
1

Paper 137-2009
Tales from the Help Desk 3: More Solutions for Common SAS® Mistakes

Bruce Gilsen, Federal Reserve Board

INTRODUCTION

In 20 years as a SAS ® consultant at the Federal Reserve Board, I have seen SAS users make the same mistakes year after
year. This paper reviews common mistakes that occur during the following tasks, and shows how to fix them.

1. Removing duplicate observations with PROC SORT.

2. Incrementing a SAS date value with the INTNX function.

3. Reading variable length character fields in delimited text (CSV, TAB, and DLM) files.

4. Executing a system command in conditional code.

5. Doing calculations using BY variables from a MERGE statement.

In the context of reviewing these mistakes, the paper provides details about SAS system processing that can help users
employ the SAS system more effectively. This paper is the third of its type; see the references for two previous papers that
review other common mistakes.

1. Removing duplicate observations with PROC SORT.

In data set ONE, observations three and five are identical, as are observations four, six, and seven.

 Obs aa bb cc dd

 1 200 210 220 230
 2 300 310 320 330
 3 1 2 3 4
 4 1 20 30 40
 5 1 2 3 4
 6 1 20 30 40
 7 1 20 30 40

To sort by the variable AA and eliminate duplicate observations, PROC SORT is executed with the NODUPRECS option.

 proc sort data=one out=two noduprecs;
 by aa;
 run;

Data set TWO is expected to have four observations, but actually has six observations, as follows.

 Data set TWO (expected) Data set TWO (actual)

 Obs aa bb cc dd Obs aa bb cc dd

 1 1 2 3 4 1 1 2 3 4
 2 1 20 30 40 2 1 20 30 40
 3 200 210 220 230 3 1 2 3 4
 4 300 310 320 330 4 1 20 30 40
 5 200 210 220 230
 6 300 310 320 330

This problem occurs because NODUPRECS works as follows. First, the data set is sorted as usual. Then, as observations
are written to the output DATA set, observations identical to the previous observation are eliminated. Identical observations
that are not contiguous are not eliminated.

In this example, the observations are sorted as follows before NODUPRECS is applied.

Foundations and FundamentalsSAS Global Forum 2009

2

 Obs aa bb cc dd

 1 1 2 3 4
 2 1 20 30 40
 3 1 2 3 4
 4 1 20 30 40
 5 1 20 30 40
 6 200 210 220 230
 7 300 310 320 330

NODUPRECS eliminates observation five, which is identical to observation four. Observations one and three and
observations two and four are identical but not contiguous and are all written to the output data set.

One solution is to use PROC SQL. Use the DISTINCT operator to remove duplicate observations and the ORDERBY clause
to sort by AA, as in the following code.

 proc sql noprint;
 create table two as
 select distinct *
 from one
 order by aa;
 quit;

This code removes all duplicate observations, and data set TWO has four observations, as follows.

 Obs aa bb cc dd

 1 1 2 3 4
 2 1 20 30 40
 3 200 210 220 230
 4 300 310 320 330

A second solution, noted in the Base SAS 9.1.3 Procedures Guide (The SORT Procedure chapter, in the description of
NODUPRECS), is to sort on all variables. The four variables in this example could be easily hard-coded in the PROC SORT
BY statement, but a large list of variables should be generated in the program. Compared to the first solution, PROC SORT
should be faster but slightly more complicated (because of the need to generate the variable list).

In the following code, PROC SQL is used to read the list of variables in data set ONE from the DICTIONARY tables and create
a macro variable, VAR_NAMES, containing a space-separated list of all variables except AA. Then, data set ONE is sorted by
all variables. AA is omitted from the macro variable generated by PROC SQL and coded first in the BY statement to ensure
that the data set is sorted by AA as intended.

 proc sql noprint;
 select name into :var_names separated by ' '
 from dictionary.columns
 where upcase(libname)='WORK' and
 upcase(memname)='ONE' and
 upcase(name) ne 'AA';
 quit;
 proc sort data=one out=two noduprecs;
 by AA &var_names;
 run;

To eliminate duplicate observations without regard to the order of observations in the new data set, simplify the code as
follows.

! For the first solution (PROC SQL), omit the ORDER BY clause.

! For the second solution (PROC SORT), omit the PROC SQL step and change the PROC SORT BY statement
to the following.

 by _all_;

Foundations and FundamentalsSAS Global Forum 2009

3

2. Incrementing a SAS date value with the INTNX function.

The data step function INTNX returns a SAS date value incremented by a specified number of intervals (days, weeks, months,
quarters, years, etc.).

In the following DATA step, DATE1 is set to the SAS date value for October 18, 2005, which is 16,727. INTNX is used to
increment the date by two days, two months, and two years. DATEPLUS2DAY has the expected value, but
DATEPLUS2MONTH and DATEPLUS2YEAR do not.

 data one;
 date1 = '18oct2005'd;
 dateplus2day = intnx('day',date1,2); * want to increment by 2 days;
 dateplus2month = intnx('month',date1,2); * want to increment by 2 months;
 dateplus2year = intnx('year',date1,2); * want to increment by 2 years;
 run;

 Expected Actual
Variable Description Value SAS date Value SAS date

dateplus2day 2 days after 10/18/2005 16729 10/20/2005 16729 10/20/2005
dateplus2month 2 months after 10/18/2005 16788 12/18/2005 16771 12/1/2005
dateplus2year 2 years after 10/18/2005 17457 10/18/2007 17167 1/1/2007

To help understand this problem, here is a somewhat informal and incomplete review of the syntax of INTNX. Information is
provided for SAS date values, but not for datetime and time values, and sub-arguments to the interval value are omitted. For
complete syntax, see the SAS 9.1.3 Language Reference: Dictionary, Volumes 1, 2, and 3.

INTNX has three required arguments and one optional argument, commonly used as follows for SAS date values.

INTNX(interval, start-from, increment <,alignment>);

! interval is the unit of measure (days, weeks, months, quarters, years, etc.) by which start-from is incremented.

! start-from is a SAS date value to be incremented.

! increment is the integer number of intervals by which start-from is incremented (negative values = earlier dates).

! alignment is where start-from is aligned within interval before being incremented. Possible values are BEGINNING,
MIDDLE, END, and (new in Version 9) SAMEDAY. This argument is optional, and defaults to BEGINNING.

INTNX’s default alignment is BEGINNING, so by default start-from is aligned to the beginning of the period before being
incremented. This leads to unexpected results for intervals other than DAY, as in the examples from the previous DATA step.
As before, DATE1 is the SAS date value for October 18, 2005.

1. dateplus2day = intnx('day',date1,2);

SAS first aligns to the start of October 18, 2005 (the beginning of the interval, DAY), which has no effect, then increments
by two days. DATEPLUS2DAY is 16,729, the SAS date value for October 20, 2005, as expected.

2. dateplus2month = intnx('month',date1,2);

SAS first aligns to October 1, 2005 (the beginning of the interval, MONTH), then increments by two months. The result is
16,771, the SAS date value for December 1, 2005.

3. dateplus2year = intnx('year',date1,2);

SAS first aligns to January 1, 2005 (the beginning of the interval, YEAR), then increments by two years. The result is
17,167, the SAS date value for January 1, 2007.

In Version 9, a new alignment value, SAMEDAY, was added. SAMEDAY preserves the SAS date value’s alignment within the
interval before it is incremented, generating the expected results. To prevent the problem shown in this example, always set
alignment to SAMEDAY for intervals other than DAY (when interval is DAY, SAMEDAY is not necessary).

Here are the examples from the previous DATA step with the SAMEDAY argument added. As before, DATE1 is the SAS date

Foundations and FundamentalsSAS Global Forum 2009

4

value for October 18, 2005.

SAS Statement Description Value SAS date

dateplus2day=intnx('day',date1,2,"sameday"); 2 days after 10/18/2005 16729 10/20/2005
dateplus2month=intnx('month',date1,2,"sameday"); 2 months after 10/18/2005 16788 12/18/2005
dateplus2year=intnx('year',date1,2,"sameday"); 2 years after 10/18/2005 17457 10/18/2007

Here are additional examples for some interesting dates. Note that 2000 and 2004 but not 2003 are leap years.

SAS Statement Description Value SAS date

date2=intnx('year','29feb2000'd,1,"sameday"); 1 year after 2/29/2000 15034 2/28/2001
date3=intnx('year','29feb2000'd,4,"sameday"); 4 years after 2/29/2000 16130 2/29/2004
date4=intnx('month','31mar2003'd,-1,"sameday"); 1 month before 3/31/2003 15764 2/28/2003
date5=intnx('month','31mar2004'd,-1,"sameday"); 1 month before 3/31/2004 16130 2/29/2004

Note that until SAS Version 9.2, SAMEDAY should only be used with single, non-shifted date intervals (DAY, WEEK,
WEEKDAY, TENDAY, SEMIMONTH, MONTH, QTR, SEMIYEAR, YEAR), because the following intervals might return the
wrong answer with no error or warning.

! multiple (e.g., month2 = two-month interval)
! shifted (e.g., month.4 = month interval starting on April 1)
! time
! datetime

3. Reading variable length character fields in delimited text (CSV, TAB, and DLM) files.

A comma-separated values (CSV) file contains 31 records and 3 columns. The first row contains column names:
"company,i,itimes10". The other rows are filled as follows: the first column has 10 records with "ibm", then 10 records with
"aol", and then 10 records with "microsoft". The second column has the numbers 1-30, and the third column has the numbers
10, 20,, 290, 300. Here is the CSV file.

 company,i,itimes10
 ibm,1,10
 ibm,2,20
 ibm,3,30
 ibm,4,40
 ibm,5,50
 ibm,6,60
 ibm,7,70
 ibm,8,80
 ibm,9,90
 ibm,10,100
 aol,11,110
 aol,12,120
 aol,13,130
 aol,14,140
 aol,15,150
 aol,16,160
 aol,17,170
 aol,18,180
 aol,19,190
 aol,20,200
 microsoft,21,210
 microsoft,22,220
 microsoft,23,230
 microsoft,24,240
 microsoft,25,250
 microsoft,26,260
 microsoft,27,270
 microsoft,28,280
 microsoft,29,290
 microsoft,30,300

Foundations and FundamentalsSAS Global Forum 2009

5

The CSV file was read with PROC IMPORT.

 proc import
 out=csvin
 datafile = '/mydir/csv1.csv'
 dbms=csv;
 getnames=yes;
 datarow=2;
 run;

In data set CSVIN, COMPANY has been truncated from “microsoft” to “mic” in observations 21-30.

 Obs company i itimes10

 1 ibm 1 10
 2 ibm 2 20
 3 ibm 3 30
 4 ibm 4 40
 5 ibm 5 50
 6 ibm 6 60
 7 ibm 7 70
 8 ibm 8 80
 9 ibm 9 90
 10 ibm 10 100
 11 aol 11 110
 12 aol 12 120
 13 aol 13 130
 14 aol 14 140
 15 aol 15 150
 16 aol 16 160
 17 aol 17 170
 18 aol 18 180
 19 aol 19 190
 20 aol 20 200
 21 mic 21 210
 22 mic 22 220
 23 mic 23 230
 24 mic 24 240
 25 mic 25 250
 26 mic 26 260
 27 mic 27 270
 28 mic 28 280
 29 mic 29 290
 30 mic 30 300

This problem occurs because by default, the Import Wizard, PROC IMPORT, and the External File Interface (EFI) scan the
first 20 records to determine variable attributes such as field length when reading delimited text (CSV, TAB, and DLM) files. If
character fields have longer values past the first 20 records, they are truncated by PROC IMPORT, the Import Wizard, and the
EFI.

Before Version 9.1, this problem could only be prevented by manually updating the SAS registry. Starting in Version 9.1, the
PROC IMPORT GUESSINGROWS= option tells SAS how many records to scan to determine variable attributes, and
comparable methods are provided by the Import Wizard and the EFI.

The following code tells SAS to scan the first 16,000 records, and reads the CSV file correctly.

 proc import
 out=csvin
 datafile = '/mydir/csv1.csv'
 dbms=csv;
 getnames=yes;
 guessingrows=16000;
 datarow=2;
 run;

One caution is that for large files, GUESSINGROWS significantly increases execution time, as shown by the following test
results. A 16,000 observation data set was read with SAS Version 9.1.3 for Linux. The first two tests were with the CSV file

Foundations and FundamentalsSAS Global Forum 2009

6

and PROC IMPORT code used in this section. For the third and fourth test, 32 additional integer numeric columns were added
to the CSV file.

 Number of variables GUESSINGROWS value CPU seconds

 3 not specified .11
 3 16000 5.92
 35 not specified .31
 35 16000 50.63

Note that the CSV file used in this section could be created by the following SAS code.

 data one;
 length company $10;
 do i=1 to 30;
 itimes10 = i * 10;
 if i le 10 then company="ibm";
 else if i le 20 then company="aol";
 else company="microsoft";
 output;
 end;
 run;
 proc export
 data=one
 outfile = '/mydir/csv1.csv'
 dbms=csv;
 run;

4. Executing a system command in conditional code.

The following DATA step is part of a daily Linux application. The objective is to make a backup copy of a file every Sunday,
but the file is copied every day instead. Note that the TODAY function returns the current date as a SAS date value, the
WEEKDAY function returns the day of the week for a SAS date value (1=Sunday, 2=Monday, ... 7=Saturday), and cp is the
Linux command to copy a file.

 data one;
 if weekday(today()) = 1 then do; * true on Sundays;
 x 'cp important_file important_file.bak';
 end;
 /* more SAS code */
 run;

To understand this problem, it is helpful to understand a little about DATA step processing. SAS processes a DATA step in
two stages: it is first compiled, then executed. Compilation includes the following tasks.

! Check the syntax of the statements and convert them to machine code.

! Do initial DATA step setup (for example, create the program data vector and determine data set and variable
attributes).

! Execute global statements, which include DM, ENDSAS, FILENAME, FOOTNOTE, %INCLUDE, LIBNAME,
ODS, OPTIONS, PAGE, RUN, TITLE, and X statements. Global statements are listed in the SAS 9.1.3
Language Reference: Dictionary, Volumes 1, 2, and 3 (Statements chapter, Global Statements section).

! Execute DATA step declarative statements, which are statements that SAS only executes once for the DATA
step, not once per DATA step iteration. Declarative statements are listed in the SAS 9.1.3 Language
Reference: Dictionary, Volumes 1, 2, and 3 (Statements chapter, Executable and Declarative Statements
section) and include ARRAY (array definition, not array reference), ATTRIB, BY, CARDS, CARDS4, DATA,
DATALINES, DATALINES4, DROP, END, FORMAT, INFORMAT, KEEP, LABEL, Statement labels, LENGTH,
RENAME, RETAIN, WHERE, and WINDOW.

This problem occurs because in a DATA step, global statements and declarative statements are processed during compilation
and always execute, even if they are in conditional code (such as an IF statement). SAS determines if the conditional code is
true or false later, during step execution.

Foundations and FundamentalsSAS Global Forum 2009

7

To prevent this problem, do not use global statements or declarative statements in conditional code in a DATA step. In this
case, one solution is to use the CALL SYSTEM routine instead of the X statement. CALL SYSTEM is similar to X, but
executes during DATA step execution, so it can be used with conditional code. The following DATA step only copies the file on
Sundays as intended.

 data one;
 if weekday(today()) = 1 then do; * true on Sundays;
 call system (<cp important_file important_file.bak');
 end;
 /* more SAS code */
 run;

More generally, an execution-time equivalent to a global statement or declarative statement is not available. In that case, one
solution is to conditionally generate the code in a macro rather than conditionally execute the code in a DATA step. This is
illustrated in the following macro, CONDCODE.

 %macro condcode;
 %if &sysday = Sunday %then %do;
 x 'cp important_file important_file.bak';
 %end;
 data one;
 /* more SAS code */
 run;
 %mend condcode;
 %condcode;

The following code is generated on Monday - Saturday.

 data one;
 /* more SAS code */
 run;

The following code is generated on Sunday.

 x 'cp important_file important_file.bak';
 data one;
 /* more SAS code */
 run;

Note the following about macro CONDCODE.

! The SYSDAY automatic macro variable contains the day of the week (Sunday, Monday, ..., Saturday, with the
first letter in upper case) that the SAS session began executing. For multi-day SAS sessions, SYSDAY differs
from the DATA step function TODAY, which returns the current date. For multi-day SAS sessions, change the
first line of CONDCODE to the following.

 %local week_day;
 %let week_day = %sysfunc(weekday(%sysfunc(today())));
 %if &week_day = 1 %then %do;

%SYSFUNC executes SAS functions from within a macro. Functions cannot be nested within %SYSFUNC, so
%SYSFUNC is used once for the WEEKDAY function and once for the TODAY function.

! X, a declarative statement, can be used because macro CONDCODE only generates the X statement when the
&IF statement is true, on Sunday.

! The conditional processing of the X statement is unrelated to the DATA step code, so the %IF, X, and %END
statements are coded before the DATA statement. The desired result is also generated if these three
statements follow the DATA statement.

5. Doing calculations using BY variables from a MERGE statement.

Data set ONE contains the following values.

Foundations and FundamentalsSAS Global Forum 2009

8

 Obs state income

 1 1 10
 2 1 20
 3 1 30
 4 2 100
 5 2 200
 6 2 300
 7 3 1000
 8 3 2000
 9 3 3000

In the following code, the mean for each state is calculated with PROC MEANS, and difference from mean income in each
observation is calculated in a DATA step.

 proc means data = one noprint;
 by state;
 var income;
 output out=two (drop= _type_ _freq_) mean = income_mean;
 run;

 data three;
 merge one two ;
 by state;
 income_diff_from_mean = income - income_mean;
 run;

Data set TWO contains the mean income for each state.

 Obs state income_mean

 1 1 20
 2 2 200
 3 3 2000

Data set THREE contains the following values.

 Obs state income income_mean income_diff_from_mean

 1 1 10 20 -10
 2 1 20 20 0
 3 1 30 20 10
 4 2 100 200 -100
 5 2 200 200 0
 6 2 300 200 100
 7 3 1000 2000 -1000
 8 3 2000 2000 0
 9 3 3000 2000 1000

Now, the code is changed slightly. Rather than create the new variable INCOME_DIFF_FROM_MEAN, the difference of
INCOME and INCOME_MEAN is assigned to INCOME_MEAN.

 data three;
 merge one two ;
 by state;
 income_mean = income - income_mean;
 run;

Data set THREE contains the following values. In observations 2, 3, 5, 6, 8, and 9, INCOME_MEAN does not have the
expected value.

 Obs state income income_mean income_mean that was expected

 1 1 10 -10 -10
 2 1 20 30 0
 3 1 30 0 10
 4 2 100 -100 -100

Foundations and FundamentalsSAS Global Forum 2009

9

 5 2 200 300 0
 6 2 300 0 100
 7 3 1000 -1000 -1000
 8 3 2000 3000 0
 9 3 3000 0 1000

This problem results from what might be called the "MERGE statement retain rule." As explained in the SAS 9.1.3 Language
Reference: Concepts (Reading, Combining, and Modifying SAS Data Sets chapter, Match-Merging section, Example 2),

"When SAS reads the last observation from a BY group in one data set, SAS retains its values in the program data
vector for all variables that are unique to that data set until all observations for that BY group have been read from all
data sets."

Let's see how the first several observations of data set THREE are generated.

Generating observation 1 of data set THREE.

! The MERGE statement encounters a new BY group value, STATE=1.

! INCOME is read from the first observation of data set ONE and set to 10.

! INCOME_MEAN is read from the first observation of data set TWO and set to 20.

! INCOME_MEAN = INCOME - INCOME_MEAN is calculated. It is 10-20 = -10, as expected.

Generating observation 2 of data set THREE.

! The MERGE statement encounters the same BY group value, STATE=1.

! INCOME is read from the second observation of data set ONE and set to 20.

! All observations have been read from data set TWO for the current BY group, so as per the “MERGE statement
retain rule”, INCOME_MEAN is retained and not re-read from data set TWO This is the source of the
unexpected results; some users expect the value of INCOME_MEAN to be re-read from data set TWO (and
equal 20). But, INCOME_MEAN’s value is -10, as calculated in the first observation and retained.

! INCOME_MEAN = INCOME - INCOME_MEAN is calculated. It is 20 - -10 = 30, not 20 - 20 = 0 as expected.

Generating observation 3 of data set THREE.

! The MERGE statement encounters the same BY group value, STATE=1.

! INCOME is read from the third observation of data set ONE and set to 30.

! All observations have been read from data set TWO for the current BY group, so as per the “MERGE statement
retain rule”, INCOME_MEAN is retained and not re-read from data set TWO. As in the previous observation,
some users expect the value of INCOME_MEAN to be re-read from data set TWO (and equal 20). But,
INCOME_MEAN’s value is 30, as calculated in the second observation and retained.

! INCOME_MEAN = INCOME - INCOME_MEAN is calculated. It is 30 - 30 = 0, not 30 - 20 = 10 as expected.

Generating observation 4 of data set THREE.

! The MERGE statement encounters a new BY group value, STATE=2.

! INCOME is read from the fourth observation of data set ONE and set to 100.

! INCOME_MEAN is read from the second observation of data set TWO and set to 200.

! INCOME_MEAN = INCOME - INCOME_MEAN is calculated. It is 100-200 = -100, as expected.

Here is one way to correctly calculate INCOME - INCOME_MEAN and store the result in INCOME_MEAN. The variable
whose value is retained in observations 2 and 3 is now called INCOME_MEAN_TEMP, so retained values are not overwritten

Foundations and FundamentalsSAS Global Forum 2009

10

when INCOME_MEAN is calculated.

 data three;
 merge one two (rename = (income_mean = income_mean_temp)) ;
 by state;
 drop income_mean_temp;
 income_mean = income - income_mean_temp;
 run;

CONCLUSION

This paper reviewed and showed how to fix some common mistakes made by SAS users, and, in the context of discussing
these mistakes, provided details about SAS system processing. It is hoped that reading this paper enables users to better
understand SAS system processing and thus employ the SAS system more effectively in the future.

For more information, contact the author, Bruce Gilsen, by mail at Federal Reserve Board, Mail Stop 157, Washington, DC
20551; by e-mail at bruce.gilsen@frb.gov; or by phone at 202-452-2494.

REFERENCES

Gilsen, Bruce (2003), "Deja-vu All Over Again: Common Mistakes by New SAS Users," Proceedings of the Sixteenth Annual
NorthEast SAS Users Group Conference. <http://www.nesug.org/html/Proceedings/nesug03/bt/bt010.pdf>

Gilsen, Bruce (2006), "Improve Your Dating: The INTNX Function Alignment Value SAMEDAY," Proceedings of the Thirty-first
Annual SAS Users Group International Conference. <http://www2.sas.com/proceedings/sugi31/027-31.pdf>

Gilsen, Bruce (2004), "More Tales from the Help Desk: Solutions for Simple SAS Mistakes," Proceedings of the Seventeenth
Annual NorthEast SAS Users Group Conference. <http://www.nesug.org/html/Proceedings/nesug04/pm/pm11.pdf>

SAS Institute Inc. (2004), "Base SAS 9.1.3 Procedures Guide," Cary, NC: SAS Institute Inc.

SAS Institute Inc. (2004), "SAS 9.1.3 Language Reference: Concepts," Cary, NC: SAS Institute Inc.

SAS Institute Inc. (2004), "SAS 9.1.3 Language Reference: Dictionary, Volumes 1, 2, and 3," Cary, NC: SAS Institute Inc.

SAS Institute Inc. (2005), SAS Note 001075, "How to scan more than 20 records to determine variable attributes in EFI."
http://support.sas.com/techsup/unotes/SN/001/001075.html.

SAS Institute Inc. (2006), SAS Note 016184, "INTNX function with SAMEDAY alignment does not support multiple, shifted,
time, or datetime intervals." http://support.sas.com/techsup/unotes/SN/016/016184.html.

ACKNOWLEDGMENTS

The following people contributed extensively to the development of this paper: Heidi Markovitz and Donna Hill at the Federal
Reserve Board, Bryan Beverly at the Bureau of Labor Statistics, and Mike Rhoads at Westat. Their support is greatly
appreciated.

TRADEMARK INFORMATION

SAS and all other SAS Institute Inc. product or service names are registered trademarks or trademarks of SAS Institute Inc. in
the USA and other countries. ® indicates USA registration.

Other brand and product names are registered trademarks or trademarks of their respective companies.

Text about the MERGE statement reproduced with permission of SAS Institute Inc., Cary, NC, from SAS 9.1.3 Language
Reference: Concepts, Copyright 2005, SAS Institute Inc., Cary, NC, USA. All Rights Reserved.

Foundations and FundamentalsSAS Global Forum 2009

	2009 Table of Contents

