

Page 1 of 12

Paper 203 - 2009

SAS® Macros Tool Kit for Graphical Representation o f Complex Data

Ashok Chaurasia, Department of Statistics, University of Connecticut, Storrs, CT

ABSTRACT

There are many procedures and settings in SAS® that support the construction of elegant and informative graphs for

data analysis. When dealing with complex data, it can be cumbersome to produce graphs that are both informative

and consistent in their design. This task can be made easier with some simple macros.

This paper introduces a SAS® macro toolkit that helps construct design-consistent graphs from one complex data set

to another. These macros aid the user in areas such as data reconfiguration to make the information easily

accessible to SAS® procedures, control over various elements of SAS® graphs, and control over the options of

SAS® procedure statements.

INTRODUCTION

My adventure with SAS® macros began at the University of Texas at San Antonio while working as a research

assistant for the Statistical Consulting Center. My first research assignment was to reproduce technical graphs from

an engineering standards manual, using SAS®. From this experience I realized the necessity, effectiveness, and

importance of consistent/flexible SAS code when constructing graphs for complex datasets of similar caliber. The

macro facility and the procedures in SAS® serve as a powerful tool for data configuration and informative graphical

representation of complex datasets. This paper introduces some simple macros that I created to reduce the amount

of coding (which can reach daunting lengths when dealing with large and complex datasets) and to be consistent in

the design of the resulting graphs. The macros discussed in this paper are as follows: %listlength (returns the

number of unquoted elements in a list), %rep (repeats numbers, strings, with or without quotes; similar to the

REPEAT function in SAS®), %ifoptions (provides flexibility in inclusion/exclusion of options in SAS® procedures),

%Axis (creates a customized axis statement for SAS® graphs), %createAxes (generates as many axis statements

as needed; it makes use of %Axis), %n4symbols (returns the value of required number of symbol statements),

%symb (generates as many symbol statements as necessary depending on the complexity of the data; it makes use

of %n4symbols), %TnF (generates titles/subtitles and footnotes), %combineAll (this macro scans through all the

sheets of an Excel® document and then combines the data from each sheet to form one complete dataset; it makes

use of %makedata), and %makeV2F (this macro scans through all variables [of interest] in an Excel® sheet to create

a new dataset where the scanned variables become factors levels of a new user specified variable while maintaining

data integrity). After reading this paper, SAS® users should be able to readily apply these macros to facilitate their

analysis.

The macros presented in this paper can be downloaded from

http://www.stat.uconn.edu/~achaurasia/Published/Ashok_Chaurasia_SAS_Conf_2009_macros.sas

PostersSAS Global Forum 2009

Page 2 of 12

%listlength
The first macro in the tool kit is %listlength ; this macro returns the number of (unquoted) elements (separated by

the space character(s)) in a list. The elements can be characters, strings or numbers. Note: this macro collapses

multiple space characters between elements to a single space character.

%listlength(< list>);

Parameter Default Description

list none specifies the list

Example: %listlength(Here is an example of $ # @ ! & % 5 6);

 Result: 13

This macro is very useful when we want to scan through a list of elements and for each element execute PROCs or

DATA steps. For example, consider an excel” document named grades.xls (located in F:\) which has three sheets –

midterm1, midterm2, and final. To read all the sheets and create SAS datasets corresponding to each sheet, we write

a macro which uses the %listlength macro as follows:

%MACRO makedatasets(file=, sheets=, getnames=yes);
 %DO i= 1 %TO %listlength(&sheets);
 %LET sheet= %SYSFUNC(SCANQ(&sheets, &i));
 PROC IMPORT DATAFILE=&file OUT= &sheet DBMS=E XCEL REPLACE;
 SHEET=&sheet;
 GETNAMES= &getnames;
 RUN;
 %END;
%MEND makedatasets;

%makedatasets(file= "F:\grades.xls" , sheets=midterm1 midterm2 final, getnames=yes);

The %makedatasets macro successfully scans through the list of sheet names and creates three SAS datasets.

This is illustrated by the statements from the LOG file which are as follows:

NOTE: WORK.MIDTERM1 data set was successfully created.

NOTE: PROCEDURE IMPORT used (Total process time):

 real time 2.64 seconds

 cpu time 0.23 seconds

NOTE: WORK.MIDTERM2 data set was successfully created.

NOTE: PROCEDURE IMPORT used (Total process time):

 real time 0.07 seconds

 cpu time 0.04 seconds

NOTE: WORK.FINAL data set was successfully created.

NOTE: PROCEDURE IMPORT used (Total process time):

 real time 0.07 seconds

 cpu time 0.04 seconds

Note that the %listlength macro has improved the quality of the %makedatasets macro by automating the

ending value for the %DO loop and reducing the number of arguments in the macro definition. Without the use of the

%listlength macro, one would have to add another argument specifying the ending value for the %DO loop, which

would have to be constantly changed to the number of sheets existing in an excel” file.

PostersSAS Global Forum 2009

Page 3 of 12

%rep
This macro can replicate any string (with or without quotes) or numeric values any number of times as specified by

the user. This macro returns a string in which the first argument (given by the value of what) appears n+1 times. The

macro and its arguments are described below:

%rep(what=, n=);

Parameter Default Description

what none* specifies the string (with or without quotes) of numbers, characters, or
their combination, to be replicated

n none specifies the number of times to repeat the value given by what ; must
be an integer.

Example: %rep(what=% "% " 45 $ "$ " & " &" , n= 2);

 Result: % "% " 45 $ "$ " & " &" % "% " 45 $ "$ " & " &" % "% " 45 $ "$ " & " &"

This macro improves upon the REPEAT function (to suit our purposes) as follows:

%MACRO rep(what=, n=);
 %SYSFUNC(REPEAT(%BQUOTE(&what), &n));

%MEND rep;

Lets us discuss how the %rep macro improves upon the REPEAT function through an example.

If the %BQUOTE function was removed from the %rep macro definition as follows:
%MACRO rep(what=, n=);
 %SYSFUNC(REPEAT(&what , &n));

%MEND rep;

Then,

%rep(what=Circle, n= 2);

results in

CircleCircleCircle

The REPEAT function alone ignores all space characters before and after the value of the first argument and hence

returns a single string (e.g. CircleCircleCircle). The purpose of the %BQUOTE function in the definition is to

mask the value of the first argument with a single space character.

With the inclusion of the %BQUOTE function in the macro definition,

%rep(what=Circle, n= 2);

results in

Circle Circle Circle.

The %rep macro has successfully added a space character in between the repetitions to produce a legible array of

n+1 elements.

Note: %listlength and %rep when executed in open code result in an error statement in the LOG file. These

macros, when used within other complex macros, serve their purpose and do not result in any errors when used

correctly.

* none implies that the parameter does not have a default value; the parameter requires a (valid) value when the macro is executed.

PostersSAS Global Forum 2009

Page 4 of 12

%ifoptions
This macro has two parameters and is useful in providing control over options of different SAS” procedures. This

macro is used within other macros that pass a value of YES or NO to the %ifoptions macro; this will be clear

through an example after we discuss the macro parameters.

%ifoptions(option=, want=);

Parameter Default Description

option none the options of the procedure where the %ifoption is called; it is implicit that the
options must exist for the procedure.

want YES the value must be either YES|Y or NO|N (not case sensitive).

Example: %ifoptions(option=REGEQN OVERLAY, want=Y);

 Result: REGEQN OVERLAY

Let us suppose that a macro called %genPlots (given below) is used on a SAS dataset called sampledata (with

response variable yvar and predictors x1 and x2).

%MACRO genPlots(data=, xvar=, yvar=);
 PROC GPLOT DATA=&data;
 PLOT &yvar*&xvar;
 SYMBOL VALUE=dot COLOR=blue INTERPOL=RL;
 RUN;
%MEND genplots;
%genPlots(data=sampledata, xvar=x1, yvar=yvalue);
%genPlots(data=sampledata, xvar=x2, yvar=yvalue);

Clearly, %genPlots generates plots with interpolation value as RL. If we require the inclusion of the regression

equation on the graph for only one of the predictor variables, say x2 , we can accomplish that by slightly modifying the

%genPlots macro as follows:

%MACRO genPlots(data=, xvar=, yvar=, see_eqn=yes);
 PROC GPLOT DATA=&data;
 PLOT &yvar*&xvar / %ifoptions(option=REGEQN, want=&see_eqn);
 SYMBOL VALUE=dot COLOR=blue INTERPOL=RL;
 RUN;
%MEND genPlots;

%genPlots(data=sampledata, xvar=x1, yvar=yvalue, se e_eqn=no); /* (1) */
%genPlots(data=sampledata, xvar=x2, yvar=yvalue); /* (2) */

Note that the inclusion of %ifoptions has now provided some flexibility in the sampledata presentation such that

the regression equation will be displayed only for variable x2 (see (2), where the default value for see_eqn=YES)

and not for the variable x1 (see (1), where see_eqn=NO).

%Axis
This macro has various parameters and is useful in having control over the appearance of the axes† of plots

produced in SAS®. This macro is used within the %createAxes macro (which is discussed next) that creates

multiple axes statements. Let us first discuss the arguments of %Axis.

%Axis(n= , offset= , title= , justify= , height= , angle = , font= , color= , order=);

† For simplicity, I have only included certain elements of the AXIS statement, but one can certainly add more parameters to have
complete control over the appearance of the axes.

PostersSAS Global Forum 2009

Page 5 of 12

Parameter Default Description

n none specifies the number for the axis. For example, when n=1 the AXIS1
statement is created.

offset ‡ 1in
this offsets both the x-axis and y-axis by the measure and unit specified by
the user. Note: the value and its units should not be separate by a space
character, i.e. use 1in or 1cm rather than 1 in or 1 cm .

title “Title here” specifies the title for the axis. MUST be in quotes.

justify CENTER specifies the justification of the axis label.

height 1.5 specifies the height of the axis label.

angle 90 specifies the angle of the axis label.

font SIMPLEX specifies the font for the axis label.

color BLACK specifies the color for the axis label.

order D specifies the order for the axis. D represents the default which is to exclude
ORDER.

Example: %Axis(n= 2, offset= 0.75in, title= '1/Temperature(C)' , angle= 0,

color=blue);

 Result: AXIS2 OFFSET = (0.75in 0.75in) LABEL = (ANGLE=0 JUSTIFY=CENTER

HEIGHT=1.5 FONT=SIMPLEX COLOR= blue '1/Temperature(C)');

%createAxes
This macro creates multiple axis statements by using the previously discussed %Axis macro. This macro has various

parameters, all of list type (except one), which are described next. NOTE: the arguments of list type must be

specified, and must be of the same length. If the list elements are separated by multiple space characters, they will

be replaced by a single space character when the macro is executed.

%createAxes(numOfAxes= , offsetlist= , titlelist= , anglelist= , justifylist= ,

 heightlist= , fontlist= , colorlist= , orderl ist=);

Parameter Default Description

numOfAxes 2
specifies the number for the axis statements to be created. For example,
when n=2 , AXIS1 and AXIS2 are created with their respective elements.

offsetlist § 1in 1in list type that specifies the offset value for both the x-axis and y-axis for
each of the axis statements. Also refer to %Axis .

titlelist “title 1” “title 2” list type that specifies the title for each of the axes. Each list element
must be in quotes.

anglelist 90 list type that specifies the angle for each of the axes labels.

justifylist CENTER list type that specifies the justification for each of the axes labels.

heightlist 1.5 list type that specifies the height for each of the axes labels.

fontlist SIMPLEX list type that specifies the font for each of the axes labels.

colorlist BLUE BLACK list type that specifies the color for each of the axes labels.

‡ For the sake of simplicity, offset is set for both ends of the axis; one can create arguments to control the offset for each end
separately.
§ For the sake of simplicity, offset is set for both ends of the axis; one can create arguments to control the offset for each end
separately.

PostersSAS Global Forum 2009

Page 6 of 12

orderlist D$D
list type that specifies the order for each of the axes. The elements must
be separated by $, for example, 0 to 20 by 5$10 to 100 by 10 .
D represents the default which is to exclude ORDER.

Example: %createAxes(numOfAxes= 2, offsetlist= 1in 2in,

 titlelist= "Put title 1 here" "Put title 2 here" ,
 anglelist= 0 0 , justifylist=CENTER LEFT,
 heightlist= 1.5 2.1,
 fontlist=arial simplex, colorlist=b r,
 orderlist= 10 to 20 by 1$50 to 100 by 5);

 Result: AXIS1 OFFSET = (1in 1in) ORDER = (10 to 20 by 1) LABEL = (ANGLE=0

JUSTIFY=CENTER

HEIGHT=1.5 FONT=arial COLOR= b "Put title 1 here");

AXIS2 OFFSET = (2in 2in) ORDER = (50 to 100 by 5) LABEL = (ANGLE=0

JUSTIFY=LEFT

HEIGHT=2.1 FONT=simplex COLOR= r "Put title 2 here");

%n4symbols
This macro calculates the number of symbol statements required for a data set.

%n4symbols(data= , symbvar= , nname= , library= , keep= , dro pcounts=);

Parameter Default Description

data none specifies the SAS dataset for which the number of symbol statements
required for graphical presentation.

symbvar none
specifies the third-variable (see SAS online documentation on PLOT
statement of PROC GPLOT), which establishes the number of required
symbol statements.

nname _n4symb_ Global macro variable name that stores the value of the number of required
symbol statements.

library WORK specifies the library where the SAS datasets, created in the process, are
stored.

keep NO

this gives the user the option to either keep or delete the SAS datasets
created in the process of calculating the number of required symbol
statements. The values expected for this variable is either YES|Y or NO|N;
any other value will result in an error in the LOG file.

dropcounts 0
this options allows the user to ignore observation where the value of the
dataset variable, given by the symbvar , has counts (occurrences) less
than or equal to dropcounts .

Example: Consider the following SAS dataset

Data material;
 INPUT Temp Strength Alloy $;
cards ;
80 1574 Alloy1
90 1487 Alloy1
100 1200 Alloy1
80 1617 Alloy2
90 1550 Alloy2
100 1475 Alloy2
90 1550 Alloy3
100 1475 Alloy3
;
RUN;

For the above material SAS dataset, the code

%n4symbols(data=material, symbvar=Alloy, nname=n, library=WOR K, keep=NO,
 dropcounts= 2);

PostersSAS Global Forum 2009

Page 7 of 12

returns a value of 2 in the log file (for reference) and this value is stored in the macro variable n.

%symb
This macro creates multiple SYMBOL statements as required. This macro has various arguments, all of list type

(except one), which are described next. NOTE: the arguments of list type, if specified, must each be of equal length

(and equal to n – the number symbol statements). If the list elements are separated by multiple space characters

then they will be replaced by a single space character when the macro is executed.

%symb(n= , font= , val= , color= , connect= , wd= , ht= , linetype= , repeat=);

Parameter Default Description

n none
specifies the number for the required SYMBOL statements. For
example, when n=2 , SYMBOL1 and SYMBOL2 are created with
their respective elements.

font dflt
list type with ‘n’ elements that specifies the FONT values for each of
the SYMBOL statements.

val dot
list type with ‘n’ elements that specifies the VALUE values (such as
circle, dot, etc) for each of the SYMBOL statements.

color
see the code for
default color values

list type with ‘n’ elements that specifies the COLOR values for each
of the SYMBOL statements.

connect none list type with ‘n’ elements that specifies the INTERPOL values for
each of the SYMBOL statements.

wd 1
list type with ‘n’ elements that specifies the WIDTH of lines for each
of the SYMBOL statements.

ht 1
list type with ‘n’ elements that specifies the HEIGHT (i.e size) of the
symbol values (such as square, circle, etc) for each of the SYMBOL
statements.

linetype 1
list type with ‘n’ elements that specifies the LINE type for each of
the SYMBOL statements.

repeat 1
list type with ‘n’ elements that specifies if certain SYMBOL
statements should be repeated.

Refer to SAS® Online documentation to understand the elements of the SYMBOL statement.

Example: From the previous example, we use the value of the macro variable n as follows:

 %symb(n=&n, wd= 3.2 3.2, ht= 1.2 1.2);

 Result: SYMBOL1 FONT=, VALUE=dot COLOR=BLACK INTERPOL=none WIDTH=3.2 HEIGHT=1.2

LINE=1 REPEAT=1 ;

 SYMBOL2 FONT=, VALUE=dot COLOR=BLUE INTERPOL=none WIDTH=3.2 HEIGHT=1.2

LINE=1 REPEAT=1 ;

%TnF
This macro creates a custom Title and Footnote for plots produced in SAS”. This macro is versatile because it can

be included within any PROC GPLOT, or any macro that uses PROC GPLOT. This specific macro was customized to

a dataset that was a compilation of several smaller datasets. Some of the parameters given below were created for

catalog purposes.

%TnF(t1= , t2= , t3= , f1= , f2= , sheet= , t1j= , t1f= , t1h= , t2j= , t2f= ,
 t2h= , t3f= , t3h= , f1j= , f1f= , f1h= , f2j= , f2f= , f2h=);

Parameter Default Description

t1 “SAS file name” specifies the name of the SAS file in the header.

PostersSAS Global Forum 2009

Page 8 of 12

t2 “Plot for dataset” specifies the title of the plot. Ex: For SET 1

t3 “Title of plot” specifies the main title of the plot. Ex: Pressure vs Time

f1 “Data File
Name” specifies the name of the dataset used in the constructing the plot. Ex:

f2 “Job Number” specifies the job number for documentation purposes.

sheet . specifies the EXCEL® sheet corresponding to the sub-dataset.

t1j LEFT specifies the justification for t1.

t1f SIMPLEX specifies the font for t1.

t1h 1 specifies the height (size) of t1.

t2j CENTER specifies the justification for t2.

t2f SIMPLEX specifies the font for t2.

t2h 10pt specifies the height (size) of t2.

t3f SIMPLEX specifies the font for t3.

t3h 12pt specifies the height (size) of t3.

f1j RIGHT specifies the justification for f1.

f1f SIMPLEX specifies the font for f1.

f1h 1 specifies the height (size) of f1.

f2j LEFT specifies the justification for f2.

f2f SIMPLEX specifies the font for f2.

f2h 1 specifies the height (size) of f2.

Example: %TnF(t1= "material.sas" , t2= "Strength vs Temperature" ,

 f1= "material.xls" , sheet= "sheet1" , f2= "Catalog 2");

 Result: TITLE1 JUSTIFY=LEFT FONT=SIMPLEX HEIGHT=1 "material.sas";

TITLE2 JUSTIFY=CENTER FONT=SIMPLEX HEIGHT=12pt "Strength vs Temperature"

JUSTIFY=CENTER FONT=SIMPLEX HEIGHT=12pt "Title of plot";

FOOTNOTE1 JUSTIFY=RIGHT FONT=SIMPLEX HEIGHT=1 "Data file: "

"material.xls" JUSTIFY=RIGHT "Sheet(s): " "sheet1" ;

FOOTNOTE2 JUSTIFY=LEFT FONT=SIMPLEX HEIGHT=1 "Job: " "Catalog 2";

%makedata
This macro reads a specific SHEET within an EXCEL® file by using PROC IMPORT. The purpose of this macro is to

read the entire data corresponding to the specific SHEET and also create a new variable (as specified by the user,

default variable name is _TYPE_) that contains the SHEET name as its value in character format. This data is stored

as a SASDATASET with the same name as the SHEET name; for example, if the sheet name called in PROC

IMPORT is grades then the newly created SASDATASET name will be GRADES. The macro and its argument

description are as follows:

%makedata(file= , sheet= , type_val= , length_type=);

PostersSAS Global Forum 2009

Page 9 of 12

Parameter Default Description

file none specifies the location of the EXCEL” file. Must be in quotes.

sheet none specifies the SHEET name in the EXCEL” file.

type_val _typeval_ specifies the name of the new variable containing the SHEET name in
character format.

length_type none specifies the length for typeval variable; this value, at the least, must be
equal to the length of the sheet name.

Example: Consider a file called material.xls (located in F:\) with a sheet named Alloy1 that contains data as

follows:

Result: The code %makedata(file= "F:\material.xls" , sheet=Alloy1,

 type_val=Alloy_Type, length_type=6);

restructures the data as follows:

Alloy_Type Temp Strength
Alloy1 80 1574
Alloy1 90 1487
Alloy1 100 1200

%combineAll
In many situations, we have data from a study (with the same variables) distributed over multiple excel” sheets. The

%combineAll macro solves this problem by scanning through the list of sheet names and executing on each the

macro %makedata. Once SASDATSETS for each of the sheets are created, this macro combines all the datasets

into one large dataset.

%combineAll(file= , sheets= , new_var= , new_var_length= , out _data= , keeptemps=,

 lib=);

Parameter Default Description

file none specifies the location of the EXCEL” file. Must be in quotes.

sheets none
specifies the SHEET names as a list without quotes; the SHEET names
must not contain any special character or spaces. Each element in the list
must be separated by the single space character.

new_var none specifies the name of the new variable containing the SHEET name in
character format.

new_var_length none specifies the length for new_var variable; this value, at the least, must be
equal to the length of the sheet name

out_data none specifies the name of the final data set containing data from all the sheets.

keeptemps NO
specifies a value YES|Y or NO|N to keep or delete the SASDATASET
(corresponding to each datasheet) from the working library specified by the
“lib” variable (described next).

lib WORK specifies the name of the final data set containing data from all the sheets.

Example: Consider a file called material.xls (located in F:\) with sheets named Alloy1, Alloy2, and Alloy3 that

contain data as follows:

 Alloy1

Temp Strength
 80 1574
 90 1487
 100 1200

PostersSAS Global Forum 2009

Page 10 of 12

Result: The code %combineAll(file= "F:\material.xls" , sheets=Alloy1 Alloy2 Alloy3,

new_var= Alloy_Type, new_var_length= 6,
out_data=Alloy_combined);

The restructured data, Alloy_combined, is as follows:

Alloy_Type Temp Strength
Alloy1 80 1574
Alloy1 90 1487
Alloy1 100 1200
Alloy2 80 1617
Alloy2 90 1550
Alloy2 100 1475
Alloy3 90 1550
Alloy3 100 1475

%makeV2F

This macro scans through all variables (of interest as specified by the user) in an Excel® sheet to create a new

dataset where the scanned variables become factors levels of a new user specified variable, while maintaining data

integrity.

%makeV2F(data= , vars= , svar= , svar_length= , dropvars= , ddname= , newvar= , new= ,
 keeptemps= , lib=WORK);

Parameter Default Description

data none specifies the SAS dataset to be restructured

vars none specifies the variables that are to become factors levels of svar .

svar _TYPE_
specifies the name of the new variable which will contain the name of the
variables (as given by vars) as factor levels.

svar_length none
specifies the character length for svar to reflect the maximum length of the
variables names as given in vars .

dropvars none specifies the variable(s), that are of no concern, in the restructuring of user
specified dataset, to be dropped

ddname none specifies a name for the intermediate datasets created during restructuring.

newvar none
specifies the name of the new variable which will contain the values
corresponding to each of the variables specified in var .

new YES
specifies if the restructured data is to be stored in a new file or replace the
original SAS dataset. For example, if data =counting and new=YES, the
resulting new SAS dataset is named new_counting.

keeptemps NO specifies if the intermediate SAS datasets are to be kept or deleted for the
working library.

lib WORK specifies the working library

 Alloy1

Temp Strength
 80 1574
 90 1487
 100 1200

 Alloy2

Temp Strength
 80 1617
 90 1550
 100 1475

 Alloy3

Temp Strength
 90 1550
 100 1475

PostersSAS Global Forum 2009

Page 11 of 12

Example: Consider the following Rupture SAS dataset.

The Rupture SAS dataset is restructured by the following command

%makeV2F(data=Rupture, vars=X1_temp X2_temp X3_temp, drop vars=,
 ddname=temporary, newvar=value, new=yes, keepte mps=no, svar=Type,

 svar_length=7, lib=WORK);

The new restructured SAS dataset called new_Rupture is shown below:

Type Time value
X1_temp 10 81
X1_temp 20 82
X1_temp 30 83
X2_temp 10 91
X2_temp 20 92
X2_temp 30 93
X3_temp 10 101
X3_temp 20 102
X3_temp 30 103

Time X1_temp X2_temp X3_temp
 10 81 91 101
 20 82 92 102
 30 83 93 103

Rupture contains the response variable Time
(time to failure) with predictor variables
X1_temp, X2_temp, and X2_temp which represent
temperature values at rupture in alloy X1, X2
and X3 respectively.

PostersSAS Global Forum 2009

Page 12 of 12

CONCLUSION

The macros listed in this paper are certainly invaluable when constructing elegant graphs: however do they really

work when dealing with complicated datasets? The answer to this question is best illustrated with the graphs provided

in the link below. These represent 9 out of 38 graphs produced from one excel” document which is similar (in design)

to one of the excel” documents obtained from our client.**

http://www.stat.uconn.edu/~achaurasia/Published/Ashok_Chaurasia_SAS_Conf_2009_Graphs.pdf

All the supporting material presented in this paper can be downloaded from

http://www.stat.uconn.edu/~achaurasia/research.html

REFERENCES

1. SAS Institute. 2008. The SAS system: SAS OnlineDoc®, Version 8, HTML format. Cary, NC.

2. Introduction to SAS. 2007. UCLA: Academic Technology Services, Statistical Consulting Group.

<http://www.ats.ucla.edu/stat/sas/notes2/>. (Jan. 20, 2008).

ACKNOWLEDGEMENTS

I would like to thank Dr. Kannan, Dr. Cano, and Mr. Anderson from the University of Texas At San Antonio (UTSA)

for giving me the opportunity to work as a research assistant for UTSA’s Statistical Consulting Center . The origins

of this paper began at UTSA and I am very grateful to the faculty for their support and advice. I would also like to

thank Dr. Ravishanker at my current university, University of Connecticut , for her advice during the preparation of

this paper. Finally, I would like to thank our client for permitting us to use the design of their datasets.

CONTACT INFORMATION

Your comments and questions are valued and encouraged. Contact the author at:

Ashok Chaurasia

Department of Statistics

University of Connecticut

215 Glenbrook Rd. U-4120

Storrs, CT 06269

Email: ashok.chaurasia@uconn.edu

Website: http://www.stat.uconn.edu/~achaurasia/

SAS and all other SAS Institute Inc. product or service names are registered trademarks or trademarks of SAS

Institute Inc. in the USA and other countries. ® indicates USA registration. Other brand and product names are

trademarks of their respective companies.

** For proprietary reasons, the actual data from the client was not used in the construction of the graphs presented in this paper.

PostersSAS Global Forum 2009

	2009 Table of Contents

