

1

Paper 145-2009

Simple Applications of SQL
Howard Schreier, Howles Informatics, Arlington VA

ABSTRACT

PROC SQL introduces structured query language to the SAS® System. It’s a language very
different from the rest of SAS. That may present a learning challenge to the SAS user.
Fortunately, SQL lends itself to learning in small pieces. This paper will illustrate and explain
several examples of SAS usage which have immediate practical value.
SORTING BY MAGNITUDE

Suppose there is a table which we want to sort according to the values in a particular column.
However, we want the sorting process to pay attention only to the magnitudes of those values. In
other words, the signs (positive or negative) are to be ignored. Here is the given table, which
we’ll call NotOrdered:

Notice that the values of AMOUNT vary both in magnitude and sign. If we run this PROC SQL
step:

PROC SQL;
CREATE TABLE Ordered AS
 SELECT *
 FROM NotOrdered
 ORDER BY ABS(Amount) , ID
;
QUIT;

Obs ID Amount

1 101 0

2 102 4

3 103 0

4 104 -10

5 105 -8

6 106 -6

7 107 -2

8 108 4

9 109 1

10 110 0

Foundations and FundamentalsSAS Global Forum 2009

2

it produces the table Ordered:

The rows having AMOUNT equal to 0 (zero) appear first, with others following according to
magnitude but with no regard to sign.

Some other things to notice:

• The PROC SQL statement launches the procedure and the QUIT statement (not a RUN
statement) terminates it.

• Within the step, there is just one rather long statement (beginning with “CREATE” and
concluding with the semicolon just above “QUIT”.

• In the ORDER BY clause, the first key is an expression rather than just a column name.
SQL permits the use of expressions in place of simple names just about anywhere that it
makes sense.

• There are two keys in the ORDER by clause, separated by a comma. The comma is the
standard separator for SQL lists.

• The SELECT clause and its supporting FROM clause constitute the mandatory nucleus of
this and any other query.

• The asterisk in the SELECT clause is a shorthand device calling for the inclusion of all
columns found in the data source designated in the FROM clause. Later we will see
explicit lists used in this context.

• The line beginning with “CREATE” is sort of a preamble, telling PROC SQL to store the
results in a table. Were this line omitted, and the statement begun with “SELECT”, the
results would be handled by the SAS Output Delivery System (ODS) and, by default,
would be displayed with other procedure output.

• Because SQL was not invented by SAS, it has its own terminology. We use the terms
“table”, “row”, and “column” rather than the analogous SAS terms “data set”,
“observation”, and “variable”.

Obs ID Amount

1 101 0

2 103 0

3 110 0

4 109 1

5 107 -2

6 102 4

7 108 4

8 106 -6

9 105 -8

10 104 -10

Foundations and FundamentalsSAS Global Forum 2009

3

TABLE LOOKUP

Suppose you have a table along the lines of this one (which we’ll call NotVerified):

and you want to validate values in the NAME column. The first step is to acquire, from a reliable
source, a complete list of legitimate names, and to load them into a table:

DATA AllStooges;
* per http://www.threestooges.com ;
INPUT StoogeName $ 1-9;
CARDS;
Larry
Moe
Curly
Shemp
Joe
Curly Joe
;

Notice that this is done with a DATA step. Because PROC SQL is intended to complement the
rest of SAS and not replace it, it has no capabilities of its own for reading external files or in-
stream data. However, PROC SQL can exchange tables with other procedures and with the
DATA step, in both directions.

Now the task is to consider in turn each NAME value in NotVerified and see if it appears in
AllStooges:

PROC SQL;
CREATE TABLE Verified AS
 SELECT *
 FROM NotVerified
 WHERE Name IN (SELECT StoogeName
 FROM AllStooges)
;
QUIT;

Values which cannot be found are excluded from the output (called Verified), which thus looks
like this:

Look again at the code and notice that the second (right) operand of the IN operator, which
would typically be a list of literals, is instead a complete query contained within a pair of
parentheses. Because of its subordinate position (within another query), it is termed a

Obs Name Favorite_Proc

1 Larry PRINT

2 Moe SORT

3 Einstein TABULATE

Obs Name Favorite_Proc

1 Larry PRINT

2 Moe SORT

Foundations and FundamentalsSAS Global Forum 2009

4

“subquery”. Subqueries are permitted with the IN operator and in a handful of similar contexts
where they are more or less natural. Subqueries which yield scalars (as distinguished from lists
or vectors) are also permitted just about anywhere they make sense.
COMBINING AND COMPARING LISTS

PROC SQL provides a number of “set” operators that can consolidate or match the content of
two lists. To illustrate, consider these two tables, named One:

and Two:

Using the UNION operator, we can consolidate the two:
PROC SQL;
SELECT City FROM One
UNION
SELECT City FROM Two
;
QUIT;

Notice that each operand is a complete query (a SELECT clause followed by its FROM clause).
UNION and other set operators do not work within queries, but rather upon the results of two
queries.

In this simple example, each table has just a single column (CITY) and each SELECT clause
designates just that column. However, the language permits multiple elements to be processed. In
such situations, the rows are compared as entities, and there are rules and options to determine
the correspondence between columns in the two operands.

Now let’s see the result produced by this code:

Obs City

1 Boston

2 Chicago

3 Cleveland

4 Detroit

5 New York

6 Philadelphia

7 St. Louis

8 Washington

Obs City

1 Boston

2 Brooklyn

3 Chicago

4 Cincinnati

5 New York

6 Philadelphia

7 Pittsburgh

8 St. Louis

Foundations and FundamentalsSAS Global Forum 2009

5

City

Boston
Brooklyn
Chicago
Cincinnati
Cleveland
Detroit
New York
Philadelphia
Pittsburgh
St. Louis
Washington

Notice that the duplicative CITY values (Boston, etc.) are eliminated, so that each city’s name
appears just once. That’s the default behavior, but an option is available to carry repetitions into
the results.

This output looks different than that of the previous examples. That’s because the query is not
enveloped in a CREATE TABLE statement, and instead displays its output directly. In contrast,
earlier results, which were stored in tables, were then rendered using PROC PRINT and an
Output Delivery System (ODS) style for presentation in this paper.

There are other set operators. INTERSECT delivers rows found in both operands. So, if we run:
PROC SQL;
SELECT CITY FROM One
INTERSECT
SELECT City FROM Two
;
QUIT;

 we get:
City

Boston
Chicago
New York
Philadelphia
St. Louis

Foundations and FundamentalsSAS Global Forum 2009

6

The EXCEPT operator reports rows which are found in the first operand but not in the second.
Thus, this code:

PROC SQL;

SELECT City FROM Two
EXCEPT
SELECT City FROM One
;

yields:
City

Brooklyn
Cincinnati
Pittsburgh

The nature of the EXCEPT operator makes it non-commutative. So, if we reverse the order of the
operands, as in:

SELECT CITY FROM One
EXCEPT
SELECT City FROM Two
;

QUIT;

The result becomes:
City

Cleveland
Detroit
Washington

Note that no QUIT statement was coded after the first statement using the EXCEPT operator.
Instead, the SQL session was kept open for a second statement, then closed. That demonstrates
that a PROC SQL session can accommodate multiple statements.
A DATA CLEANUP EXERCISE

Here is the scenario for this example: You have a table (named Messy) and want to make sure
that any categorical (grouping) columns contain appropriate values.
DICTIONARY TABLES

The first need is to learn the names and characteristics of the columns. SAS automatically makes
available to PROC SQL a special series of tables, called Dictionary Tables, which provide
metadata (information about data and system entities). One of these,
DICTIONARY.COLUMNS, can provide the information we need:

Foundations and FundamentalsSAS Global Forum 2009

7

PROC SQL;
SELECT name, type, length
 FROM dictionary.columns
 WHERE libname="WORK" and memname="MESSY";
QUIT;

The result is:
 Column Column
Column Name Type Length

Sex char 4
ID num 8

We see that there is just one categorical column (SEX), and that it is of character type with
values having a maximum length of 4.
DISPLAYING DISTINCT VALUES

We are only concerned with knowing the various values which appear in the column SEX. We
don’t care how many times each value appears. If the table has thousands of rows, we certainly
don’t want to see them reflected individually in the output. Once a particular value is detected,
we want to ignore subsequent occurrences of that value. The keyword “DISTINCT” can be
coded immediately after “SELECT” to suppress such repetitions. So, to start, all we need is:
PROC SQL;
SELECT DISTINCT sex
 FROM Messy;

The result we expect is something like:
Sex

F
M

Foundations and FundamentalsSAS Global Forum 2009

8

However, suppose instead we see this:
Sex

 F
 M
 f
 F
 M
 f
 m
F
F
M
M
f
f
m

DETECTIVE WORK

It seems that the table is named Messy for a reason! Glancing at the vector, perhaps the most
obvious problem is the mixture of upper case and lower case letters. We can distill that out by
exercising the UPCASE function, making the query:

SELECT DISTINCT UPCASE(sex)
 FROM Messy;

This removes the lower-case variations, giving us:

 F
 M
 F
 M
F
F
M
M

Notice the absence of a column heading. In the first iteration (where UPCASE was not coded),
the SELECT statement simply designated a column (SEX). That column has a name, so the
name was displayed. Now (in the second iteration) the SELECT clause specifies an expression
(formula), creating a new column, which has no name or label; hence the lack of a header. The
language provides ways to declare names and labels for new columns, but that really doesn’t
seem necessary here.

Continuing with the problem, we now turn to the visibly irregular indentation, presumably
caused by leading blanks in some of the values. The LEFT function can get rid of those, so we
wrap it around the formula:

Foundations and FundamentalsSAS Global Forum 2009

9

SELECT DISTINCT LEFT(UPCASE(sex))
 FROM Messy;

It seems that should reduce the vector to just two elements, “F” and “M”. However, surprisingly,
the result is:

F
F
M
M

There are no visible clues to explain the apparent repetitions here. In this situation we can turn to
hexadecimal display to reveal what is really (as opposed to apparently) in the table:
SELECT DISTINCT LEFT(UPCASE(sex)) ,
 LEFT(UPCASE(sex)) FORMAT = $hex4.
 FROM Messy;

Notice that there are two elements (comma-separated, of course) in the SELECT clause. The
DISTINCT reduction operates on them jointly. In this case the two columns are generated with
the same formula, which avoids pointlessness only because the second element is associated with
a different format. The result is:

F 4600
F 4620
M 4D00
M 4D20

We can see that hexadecimal 46 must be the ASCII code for an upper case “F” and 4D the
counterpart for an “M”. A little research can confirm that hexadecimal 20 represents a blank, the
expected padding character. The troublemaker is the hexadecimal 00. It can be eradicated with
the COMPRESS function:
SELECT DISTINCT COMPRESS(LEFT(UPCASE(sex)), '00'X)
 FROM Messy;

This code at last produces the expected:

F
M

so we can finally:
QUIT;

All of the functions used in this exercise come from the SAS function library, and are not
exclusive to PROC SQL. So even though this exercise has been presented as a mere
investigation, the final formula:

COMPRESS(LEFT(UPCASE(sex)), '00'X)

Foundations and FundamentalsSAS Global Forum 2009

10

can used for the needed cleanup, either in PROC SQL or in a DATA step.
MATCHING

IN SQL, the primary tool for matching data from multiple sources is the “join”. To illustrate,
suppose that we have two tables. The first, Visitors, contains the results of a survey conducted by
a public park district determine the recreational activities which park visitors prefer:

The letters in the table reflect the preference ranking, “A” indicating the individual’s favorite
activity, “B” the second choice, etc.

The second table, Parks, lists the parks in the district and indicates (by an “X”) the facilities
available in each park:

UNRESTRICTED JOINS

As a preliminary exercise, we’ll ignore the information content of these two tables and merely
combine the visitor names with the park names. Here is the code:

PROC SQL;
CREATE TABLE List_All AS
 SELECT Visitor , Park , 'Hi' AS Placeholder
 FROM Visitors CROSS JOIN Parks
 ORDER BY Visitor , Park
;
QUIT;

Notice that the SELECT clause designates the identification columns from the two tables, as well
as a new column containing a literal. The AS clause assigns the name “Placeholder” to this new
column. The FROM clause is more complicated than in the earlier examples. It names both
source tables and specifies that they be combined via a CROSS JOIN process, which means that
each and every row in the first source is matched with each and every row in the second, with no
regard to content. Here is the result (called List_All):

Obs Visitor Golf Swimming Tennis

1 Aaron B A

2 Carol A B

3 James A C B

4 Susan A

Obs Park Golf Swimming Tennis

1 Harbor X X

2 Uptown X X

3 Valley X X

Foundations and FundamentalsSAS Global Forum 2009

11

This table is not very informative, but it might be useful, for example as a foundation for
recording detailed data on facility usage.
NORMALIZATON

Notice that the given tables (Parks and Visitors) both have a relatively short and wide “grid”
structure. In contrast, the derived table List_All has a long and narrow “list” structure. Neither
structure is universally superior, and programmers have to be prepared to deal with both.

The list arrangement is sometimes called a “normalized” structure, and the grid called
“denormalized”. The concepts of normalization, which underlie data base design, are actually a
lot more complicated and nuanced, but for the purposes of this paper we’ll simplify and just refer
to the list and grid structures as being, respectively, normalized and denormalized.

SQL is definitely not neutral with regard to normalization. Its features are designed to operate on
normalized data, and its outputs tend to materialize in normalized structures. Unfortunately, data
aren’t always provided to us that way, and requirements may mandate that end results be
denormalized.

As a consequence, we must be able to convert back and forth between list and grid arrangements.
PROC SQL itself is not particularly adept at this, but PROC TRANSPOSE is. To facilitate the
rest of the examples in this section, we’ll utilize two macros. The first, LIST2GRID, is for
denormalization:

%MACRO list2grid(data=, out=, by=, id=, var=);
 PROC TRANSPOSE DATA = &data OUT = &out(DROP=_name_);
 BY &by;
 ID &id;
 VAR &var;
 RUN;
 %MEND list2grid;

Obs Visitor Park Placeholder

1 Aaron Harbor Hi

2 Aaron Uptown Hi

3 Aaron Valley Hi

4 Carol Harbor Hi

5 Carol Uptown Hi

6 Carol Valley Hi

7 James Harbor Hi

8 James Uptown Hi

9 James Valley Hi

10 Susan Harbor Hi

11 Susan Uptown Hi

12 Susan Valley Hi

Foundations and FundamentalsSAS Global Forum 2009

12

The second, GRID2LIST, normalizes:
%MACRO grid2list(data=, out=, by=, id=, var=, colname=);
 PROC TRANSPOSE
 DATA = &data
 OUT=&out(RENAME=(_name_=&id col1=&colname)
 WHERE=(NOT MISSING(&colname))
);
 BY &by;
 VAR &var;
 RUN;
 %MEND grid2list;

Since PROC TRANSPOSE and the macro language aren’t per se subjects of this paper, we
won’t go through the details of just how these two macros do what they do.

To illustrate the use of LIST2GRID, we can call it thusly:
%list2grid(data=List_All
 ,out=Grid_all
 ,by=Visitor
 ,id=Park
 ,var=Placeholder)

This will call PROC TRANSPOSE to take List_All and rearrange it as Grid_All:

Now suppose that we want to use the information we have about people’s favored recreational
activities, and about the available facilities for these activities. The main reason we didn’t do that
earlier is that the given denormalized tables made it difficult. So we’ll use the GRID2LIST
macro once:
%grid2list(data=visitors
 ,out=visitors_N
 ,by=Visitor
 ,id=Activity
 ,var= Golf Swimming Tennis
 ,colname=Rank)

Obs Visitor Harbor Uptown Valley

1 Aaron Hi Hi Hi

2 Carol Hi Hi Hi

3 James Hi Hi Hi

4 Susan Hi Hi Hi

Foundations and FundamentalsSAS Global Forum 2009

13

to create Visitors_N:

and a second time:
%grid2list(data=parks
 ,out=parks_N
 ,by=Park
 ,id=Activity
 ,var= Golf Swimming Tennis
 ,colname=X)

to produce Parks_N

With the normalized tables Visitors_N and Parks_N, we are prepared to do some more
interesting joins.
RESTRICTED JOINS

Now that both data sources (pertaining to park facilities and to visitor interests) have been
normalized, we can easily code a join which will use all of the information:

Obs Visitor Activity Rank

1 Aaron Golf B

2 Aaron Tennis A

3 Carol Swimming A

4 Carol Tennis B

5 James Golf A

6 James Swimming C

7 James Tennis B

8 Susan Swimming A

Obs Park Activity X

1 Harbor Swimming X

2 Harbor Tennis X

3 Uptown Golf X

4 Uptown Swimming X

5 Valley Golf X

6 Valley Tennis X

Foundations and FundamentalsSAS Global Forum 2009

14

PROC SQL;
CREATE TABLE List_Match AS
 SELECT Visitor
 , Park
 , Visitors_n.Activity
 , Rank
 FROM Visitors_n INNER JOIN Parks_n
 ON Visitors_n.Activity = Parks_n.Activity
 ORDER BY Visitor , Activity , Park
;
QUIT;

The CROSS JOIN used earlier has been replaced by an INNER JOIN. That requires the inclusion
of a restrictive ON clause, which in this example excludes all non-matching pairs. The SELECT
clause now includes the type of activity and the preference ranking. The result (List_Match)
looks like this:

There is a row for each location having a facility for each activity of interest of each person. For
the sake of compact presentation, the LIST2GRID macro can be invoked:

%list2grid(data=List_Match
 ,out=Grid_Match
 ,by=Visitor Activity
 ,id=Park
 ,var=Rank)

Obs Visitor Park Activity Rank

1 Aaron Uptown Golf B

2 Aaron Valley Golf B

3 Aaron Harbor Tennis A

4 Aaron Valley Tennis A

5 Carol Harbor Swimming A

6 Carol Uptown Swimming A

7 Carol Harbor Tennis B

8 Carol Valley Tennis B

9 James Uptown Golf A

10 James Valley Golf A

11 James Harbor Swimming C

12 James Uptown Swimming C

13 James Harbor Tennis B

14 James Valley Tennis B

15 Susan Harbor Swimming A

16 Susan Uptown Swimming A

Foundations and FundamentalsSAS Global Forum 2009

15

Here is the output (Grid_Match):

Perhaps this is too much information for the immediate needs, and that instead of identifying
each activity of interest for each person at each park, we really want only the number of
activities of interest for each person at each park. To get that, we can alter the code as follows:

PROC SQL;
CREATE TABLE List_Summary AS
 SELECT Visitor
 , Park
 , N(Parks_n.Activity) AS Activity_Count
 FROM Visitors_n INNER JOIN Parks_n
 ON Visitors_n.Activity = Parks_n.Activity
 GROUP BY Visitor , Park
 ORDER BY Visitor , Park
;
QUIT;

The detail on specific activities and their preference ranks has been removed from the SELECT
clause, in favor of a summary function (in this case, the N function, which provides simple
counts). The GROUP BY clause has been inserted to stratify the process and produce a separate
count for each park/person pair. Here is the output (List_Summary):

Notice that the summarization has reduced the number of rows in the output from 16 to 11.

As before, we can call the LIST2GRID macro to re-shape the table:

Obs Visitor Activity Uptown Valley Harbor

1 Aaron Golf B B

2 Aaron Tennis A A

3 Carol Swimming A A

4 Carol Tennis B B

5 James Golf A A

6 James Swimming C C

7 James Tennis B B

8 Susan Swimming A A

Obs Visitor Park Activity_Count

1 Aaron Harbor 1

2 Aaron Uptown 1

3 Aaron Valley 2

4 Carol Harbor 2

5 Carol Uptown 1

6 Carol Valley 1

7 James Harbor 2

8 James Uptown 2

9 James Valley 2

10 Susan Harbor 1

11 Susan Uptown 1

Foundations and FundamentalsSAS Global Forum 2009

16

%list2grid(data=List_Summary
 ,out=Grid_Summary
 ,by=Visitor
 ,id=Park
 ,var=Activity_Count)

giving us Grid_Summary:

To illustrate another important SQL feature, let’s suppose that we require a bit more focus.
Specifically, let’s exclude the park/person pairs which don’t include the person’s favorite (A-
ranked) activity. That’s accomplished by including a HAVING clause:
PROC SQL;
CREATE TABLE List_A_Only AS
 SELECT Visitor
 , Park
 , N(Parks_n.Activity) AS Activity_Count
 FROM Visitors_n INNER JOIN Parks_n
 ON Visitors_n.Activity = Parks_n.Activity
 GROUP BY Visitor , Park
 HAVING MIN(Rank) = 'A'
 ORDER BY Visitor , Park
;
QUIT;

HAVING clauses are filters, as are the WHERE clauses we saw in an earlier example. The
difference is that HAVING clauses refer to summary functions (MIN in this case), and are
necessarily performed later in the sequence of processing. Here is the result (List_A_Only):

The additional restriction has further reduced the size of the result, from 11 rows to 8.

Once again we’ll use %LIST2GRID to denormalize:

Obs Visitor Harbor Uptown Valley

1 Aaron 1 1 2

2 Carol 2 1 1

3 James 2 2 2

4 Susan 1 1 .

Obs Visitor Park Activity_Count

1 Aaron Harbor 1

2 Aaron Valley 2

3 Carol Harbor 2

4 Carol Uptown 1

5 James Uptown 2

6 James Valley 2

7 Susan Harbor 1

8 Susan Uptown 1

Foundations and FundamentalsSAS Global Forum 2009

17

%list2grid(data=List_A_Only
 ,out=Grid_A_Only
 ,by=Visitor
 ,id=Park
 ,var=Activity_Count)

That produces Grid_A_Only:

CONCLUSION

The examples we’ve explored have been pretty realistic, and most of the code shown is at least
adaptable for real-world tasks. However, the features of SQL, and the nuances of its usage, go far
beyond what was presented here. See the references for sources of additional information.
REFERENCES

• SAS Institute Inc. 2008. Base SAS® 9.2 Procedures Guide. Cary, NC: SAS Institute Inc.

• Schreier, Howard. 2008. PROC SQL by Example: Using SQL within SAS®. Cary, NC:
SAS Institute Inc.
(http://tinyurl.com/sqlbook)

CONTACT INFORMATION

Your comments and questions are valued and encouraged. Contact the author:

Howard Schreier
Howles Informatics
Arlington VA

703-979-2720

hs AT howles DOT com
http://howles.com/saspapers/
http://sascommunity.org/wiki/Howard_Schreier

SAS and all other SAS Institute Inc. product or service names are registered trademarks or
trademarks of SAS Institute Inc. in the USA and other countries. ® indicates USA registration.

Other brand and product names are trademarks of their respective companies.

Obs Visitor Harbor Valley Uptown

1 Aaron 1 2 .

2 Carol 2 . 1

3 James . 2 2

4 Susan 1 . 1

Foundations and FundamentalsSAS Global Forum 2009

	2009 Table of Contents

