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ABSTRACT

With over 137,000 students and 156 schools, the Wake County Public School System (WCPSS) is the largest in North
Carolina and the eighteenth largest in the United States. Each year, WCPSS faces the problem of assigning students
to schools, using multiyear student population forecasts. The main goals are to reduce county-wide: socioeconomic
imbalance among neighborhood schools, overcrowding, travel time, and the number of students reassigned to different
schools from year to year.

These goals must be achieved while adhering to numerous constraints, which include limits on student demographics
by region, limits on school-specific capacities, and the observance of predetermined special assignments. WCPSS
needed to automate this previously manual assignment process in order to efficiently evaluate different policies and
decisions and quickly propose new assignments.

Using the SAS/OR OPTMODEL procedure, we developed an optimization engine to solve this problem. We used SAS®

Grid Manager to generate multiple solutions for analysis and SAS/GIS® to visualize the recommended assignments
on county geographical maps. Throughout the analysis, we used JMP® for design of experiments and visualization of
optimization results. This presentation explores the formulation and solutions of our approach.

INTRODUCTION

Every year, WCPSS faces the task of deciding how to assign students to schools. To simplify both the problem and the
resulting solution, WCPSS has partitioned the county into 1,302 geographical areas called nodes. Each node, rather
than each individual student, is assigned to a school. As a further simplification, we solve three separate assignment
problems, one for each grade level (elementary, middle, and high). However, we are exploring ways to handle so-called
“feeder patterns” that attempt to provide more continuity from one grade level to the next. A further complication is that
elementary and middle schools in WCPSS have one of two calendar options: traditional (August–June) or year-round.
WCPSS actually provides two assignments for each node: a “base” assignment with one calendar option, and an
“alternative” assignment to a school with the other calendar option. Under certain circumstances, a student can elect to
attend the alternative school instead of the base school, in which case the county no longer provides transportation for
that student. The problem described here is only the base assignment, and the calendar option of a particular school
affects only the school’s capacity. Although the tool provides results for all three grade levels, for the sake of brevity we
show results only for high schools.

WCPSS has several metrics to gauge the quality of a particular assignment in addition to several rules that every as-
signment must satisfy. Until now, WCPSS has relied on intuition and time-consuming ad hoc methods to determine
assignments. They wanted a more automated process to recommend good assignments quickly, while still maintain-
ing control over the final decisions. Due to the size of the problem and the numerous interrelated constraints, even
determining whether a feasible assignment exists is nontrivial, and finding one of good quality is an additional chal-
lenge. Fortunately, this constrained decision problem can be formulated as a mixed integer linear programming (MILP)
problem and solved using the MILP solver available in SAS/OR software.

METHODOLOGY

We used the OPTMODEL procedure to read the data from SAS data sets, formulate the problem, call the MILP solver,
implement customized heuristics to reduce computation time, and output the solution to SAS data sets. In this section,
we describe the decision variables, objectives, and constraints that define the MILP problem. We also provide source
code examples for the corresponding statements in PROC OPTMODEL.
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DECISION VARIABLES

Although WCPSS has traditionally made assignments one year at a time, they want to devise a multiyear plan so that
parents have a better sense of what to expect more than one year in advance. The main decision variables are binary
variables that determine the assignment of nodes to schools for each year in the planning horizon. We use the term
period to refer to the school year indexed from the current year, as in Table 1.

Table 1 Periods

School Year Period ID

2007–08 0
2008–09 1
2009–10 2
2010–11 3

For the current school year, say 2007–08, the period is p D 0 and assignments are already fixed. Our optimization
model determines assignments for periods p > 0. Explicitly, Assign Œn; s; p� D 1 if node n is assigned to school s in
period p, 0 otherwise. The values of these variables completely determine the solution, but defining several classes of
auxiliary variables turns out to be useful.

The algebraic modeling language implemented in PROC OPTMODEL makes the conversion from mathematical ex-
pressions to the corresponding SAS code transparent. For example, the declaration of Assign Œn; s; p� is as follows:

var Assign {<n,s,p> in NODE_SCHOOL_PERIOD} binary;

Here, NODE_SCHOOL_PERIOD is an index set of triples hn; s; pi, declared and populated using the PROC OPT-
MODEL SET and READ DATA statements:

set <str,str,num> NODE_SCHOOL_PERIOD;
read data Node_school_period into NODE_SCHOOL_PERIOD=[Node_ID School_ID Period_ID];

Because of upper bounds on travel time, not every node is eligible to be assigned to every school. Note that the
preceding statements take advantage of this structure by using the PROC OPTMODEL sparse representation to create
an efficient optimization model. An alternative approach would be to use the dense representation

var Assign {n in NODES, s in SCHOOLS, p in PERIODS} binary;

and then use the PROC OPTMODEL FOR and FIX statements to eliminate ineligible assignments:

for {n in NODES, s in SCHOOLS, p in PERIODS: distance[n,s,p] > max_distance}
fix Assign[n,s,p] = 0;

But the sparse approach is more efficient because we never create the unnecessary variables in the first place.

Because rapid population growth has outpaced new school construction in certain areas of the county, some schools will
become overcrowded. CapacityFactor Œs; p� is the amount by which school s is underpopulated (<1) or overpopulated
(>1) in period p. MinCapacityFactor Œp� and MaxCapacityFactor Œp� are the minimum and maximum values, respectively,
of CapacityFactor Œs; p� across all schools s.

One of the goals of WCPSS is to balance regional school populations with respect to socioeconomic attributes.
Here we consider two such attributes: school population proportion of free and reduced lunch (F&R) and low En-
glish proficiency (LEP) students. The methodology can be generalized to any number of arbitrarily defined attributes.
Proportion Œa; s; p� is the proportion of students with attribute a assigned to school s in period p. MinProportion Œa; r; p�

and MaxProportion Œa; r; p� are the minimum and maximum proportions, respectively, of Proportion Œa; s; p� across all
schools s in region r . Table 2, Table 3, and Table 4 summarize the attributes, schools, and regions considered in the
Wake County problem. The data in these tables can be stored in SAS data sets and read by PROC OPTMODEL using
one READ DATA statement per data set.
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Table 2 Attributes

Attribute Attribute ID

Free and reduced lunch F&R
Low English proficiency LEP

Table 3 WCPSS High Schools

School Name School ID

APEX HIGH 316
ATHENS DRIVE HIGH 318
BROUGHTON HIGH 348
CARY HIGH 368
EAST WAKE HIGH 411
ENLOE HIGH 412
FUQUAY-VARINA HIGH 428
GARNER HIGH 436
GREEN HOPE HIGH 441
HOLLY SPRINGS HIGH 455
KNIGHTDALE HIGH 466
LEESVILLE ROAD HIGH 473
MIDDLE CREEK HIGH 495
MILLBROOK HIGH 500
PANTHER CREEK HIGH 526
SANDERSON HIGH 552
SE RALEIGH HIGH 562
WAKE FOREST HIGH 588
WAKEFIELD HIGH 595
HERITAGE HIGH H2
TBD H6

Table 4 WCPSS Regions

Region High Schools in Region

North 588, 595, H2, H6
Far East 411
Near East 466
South-East 436, 562
South-West 428, 455, 495
West-South 316, 368
West-North 441, 526
North-West 473
North Raleigh 500, 552
Central 318, 348, 412

Finally, reassigning a node from one school to another school is generally undesirable (for example, because it can
separate students from their friends). To track such a change in assignment, define binary variable Change Œn; p� D 1

if node n is assigned to different schools in periods p � 1 and p, 0 otherwise.

OBJECTIVES

The four main goals are to reduce travel time, overcrowding, socioeconomic imbalance among neighborhood schools,
and the number of students reassigned to different schools from year to year. These goals are expressed mathemat-
ically by the following objective functions, where population Œn; p� is the number of students in node n in period p and
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distance Œn; s; p� is the distance (or travel time) from node n to school s in period p. (Note the convention that data
parameter names appear in lower case and decision variable names are capitalized.)

AverageDistance D

P
n;s;p population Œn; p� distance Œn; s; p� Assign Œn; s; p�P

n;p population Œn; p�
(1)

CapacityDeviation D

X
p

.MaxCapacityFactor Œp� � MinCapacityFactor Œp�/ (2)

AttributeImbalance D

X
a;r;p

.MaxProportion Œa; r; p� � MinProportion Œa; r; p�/ (3)

Displacement D

X
n;p

population Œn; p� Change Œn; p� (4)

The AverageDistance objective function is straightforward. CapacityDeviation measures the difference between the
largest and smallest CapacityFactor; so minimizing this objective function has the effect of spreading the overcrowding
more equally across schools. AttributeImbalance plays a similar role in balancing attributes across schools within a
region. Finally, Displacement counts the number of students who are reassigned from one school to another.

In PROC OPTMODEL, objectives are declared using the MIN or MAX keyword. For example, the declaration of Aver-
ageDistance is as follows:

min AverageDistance
= sum{<n,s,p> in NODE_SCHOOL_PERIOD} population[n,p]*distance[n,s,p]*Assign[n,s,p]

/ (sum{<n,p> in NODE_PERIOD} population[n,p]);

To solve this optimization problem with multiple competing objectives, we take the classical approach of minimizing a
weighted sum of all four objectives (each scaled to be between 0 and 1), with weights chosen by the user to reflect the
relative importance of each objective with respect to the others. By adjusting the weights, the user can steer the solver
in a different direction if a specified set of weights yields a solution that favors one objective too strongly.

CONSTRAINTS

The constraints express both the rules that must be satisfied and also the relationships among variables in mathematical
terms. X

s

Assign Œn; s; p� D 1 for n; p (5)

Change Œn; p� � Assign Œn; s; p� � Assign Œn; s; p � 1� for n; s; p (6)X
n

population Œn; p� Assign Œn; s; p� D capacity Œs; p� CapacityFactor Œs; p� for s; p (7)

MinCapacityFactor Œp� � CapacityFactor Œs; p� � MaxCapacityFactor Œp� for s; p (8)X
n;p

Change Œn; p� � 1 for n (9)

Proportion Œa; s; p� D

P
n;s;p attributePopulation Œn; a; p� Assign Œn; s; p�P

n;s;p population Œn; p� Assign Œn; s; p�
for a; s; p (10)

MinProportion Œa; r; p� � Proportion Œa; s; p� � MaxProportion Œa; r; p� for r; a; s; p (11)

Constraint (5) forces each node to be assigned to exactly one school in each period. Constraint (6) forces
Change Œn; p� D 1 if node n is assigned to different schools in periods p � 1 and p. Constraint (7) defines
the CapacityFactor Œs; p� variable as a ratio of the school’s population to its capacity. Constraint (8) defines
MinCapacityFactor Œp� and MaxCapacityFactor Œp�. Constraint (9) prohibits a node from being reassigned more than
once within the total time horizon. Constraint (10) defines Proportion Œa; s; p� as the ratio of students having attribute
a at school s in period p. We modeled this nonlinear constraint with a sequence of linear approximations that yield a
solution that satisfies (10). Constraint (11) defines MinProportion Œa; r; p� and MaxProportion Œa; r; p�.

In PROC OPTMODEL, constraints are declared using the CON keyword. For example, the declaration of constraint (5)
is as follows:
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con SumAssign_n_p {<n,p> in NODE_PERIOD: p > 0}:
sum{s in SCHOOLS_n_p[n,p]} Assign[n,s,p] = 1;

Note that the index set for the constraint includes the condition p > 0 so that the optimization model does not include
trivially redundant constraints when p D 0.

In addition to these constraints, the optimization model contains lower and upper bounds on decision variables. For
example, no school can be more than 30% percent over or under capacity. So 0:7 � CapacityFactor Œs; p� � 1:3,
although the model allows these bounds to take different values for each school-period combination. Similarly, each
region’s attribute proportions can be subject to hard bounds, such as 0:05 � Proportion Œa; s; p� � 0:2. That is, the
proportion of students having attribute a and assigned to school s in period p must be between 5% and 20%.

SOLUTION ANALYSIS
OBJECTIVE WEIGHTS

Given that four distinct objectives must be weighted against one another, a question that arises is how to choose the
corresponding coefficient values. Determining appropriate weights for the objective function is difficult because the
numerical meaning of the coefficients is only vaguely defined and we start with no guidance about how to choose the
correct values. In fact, we are interested only in the relative proportions of these coefficients to each other (for example,
multiplying all coefficients by a scalar value has no impact on the final solution).

The answer to this question is that one should not focus on the objective value itself, but should rather explore the space
of combinations of (appropriately bounded and scaled) four-coefficient vectors. In the case of two-objective optimiza-
tion, efficiency frontiers are often used to visualize and explore the data. With four objectives, however, visualization
and exploration require an expanded tool set. We describe how we use JMP® software to help us understand the
space of objective weights.

Every “run” of the optimization with specified objective weights can be seen as an experiment, and our task is to design
a set of such experiments so that we cover a good portion of the space in which they are defined with reasonable com-
putational requirements. We can accomplish this by making use of the Design of Experiments (DOE) capability of JMP
software. To capture only the relative proportions of the weights, we force their values to add up to 100%, which means
that we are interested in a “mixture”-type DOE. For the greatest flexibility in designing our experiments, we choose
a Custom Design with mixture factors for all four weights: school capacity deviation (W_cap), student displacement
(W_disp), average distance (W_dist), and regional attribute imbalance (W_imb). We restrict the values to be at least
5% in order to never completely neglect any objective. Since we expect at least a three-way interaction, we choose
to model our outputs with all four main effects and a Scheffé cubic model, which yields 20 distinct experimental runs.
In addition to this set of experiments, we expand our exploration of the parameter space by appending 130 additional
runs with weight values that are randomly generated (and scaled to sum to 100%). For the randomly generated set, we
relax our minimum weight requirement on each objective to be possibly as low as 1%. This provides us with a total of
150 combinations of the four objective weights.

Having obtained our collection of weight combinations, we are free to proceed and run all 150 experiments (optimiza-
tions) sequentially. However, each of these runs is completely independent. For situations such as this, SAS/GRID
provides a powerful, easy-to-use capability that enables us to run all 150 optimizations simultaneously (in parallel).
Since each run is very computationally intensive (each optimization can take more than an hour to complete), the gains
are significant.

The runs are performed on a grid of 150 identical 64-bit, 2.33GHz Intel Xeon processors with 16GB RAM, using the
SAS Grid Manager %Distribute macros (GridDistribute.sas).

SAMPLE SOLUTIONS

The optimization tool presented here generates a three-year (period) assignment plan for the school years 2008–09,
2009–10, and 2010–11. For each of the three periods, each of the county’s 1,302 nodes is assigned to exactly one of
the 21 high schools. As described earlier, the aim is to minimize a weighted combination of school capacity deviation,
student displacement, average travel distance, and attribute imbalances. Table 5 shows the first 15 (of 150) runs,
with respective weights, run times, optimality bound gap, total displacement of students over the three-year proposal
horizon, and average distance of travel in the solution.
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Table 5 Results: High Schools

Run # W_cap W_disp W_dist W_imb Run Time (s) B Gap Tot Disp Avg Dist

1 0.05 0.63 0.27 0.05 2121 2% 2,426 3.2
2 0.08 0.49 0.38 0.05 1713 1% 2,516 3.2
3 0.05 0.71 0.21 0.03 1788 2% 2,560 3.2
4 0.09 0.8 0.06 0.05 1912 3% 2,633 3.3
5 0.07 0.57 0.32 0.04 1875 3% 2,642 3.2
6 0.16 0.69 0.14 0.01 2515 3% 2,686 3.2
7 0.06 0.68 0.1 0.16 2290 4% 2,744 3.2
8 0.05 0.85 0.05 0.05 1949 4% 2,778 3.2
9 0.02 0.7 0.03 0.25 2842 3% 2,833 3.2

10 0.05 0.63 0.05 0.27 1553 3% 2,887 3.2
11 0.14 0.36 0.43 0.07 1799 3% 2,911 3.2
12 0.27 0.43 0.26 0.04 2149 3% 2,917 3.2
13 0.05 0.27 0.63 0.05 1568 3% 2,925 3.2
14 0.27 0.63 0.05 0.05 2338 4% 2,947 3.3
15 0.25 0.45 0.23 0.07 2217 3% 2,956 3.2

Total computational time (the time required if running sequentially) is approximately six days, whereas clock time (the
actual time needed for the full computation on the grid) is approximately three hours (approximately the time required
for the longest-running job). This illustrates the type of performance gains that are possible with this type of setup and
SAS Grid Manager. The median run time of the optimization model is 40 minutes.

The column labeled “B Gap” in Table 5 represents the optimality bound gap, defined as the percent difference between
the solution objective when the model stopped its run and its best lower bound known at termination. It is best thought
of as a certificate of optimality. In the full set of solutions, the model’s outputs show a median optimality gap of 5% with
a standard deviation of 3%. We assume this to be acceptable for our purposes, but higher accuracy can be attained at
the expense of longer run times.

Suppose that student displacement is one of the most important factors that constrain node-school reassignments.
Table 5 displays results in ascending order of total student displacement over the three-year planning period. Inter-
estingly, the table shows that the run with the highest W_disp ranks eighth on the list (rather than first), since we
have ordered by increasing displacement. This is attributed to the fact that we are solving mixed integer nonlinear
programming problems, and local minima might trap our solution from a global minimum.

However, Figure 1 shows that this effect is not severe in the sense that we successfully influence the model to act,
in general, according to the weight selection inputs. Again, this is another situation where accuracy can be improved
at the expense of computational time. In fact, weights greater than 0.4 seem to cause the displacement objective to
dominate the solution, overriding the effect of other weights.

Figure 2 is a more comprehensive illustration of the effect of weights on targeted objective terms. The diagonal plots
show that the overall impact of weight variation is achieved. Off-diagonal plots show that secondary effects lead to
interesting behavior in some instances. For example, as the W_disp is reduced, leading to greater displacement of
students, drastic improvements in school capacity deviation and average travel distance are possible.

The question might arise of whether solutions exist that improve distance traveled and capacity deviations while re-
maining in the insensitive area of student displacement of weights greater than 0.4. Unfortunately, Figure 2 indicates
otherwise. We have used the JMP highlight feature to show that even allowing for W_disp values as low as 0.3 (so that
Max_p_displacement stays within approximately 2,000 students), the highlighted points have relatively high capacity
deviations. The highlighted points also have relatively low average distance, but we are unable to explore the significant
gains that would enable us to reduce average distance values below 3.2 miles. It seems appropriate to conclude that
following a status-quo policy (of minimal school reassignment) favors the distance objective to the detriment of school
capacity deviation.
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Figure 1 Total Displacement versus W_disp

Figure 2 Objective Values versus Weights
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FURTHER EXPLORATION OF PROPOSALS

For the purpose of this discussion, we assume that maintaining status-quo assignments benefits the solution. Explo-
ration of the results enables us to select a small subset of runs for further investigation. Figure 3 shows that we can
focus on the insensitive portion of the displacement objective weight W_disp (greater than 0.3) and still find points of
relatively low average distance and capacity deviation that were originally highlighted in Figure 2. Four such points
were found using JMP software, and they are shown in Figure 3.

Figure 3 Objective Values versus Weights, with Selected Points for Table 6

Table 6 presents additional information for the selected optimization runs. The table shows the weights used as inputs to
the model and the following outputs: average distance traveled, maximum difference between capacity factors among all
schools (�Cp , for periods p D 0; 1; 2; 3), except schools that are introduced in p > 0 (H2 and H6), and the displacement
of students (Dp , for p D 1; 2; 3). We note that because period p D 0 is data read into the problem, all �C0 values are
equal (these values correspond to the current assignments, which are not subject to change).

Table 6 Results: High Schools, Selected Points from Figure 3

W_cap W_disp W_dist W_imb Avg Dist �C0 �C1 �C2 �C3 D1 D2 D3

0.33 0.31 0.15 0.21 3.3 39% 16% 17% 35% 1,144 289 1,930
0.32 0.32 0.05 0.32 3.3 39% 17% 16% 36% 1,487 270 1,940
0.32 0.32 0.32 0.05 3.2 39% 17% 14% 41% 786 635 2,002
0.33 0.42 0.13 0.12 3.2 39% 18% 17% 48% 933 210 2,062

Not surprisingly, Table 6 shows that solutions that aim to minimize school capacity deviation and retain the status-
quo are heavily weighted in these objectives (over 64% of the weight is placed on these). However, what is perhaps
surprising is the relative insensitivity to weights placed on distance, especially since all the results in Table 6 show good
values of around 3.2 to 3.3 miles. This relative insensitivity to weights placed on distance gives us a certain amount
of flexibility in choosing our solution. If we are interested in exploring a solution that achieves less school capacity
deviation, the first row (W_cap=33, W_disp=31, W_dist=15, W_imb=21) seems promising. On the other hand, if we
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are interested in exploring a solution that achieves less disturbance over the years by restraining displacement, the last
row (W_cap=33, W_disp=42, W_dist=13, W_imb=12) seems more appropriate.

We could explore each of the solutions in Table 6 (among any others that similar analysis might identify as desirable)
as potentially good candidates by further investigating outputs of the optimization. For illustration, we focus on the last
solution in the table, which we refer to by its weights (W_cap=33, W_disp=42, W_dist=13, W_imb=12). Bear in mind,
however, that all of the outputs presented in Table 7 are immediately available upon completion of our parallel run for
all 150 solutions of our DOE.

By assigning 33% of the weight to the school capacity deviation objective, we expect a moderately balanced outcome
from the optimization. In any case, given that all 150 solutions are feasible, we expect school total population to
stay within prescribed bounds of 50% and 130% of capacity for all periods. Table 7 shows the total population as a
percentage of capacity of each high school over the next three periods.

Table 7 School Capacity Factors: High Schools (W_cap=33, W_disp=42, W_dist=13, W_imb=12)

School Name p D 0 p D 1 p D 2 p D 3

APEX HIGH 100.5% 104.9% 90.2% 98.5%
ATHENS DRIVE HIGH 108.8% 96.0% 91.2% 97.3%
BROUGHTON HIGH 106.5% 104.8% 107.4% 110.6%
CARY HIGH 78.3% 86.5% 90.1% 83.1%
EAST WAKE HIGH 91.8% 94.5% 103.9% 115.1%
ENLOE HIGH 97.1% 104.8% 106.2% 108.0%
FUQUAY-VARINA HIGH 102.9% 99.9% 95.7% 95.1%
GARNER HIGH 100.2% 87.7% 90.8% 102.7%
GREEN HOPE HIGH 102.9% 101.4% 98.6% 101.0%
HOLLY SPRINGS HIGH 95.8% 99.5% 97.4% 108.0%
KNIGHTDALE HIGH 92.1% 95.6% 107.6% 97.5%
LEESVILLE ROAD HIGH 114.5% 104.7% 105.9% 108.3%
MIDDLE CREEK HIGH 76.9% 86.4% 91.9% 96.7%
MILLBROOK HIGH 98.2% 98.2% 99.0% 85.5%
PANTHER CREEK HIGH 115.5% 102.5% 104.4% 114.8%
SANDERSON HIGH 98.3% 98.0% 100.7% 104.2%
SE RALEIGH HIGH 93.6% 103.5% 106.7% 109.1%
WAKE FOREST HIGH 78.0% 86.5% 100.3% 92.0%
WAKEFIELD HIGH 93.9% 94.3% 90.2% 67.4%
HERITAGE HIGH - - - 50.3%
TBD - - - 51.5%

Avg (excluding last two) 97.1% 97.4% 98.9% 99.7%
Std (excluding last two) 11.0% 6.6% 6.6% 11.9%

We see that feasibility is clearly achieved since all schools stay within the imposed bounds. Furthermore, by the 2009–
10 school year (p D 2), we achieve a much tighter distribution of school capacities than the current assignments: a
mean of 98.9% and standard deviation of 6.6% versus a mean of 97.1% and standard deviation of 11.0%. This result
comes despite the changing, uneven dynamics of population growth throughout the county. Note that a significant
disruption in the 2010–11 school year (p D 3) causes significant changes in deviations; two new schools, Heritage
High and one whose name is to be determined, come online. However, even then, all bounds are correctly observed,
and a mean of 99.7% capacity utilization with standard deviation of 11.9% (excluding the new schools) suggests that,
since it is an optimal solution, this is as good as we can expect for this selection of weights. We are free, however, to
improve this objective—most likely at the detriments of others—by increasing W_cap. This type of tradeoff analysis is
our recommendation of how to best make use of the proposed tool.

We recall that two socioeconomic attributes are considered here (F&R and LEP), and that one of our objectives is to
minimize the imbalance of these attributes between schools that belong to the same region, as defined in Table 4. Judg-
ing from our weights selection, the (W_cap=33, W_disp=42, W_dist=13, W_imb=12) solution seems to put relatively
low emphasis on region imbalance (12% of the weight). It is important then to investigate this aspect of the solution,
which is an output of the optimization run (and again, available for each of our 150 runs at completion).

Table 8 shows the (W_cap=33, W_disp=42, W_dist=13, W_imb=12) solution’s extreme values for F&R student pop-
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ulation proportions within each region of the county. The lower bound and upper bound columns show the desirable
hard bounds for each region; these are inputs to the problem (bounds can be determined by School Board policy, for
example). The remaining columns show, for each period, the F&R proportions: “min” for the school in the region with
the lowest proportion, and “max” for the school in the region with the highest proportion. Stated succinctly, one of our
objectives is to minimize the difference between these numbers for each region, but constrained by the lower and upper
bounds in the table. As a later table shows, the bounds can take different values for different attributes.

Table 8 Region Attribute F&R Extremes: High Schools (W_cap=33, W_disp=42, W_dist=13, W_imb=12)

Region lower upper p D 0 p D 0 p D 1 p D 1 p D 2 p D 2 p D 3 p D 3
bound bound min max min max min max min max

North 15.0% 40.0% 13.5% 17.5% 15.1% 16.8% 15.1% 16.7% 16.1% 16.9%
Far East 15.0% 40.0% 39.7% 39.7% 39.2% 39.2% 38.8% 38.8% 37.8% 37.8%
Near East 15.0% 40.0% 33.3% 33.3% 29.0% 29.0% 27.8% 27.8% 29.7% 29.7%
South-East 15.0% 40.0% 25.9% 33.9% 29.3% 34.7% 30.5% 34.8% 31.0% 34.3%
South-West 15.0% 40.0% 16.5% 20.8% 15.5% 19.9% 15.7% 20.4% 15.5% 20.3%
West-South 10.0% 40.0% 8.0% 20.9% 9.8% 21.7% 11.2% 22.0% 11.9% 22.2%
West-North 10.0% 40.0% 5.6% 8.4% 8.9% 9.1% 9.1% 9.2% 9.1% 9.7%
North-West 15.0% 40.0% 13.4% 13.4% 14.7% 14.7% 16.0% 16.0% 16.8% 16.8%
North Raleigh 15.0% 40.0% 24.3% 27.3% 25.8% 28.5% 27.5% 28.7% 28.6% 29.6%
Central 15.0% 40.0% 19.1% 25.3% 20.7% 23.7% 21.1% 24.8% 21.2% 24.9%

It is evident from Table 8 that schools in the North, West-South, West-North, and North-West regions currently (p D 0)
violate their lower bound requirements in F&R student proportions. The table also shows that, with one exception,
the (W_cap=33, W_disp=42, W_dist=13, W_imb=12) solution adequately brings regions to compliance by 2010–11
(p D 3). The exception mentioned is the West-North region, which is unable to do better than 9.1% F&R (the bound is
10%). Two important points should be made here. First, we note that despite violating the constraint, the final solution
is vastly improved from the current 5.6% value. Second, the tool is capable of providing a solution that is infeasible
but will do so only when necessary. The implication is that the tool has told us something important about our policy
decisions: the bounds imposed on the problem are too stringent. Either we can choose to accept the proposed solution
as “close enough” to the desirable bounds, or we can adjust our policy to adapt to this reality (by increasing the distance
that schools in the West-North region can serve, changing the lower bound on the region, incorporating other schools
in this region, and so on).

As described in Table 4, some regions (Far East, Near East, and North-West) contain only one school. Therefore, zero
imbalance exists in these regions, and the imposed bounds are the only outcome that our tool aims to control. More than
one school is present in the remaining regions, allowing for the possibility of nonzero imbalances �p D maxp � minp

for each period p, as shown in Table 9.

Table 9 Region Attribute F&R Imbalances: High Schools (W_cap=33, W_disp=42, W_dist=13, W_imb=12)

Region �0 �1 �2 �3

North 4.0% 1.7% 1.6% 0.8%
South-East 8.0% 5.4% 4.3% 3.3%
South-West 4.3% 4.4% 4.7% 4.8%
West-South 12.9% 11.9% 10.8% 10.3%
West-North 2.8% 0.2% 0.1% 0.6%
North Raleigh 3.0% 2.7% 1.2% 1.0%
Central 6.2% 3.0% 3.7% 3.7%

It is evident from Table 9 that the tool succeeds in reducing the imbalances within regions to an improved solution over
current assignments. Some insight is also available from the results. The schools in region West-South (Apex High and
Cary High) present the most difficulty when attempting to resolve imbalances. Schools in region West-North (Green
Hope High and Panther Creek High) present the least difficulty, reflecting the relative homogeneity of the region.

Table 10 shows results for the LEP attribute extremes, and Table 11 shows results for the LEP imbalances.

10

SAS Presents...Operations ResearchSAS Global Forum 2009

 



Table 10 Region Attribute LEP Extremes: High Schools (W_cap=33, W_disp=42, W_dist=13, W_imb=12)

Region lower upper p D 0 p D 0 p D 1 p D 1 p D 2 p D 2 p D 3 p D 3
bound bound min max min max min max min max

North 3.0% 10.0% 1.8% 6.4% 3.3% 5.3% 3.4% 5.3% 3.9% 5.1%
Far East 3.0% 10.0% 5.5% 5.5% 5.4% 5.4% 5.4% 5.4% 5.2% 5.2%
Near East 3.0% 10.0% 7.7% 7.7% 6.1% 6.1% 6.1% 6.1% 7.1% 7.1%
South-East 3.0% 10.0% 1.1% 5.9% 3.8% 6.0% 4.4% 6.1% 4.8% 6.1%
South-West 3.0% 10.0% 2.2% 5.5% 2.9% 5.3% 3.1% 5.1% 3.0% 4.6%
West-South 3.0% 10.0% 2.9% 9.3% 3.2% 9.9% 4.0% 10.0% 4.3% 10.3%
West-North 3.0% 10.0% 3.1% 4.3% 3.5% 4.1% 3.7% 3.8% 3.7% 3.8%
North-West 3.0% 10.0% 5.4% 5.4% 5.2% 5.2% 5.7% 5.7% 6.2% 6.2%
North Raleigh 3.0% 10.0% 5.0% 9.5% 5.7% 9.9% 6.3% 10.1% 6.7% 11.0%
Central 3.0% 10.0% 1.0% 9.3% 3.0% 9.4% 3.2% 9.7% 3.5% 9.6%

Table 11 Region Attribute LEP Imbalances: High Schools (W_cap=33, W_disp=42, W_dist=13, W_imb=12)

Region �0 �1 �2 �3

North 4.6% 2.0% 1.9% 1.2%
South-East 4.8% 2.2% 1.7% 1.3%
South-West 3.3% 2.4% 2.0% 1.6%
West-South 6.4% 6.7% 6.0% 6.0%
West-North 1.2% 0.6% 0.1% 0.1%
North Raleigh 4.5% 4.2% 3.8% 4.3%
Central 8.3% 6.4% 6.5% 6.1%

Similar conclusions can be drawn here, suggesting correlation between the LEP and F&R attributes, although results
indicate that the Central region shows greater disparity between LEP students than it does for F&R. Again, many actions
could be taken to deal with the results of the model, and further exploration of results could lead to solutions that place
different emphasis on the outcome. For example, if we explore the (W_cap=32, W_disp=32, W_dist=05, W_imb=32)
solution, we find much tighter imbalance distributions, shown in Table 12 and Table 13. (Contrast these solutions with
those from Table 9 and Table 11, respectively.) Finally, for a geographical illustration of the (W_cap=33, W_disp=42,
W_dist=13, W_imb=12) solution, we show SAS/GIS maps of this proposal in Figure 4 (2007-08), Figure 5 (2008-09),
Figure 6 (2009-10), and Figure 7 (2010-11).

Table 12 Region Attribute F&R Imbalances: High Schools (W_cap=32, W_disp=32, W_dist=05, W_imb=32)

Region �0 �1 �2 �3

North 4.0% 1.7% 0.0% 2.1%
South-East 8.0% 3.8% 3.1% 1.4%
South-West 4.3% 2.3% 2.4% 2.5%
West-South 12.9% 8.0% 4.4% 3.5%
West-North 2.8% 0.5% 0.4% 0.3%
North Raleigh 3.0% 1.3% 0.2% 0.4%
Central 6.2% 1.2% 1.7% 1.7%

Table 13 Region Attribute LEP Imbalances: High Schools (W_cap=32, W_disp=32, W_dist=05, W_imb=32)

Region �0 �1 �2 �3

North 4.6% 0.9% 0.8% 0.8%
South-East 4.8% 2.0% 1.5% 0.8%
South-West 3.3% 0.3% 0.2% 0.4%
West-South 6.4% 4.3% 3.7% 3.5%
West-North 1.2% 0.7% 0.2% 0.0%
North Raleigh 4.5% 3.9% 3.2% 3.3%
Central 8.3% 6.1% 6.0% 6.1%
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Figure 4 Node-School Assignment Map: Period 0 (Current)

Figure 5 Node-School Assignment Map: Period 1 (W_cap=33, W_disp=42, W_dist=13, W_imb=12)
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Figure 6 Node-School Assignment Map: Period 2 (W_cap=33, W_disp=42, W_dist=13, W_imb=12)

Figure 7 Node-School Assignment Map: Period 3 (W_cap=33, W_disp=42, W_dist=13, W_imb=12)
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CONCLUSION

This example illustrates the power and flexibility available with PROC OPTMODEL, in addition to the ease of coding a
mathematical programming model to solve a real-world problem. By leveraging SAS Grid Manager and JMP software,
we also demonstrate the benefits of having such a tool embedded within the SAS system. The resulting automation
and speed enable the decision makers at WCPSS to focus on higher-level concerns rather than the overwhelming low-
level details of manually trying to construct an assignment that balances multiple competing objectives while satisfying
numerous difficult constraints.
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