
1

Paper 188-2009
Combining Pieces and Parts to Create a Comprehensive Program

Gary McQuown Data and Analytics Solutions, Fairfax, VA
John Zheng, Data and Analytics Solutions, Fairfax, VA

ABSTRACT

An often used anonymous quote is that “there are always at least five ways of doing something in SAS and more than
one will be right.” The significance of the statement is that SAS® offers a variety of tools such as arrays, formats,
functions, macros, procedures and SQL as well as a large number of statistical procedures. Given so many tools, there
are multiple ways of combining them to solve various tasks and problems. The following illustrates a step by step
approach to selecting and applying various tools to detect unbundling fraud in health care payments.

INTRODUCTION

Healthcare billing involves the use of very large sets of CPT codes to represent every possible procedure that can be
performed in a medical setting. These codes are further grouped into “parent codes” that identify an all inclusive process
or “child codes” that are pieces or parts of a specific parent code. The situation is further complicated by the fact that
many child codes are also parent codes and numerous parent codes may be submitted for a recipient on the same day.
There are also parent codes that restrict the use of child codes over various periods of time or under only certain
circumstances. Unbundling occurs when a provider bills for an inclusive “parent” code and also bills for one or more of
the child codes included in the parent code. Our task was to design a process to identify and document all questionable
instances within vast amounts of data.

For example, unbundling detection compares recipient's claims on a given day to a list of paired parent-child codes. If a
claim matches the parent code, other claims billed for the same recipient on the same date of service should not match the
child services. For example, procedure code 90853 covers group psychotherapy and is a parent code. Code 99233
covers a subsequent hospital care visit and is a child code paired with 90853 because the provider must visit the recipient
to participate in the psychotherapy. However, provider has billed and been paid for both these codes. So there was an
overpayment of $112.34 which is the amount paid for the child code procedure.

The comprehensive code table used is the National Correct Coding Initiative (NCCI) developed by CMS and updated
yearly (http://www.cms.hhs.gov/NationalCorrectCodInitEd/). The NCCI table contains over 200,000 pairs of parent-
child code combinations representing services ranging from simple evaluations to complex surgical procedures. A small
example is given below and a larger example is in appendix (1).

M_CODE C_CODE MODIFIER SOURCE EFFECTIVE_DATE DELETE_DATE
59400 C8950 1 ocecce07v132 1/1/2006 12/31/2006
59400 C8952 1 ocecce07v132 1/1/2006 12/31/2006
59400 0021T 1 ocecce07v132 1/1/2003 12/31/2006
59400 36000 1 ocecce07v132 10/1/2002

PostersSAS Global Forum 2009

2

Challenges of solving this complex problem include conditional logic implementation, data normalization, very large
quantities of data and limited resources. To facilitate the matching, the claim-level data needs to be de-normalized /
transposed so that all service codes provided to a recipient on a given day are in a single record /row / observation.
Conditional logic is then required to match all possible combination of the codes billed to the thousands of parent code
combinations that are not allowed. Additional logic is required to insure that the codes used were effective on the date of
service. Under certain conditions, yet more logic is necessary to compensate for modification codes that allow the
provider to bill otherwise unacceptable combinations. With a relatively small state such as Mississippi having over 26
million claims for fiscal year 2007, the process also needs to be efficient and simple enough to be modified by support
staff.

The following describes the process of combining macros, arrays and formats to detect unbundling fraud. Also detailed
are the rationale behind why a particular tool was chosen and the benefits that it provides. There are certainly other
ways of completing the task, but given the constraints and conditions the aforementioned combinations were extremely
satisfactory. The appendix also contains the MK_FMT macro.

DATA PREPARATION

Subsetting
The first step to increasing efficiency is to only process the data that is needed. The primary data contains every claim
submitted by the providers for the recipients and only claims of either “parent” code or “child” code was billed on days
where at least one “parent” was billed. Being able to restrict the data to only those that might be affected by the NCCI
combinations greatly reduces processing time.

Formats combined with the data step “where” option were chosen to efficiently and dynamically select only the
combinations where a “parent” code was present in the NCCI combinations. We first create the parent code and child
code formats dynamically $C_CODE and $P_CODE using CNTLIN option of PROC FORMAT. The primary data was
the subset with the “where” option as detailed below.

 where=(put(SERVICE_CODE,$P_CODE.)="Y") or
where=(put(SERVICE_CODE,$C_CODE.)="Y")

In order to select only claims with a parent code and a child code recoded on the same data for the same patient and
provider, we conditionally merged the data set onto itself by patient, provider and service date.

data dsn_claims;

merge claims(in=ina where=(put(service_code, $P_CODE.)="Y")

keep=patient_id provider_id service_date service_code)

 claims(in=inb

where=(put(SERVICE_CODE,$C_CODE.)="Y" or put(SERVICE_CODE, $P_CODE.)="Y"));

by patient_id provider_id service_date;

if ina and inb;

run;

PostersSAS Global Forum 2009

3

After the self-merge, the subset data now only contain claims where any NCCI parent and any NCCI child code have
been billed on the same day. The remainder of the process must identify any specific NCCI parent child combinations
that are present.

De-Normalization / Transposing
After selecting all the claims with interested service code, the next step is to transpose all the services performed on each
recipient each day by each provider onto a single record. PROC TRANSPOSE could restructure data as needed, but it
would require extensive renaming and multiple readings of the data. Therefore we chose to use arrays in the data step to
de-normalize the data. This powerful and flexible tool allows us to de-normalize the data and process the data within the
same data step so that only one read of the data is required.

The following is an example of the data prior to the transposition. There are four claim records for the same recipient
(87654888) by the same provider (090151) on the same day (9/30/2004). This data needs to be placed into a single
record/row/observation to facilitate processing. However, until the data is processed, it is impossible to know the
maximum number of claims on a given day. Based on past experience, the maximum number of such claims will be
between twenty and forty, but normally in the high twenties.

Recipient _ID PROVIDER_ID SERVICE_CODE SERVICE_DATE AMOUNT
87654888 090151 59400 9/30/2004 $148.00
87654888 090151 59425 9/30/2004 $11.00
87654888 090151 59426 9/30/2004 $11.00
87654888 090151 59400 9/30/2004 $11.00

After de-normalization, the data will look like the following. The maximum number of elements in the array will be
equal to the maximum number of NCCI related claims submitted by the same provider for the same recipient on the same
day. Other than the de-normalization, the values of the data are unchanged.

S1 S2 S3 S4 S0 a1 a2 a3 a4
Recipient
_ID

SERVICE
_DATE

PROVIDER
_ID

59400 59425 59426 59426 59400

$148

$11

$11

$11 602060888 9/30/2004 090151

The RETAIN statement is a tool to allow SAS® to hold onto the values from prior observations. This is necessary to
process claims that are spread over multiple records.

This following code illustrates how the data step de-normalization or transpose is done. Data is first sorted by all criterion
variables RECIPIENT _ID PROVIDER_ID SERVICE_DATE SERVICE_CODE. And then the FIRST automatic
variable is invoked iteratively, for RECIPIENT _ID, to initialize the counters for each recipient. A counter variable is
created to track all criterion variables, with the incrementing of the rest of criterion variables on the values of variable
RECIPIENT _ID. The counters, SERVICE_CODE, and AMOUNT are retained for each service. The maximum
positions of the one- Dimensional array A{} M{} or S{} are dynamically assigned in a macro variable (&max).

PostersSAS Global Forum 2009

4

data fmt_dsn;

 length S1-S&max. $7. m1-m&max. $2. ;

 retain S1-S&max. m1-m&max. a1-a&max. count 0;

set temp;

by RECIPIENT _ID PROVIDER_ID SERVICE_DATE SERVICE_CODE ;

array S(*) S1-S&max.;

array A(*) A1-A&max.;

array M(*) M1-M&max.;

/** set all values to missing for each new set of criteria **/

if first.SERVICE_DATE then

do i = 1 to dim(s);

 S(i) = ' '; /** service code **/

 A(i) = .; /** amount **/

 M(i) = ' '; /** modification codes **/

 count = 0; /** incremental counter **/

 end;

count = count + 1;

A(count) = AMOUNT;

S(count) = SERVICE_CODE;

/** output only the last record that contains cumulative information **/

if last.SERVICE_DATE or count = dim(s) then output;

It is important to use the correct maximum value for the arrays. If the value is too low, important information will be
lost. If the value is too high, resources will be wasted and the processing time will be extended. If the elements in the
array do not match the data elements present, then an error will result and the process will fail. The solution is to
calculate the correct value each time data is processed and to apply that value to the maximum number of elements in the
arrays. While it does require an additional reading of the data, the data is restricted to only the by variables.

data cnt_dsn;

retain count pcount 0;

set dsn (keep = RECIPIENT _ID PROVIDER_ID SERVICE_DATE SERVICE_CODE);

by RECIPIENT _ID PROVIDER_ID SERVICE_DATE SERVICE_CODE;

if first. SERVICE_DATE then do;

count = 0; pcount = 0;

end;

count = count + 1;

if first.PROVIDER_ID then pcount = pcount + 1;

if last. SERVICE_DATE and pcount > 1 then output;

run;

PostersSAS Global Forum 2009

5

/** create a macro variable with the maximum number of claims **/

proc sql;

select max(count) into: mc from temp;

quit;

%let max=%sysfunc(compress(&mc));

UNBUNDLING IDENTIFICATION

With the data properly formatted, the next step is to compare all possible combinations of the claims data in the primary
data set to the NCCI combinations and to identify any claims that match. The first inclination was to use PROC SQL.
While the code for a SQL join was written quickly; the cross table condition EFFECTIVE_DATE < SERVICE_DATE <
DELETE_DATE did not allow SAS to optimize the process internally. The result was that this relatively simple SQL
statement proved to be very time-consuming for a relatively small amount of data. In the anticipation that much larger
data would be processed, we had to look for an alternative. For various reasons we chose to utilize the data step
augmented by functions and formats.

One advantage of SQL is the ability to apply a Cartesian join to compare multiple data elements in multiple data sources.
This is not a task normally performed in the data step merge. Hashing was an alternative, but because of the number of
diverse users anticipated we preferred code that was fairly simple, easier to explain and more flexible.

The solution was to eliminate the complexity of matching multiple data elements by concatenating the NCCI
combinations into a single variable. A format was then created from the unique “parent” and “child” combinations
($PC_CODE). A Do Loop was then used to cycle through all values to identify any parent codes present, concatenate
that parent code with all other codes to match the format of the NCCI codes and finally to use the format to determine if
the claims submitted matched any of the NCCI codes.

do i = 1 to dim(PC);

 if put(S(i), $P_CODE.) = "Y" then PARENT= S(i);

end;

/** if a parent code is present, create all possible PC combinations */

if PARENT not in ("") then

 do i = 1 to dim(PC);

 if S(i) not in ("") then PC(i) = compress(PARENT ||"_"||S(i));

/** if any of the combinations match the NCCI format, output the values **/

if put(PC(i), $PC.) = "Y" then do;

 COL_1 = scan(PC(i),1,"_");

 COL_2 = scan(PC(i),2,"_");

/** only output values where a match was found **/

 output;

 end;

/** reset counter for array **/

count = 0;

PostersSAS Global Forum 2009

6

To “kill two birds with one stone,” we were able to combine the data step transpose and unbundling identification into a
single data step to decrease processing time.

The final step of the process is to document the finding. It is important to record the “by group” variables such as the
recipient, provider and date of service. Parent and child code combinations as well as the amount of payments should
also be reported. The result is a simple report that identifies unbundled claims and the associated overpayments.

CONCLUSION

To summarize, we used a combination of tools to complete the task. For the sake of space and time, not everything was
discussed in the paper, but sufficient information was given to reproduce the process. While alternative solutions are
possible, the solution provided is accurate, efficient, flexible and fairly easy to understand.

• SQL was used to determine the maximum position value of the array.
• Macros parameterize the entire process.
• Formats create efficient look up tables of parent, child and parent child combinations.
• WHERE is used to subset the data keeping only the data required.
• Arrays are used to de-normalize the data and to facilitate the searching.
• DO Loops process the arrays for all combinations of parent and child codes.
• Functions are used throughout to enable or enhance each process.

CONTACT INFORMATION

Your comments and questions are valued and encouraged. Contact the authors at:

Author Name: Gary McQuown and John Zheng
 Company: Data and Analytic Solutions, Inc.
 Address: 3057 Nutley Street, #602
 Fairfax, VA 22031
 Emails: McQuown@DASconsultants.com and JZheng@DASconsultants.com
 Web: www.DASconsultants.com
The authors would like to acknowledge the Medicaid Integrity Program staff at Centers for Medicare & Medicaid
Services and Dr. Dawn Li for their support.

SAS and all other SAS Institute Inc. product or service names are registered trademarks or trademarks of SAS Institute Inc. in the USA

and other countries. ® indicates USA registration.

Other brand and product names are trademarks of their respective companies.

Copyright © 2008. All rights reserved.

PostersSAS Global Forum 2009

7

APPENDIX

A1. NCCI table

M_CODE C_CODE MODIFIER SOURCE EFFECTIVE_DATE DELETE_DATE
59400 C8950 1 ocecce07v132 1/1/2006 12/31/2006
59400 C8952 1 ocecce07v132 1/1/2006 12/31/2006
59400 0021T 1 ocecce07v132 1/1/2003 12/31/2006
59400 36000 1 ocecce07v132 10/1/2002
59400 36410 1 ocecce07v132 10/1/2002
59400 37202 1 ocecce07v132 10/1/2002
59400 51701 1 ocecce07v132 1/1/2003
59400 51702 1 ocecce07v132 1/1/2003
59400 57720 1 ocecce07v132 1/1/1997
59400 58800 1 ocecce07v132 1/1/1997
59400 59050 0 ocecce07v132 1/1/1996
59400 59051 0 ocecce07v132 4/1/2002
59400 59200 0 ocecce07v132 4/1/1997
59400 59300 0 ocecce07v132 4/1/2003
59400 59414 0 ocecce07v132 1/1/1997
59400 62311 0 ocecce07v132 7/1/2003
59400 62318 1 ocecce07v132 10/1/2002
59400 62319 1 ocecce07v132 10/1/2002
59400 64415 1 ocecce07v132 10/1/2002
59400 64416 1 ocecce07v132 1/1/2003
59400 64417 1 ocecce07v132 10/1/2002
59400 64430 0 ocecce07v132 7/1/2003
59400 64435 0 ocecce07v132 7/1/2003
59400 64450 1 ocecce07v132 10/1/2002
59400 64470 1 ocecce07v132 10/1/2002
59400 64475 1 ocecce07v132 10/1/2002
59400 64483 0 ocecce07v132 7/1/2003
59400 69990 0 ocecce07v132 6/5/2000
59400 81000 0 ocecce07v132 7/1/2007
59400 81002 0 ocecce07v132 7/1/2007
59400 90760 1 ocecce07v132 1/1/2006
59400 90765 1 ocecce07v132 1/1/2006
59400 90772 1 ocecce07v132 1/1/2006
59400 90774 1 ocecce07v132 1/1/2006
59400 90775 1 ocecce07v132 1/1/2006

A2. CODE: MK_FMT

%macro mk_fmt (dsn=, start=,label=, fmtname=, type=C, Library=work, Other=OTHER);

/** mk_formats.sas

To: Create a format from a SAS data set.

Parms:

DSN

PostersSAS Global Forum 2009

8

START =Unique key value ie. SSN

LABEL =Value to be associated with start ie. Full Name with SSN

FMTNAME =Name of Format (sans "."), must be seven or less in length

TYPE = C or N for Character or Numeric

Library =libname of Format Library (default =work)

Other =Value to supply for missing (default =OTHER)

By: wwww.DASconsultants.com

**/

/** note: the following should be used: options fmtsearch=(fmtlib) nofmterr; **/

DATA temp1 ; set &dsn end=last;

 if missing(&start) then delete;

 start =trim(left(&start.));

 fmtname ="&fmtname.";

 type ="&type.";

 label =&label;

 output;

 if last then

 do;

 start = "OTHER";

 %if &type = C %then label = "&OTHER"; %else label = . ; ;

 output;

 end;

 keep start fmtname type label;

run;

proc sort data=temp1 nodupkey; by start; run;

proc format cntlin=temp1 library=&library; run;

%mend mk_fmt ;

PostersSAS Global Forum 2009

9

A3. CODE: SAME DAY UNBUNDLING

/***

**

NAME: OT_MD_UB COMPREHENSIVE UNBUNDLING MOD=0

BY: www.DASconsultants.com

VERSION: 1.2

DATE: 01/15/2008

CATEGORY: Unbundling

STATE: US

**

**/

%macro OT_MD_UB_COMP_UNBUNDLING0 (st,DSN, out=F:\REPORTS\&ST.\OT);

/** CC_ALL contains all NCCI CPT codes. **/

data cc_all;

 length MC $11.;

 set tp.cc_ot (where=(MODIFIER in ("0")));

 if DELETE_DATE = . then DELETE_DATE = "&sysdate"d;

 MC = compress(PARENT_CODE||"_"||CHILD_CODE);

run;

/** Create a format for quick retrieveal. **/

%mk_fmt (dsn=cc_all, start=PARENT_CODE,label="Y", fmtname=UBA, type=C,

Library=work, Other=OTHER);

%mk_fmt (dsn=cc_all, start=CHILD_CODE,label="Y", fmtname=UBB, type=C,

Library=work, Other=OTHER);

%mk_fmt (dsn=cc_all, start=MC,label="Y", fmtname=MC, type=C, Library=work,

Other=OTHER);

%mk_fmt (dsn=cc_all, start=MC,label=EFFECTIVE_DATE, fmtname=E_DATE, type=C,

Library=work, Other=.);

%mk_fmt (dsn=cc_all, start=MC,label=DELETE_DATE, fmtname=D_DATE, type=C,

Library=work, Other=.);

/** process only data that contains potentially bundled service codes **/

proc sort data=&st..&st.ot&dsn

 (where=(put(SERVICE_CODE, $UBA.) ="Y" or put(SERVICE_CODE, $UBB.) ="Y"))

 out=claims_pc;

by PATIENT_ID PROVIDER_ID SERVICE_DATE SERVICE_CODE;

run;

PostersSAS Global Forum 2009

10

/**keep claims where any NCCI parent and any NCCI child code have been billed on

the same day**/

data claims;

retain count 0;

merge claims_pc(in=ina where=(put(SERVICE_CODE, $P_CODE.)="Y")

 keep=PATIENT_ID PROVIDER_ID SERVICE_DATE

SERVICE_CODE)

 claims_pc(in=inb);

by PATIENT_ID PROVIDER_ID SERVICE_DATE SERVICE_CODE;

if ina and inb;

if first.SERVICE_DATE then count = 0;

count = count + 1;

run;

/** determine the max number of OB services per recipient **/

proc sql;

select max(count) into: mc from claims;

quit;

%let max=%sysfunc(compress(&mc));

/** Data Normalization & Unbundling Identification**/

data claims_norm(keep = S1-S&max. M1-M&max. A1-A&max. MC1-MC&max.

PARENT PATIENT_ID PROVIDER_ID SERVICE_DATE PARENT_CODE CHILD_CODE

EFFECTIVE_DATE DELETE_DATE);

length S1-S&max. $7. m1-m&max. $2. MC1-MC&max. $11.;

retain S1-S&max. ;

retain M1-M&max. ;

retain count a1-a&max. 0;

set claims(where=(ADJUSTMENT_INDICATOR = "0")) ;

by PATIENT_ID PROVIDER_ID SERVICE_DATE SERVICE_CODE ;

array S(*) S1-S&max.;

array A(*) A1-A&max.;

array M(*) M1-M&max.;

array MC(*) $ MC1-MC&max.;

*array initialization;

if first.SERVICE_DATE then do i = 1 to dim(s);

 s(i) = ' ';

 a(i) = .;

 m(i) = ' ';

PostersSAS Global Forum 2009

11

 count = 0;

end;

* Data Normalization;

count = count + 1;

S(count) = SERVICE_CODE;

A(count) = MEDICAID_AMOUNT_PAID;

M(count) = SERVICE_CODE_MOD;

*Unbundling Identification;

if last.SERVICE_DATE or count = dim(s) then

do;

 *indentify the parent_code;

 do i = 1 to dim(MC);

 if put(S(i), $UBA.) = "Y" then PARENT= S(i);

 end;

 *indentify the valid parent-child code pair;

 if PARENT ^= "" then do i = 1 to dim(MC);

 if S(i) not in ("") then MC(i) = compress(PARENT||"_"||S(i));

 if put(MC(i), $MC.) = "Y" and

 put(MC(i), $E_DATE.) <= SERVICE_DATE < put(MC(i), $D_DATE.)

 then

 do;

 PARENT_CODE = scan(MC(i),1,"_");

 CHILD_CODE = scan(MC(i),2,"_");

 EFFECTIVE_DATE = put(MC(i), $E_DATE.);

 DELETE_DATE = put(MC(i), $D_DATE.);

 output;

 end;

 count = 0;

 end;

end;

run;

/** calculate OVERPAYMENT **/

data &st..&st.ot&dsn._ub_comp ;

retain VALID_MOD OVERPAY_MOD;

set claims_norm;

array S(*) S1-S&max.;

PostersSAS Global Forum 2009

12

array A(*) A1-A&max.;

array M(*) M1-M&max.;

do i = 1 to dim(S);

 if s(i) = CHILD_CODE then do; OVERPAYMENT = a(i); OVERPAY_MOD=M(i); end;

 if s(i) = PARENT_CODE then VALID_MOD = M(i);

end;

if OVERPAYMENT <= 0 then delete;

run;

%mend OT_MD_UB_COMP_UNBUNDLING0;

PostersSAS Global Forum 2009

	2009 Table of Contents

