
 

1 

Paper 186-2009 
 

Better, Faster, and Cheaper SAS ® Software Lifecycle 

Edmond Cheng, Bureau of Labor Statistics, Washington, DC 
 

 

ABSTRACT 

In designing software applications, the enduring process faces realistic business challenges to overcome the re-
stricted time, limited resources, and quality constraint in engineering paradigm.  Overemphasizing the three engi-
neering limitations upsets the balance of producing highest quality, shortest time, and lowest budget cost during 
product development lifecycle at the highest efficient mode. 

By considering the following four design practices during your SAS
®
 software lifecycle, it is possible to define an 

approach of building SAS-based software thru maximizing limited constraints.  The paper presents 1) functional 
techniques in expanding single-use program’s flexibility and maintainability, 2) practical guidelines to promote code 
library and reusability, 3) strategies and advantages of modular process design, and most importantly 4) connec-
tion of individual program components into user-driven application.  In the end, it makes it possible for project 
managers and developers to promote a better, faster, and cheaper SAS programming software life cycle. 

INTRODUCTION 

In industries such as engineering, manufacturing, computer science, and others, where projects involves research 
and development, managers often face unavoidable constraints of budget, schedule, and quality.  Limited re-
sources affect the cost, time, and quality, and present dilemmas for managers in decision making.  Given that 
constraints are generally predetermined and fixed, managers utilize the best efficiencies of resources in interest of 
business.  Ineffectual allocation or scarifying resources from one dimension of the paradigm to satisfy another di-
mension, often lead to unpredictable consequences or undesired business 
outcomes.    

The purpose of this paper is to consider several practical software engineering 
methods and their implication to the SAS software lifecycle.   

WHAT IS THE SAS SOFTWARE LIFECYCLE 

If one asks what a software lifecycle is, the answer is the period of time that 
begins when a software product initiates and ends when the software is no 
longer in use.  At the problem identification phase, the need of SAS software is identified.  The progress proceeds 
to planning phase with defining requirements, setting out specifications, and the advancing to development.  The 
phase continues along the way with testing, user acceptance, deployment, and maintenance.  Finally, the product 
lifecycle ends when the software becomes obsolete and finishes the final shelf life. 

 

Software 

Lifecycle 

PostersSAS Global Forum 2009

 



 

2 

To define the engineering paradigms of limited resources needed to have a better, faster, and cheaper SAS soft-
ware lifecycle, let's begin with some particular design practices applicable to SAS software development.  

PROCEDURAL PROGRAMMING 

Software engineers and developers practice procedural programming in almost assurance, while most occasion 
programmers take on the approach to certain extend, even if not aware in some cases.  Procedural programming 
involves designing and writing concise programs in a functional orientation, with limited function utility in scope.  
Yet, these programs can run independently without inputs from other programs within the same group.   

For example, a block of frequent use PROC SQL code with additional flexibility in parameters and macrotization 
can be written as a procedural program.  Repetitive file input/output, database conversion, query reporting, file 
transfer, and many other candidates can be structured in a more reusable manner.      

Table 1:  Suggested practices applicable in SAS programming 

Practice Description and usage 

functional program should be concise to perform specific function 

 write program defines by function, rather than one to do it all 
 approach with a top-down design by addressing overall requirements at the highest 

level, then fashion details to meet purpose at the bottom level 
 knowing the desire state of outcome  
 consider between data flow versus process flow 
 utilization thru standalone, INCLUDE, or macro programs 

simplicity keep the basis brief and simple 

 write the least number of code possible for the job 
 consider procedure (PROC) steps over data (DATA) steps 
 remove test code  
 remove unnecessary variables in dataset 

flexibility easy to make modifications 

 keep design adaptable and expandable 
 use for parameterization and avoid hard coding 
 code defensively to anticipate changes 
 limit dependency between procedure programs 

maintainability make it effortless for anyone to maintain 

 easy for corrections and quality assurance 
 consider use of control and format datasets for storing lookup parameters  
 follow meaningful variable name, database name, macro definition 

structured           
programming 

logically break the program into smaller parts 

 logic composition with consistency, separation of concern 
 concatenation, selection, and repetition 
 avoid jumping (GOTO) between or within programs 

documentation add readable language to improve understandability of programming code 

 standardize a header section to identify the program purpose 
 include comments, for yourself and others, walkthrough the program 
 write descriptive title, column headers, variable labels for tables and graphs 

 

There are enormous benefits of practicing procedural programming.  Writing SAS programs with a functional 
orientation makes it easy to build accessible programs performing specific functions, which can call upon and 
promote reusability in future. Procedural programming makes the job of maintaining or modification often a lot 
simpler.  Less time is spent making changes to the programs, thus improving project quality.  As result, more time 
and resources can be allocated building additional procedural programs to perform different tasks.  

 

PostersSAS Global Forum 2009

 



 

3 

LIBRARY COLLECTION 

A well-centralized location for program storage is like shelving a library collection of readily available block of 
codes at one’s disposal.  A library collection facilitates the storage and retrieval of functional codes, as well as 
coordination of database, documentation, and documents.  Together with configuration management implementa-
tion, the task to maintain file version control is less complicated.  Project managers can track project progress 
throughout the each lifecycle phases.   

Assembling procedural programs into a library collection, promotes 
a ‘bottom-up’ modular process design, which will be described in the 
next section.  In SAS, the functional standalone programs can be 
stored in a designated location, which provides a central area for 
repetitively retrieving code.  Macros can make use of the compiled 
macros library and the AUTOCALL facility in SAS for secured sto-
rage and efficient invocation.  Other frequently used formats, tem-
plates, scripts, and external files can be stored in the centralized 
location in same manner as well.   

The table below suggests some possibilities of what components 
can be setup in a library collection. 

Table 2:  Setup of a centralized library collection  

Component  Description 

programs  standalone procedural programs and similar functional programs 
 INCLUDE programs 
 test programs, connect programs, administrative programs 

compiled macro  
library 

 macros compiled in a saved permanent macro library 
 protect source code along with increase in quality and security 
 save compiling, CPU time, AUTOCALL facility 

control datasets  two types: statics versus dynamics  
 datasets storing program fixed parameters 
 datasets storing program changing variables values 

database  storage of database in a central location facilitates organization aspects 
 storage, retrieval, archival 
 group similar database in closer proximity  

documentations  project plans, communication documents, test reports, operating manuals 
 development requirements and specifications 
 enhance maintainability and reusability in the lifecycle 

others  PROC FORMATS, PROC TEMPLATE, ODS tagsets  
 SAS logs, SAS lists, reports, graphics 
 various scripts files, raw files, external files, language files like html, xml, java  

MODULAR DESIGN 

The concept of practicing modular design is breaking a larger development component into separated pieces.  
The modules are divided into low-level subroutines to perform limited functions, and then they are incorporated 
back into high-level main programs as a whole.  One can think of smaller individual modules as fundamental 
blocks of nuts and bolts in the software system.   

Development cycles with modular designs representing different views vary by level of complexity and intensity, 
depending on the organization practices.  The scale and complexity are mostly determined by the project manager 
or developers at the early stage of software lifecycle phases.  Generally, the low level modules consist of proce-
dural programs, INCLUDE programs, and a compiled macro library, retrievable from a centralized library collec-
tion.  The top level is most likely being the interface between users and the software system.  Notwithstanding the 
design based on data modeling or flow-process modeling, the intermediate level are series of ‘driver’ programs 
connecting boundaries between the subroutines and main interface.   

The amount of interaction between or within modules to be considered is the degree of ‘coupling’ and ‘cohesion’.  
In general, the desirable practice in modular design is to achieve low coupling with minimum of interactions be-
tween modules, while at the same time, manage high cohesion with strong degree of responsibility within module.  
The combination of low coupling with high cohesion addresses adverse dependency concern during design and 

PostersSAS Global Forum 2009

 



 

4 

maintenance lifecycle phases, leading to lower project cost plus improvement in quality at the meantime.  

The advantages of designing in modules set higher efficiency and produc-
tivity at various software lifecycle stages.  Modularized programs are much 
easier to debug at a lower level, increasing flexibility and customization 
within specific function of the module, rather than taking on the program as 
a whole.  Modular designs introduce a ‘multiplier effect’ by breaking down 
the overall development effort into subtasks where increasing number of 
developers can collaborate on implementation phase at a given time.  In 
addition, allocation of workload can be diversified base upon the skill and 
experience of programmers.   

 

 

Table 3:  An example of modular design structure  

Level Description and usage 

Main 
(top) 

end user level application 
 package with user interface 
 yield business product oriented for end users, driven by output, generate 

deliverables 
 highest level in the architecture 

Driver 
(middle) 

driver program calls upon group of stored subtasks, procedures, or databases to 
perform assigned task 
 desired tasks are creatable on demand to meet needs  
 high interactions across top and bottom level 
 minimum interactions between other modules at the same level 

Subtask 
(bottom) 

independent procedural programs, include programs, macros, control datasets 
 retrieval from library collection to perform defined function  
 configuration and modification efforts are concentrated 
 minimum interactions between subtasks 

BUILD AS APPLICATION  

Depending on project requirements and user acceptance, building system software into user-driven application 
bears added benefits.  Depending on the nature of business, customers (not the managers) are not fond of under-
standing what goes in neither the working design nor the process-flow behind the system generating outputs, as 
long as the deliverables are acceptable.  To address customer usability, an application in software development 
inputs the functional codes, database, and other components hidden from users.  The customers would then focus 
on interaction with the designed end-user interface and communication with the system, minimizing the ‘need-to-
know’ technical aspects. 

An advantage of building applications is the degree of configurability from earlier mentioned modular design. The 
flexibility from procedural programming establishes reusability at the bottom level design further lower the expendi-
ture cost of building applications comparing to reinventing.  By overlapping ‘build as application’ and use of library 
collection, different configurations and localizations become possible.  This characteristic also promotes quicker 
prototyping and quality improvement based on initial deployment phase.  Additional budget cost saving comes 
from adopting developed application framework or existing application, i.e. product branching and version up-
grades. 

Application ties communication linkage between two entities such as users to hardware, users to software, soft-
ware to software, and so forth.  Applications are more user-friendly and often packaged in presentable graphic 
user interface i.e. web-based interface, off the shelve software packages, in-house application, simple command 
line…etc.  They execute the user’s commands generating desired outputs like ones familiar as survey database, 
merchandise inventory report, adverse drug event statistical table, analyst portal, and so forth.   

PostersSAS Global Forum 2009

 



 

5 

Table 4:  Tools for SAS applications  

Tools Description and usage 

In-house  various SAS products packaged into in-house interface to meet the needs of 
business functions  

 Customized end-user applications driven by underlying SAS processes and 
functions from combination of SAS products 

 example: SAS/BASE for core functionality, SAS/CONNECT for delivery mode, and 
SAS/AF for presentation 

SAS/IntrNet  web services broadcast to multiple audiences  
 easing from BASE programming skills and limited html knowledge to building web 

applications 
 AUTOCALL facility, SQL web query, limited html knowledge requirement 

SAS/AF  graphical interface presentation between users and system applications  
 readily available procedures and built-in components expediting development time 
 object oriented interface 

SAS Business    
Intelligence 

 business solution product: integration between software and users, suitable for 
various size corporation 

 attractive package, access level control, board audiences, personalized portals 
 internal available applications and call procedure process, all with less programming  
 structured delivery, reporting, analysis, query, visualization 

SAS/Base  customizable, extensive functions, adaptive to user, less restrictive, compatible with 
other SAS applications 

 custom reports, dataset deliverable, graphics, tables, ODS delivery  
 cost effective, more human resources intensive 
 interfaces are not as rich as other SAS application products 

Others  Microsoft® Office® integration 
 ACCESS to 3rd party’s database  
 other various SAS products 

OTHER PHASES 

While the scope of this paper focuses much on the efficiency aspects at development phase, yet the mentioned 
practices in defying limited resources are applicable to other phases in the software lifecycle as well.  The payoff of 
adopting good practices will be greater at the earliest stage as possible within software lifecycle. 

Briefly onto other phases: defining clear requirements and specifications with consistency during planning phase 
contributes well investment for the overall project cycle.  A working configuration management in place promotes 
centralized repository, as well as improving risk manageability.  Thorough quality assurance and user acceptance 
testing manages the reliability risks together with improving performance before deployment phase.   

Since the business environment is dynamic, it might not facilitate mentioned practices, due to cases such as the 
interest of organization, accessibility, skill sets among technical groups, or a particular style between developers.  
Overall, it takes a well planned combination of good software engineering practices to launch and maintain an effi-
cient lifecycle.  

CONCLUSION 

The paper presented practices in the software development lifecycle designed to overcome the constraints of cost, 
time, and quality.  The suggested methods of design with procedural programming, library collection, modular de-
sign, and ‘build as application’ set achievable goals to lower development cost and to lead improvement in quality. 

From a project perspective, saving cost and meeting deadlines might only be relative in short term objectives, but 
the ultimate goal is to create model software development strategy at the organization level.  To defy the limited 
resources paradigm, the insights shared in this paper hope to inspire readers with proficient approaches to build a 
better, faster, and cheaper SAS software lifecycle. 

 

 

PostersSAS Global Forum 2009

 



 

6 

 

REFERENCES 

Bell, Doug.  (1987)  Software Engineering: A programming Approach.  Prentice Hall International (UK) Ltd, Lon-
don. 

Gill, Paul.  (1997)  The Next Step: Integrating the Software Life Cycle with SAS Programming.  SAS Institute Inc., 
North Carolina. 

Hallsteinsen, Svein and Paci Maddali.  (1997)  Experiences in Software Evolution and Reuse.  Springer, Berlin. 

McClure, Carma.  (1997)  Software Reuse Techniques: Adding Reuse to the System Development Process.  
Prentice Hall, New Jersey. 

ACKNOWLEDGMENTS 

Thanks Curtis Reid, Bureau of Labor Statistics, for sharing his knowledge in software design practices.  And 
thanks Bryan Beverly, BAE Systems, for editorial revision on this paper. 

CONTACT INFORMATION 

Your comments and questions are valued and encouraged.  Contact the author at: 

Edmond Cheng 

U.S. Bureau of Labor Statistics 

2 Massachusetts Ave., NE 

Washington, DC 20212-0001 

(202) 691-5458 

cheng_e@bls.gov  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
SAS® and all other SAS Institute Inc. product or service names are registered trademarks or trademarks of SAS 
Institute Inc. in the USA and other countries. ® indicates USA registration.  
 
Other brand and product names are trademarks of their respective companies. 

PostersSAS Global Forum 2009

 

mailto:cheng_e@bls.gov

	2009 Table of Contents



