
1

Paper 210-2009
Using SAS® to Analyze System Performance Metrics
Chris Helwig, PhD Student UW-Milwaukee, Phoenix, AZ

ABSTRACT

This paper explains how Microsoft Management Console (MMC) 2.0 can generate flat files containing system
metrics, such as memory, disk space, and CPU. System metrics can then be used in SAS® to build data sets to
analyze computer performance data. SAS® functions, including PROC SQL, PROC MEANS, PROC FREQ, and
PROC TTEST are used. The data can be graphed using PROC CHART and by generating XML that can be
displayed on the Web using Flash charts with XML/SWF Charts technology.

INTRODUCTION

This project involved using Microsoft Management Console 2.0 (Perfmon) to generate flat files containing system
metrics, including memory, disk space, and percent CPU utilization, which were then used in SAS(R) to build data
sets in order to analyze the performance data. SAS(R) functions including SAS(R) proc SQL, proc means, proc freq,
proc ttest and proc reg were utilized. Graphing of the data was performed, both using proc chart and by generating
XML that was displayed on the web using XML/SWF Charts Flash technology.

Perfmon was used to pull data files, collecting data at 5 second intervals for 30 minutes. Four such files were pulled,
one with the system idle, one with McAfee virus scan software running, one with Dragon voice recognition software
running, and one with Netflix software playing a movie. The system used for the testing was a Pentium 4, 2.39 GHz
processor, with 768 MB RAM, running Windows XP SP2, with a 37.2 GB hard drive.

METHOD

Perfmon is launched by opening a command window and entering perfmon on the command line. The console root
of the performance monitoring tool has two tabs, one is the system monitor and one for performance logs and alerts.
Under performance logs and alerts, counter logs was highlighted, then by right-clicking on it a new log settings was
selected, then under Properties | General the counters were selected.

The first task in terms SAS(R) programming was to read the data into a data set. Because the Perfmon data was in
tab delimited format in a text file it was possible to go to the file menu and use the import option on the file menu of
SAS(R) and follow the wizard to import the data and create a new data set, after first using FTP to transfer the .txt
files from Windows to Unix.

Another task is to use the SAS(R) proc means function in order to generate summary statistics for disk space, CPU
utilization, and memory utilization. The summary statistics include minimum and maximum values, standard
deviation, and mean values.

The Perfmon file had 153 columns of data. A proc contents command was first used to obtain the names of the
variables of most interest. Then the new data set named metrics was initialized and the variables renamed to CPU,
disk_space, and memory in order to simplify the analysis. A proc print command was also run to visually inspect the
data.

Before running the proc means function it was necessary to convert the character data into numeric format with the
input command. The perfmon data had an initial row with column header information which was in text format,
therefore SAS(R) initialized all the data in the column as character formatted. After converting the data the proc
means function was run and generated the summary statistics shown below.

 data metrics;
set metrics_temp;
keep __DFRP4M31_Processor__Total___
 __DFRP4M31_LogicalDisk__Total__
 __DFRP4M31_Memory___Committed_B
;
rename __DFRP4M31_Processor_0____Proce = cpu
 __DFRP4M31_LogicalDisk__Total__ = disk_space
 __DFRP4M31_Memory___Committed_B = memory
;

PostersSAS Global Forum 2009

2

run;

data metrics_numeric;
set metrics;
cpu_numeric = input (cpu, 3.6);
disk_space_numeric = input (disk_space, 3.6);
memory_numeric = input (memory, 3.6);
run;

proc means data=metrics_numeric;
var cpu_numeric disk_space_numeric memory_numeric;
output out=testout;
run;

RESULTS

What do these summary statistics tell us? Not surprisingly CPU is lowest when the system is idle (1.7%), the virus
scan is the most CPU intensive application at 58% followed by Netflix at 39% and voice recognition software at 10%.
Also each data category had instances where CPU spiked to 99%, this is a significant data point because
applications can behave erratically when CPU is maxed out.

For memory usage when the system was idle memory usage was the lowest at 47%, the highest usage was seen
with voice recognition software at 60% followed by Netflix at 57% and voice recognition at 54%. The highest spikes
of up to 62% were seen with Dragon voice recognition software.

Figure 1. Summary Statistics

PostersSAS Global Forum 2009

3

Disk space was flat at 12% free space because these applications did not write any files to disk, with the exception of
Netflix, which wrote some (from 11% to 12%) data to disk. The highest standard deviation of 26 was seen with CPU
during the virus scan indicating that CPU usage during the virus scan application was most variable. Also interesting
was the fact that memory was at a minimum of no less than 46% even when the system was idle, indicating that the
operating system and background processes consume 46% of available memory all by themselves.

In order to visualize the data more clearly it is helpful to graph it. In order to generate graphs of our data SAS(R)
chart commands were used, as well as XML files using SAS(R) data, which was then displayed graphically on the
web using flash technology.

Figure 2. CPU Levels While Rrunning Virus Scan

PostersSAS Global Forum 2009

4

In order to generate readable graphs it was not be possible to graph every data point since our data was pulled at five
second intervals, this would create graphs that were too messy. The following code was used to pull out data points
needed to create candlestick graphs. These graphs produce candlestick shaped graphs at each five minute time
window, each one displaying data pulled 2.5 minutes before and after the five minute window number displayed on
the x axis of the graph.

data gr;
set one_;
drop apu_;
retain max_1 max_2 max_3 max_4 max_5 ;
if _n_ > 30 and _n_ < 90 then
 if cpu_ > max_1 then max_1=cpu_;
if _n_ > 90 and _n_ < 150 then
 if cpu_ > max_2 then max_2=cpu_;
if _n_ > 150 and _n_ < 210 then
 if cpu_ > max_3 then max_3=cpu_;
if _n_ > 210 and _n_ < 270 then
 if cpu_ > max_4 then max_4=cpu_;
if _n_ > 270 and _n_ < 330 then
 if cpu_ > max_5 then max_5=cpu_;
 run;
data gr2;
set one_;
drop apu_;
retain t30 t90 t150 t210 t270;
retain min_1 min_2 min_3 min_4 min_5;
if _n_ = 30 then min_1=cpu_;
if _n_ = 30 then t30=cpu_;
if _n_ > 30 and _n_ < 90 then
if cpu_ < min_1 then min_1=cpu_;
if _n_ = 90 then min_2=cpu_;
if _n_ = 90 then t90=cpu_;
if _n_ > 90 and _n_ < 150 then
if cpu_ < min_2 then min_2=cpu_;
if _n_ = 150 then min_3=cpu_;
if _n_ = 150 then t150=cpu_;
if _n_ > 150 and _n_ < 210 then
if cpu_ < min_3 then min_3=cpu_;
if _n_ = 210 then min_4=cpu_;
if _n_ = 210 then t210=cpu_;
if _n_ > 210 and _n_ < 270 then
if cpu_ < min_4 then min_4=cpu_;
if _n_ = 270 then min_5=cpu_;
if _n_ =270 then t270=cpu_;
if _n_ > 270 and _n_ < 330 then
if cpu_ < min_5 then min_5=cpu_;
run;
proc print data=gr2;
run;

DISCUSSION

The XML/SWF Charts package utilizes an XML configuration file as well as a template HTML file (sample files
reproduced with full presentation) to generate a variety of graphs that can be displayed on the Internet. It is not
necessary to run your own web server to use it, it can be used by copying over SWF library files to your ISP’s user
web space. The output of SAS(R) code written to extract maximum and minimum values was used to configure an
XML file to generate the candlestick graphs reproduced above.

Figure 3. XML/SWF Charts Web Graph Showing CPU Utilization During the Virus Scan

PostersSAS Global Forum 2009

5

The candlestick graph is used primarily for charting stock price movement over time but it is also a useful graph for
analyzing system performance. The vertical line at each time interval represents the low and high values while the
box represents the starting and ending values for each time window. If the box is shaded the value moved down, if
un-shaded it moved up during that time interval.

T TEST

Another thing we can do is to analyze what level of sampling frequency would be sufficient to make sure we
accurately capture the mean values for CPU, Disk Space, Memory, and other metrics. The following SAS(R) code
was used to run a T test to determine whether a 1 minute sampling interval would be sufficient, comparing that to the
5 second rate we started with.

 proc sort data=one_;
 by cpu_;
 run;
 data cpu_ttest;
 set one_ (keep=cpu_);
 by cpu_;
 retain total_over_90;
 if MOD (_n_, 12) = 1 then every_minute=1 ;
 else every_minute=0;
 if cpu_ > 90 then over_90_flag = 1;
 else over_90_flag=0;
 total_over_90 = sum(total_over_90, over_90_flag,0);
 percent_over_90=total_over_90 / _n_;
 run;

 proc print data=cpu_ttest;
 run;

 data cpu_ttest;
 set cpu_ttest 2;
 if cpu_>90;
 run;

 proc ttest data=cpu_ttest;
 class every_minute;
 var cpu_;
 run;

This code generated the following output:

 total_ every_ over_90_ percent_
Obs cpu_ over_90 minute flag over_90

361 99 33 1 1 0.09141
362 99 34 0 1 0.09392
363 99 35 0 1 0.09642
364 99 36 0 1 0.09890
365 99 37 0 1 0.10137
366 99 38 0 1 0.10383

Statistics

 Lower CL Upper CL Lower CL
Variable every_minute N Mean Mean Mean Std Dev Std Dev

cpu_ 0 335 55.743 58.483 61.223 23.698 25.493
cpu_ 1 31 47.859 57.677 67.496 21.39 26.767
cpu_ Diff (1-2) -8.645 0.8059 10.257 23.868 25.6

PostersSAS Global Forum 2009

6

 Upper CL
 Std Dev Std Err
cpu_ 27.585 1.3928
cpu_ 35.779 4.8076
cpu_ 27.606 4.806

T-Tests
Variable Method Variances DF t Value Pr > |t|

cpu_ Pooled Equal 364 0.17 0.8669
cpu_ Satterthwaite Unequal 35.2 0.16 0.8730

The TTEST Procedure

Equality of Variances

Variable Method Num DF Den DF F Value Pr > F

cpu_ Folded F 30 334 1.10 0.6591

The PR > F value of .6591 indicates that the equal variance assumption is met and the Pr > |t| value of .8669
indicates that we cannot reject the null hypothesis that the means of the two data sets are equal. If the value had
been less than .05, we would conclude that our sampling frequency was too long to accurately reflect the population.

PROC REG

The SAS(R) proc reg command was used to run a regression analysis. One column of data was CPU and a second
column showed whether or not the virus scan was running. This produced a reasonably accurate R square value of
.81. This gives us a way to estimate the impact on CPU of running the virus scan software.

proc reg data=d;
M1: model cpu=flag / P R;
run;

Number of Observations Read 731

Number of Observations Used 731

Analysis of Variance

Source DF Sum of
Squares

Mean
Square

F Value Pr > F

Model 1 710564 710564 3112.42 <.0001

Error 729 166431 228.29978

Corrected Total 730 876994

Root MSE 15.10959 R-Square 0.8102

PostersSAS Global Forum 2009

7

Dependent Mean 32.68553 Adj R-Sq 0.8100

Coeff Var 46.22716

Parameter Estimates

Variable DF Parameter
Estimate

Standard
Error

t Value Pr > |t|

Intercept 1 1.55054 0.78979 1.96 0.0500

flag 1 62.35528 1.11770 55.79 <.0001

PostersSAS Global Forum 2009

8

The REG Procedure
Model: M1
Dependent Variable: cpu

Output Statistics

Obs Dependent
Variable

Predicted
Value

Std Error
Mean

Predict

Residual Std
Error

Residual

Student
Residual

 -2-
1 0 1 2

Cook's
D

1 0.3115 1.5505 0.7898 -1.2390 15.089 -0.0821 | | | 0.000

2 0.6250 1.5505 0.7898 -0.9255 15.089 -0.0613 | | | 0.000

3 0.6250 1.5505 0.7898 -0.9255 15.089 -0.0613 | | | 0.000

4 0.6250 1.5505 0.7898 -0.9255 15.089 -0.0613 | | | 0.000

5 0.3125 1.5505 0.7898 -1.2380 15.089 -0.0820 | | | 0.000

[additional records omitted]

368 45.9375 63.9058 0.7909 -17.9683 15.089 -1.191 | **| | 0.002

369 75.9375 63.9058 0.7909 12.0317 15.089 0.797 | |* | 0.001

370 53.1250 63.9058 0.7909 -10.7808 15.089 -0.714 | *| | 0.001

371 45.6250 63.9058 0.7909 -18.2808 15.089 -1.212 | **| | 0.002

372 33.4375 63.9058 0.7909 -30.4683 15.089 -2.019 | ****| | 0.006

CONCLUSION

The CPU_system_idle graph shows that starting and ending values were always zero. There is actually a hidden
horizontal line at each time interval where a mouse over reveals the zero value. During the 15 minute time window
CPU rose to as high as 74%.

The CPU for the virus scan shows CPU consistently having a wide range spanning from zero to over 90 for the
starting and ending values. Also CPU values are increasing, starting at the five minute window with 38% as the
starting value and 54% for the ending value for that time window. However at the 25 minute interval the shaded box
indicates the starting value was 83% while the ending value was 79% for that time window.

The Dragon software started and ended mostly under 40% CPU, but in two time windows spiked to over 75%. Netflix
exhibited CPU spikes of over 90% in two time windows, but mostly started and ended each time window in the 30%
to 60% range.

Disk space was flat for all applications tested, showing a horizontal line at 12 for each time window for each
application, except Netflix, which shows a downward trend for available disk usage starting at 12.71% available and
ending at 11.11%.

The memory graphs show memory hovered around 46 to 47 when the system was idle, ran at about 54 for the Virus

Figure 4. Output of Proc Reg

PostersSAS Global Forum 2009

9

Scan with spikes as high as 59, ran even higher for voice recognition in the 60 to 61 range, and a little lower at 56 to
57 for the Netflix software.

In general the graphs are useful for helping visualize the data, assist with spotting trends, and help identify spikes that
may warrant further investigation.

REFERENCES

• Adobe Flash, previously called Shockwave Flash and Macromedia Flash, is a set of multimedia technologies
developed and distributed by Adobe Systems and earlier by Macromedia.
http://en.wikipedia.org/wiki/Adobe_Flash See also http://www.maani.us/xml_charts/.

• For SAS(R) coding, the textbook Sharpening Your SAS(R) Skills, by S. Gupta, 2005, was referenced.
• SAS(R) Software 123 by Joanne Peng, IU Press 1998.

CONTACT INFORMATION

Your comments and questions are valued and encouraged. Contact the author at:

Name: Chris Helwig
Enterprise: Student, UW-Milwaukee
Address: 26905 N. 22nd. Ave.
City, State ZIP: Phoenix, AZ
Work Phone: 623-242-7648
E-mail: chelwig1@cox.net
Web: http://www.cs.uwm.edu/~cchelwig/

SAS(R) and all other SAS(R) Institute Inc. product or service names are registered trademarks or trademarks of
SAS(R) Institute Inc. in the USA and other countries. ® indicates USA registration.

Other brand and product names are trademarks of their respective companies.

PostersSAS Global Forum 2009

	2009 Table of Contents

