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ABSTRACT 
Predictive modeling includes regression, both logistic and linear, depending upon the type of outcome variable. 
However, as the datasets are generally too large for a p-value to have meaning, predictive modeling uses other 
measures of model fit. Generally, too, there are enough observations so that the data can be partitioned into two or 
more datasets. The first subset is used to define (or train) the model. The second subset can be used in an iterative 
process to improve the model. The third subset is used to test the model for accuracy.  
 
The definition of “best” model needs to be considered as well. In a regression model, the “best” model is one that 
satisfies the criteria of uniform minimum variance unbiased estimator. In other words, it is only “best” in the class of 
unbiased estimators. As soon as the class of estimators is expanded, “best” no longer exists, and we must define the 
criteria that we will use to determine a “best” fit. There are several criteria to consider. For a binary outcome variable, 
we can use the misclassification rate. However, especially in medicine, misclassification can have different costs. A 
false positive error is not as costly as a false negative error if the outcome involves the diagnosis of a terminal 
disease. We will discuss the similarities and differences between the types of modeling. 
 
Another consideration is the assumptions required for regression; predictive modeling is more nonparametric in 
nature. We will examine the assumption of normality and the use of the Central Limit Theorem.  
 
INTRODUCTION 
Regression has been the standard approach to modeling the relationship between one outcome variable and several 
input variables. Generally, the p-value is used as a measure of the adequacy of the model. There are other statistics, 
such as the r2 and the c-statistic (for logistic regression) that are presented, but are not usually considered as 
important. However, regression has limitations with large samples; all p-values are statistically significant with an 
effect size of virtually zero. For this reason, we need to be careful when interpreting the model. Instead, we can take 
a different approach. Because there are so many data values available, we can divide them and create holdout 
samples. Then, when using predictive modeling, we can use many different models simultaneously, and compare 
them to find the one that is the best. We can use the traditional regression, but also decision trees and neural network 
analysis. We can also combine different models. We can focus on accuracy of prediction rather than just identifying 
risk factors.  
 
In particular, we will discuss some of the issues that are involved when using both linear and logistic regression. 
Regression requires an assumption of normality. The definition of confidence intervals, too, requires normality. 
However, most healthcare data are exponential or gamma. According to the Central Limit Theorem, the sample mean 
can be assumed normal if the sample is sufficiently large. However, if the distribution is exponential, just how large is 
large enough? If we use nonparametric models, we do not have to be as concerned with the actual population 
distribution.  
 
Additional assumptions for regression are that the mean of the error term is equal to zero, and that the error term has 
equal variance for different levels of the input or independent variables. While the assumption of zero mean is almost 
always satisfied, the assumption of equal variance is not. Often, as the independent variables increase in value, the 
variance often increases as well. Therefore, modifications are needed to the variables, usually in the form of 
transformations, substituting the log of an independent variable for the variable itself. Transformations require 
considerable experience to use properly. In addition, the independent variables are assumed to be independent of 
each other. While the model can tolerate some correlation between these variables, too much correlation will result in 
a poor model that cannot be used effectively on fresh data. A similar problem occurs if the independent variables 
have different range scales. 
  
Probably the most worrisome is the assumption that the error terms are identically distributed. In order for this 
assumption to be valid, we must assume the uniformity of data entry. That means that all providers must enter poorly 
defined values in exactly the same way. Unfortunately, such an assumption cannot possibly be valid. Consider, for 
example, the condition of “uncontrolled diabetes,” which is one coded patient condition. The term, “uncontrolled” is 
not defined. Therefore, the designation remains at the discretion of the provider to define the term. For this reason, 
different providers will define it differently.  
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We use a medical dataset to examine the Central Limit Theorem. The dataset is available from the National Inpatient 
Sample (NIS). While publicly available, there is a small fee required from the Healthcare Cost and Utilization Project 
(HCUP, http://www.ahrq.gov/data/hcup/) in order to use them ($20 for students per year; $200 for non-students). In 
addition, the user must complete a statement of use indicating that they understand what can and cannot be 
disclosed. The NIS contains information concerning hospital inpatient stays, currently from a total of 37 states. 
Specific information about the datasets is available at http://www.ahrq.gov/data/hcup/datahcup.htm. Information on 
the acquisition of the data is available at http://www.hcup-us.ahrq.gov/tech_assist/centdist.jsp. The advantage of 
using this dataset is that the outcome variables are all heavy-tailed with gamma or exponential distributions. 
Therefore, we can use a series of random samples of the dataset to investigate the properties of the Central Limit 
Theorem for such a population distribution.  
 
DATA VISUALIZATION 
We start with Figure 1, the bar graph of the hospital length of stay for all patients with diabetes. In the National 
Inpatient Sample, that includes just over 1 million patient stays. We use a bar graph to examine length of stay. Note 
that the distribution has a very heavy tail with the maximum stay of about 354 days. The average length of stay is 
equal to 5 days with a standard deviation of 5.8 days. Figure 2 reduces the values on the x-axis to a maximum of 50. 
In Figure 2, note the gaps that occur because of rounding in the length of stay.  
 
Figure 1. Length of Hospital Stay for Patients       Figure 2. Length of Stay Limited to 50 Maximum 
with Diabetes 

 
 
 
 
Figure 3 gives the best normal estimate of the population distribution. It significantly under-values the probability at 
the lower levels of length of stay, but also does not adequately estimate the outliers. 
 
Figure 3. Normal Estimate of Population Distribution 
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Figure 4 gives an exponential distribution estimate. It better follows the pattern of the bar graph, but it still under-
values the height of the bars. 
 
Figure 4. Exponential Estimate of Population Distribution 
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KERNEL DENSITY ESTIMATION 
When a known distribution does not work to estimate the population, we can just use an estimate of that distribution. 
The histogram in Figures 1-4 can be smoothed into a probability density function. The formula for computing a kernel 
density estimate at the point x is equal to 
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where n is the size of the sample and K is a known density function. The value an is called the bandwidth. It controls 
the level of smoothing of the estimate curve. As the value of an approaches zero, the curve, f(x), becomes very 
jagged. As the value of an approaches infinity, the curve becomes closer to a straight line.  
 
There are different methods available that can be used to attempt to optimize the level of smoothing. However, the 
value of an may still need adjustments, so SAS has a mechanism to allow you to do just that. Note that for most 
standard density functions, K, where x is far in magnitude from any point Xj, the value of 
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very small. Where many data points cluster together, the value of the  density function will be high because the sum 
of x-Xj will be large, so that the probability defined by the kernel function will be large. However, where there are only 
scattered points, the value will be small. K can be the standard normal density, or the uniform density. Simulation 
studies have demonstrated that the value of K has very limited impact on the value of the density estimate. It is the 
value of the bandwidth, an, that has substantial impact on the value of the density estimate. The true value of this 
bandwidth must be estimated, and there are several methods available to optimize this estimate. The SAS code used 
to define this kernel density function is given below: 
 

proc kde data=nis.diabetesless50los; 
univar los/gridl=0 gridu=50 method=srot out=nis.kde50 bwm=3; 
run; 

 
We specify lower and upper grid values to bound the estimate. The method=srot attempts to optimize the level of 
smoothness in the estimate. The option, bwm=3, allows you to modify the optimal smoothness. The ‘bwm’ stands for 
bandwidth multiplier. With bwm=3, you take the value of an optimal bandwidth computed through the srot method 
(discussed below) and multiply it by 3 to increase the smoothness of the graph. The resulting estimate is saved in the 
nis.kde50 dataset so that it can be graphed. The result is given in Figure 5. Without the bwm=3 option, the estimate 
appears more jagged (Figure 6).  
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Figure 5. Kernel Density Estimate of Length of Figure 6. Kernel Density Estimate of Length of  
Stay for Patients With Diabetes   Stay for Patients With Diabetes Without Modifying  
      the Level of Smoothness 

 
PROC KDE uses only the standard normal density for K, but allows for several different methods to estimate the 
bandwidth, as discussed below.  The default for the univariate smoothing is that of Sheather-Jones plug in (SJPI): 
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where C3 and C4 are appropriate functionals. The unknown values that depend upon the density function f(x) are 
estimated with bandwidths chosen by reference to a parametric family such as the Gaussian as provided in 
Silverman:(Silverman, 1986) 
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However, the procedure uses a different estimator, the simple normal reference (SNR), as the default for the bivariate 
estimator: 
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along with Silverman’s rule of thumb (SROT): 
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and the over-smoothed method (OS): 
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Figure 7. Kernel Density Estimate of Length of Stay for Patients With Diabetes and BWM=10. 
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Figure 7 uses bwm=10 to increase the level of smoothing. It appears to have the most optimal level of smoothness. 
For a bwm<1, the curve becomes more jagged; for bwm>1, it becomes smoother. However, it can be too smooth. 
Figure 8 has a bwm of 100. 
 
Figure 8. Kernel Density Estimate of Length of Stay for Patients With Diabetes and BWM=100. 

 
CENTRAL LIMIT THEOREM 
We must consider just how large n has to be for the Central Limit Theorem to be valid.(Battioui, 2007) To examine 
the issue, we take samples of different sizes to compute the distribution of the sample mean. The following code will 
compute 100 mean values from sample sizes starting with 5 and increasing to 10,000. 
 

PROC SURVEYSELECT DATA=nis.nis_205 OUT=work.samples METHOD=SRS N=5 rep=100 
noprint; 
RUN; 
proc means data=work.samples noprint; 
  by replicate; 
  var los; 
  output out=out mean=mean; 
run; 

 
We change the value of N=5 in the first code statement to change the sample size. Once we have computed the 
means, we can graph them using kernel density estimation. We show the difference between the distribution of the 
population, and the distribution of the sample mean for the differing sample sizes. Figures 9-12 show the distribution 
of the sample mean compared to the distribution of the population for differing sample sizes. To compute the 
distribution of the sample mean, we collect 100 different samples using the above code. We compute the mean for 
the patient length of stay using the National Inpatient Sample. 
 
Figure 9. Sample Mean With Sample=5    Figure 10. Sample Mean With Sample=30 
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Figure 11. Sample Mean With Sample=100         Figure 12. Sample Mean With Sample=1000 

 
 
In Figure 9, the sample mean peaks slightly to the right of the peak of the population distribution; this peak is much 
more exaggerated in Figure 10. The reason for this shift in the peak is because the sample mean is susceptible to the 
influence of outliers, and the population is very skewed. Because it is so skewed, the distribution of the sample mean 
is not entirely normal. As the sample increases to 100 and then to 1000, this shift from the population peak to the 
sample peak becomes much more exaggerated. We use the same sample sizes for 1000 replicates (Figures 13-16). 
 
Figure 13. Sample Mean for Sample Size=5 and  Figure 14. Sample Mean for Sample Size=30 and  
1000 Replicates     1000 Replicates 

 
 
 
Figure 15. Sample Mean for Sample Size=100  Figure 16. Sample Mean for Sample Size=1000 
and 1000 Replicates    and 1000 Replicates 
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It is again noticeable that the sample mean has shifted away from the peak value of the population distribution 
because of the skewed distribution. However, the distribution of the mean is not normally distributed.  
 
OUTLIERS IN REGRESSION 
An assumption of normality is required for regression. If we assume normality when the distribution is exponential or 
gamma, the outliers will be under-counted. Consider the dataset here that is not normally distributed. We use a 
random sample of 1000 observations. The mean and standard deviation (assuming a normal distribution) are equal to 
4.235 and 5.0479 respectively. Then, three standard deviations beyond the mean is equal to 19.3787 days. Two 
standard deviations beyond the mean is equal to 14.3308. In the random sample, the proportion of days beyond two 
standard deviations is equal to 35 when the normal probability indicates only 25 should be that large. The proportion 
beyond three standard deviations is equal to 20; the probability indicates that only 10 should be beyond that point. 
We also look at the outlier charges and the cost-to-charge ratio as determined by the hospital. The cost-to-charge 
ratio by hospital is provided in the National Inpatient Sample data. A cost-to-charge is the ratio of patient costs to the 
charges billed by the hospital. A ratio less than one indicates that the charges are much larger than costs; a ratio 
larger than on indicates the opposite. Figure 17 shows the variability in the cost-to-charge ratio across the different 
hospitals. Note the considerable variability from 0.1 to 0.8.  Hospitals with a higher cost-to-charge ratio tend to bill 
charges that are more unreasonably in line with actual costs compared to hospitals with a rate of 1.0. Figure 18 
shows a comparison between charges and charges x cost ratio.  
 
Figure 17. Cost-to-Charge Ratio   Figure 18. Comparison of Charges to Estimated Costs 

 
 
The cost-to-charge ratio, then, reduces the probability in the tail, but does not reduce its size.  If we compare the 
kernel density graph of the cost-to-charge compared to the normal distribution assumption (Figure 19), it is clear that 
the assumption of normality will under-count the outliers. The following code is used to compare the kernel density to 
the normal distribution: 
 

PROC CAPABILITY DATA = WORK.SORTTempTableSorted 
  CIBASIC(TYPE=TWOSIDED ALPHA=0.05) 
  MU0=0; 
 VAR density; 
 ; 
        HISTOGRAM density / NORMAL ( W=10 L=1 COLOR=red MU=EST SIGMA=EST) 
                            KERNEL ( W=10 L=1 COLOR=CX008080 C= MISE K=NORMAL) 
                            NOBARS 
 
        CAXIS=PURPLE 
        CTEXT=BLACK CFRAME=WHITE 
        CBARLINE=BLACK 
        CFILL=GRAY; 
         RUN; 
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Figure 19. Comparison of Kernel Estimate to Normality Assumption 
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A normal assumption increases the variance, but fails to count many of the extreme outliers. Therefore, hospital 
reimbursement formulas need to take the gamma population distribution into consideration in order to account for the 
population outliers. 
 
LOGISTIC REGRESSION 
We want to see if we can predict mortality in patients using a logistic regression model. There is considerable 
incentive to increase the number of positive indicators, called upcoding. The value,  
 

25252221
... XXX ααα +++   

 
increases as the number of nonzero X’s increases. The greater this value, the greater the likelihood that it will cross 
the threshold value that predicts mortality. However, consider for a moment that just about every patient condition has 
a small risk of mortality. Once the threshold value is crossed, every patient with similar conditions are predicted to 
die. Therefore, the more patients who can be defined over the threshold value, the higher the predicted mortality rate, 
decreasing the difference between predicted and actual mortality. There is considerable incentive to upcode patient 
diagnoses to increase the likelihood of crossing this threshold value. To simplify, we start with just one input variable 
to the logistic regression; the occurrence of pneumonia. Table 1 gives the chi-square table for the two variables. 
 
Table 1. Chi-square Table for Mortality by Pneumonia 

Table of pneumonia by DIED 

pneumonia DIED 

Frequency 
Row Pct 
Col Pct 

0 1 

Total 

0 7431129 
98.21 
94.97 

135419
1.79

81.02 

7566548 
 
 

1 393728 
92.54 
5.03 

31731
7.46

18.98 

425459 
 
 

Total 7824857 167150 7992007 

Frequency Missing = 3041 
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Approximately 7% of the patients with pneumonia died compared to just under 2% generally. However, if we consider 
the classification table (Table 2) for a logistic regression with pneumonia as the input and mortality as the outcome 
variable, the accuracy rate is above 90% for any choice of threshold value of less than 1.0, where 100% of the values 
are to predict non-mortality. Therefore, even though patients with pneumonia are almost 4 times as likely to die 
compared to patients without pneumonia, pneumonia by itself is a poor predictor of mortality because of the rare 
occurrence.  
 
Table 2. Classification Table for Logistic Regression 

Classification Table 

Correct Incorrect Percentages Prob 
Level 

Event Non- 
Event 

Event Non-
Event 

Correct Sensi-
tivity 

Speci- 
ficity 

False 
POS 

False
NEG 

0.920 782E4 0 167E3 0 97.9 100.0 0.0 2.1 . 

0.940 743E4 31731 135E3 394E3 93.4 95.0 19.0 1.8 92.5 

0.960 743E4 31731 135E3 394E3 93.4 95.0 19.0 1.8 92.5 

0.980 743E4 31731 135E3 394E3 93.4 95.0 19.0 1.8 92.5 

1.000 0 167E3 0 782E4 2.1 0.0 100.0 . 97.9 
 
We now add a second patient diagnosis to the regression. Table 3 gives the chi-square table for pneumonia and 
septicemia.  
Table 3. Chi-square Table for Pneumonia and Septicemia 

Controlling for septicemia=0 Controlling for septicemia=1 

pneumonia Died Total DIED Total 

Frequency 
Row Pct 
Col Pct 

0 1  0 1  

0 7307726 
98.60 
95.20 

103759 
1.40 

82.65 

7411485 
 
 

123403
79.58
83.06 

31660
20.42
76.09 

155063

 

1 368553 
94.42 

4.80 

21783 
5.58 

17.35 

390336 
 
 

25175
71.68
16.94 

9948
28.32
23.91 

35123

 

Total 7676279 125542 7801821 148578 41608 190186 
 
Of the patients with septicemia only (pneumonia=0), 20% died, increasing to 28% with both septicemia and 
pneumonia. For patients without septicemia but with pneumonia, 5% died. The classification table for the logistic 
regression is given in Table 4. 
 
Table 4. Classification Table for Logistic Regression With Pneumonia and Septicemia 

Classification Table 

Correct Incorrect Percentages Prob 
Level 

Event Non- 
Event 

Event Non-
Event 

Correct Sensi-
tivity 

Speci- 
ficity 

False 
POS 

False
NEG 

0.580 782E4 0 167E3 0 97.9 100.0 0.0 2.1 . 

0.600 78E5 9948 157E3 25175 97.7 99.7 6.0 2.0 71.7 

0.620 78E5 9948 157E3 25175 97.7 99.7 6.0 2.0 71.7 

0.640 78E5 9948 157E3 25175 97.7 99.7 6.0 2.0 71.7 

0.660 78E5 9948 157E3 25175 97.7 99.7 6.0 2.0 71.7 
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Classification Table 

Correct Incorrect Percentages Prob 
Level 

Event Non- 
Event 

Event Non-
Event 

Correct Sensi-
tivity 

Speci- 
ficity 

False 
POS 

False
NEG 

0.680 78E5 9948 157E3 25175 97.7 99.7 6.0 2.0 71.7 

0.700 78E5 9948 157E3 25175 97.7 99.7 6.0 2.0 71.7 

0.720 78E5 9948 157E3 25175 97.7 99.7 6.0 2.0 71.7 

0.740 78E5 9948 157E3 25175 97.7 99.7 6.0 2.0 71.7 

0.760 78E5 9948 157E3 25175 97.7 99.7 6.0 2.0 71.7 

0.780 78E5 9948 157E3 25175 97.7 99.7 6.0 2.0 71.7 

0.800 78E5 9948 157E3 25175 97.7 99.7 6.0 2.0 71.7 

0.820 78E5 9948 157E3 25175 97.7 99.7 6.0 2.0 71.7 

0.840 768E4 41608 126E3 149E3 96.6 98.1 24.9 1.6 78.1 

0.860 768E4 41608 126E3 149E3 96.6 98.1 24.9 1.6 78.1 

0.880 768E4 41608 126E3 149E3 96.6 98.1 24.9 1.6 78.1 

0.900 768E4 41608 126E3 149E3 96.6 98.1 24.9 1.6 78.1 

0.920 768E4 41608 126E3 149E3 96.6 98.1 24.9 1.6 78.1 

0.940 768E4 41608 126E3 149E3 96.6 98.1 24.9 1.6 78.1 

0.960 731E4 63391 104E3 517E3 92.2 93.4 37.9 1.4 89.1 

0.980 731E4 63391 104E3 517E3 92.2 93.4 37.9 1.4 89.1 

1.000 0 167E3 0 782E4 2.1 0.0 100.0 . 97.9 
 
Again, for any threshold value below 98%, the logistic regression model will be over 90% accurate by identifying most 
of the observations as non-occurrences so that the false negative rate is over 70%. In other words, adding a second 
input variable did not change the problems with the regression, which are caused by attempting to predict a rare 
occurrence.  We add Immune Disorder to the model (Table 5).  
 
Table 5. Classification Table Adding Immune Disorder 

Classification Table 

Correct Incorrect Percentages Prob 
Level 

Event Non- 
Event 

Event Non-
Event 

Correct Sensi-
tivity 

Speci- 
ficity 

False 
POS 

False
NEG 

0.480 782E4 0 167E3 0 97.9 100.0 0.0 2.1 . 

0.500 781E4 4907 162E3 11633 97.8 99.9 2.9 2.0 70.3 

0.520 781E4 4907 162E3 11633 97.8 99.9 2.9 2.0 70.3 

0.540 781E4 4907 162E3 11633 97.8 99.9 2.9 2.0 70.3 

0.560 781E4 4907 162E3 11633 97.8 99.9 2.9 2.0 70.3 

0.580 781E4 4907 162E3 11633 97.8 99.9 2.9 2.0 70.3 

0.600 781E4 4907 162E3 11633 97.8 99.9 2.9 2.0 70.3 

0.620 781E4 4907 162E3 11633 97.8 99.9 2.9 2.0 70.3 

0.640 781E4 4907 162E3 11633 97.8 99.9 2.9 2.0 70.3 
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Classification Table 

Correct Incorrect Percentages Prob 
Level 

Event Non- 
Event 

Event Non-
Event 

Correct Sensi-
tivity 

Speci- 
ficity 

False 
POS 

False
NEG 

0.660 781E4 4907 162E3 11633 97.8 99.9 2.9 2.0 70.3 

0.680 781E4 4907 162E3 11633 97.8 99.9 2.9 2.0 70.3 

0.700 781E4 4907 162E3 11633 97.8 99.9 2.9 2.0 70.3 

0.720 781E4 4907 162E3 11633 97.8 99.9 2.9 2.0 70.3 

0.740 776E4 21322 146E3 65076 97.4 99.2 12.8 1.8 75.3 

0.760 775E4 26363 141E3 78618 97.3 99.0 15.8 1.8 74.9 

0.780 775E4 26363 141E3 78618 97.3 99.0 15.8 1.8 74.9 

0.800 775E4 26363 141E3 78618 97.3 99.0 15.8 1.8 74.9 

0.820 775E4 26363 141E3 78618 97.3 99.0 15.8 1.8 74.9 

0.840 775E4 26363 141E3 78618 97.3 99.0 15.8 1.8 74.9 

0.860 775E4 26363 141E3 78618 97.3 99.0 15.8 1.8 74.9 

0.880 775E4 26363 141E3 78618 97.3 99.0 15.8 1.8 74.9 

0.900 768E4 41608 126E3 149E3 96.6 98.1 24.9 1.6 78.1 

0.920 757E4 51297 116E3 258E3 95.3 96.7 30.7 1.5 83.4 

0.940 757E4 51297 116E3 258E3 95.3 96.7 30.7 1.5 83.4 

0.960 757E4 51297 116E3 258E3 95.3 96.7 30.7 1.5 83.4 

0.980 634E4 103E3 64219 149E4 80.6 81.0 61.6 1.0 93.5 

1.000 0 167E3 0 782E4 2.1 0.0 100.0 . 97.9 
 
The problem still persists, and will continue to persist regardless of the number of input variables. We need to change 
the sample size so that the group sizes are close to equal.  

PREDICTIVE MODELING IN SAS ENTERPRISE MINER 
Figure 1 gives a diagram of a predictive model in SAS Enterprise Miner. Enterprise Miner includes the standard types 
of regression, artificial neural networks, and decision trees. The regression model will choose linear or logistic 
automatically, depending upon the type of outcome variable. Figure 20 shows that many different models can be 
used. Once defined, the models are compared and the optimal model chosen based upon pre-selected criteria. Then, 
additional data can be scored so that patients, in this example, at high risk for adverse events can be identified for 
more aggressive treatment. 
 
The purpose of the partition node in Figure 20 is to divide the data into training, validation, and testing subsets, by 
default, a 40/30/30 split in the data. Usually, the datasets are large enough that such a partitioning is possible. The 
training set is used to define the model; the testing set is a holdout sample used as fresh data to test the accuracy of 
the model. The validation set is not needed for regression; it is needed for neural networks and any model that is 
defined iteratively. The model is examined on the validation set, and adjustments are made to the model if necessary. 
This process is repeated until no more changes are necessary. 
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Figure 20. Predictive Modeling of Patient Outcomes 

 
 
For predicting a rare occurrence, one more node is added to the model in Figure 20, the sampling node (Figure 21). 
This node uses all of the observations with the rare occurrence, and then takes a random sample of the remaining 
data. While the sampling node can use any proportional split, we recommend a 50:50 split. Figure 22 shows how the 
defaults are modified in the sampling node of SAS Enterprise Miner to make predictions. 
 
Figure 21. Addition of Sampling Node 
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Figure 22. Change to Defaults in Sampling Node 

 
 
The first arrow indicates that the sampling is stratified, and the criterion is level based. The rarest level (in this case, 
mortality) is sampled so that it will consist of half (50% sample proportion) of the sample.  
 
Consider the problem of predicting mortality that was discussed in the previous section on logistic regression. We use 
just the same three patient diagnoses of pneumonia, septicemia, and immune disorder that we used previously. 
However, in this case, we use the sampling node to get a 50/50 split in the data.  
 
We use all of the models depicted in Figure 20. According to the model comparison, the rule induction provides the 
best fit, using the misclassification rate as the measure of “best”. We first look at the regression model, comparing the 
results to those in the previous chapter when a 50/50 split was not performed. The overall misclassification rate is 
28%, with the divisions as shown in Table 6. 
 
Table 6. Misclassification in Regression Model 
Target Outcome Target Percentage Outcome Percentage Count Total Percentage 
Training Data      
0 0 67.8 80.1 54008 40.4 
1 0 32.2 38.3 25622 19.2 
0 1 23.8 19.2 12852 9.6 
1 1 76.3 61.7 41237 30.8 
Validation Data      
0 0 67.7 80.8 40498 40.4 
1 0 32.3 38.5 19315 19.2 
0 1 23.8 19.2 9646 9.6 
1 1 76.2 61.5 30830 30.7 
 
Note that the misclassification becomes more balanced between false positives and false negatives with a 50/50 split 
in the data. The model gives heavier weight to false positives than it does to false negatives.  We also want to 
examine the decision tree model. While it is not the most accurate model, it is one that clearly describes the rationale 
behind the predictions. This tree is given in Figure 23. The tree shows that the first split occurs on the variable, 
Septicemia. Patients with Septicemia are more likely to suffer mortality compared to patients without Septicemia. As 
shown in the previous section, the Immune Disorder has the next highest level of mortality followed by Pneumonia.  
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Figure 23. Decision Tree Results 

 
 
Since rule induction is identified as the best model, we examine that one next. The misclassification rate is only 
slightly smaller compared to the regression model. Table 7 gives the classification table.  
 
Table 7. Misclassification in Rule Induction Model 
Target Outcome Target Percentage Outcome Percentage Count Total Percentage 
Training Data      
0 0 67.8 80.8 54008 40.4 
1 0 32.2 38.3 25622 19.2 
0 1 23.8 19.2 12852 9.6 
1 1 76.3 61.7 41237 30.8 
Validation Data      
0 0 67.7 80.8 40498 40.4 
1 0 32.3 38.5 19315 19.2 
0 1 23.8 19.2 9646 9.6 
1 1 76.2 61.5 30830 30.7 
 
The results look virtually identical to those in Table 6. For this reason, the regression model, although not defined as 
the best, can be used to predict outcomes when only these three variables are used. The similarities in the models 
can also be visualized in the ROC (received-operating curve) that graphs the sensitivity versus one minus the 
specificity (Figure 24). The curves for rule induction and regression are virtually the same. 
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Figure 24. Comparison of ROC Curves 

 
 
The above example only used three possible diagnosis codes. We want to expand upon the number of diagnosis 
codes, and also to use a number of procedure codes. In this example, we restrict our attention to patients with a 
primary diagnosis of COPD (chronic obstructive pulmonary disease resulting primarily from smoking). There are 
approximately 245,000 patients in the NIS dataset. Table 8 gives the list of diagnosis codes used; Table 9 gives a list 
of procedure codes used as well.  
 
Table 8. Diagnosis Codes Used to Predict Mortality 
Condition ICD9 Codes 
Acute myocardial 
infarction 

410, 412 

Congestive heart 
failure 

428 

Peripheral 
vascular disease 

441,4439,7854,V434 

Cerebral 
vascular 
accident 

430-438 

Dementia 290 
Pulmonary 
disease 

490,491,492,493,494,495,496,500,501,502,503,504,505 

Connective 
tissue disorder 

7100,7101,7104,7140,7141,7142,7148,5171,725 

Peptic ulcer 531,532,533,534 
Liver disease 5712,5714,5715,5716 
Diabetes 2500,2501,2502,2503,2507 
Diabetes 
complications 

2504,2505,2506 

Paraplegia 342,3441 
Renal disease 582,5830,5831,5832,5833,5835,5836,5837,5834,585,586,588 
Cancer 14,15,16,17,18,170,171,172,174,175,176,179,190,191,193, 194,1950,1951,1952, 

1953,1954,1955,1958,200,201,202,203, 204,205,206,207,208 
Metastatic 
cancer 

196,197,198,1990,1991 

Severe liver 
disease 

5722,5723,5724,5728 

HIV 042,043,044 
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Table 9. Procedure Codes Used to Predict Mortality 
pr Procedure Translation Frequency Percent 

9904 Transfusion of packed cells 17756 7.05 

3893 Venous catheterization, not elsewhere classified 16142 6.41 

9671 Continuous mechanical ventilation for less than 96 consecutive hours 10528 4.18 

3324 Closed [endoscopic] biopsy of bronchus 8315 3.30 

9672 Continuous mechanical ventilation for 96 consecutive hours or more 8243 3.27 

3491 Thoracentesis 8118 3.22 

3995 Hemodialysis 8083 3.21 

9604 Insertion of endotracheal tube 7579 3.01 

9921 Injection of antibiotic 6786 2.69 

9394 Respiratory medication administered by nebulizer 6309 2.50 

8872 Diagnostic ultrasound of heart 5419 2.15 

4516 Esophagogastroduodenoscopy [EGD] with closed biopsy 4894 1.94 

9390 Continuous positive airway pressure 4667 1.85 

3327 Closed endoscopic biopsy of lung 3446 1.37 

8741 Computerized axial tomography of thorax 3417 1.36 

4513 Other endoscopy of small intestine 3277 1.30 
 
If we perform standard logistic regression without stratified sampling, the false positive rate remains small 
(approximately 3-4%), but with a high false negative rate (minimized at 38%). Given the large dataset, almost all of 
the input variables are statistically significant. The percent agreement is 84% and the ROC curve looks fairly good 
(Figure 25). 
 
Figure 25. ROC Curve for Traditional Logistic Regression 

 
 
If we perform predictive modeling, the accuracy rate drops to 75%, but the false negative rate is considerably 
improved. Figure 26 gives the ROC curve from predictive modeling. 
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Figure 26. ROC From Predictive Modeling 

 

CHANGE IN SPLIT IN THE DATA 
All of the analyses in the previous section assumed a 50/50 split between mortality and non-mortality. We want to 
look at the results if mortality composes only 25% of the data, and 10% of the data. Table 10 gives the regression 
classification breakdown for a 25% sample; Table 11 gives the breakdown for a 10% sample. 
 
Table 10. Misclassification Rate for a 25% Sample 
Target Outcome Target Percentage Outcome Percentage Count Total Percentage 
Training Data      
0 0 80.4 96.6 10070 72.5 
1 0 19.6 70.9 2462 17.7 
0 1 25.6 3.3 348 2.5 
1 1 74.4 29.1 1010 7.3 
Validation Data      
0 0 80.2 97.1 7584 72.8 
1 0 19.8 71.7 1870 17.9 
0 1 23.7 2.9 229 2.2 
1 1 76.2 28.2 735 7.0 
 
Note that the ability to classify mortality accurately is decreasing with the decrease of the split; almost all of the 
observations are classified as non-mortality. The decision tree (Figure 27) is considerably different from that with a 
50/50 split. Now, the procedure of Esophagogastroduodenoscopy gives the first leaf of the tree.  
 
Table 11. Misclassification Rate for a 10% Sample 
Target Outcome Target Percentage Outcome Percentage Count Total Percentage 
Training Data      
0 0 91.5 99.3 31030 89.4 
1 0 8.5 83.5 2899 8.3 
0 1 27.3 0.7 216 0.6 
1 1 72.6 16.5 574 1.6 
Validation Data      
0 0 91.5 99.2 23265 89.3 
1 0 8.4 82.4 2148 8.2 
0 1 27.8 0.7 176 0.7 
1 1 72.2 17.5 457 1.7 
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Figure 27. Decision Tree for 25/75 Split in the Data 

 
 
Note that the trend shown in the 25% is even more exaggerated in the 10% sample. Figure 28 shows that the 
decision tree has changed yet again. It now includes the procedure of continuous positive airway pressure and the 
diagnosis of congestive heart failure.  AT a 1% sample, the misclassification becomes even more disparate. 
 
Figure 28. Decision Tree for 10% Sample 
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INTRODUCTION TO LIFT 
Lift allows us to find the patients at highest risk for occurrence, and with the greatest probability of accurate 
prediction. This is especially important since these are the patients we would want to take the greatest care for. Using 
lift, true positive patients with highest confidence come first, followed by positive patients with lower confidence. True 
negative cases with lowest confidence come next, followed by negative cases with highest confidence. Based on that 
ordering, the observations are partitioned into deciles, and the following statistics are calculated: 

• The Target density of a decile is the number of actually positive instances in that decile divided by the total 
number of instances in the decile. 

• The Cumulative target density is the target density computed over the first n deciles. 
• The lift for a given decile is the ratio of the target density for the decile to the target density over all the test 

data.  
• The Cumulative lift for a given decile is the ratio of the cumulative target density to the target density over all 

the test data. 

Given a lift function, we can decide on a decile cutpoint so that we can predict the high risk patients above the 
cutpoint, and predict the low risk patients below a second cutpoint, while failing to make a definite prediction for those 
in the center. In that way, we can dismiss those who have no risk, and aggressively treat those at highest risk. Lift 
allows us to distinguish between patients without assuming a uniformity of risk. Figure 29 shows the lift for the testing 
set when we use just the three input variables of pneumonia, septicemia, and immune disorder. 

Figure 29. Lift Function for Three-Variable Input 

 

Random chance is indicates by the lift value of 1.0; values that are higher than 1.0 indicate that the observations are 
more predictable compared to random chance. In this example, 40% of the patient records have a higher level of 
prediction than just chance. Therefore, we can concentrate on these 4 deciles of patients. If we use the expanded 
model that includes patient demographic information plus additional diagnosis and procedure codes for COPD, we 
get the lift shown in Figure 30. The model can now predict the first 5 deciles of patient outcomes. 

Figure 30. Lift Function for Complete Model 

 
 
Therefore, we can predict accurately those patients most at risk for death; we can determine which patients can 
benefit from more aggressive treatment to reduce the likelihood that this outcome will occur. 
 
DISCUSSION 
Given large datasets and the presence of outliers, the traditional statistical methods are not always applicable or 
meaningful. Assumptions can be crucial to the applicability of the model, and assumptions are not always carefully 
considered. The assumptions of a normal distribution and uniformity of data entry are crucial and need to be 
considered carefully. 
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The data may not give high levels of correlation, and regression may not always be the best way to measure 
associations. It must also be remembered that associations in the data as identified in regression models do not 
demonstrate cause and effect.  
 
Kernel density remains a rarely used technique in the medical literature to investigate population distributions. When 
it is used listed in a Medline article, it is usually in a technical, non-clinical journal to show improvements in the 
methodology (Hong, Chen, & Chris J Harris, 2008; Pfeiffer, 1985), or in DNA studies. (Fu, Borneman, Ye, & Chrobak, 
2005) Nevertheless, medicine must and will focus more on the study of outlier patients; patients with extreme 
conditions instead of focusing just on the average or typical patient. Outlier patient costs can often overwhelm the 
system even when they form just a small percentage of the whole. However, a keyword search of the term “outlier” in 
Medline returned just 188 articles total. Most of the returned papers had to do with outlier lab results and quality 
control (Ahrens, 1999; Novis, Walsh, Dale, & Howanitz, 2004) rather than with extreme patients. Some discussed 
outlier physician performance.(Harley, Mohammed, Hussain, Yates, & Almasri, 2005) 
 
Exactly one paper considered length of stay and the term, ‘outlier’. It examined the length of stay of patients in the 
intensive care unit; all of the patients in ICU can be considered extreme or outlier.(Weissman, 1997) This paper 
clearly demonstrated the problem of assuming a normal distribution and estimating averages when the data were 
clearly skewed. The paper also showed that any current method used to define outliers tended to under-estimate the 
number of outliers, and the extremes in the added costs of outliers. This result was confirmed in a dissertation on 
costs and outliers.(Battioui, 2007) Therefore, future trends can only go in the direction of more concern for the impact 
of the outlier, or most severe patients. 
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