series is: 
 
            HO: et is Non-stationary  
    HA: et is Stationary 
 
In our example the t-value of (-4.24) - form SAS Output – Regression Analysis (Unit Root Test) – 
at Level with 5 Lags for et  (y_residuals) series is smaller than the Critical Values (CVs) at 1%, 5%, 
and 10% significant level (-3.524233, -2.902358, and -2.588587 respectively). We would reject 
the null hypothesis and conclude that the et (y_residuals) series - is a stationary process when 
tested at level. Since et, is the series of the estimated residuals of the long-run relationship 
between xt and yt (deviations from x and y long-run equilibrium) are found to be stationary, then xt 
and yt are said to be cointegrated. Now that this being said, let’s ask the following two important 
questions:  is cointegration correlation? And if not, then what is the difference between 
cointegration and correlation? A simple answer would suggest that If the two time series variables 
x and y are really correlated, when x goes up one day, y would likely go up also on the same day, 
and vice versa. So it seems that x and y daily (or weekly, monthly, quarterly, or yearly) behavior 
would have risen or fallen in synchrony. But that’s not what this is about. If we claim that x and y 
are cointegrated, we mean that the two series cannot wander off in opposite directions for very 
long without coming back to a mean distance eventually (Carol 2001).  But it doesn’t mean that 
on a daily basis the two series have to move in synchrony at all.  

WHAT IS NEXT? 
If the time series variables are found to be cointegrated, the residuals from the equilibrium 
regression can be used to estimate the error-correction, a convenient model or mechanism that 
measures the correction from disequilibrium of the previous period to analyze the long-run and 
short-run effects of the 2 variables. We have seen in our discussion how to test this 
‘disequilibrium error’ term for stationarity, and if that is the case, this implies that there is some 
adjustment process that prevents this ‘errors’ in the long-run relationship becoming larger and 
larger.  Fortunately, this error-correction mechanism can be accomplished by using a simple 
regression modeling technique and will be the subject of our discussion in Part III of this series of 
articles. 

PostersSAS Global Forum 2009

 



NULL HYPOTHESIS: 'e' has a unit root                                                           

LAG LENGTH: 5 (FIXED) 

AUGMENTED DICKEY-FULLER TEST STATISTICS, TEST CRITICAL VALUES: 

1% LEVEL T-STATISTICS  = -3.524233 

5% LEVEL T-STATISTICS  = -2.902358 

10% LEVEL T-STATISTICS = -2.588587 

LEVEL WITH 5 LAGS 

 

The REG Procedure 

Model: MODEL1 

Dependent Variable: y_residuals_1st_DIFF 

 

                             Analysis of Variance 

 

                                    Sum of           Mean 

Source                   DF        Squares         Square    F Value    Pr > F 

 

Model                     6        0.36886        0.06148     104.11    <.0001 

Error                    51        0.03012     0.00059050 

Corrected Total          57        0.39898 

 

 

Root MSE              0.02430    R-Square     0.9245 

Dependent Mean    -0.00066944    Adj R-Sq     0.9156 

Coeff Var         -3629.95450 

 

 

                                        Parameter Estimates 

 

                                                    Parameter       Standard 

Variable                                    DF       Estimate          Error    t Value    Pr > |t| 

 

Intercept                                    1        0.00141        0.00328       0.43      0.6696 

y_residuals_1st_LAG                          1       -4.53398        1.06971      -4.24      <.0001 

y_residuals_1st_DIFF_1st_LAG                 1        2.19868        0.97870       2.25      0.0290 

y_residuals_1st_DIFF_2nd_LAG                 1        1.17839        0.79060       1.49      0.1423 

y_residuals_1st_DIFF_3rd_LAG                 1        0.69251        0.57193       1.21      0.2315 

y_residuals_1st_DIFF_4th_LAG                 1        0.32332        0.34131       0.95      0.3480 

R1 y_residuals_1st_DIFF_5th_LAG              1        0.13422        0.13457       1.00      0.3233 

SAS Output – Regression Analysis (Stationarity Test) –Level with 5 Lags (residuals series) 

 

 

 

 

 

 

 

 

 

 

The t-value is smaller 
than any critical value 
at 1%, 5%, and 10%, 
the hypothesis that e is 
non-stationary is 
rejected 
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