SAS Global Forum 2009 Data Integration

Paper 102-2009

Parameter Driven Data Integration Using SAS® Stored Processes
Evangeline Collado, University of Central Florida, Orlando, FL

ABSTRACT

The data warehouse at this large, metropolitan, state university consists of term and annual census data. Loading
data into the warehouse is a data integration (DI) process that cannot be scheduled to run at a particular time each
day as it requires human intervention to specify the appropriate time period for the new data. The data transforms in
the process flow could be changed each term or year, but each node that requires this term parameter would need to
be changed. We desired a DI process that would prompt the data integration developer to provide this input when the
job is executed and it would remain constant throughout the process flow. This paper details one particular DI process
that was developed and deployed as a SAS stored process using SAS® Data Integration Studio 3.4, which offers the
developer the ability to create parameters, and executed using SAS® Enterprise Guide 4.1, which prompts the user to
supply the parameter. The intended audience is anyone who faces similar data integration challenges and requires
this type of solution.

WHO WE ARE

The mission of the Office of Institutional Research (IR) is to provide information of the highest quality, which is both
timely and easily accessible, and to facilitate and enhance decision-making, strategic planning, and assessment at
the University of Central Florida. The scope of the unit's responsibility embodies the university, state and federal
agencies, and the general public. One of the primary tasks of this office was to develop, implement, and maintain an
enterprise-wide data warehouse that would be the source for all official statistical analyses and reporting of university
information. Our office chose SAS® Enterprise Data Integration (DI) Server and SAS® Enterprise Business
Intelligence (BIl) Server to complete this task.

INTRODUCTION

One of the many reporting applications developed by the IR office several years ago provides information on student
credit hours (SCH) and full-time equivalents (FTE). This application was originally develo(ged using SAS® Base
software and surfaced to the UCF community and general public via the Web using SAS™ IntrNet software. The data
that drives this application was extracted from our student census files that were stored in Microsoft Access tables.
The application provides the information in a drill-down manner using dynamic links that are generated in each
successive program.

As part of the conversion process to add improved functionality to the application using the new Bl tools provided in
the SAS Enterprise Bl Server software suite, it was decided that, because the data are multidimensional, an OLAP
(OnLine Analytical Processing) cube would be the best solution. Since the census data are now loaded into the data
warehouse, we could design a DI process that would extract the data from the dimension tables and load all the
necessary reporting fields into a fact table (SCH_FACT). An OLAP cube could then be developed using SAS® OLAP
Cube Studio software and an information map for use with other SCH reporting needs could be developed using
SAS® Information Map Studio software. With this functionality, all the necessary historical data could be loaded in a
single extract from the warehouse dimension and lookup tables (BASE engine). Additional information could be
extracted from the University’s Enterprise Resource Planning (ERP), or Student Information, transactional system
(ORACLE engine). However, when data from a new term is to be added to the SCH_FACT table, the DI process
would need to be modified manually to supply the time period for the data to be extracted. A re-usable, easily
maintained process would need to be developed.

DATA INTEGRATION DEVELOPMENT

Before the process flow could be created, a thorough examination of the current application was required, as all
necessary reporting fields and their sources had to be identified. The next step was to create a data model or field
mapping diagram that described the target table (SCH_FACT) and each source table’s contributing fields. For data
elements that would be built using expressions, the logic was clearly detailed in the document. This preliminary work
made the development of the data integration process flow shown in Figure 1 more straightforward.

SAS Global Forum 2009 Data Integration

-2 BEE|

[E] scH_FacT

Ej Tahle Loader

SQL Target
WiSLKDEFB

SaL Join

BROAD_
F=y DISCIPLINE_
'E. INFO-
WELNOGSE

CLASS_TBEL
INFO-

WWELKDT 20

] Ps_TERM_TEL El SSE,IF—COURSE [E] sDcr_pata_Dim

O

Broad Discipline

Create Pegasus
=2 | Code and Model Flags

I Desctiption
E] PS_CIP_CODE_ S0L Targel
TEL WELK1TF?

% GCourse
Infarmation

PS_clLASS_
B wrreure 7) Ps_cLass_TBL

Process Editor [| Source Edtor [[Loa

Figure 1. Data Integration Process Flow to Populate SCH_FACT Table

The Course Information and other SQL Join nodes in this process are where we needed to restrict the data selected
to a particular term. The appropriate tables are joined on the term field such that the data returned is what meets that
criterion. Other DI processes that we have developed have multiple nodes that filter on term. We do not want to have
to look at each node every time we run the process to see what transforms need modification. We had experience
using SAS Base software to define a local or global macro variable in the program that would supply the value
needed in subsequent code but SAS DI Studio generates the code for the SQL join data transform. How could we
define a global macro variable that the entire process would use? The SAS® Data Integration Studio 3.4 User’s Guide
provides information about parameterized jobs and iterative jobs but that did not provide the required solution. What
we needed was an input parameter and a way to prompt for the value at run time. Further searching of the guide
produced a section titled “(Optional) Parameters for User Input” that details how a Web client user could supply a
value for a job that has been deployed for execution by a Web service client. Another section of the guide details how
to deploy a job as a SAS stored process - “a SAS program that is stored on a server and can be executed as required
by requesting applications” (SAS Institute Inc. 2007). Parameters can be defined in SAS Enterprise Guide to prompt
you for input, and you can run a stored process in this client tool, so this seemed like a viable solution to our
challenge. We just had to figure out how the code could be generated with the reference to the macro variable.

- _ =] Properties | To create a global parameter for the entire job you right-click in the
B ko & submt blank area of the process editor and select Properties (Figure 2).
Select the Parameters tab in the Properties window as shown in
L - = Figure 3. You can create, edit, delete, and import parameters here.
= The STRM parameter that we created for the term identifier is shown
Wiew Code in Figure 4. The data integration process would need to be tested
RSE S & save before it could be deployed as a stored process with parameters; thus,
Save to GF... development would begin with a single term as the default value of the
Right-click in blank 243 Generate Cade tpharameter and thetn (cj;hangecilto %SUPERQ(STRM) when we knew
area of process 8 propagets e process executed correctly.
editor window i Zoum ,
Figure 2. Right-Click Menu
Layout]

SAS Global Forum 2009 Data Integratio

% Eefit Maraplaiay a
Options: Motes Extended Aftributes Properties
General || Process Pre and Post Process Statuz Handling Parameter Mame: ‘
Parameter Name hiacro Yariable ... Macr Variahiz ame: | STRM
1 < TRM Ceescription: Tetrm parameter for prormpt
Type: String [+]
Default value:
Coow e] (oo]
0K o |
(o] o] (e) (e
Figure 3. Process Editor Properties Window Figure 4. Parameter Settings

The code that is generated is written such that this parameter will receive the value prompted for in the stored
process (Figure 5). We tried omitting the default value but the code was generated with a null value so the process
did not execute correctly. By using parameters we are able to use the macro variable in each where clause of the
SQL Join nodes.

A A A A A AN AT R A AR TR LR AL THAES

* Job: POPULATE SCH_FACT TAELE Al
* Description: Create an 3CH FACT table containing data fro
* SDCF_COURSE_DIM and other tables for JCH ¢
*

¥ Repository: Foundation Fi1s
+ Serwver: SLEApPZ il
*

* Zource Tables: SDCF_COURZE_DIM - Al
* SDCF_DATA _DIM - Al
* P5_TERM TEL - Al
* P35 _CIP_CODE_TEL - Al
* P5_CLASS_TEL - Al
* P5_CLASS_ATTRIEUTE - Al
*

* Target Table: SCH_FACT - SCH.53CH_FACT Al
*

* Generated on: Thursday, February 5, Z009 8:15:48 AM EST

¥ Generated by:

* Version: 9.1, 20060626, 51875

R R T T T AT A R A R T R R TR A AR AR SRR LR AL AT RN %

/% Parameter default walueis) for POPULATE 3CH_FACT TAELE */
5let STRM = %3UPERQ(STEM) ;

<] I |

Process Editor l;a' Source Editor l;ﬁ' Log |;§'

Figure S. Generated Source Code

SAS Global Forum 2009 Data Integratio

The Operand in Figure 6 and Figure 7 was set to the quoted macro variable name, “&«STRM”, and the where clause
that was generated also contains this value.

F man O EIElX)

General | DEsigner | Status Handing | Parameters | Process | Motes | Extended Attributes | Advanced General| Designer | Stetus Handing | Parameters | Process || Notes | Extended Attrioutes | Acdvanced

I 2| mooean | ¢ ‘Oparal [opera |Operar\d|l) | A #| Eoolean (| Opera..| Opera... | Operand|)
Course Information T I PscLl| = faster) = _‘__'S.Q‘L:m; 1 SDCF_.| = |SDCF_.
) ¥ Create - f o e 2 |ano SDCF = |soer
7 saL Target - waLka TF7 [E] oL Targst - wsLKoBFS = =
[soect [select 3 |anD SDCF_..| = [Ps_TER.
o [From S [From 4 |arp suBsT..| = lwstwo.
Elrs_cLass TeL-Ps_cL [E cLass tBL_nFo - wesL |5 lanD spor_| = ["BSTRM
00 Left 0 Right
[Elps_cLass_aTTRIBUTE [=] sDcF_CcOURSE DM - 5D
! G0 Inner
13 Order by [E] spcF_paTa_pi - SDCF
0 Inner
[E9 ps_TERM_TBL - PS_TER!
30 Inner
[E] BROAD_DISCIPLINE_INFC
0 (G [79 e 12 order by ()] (2] [82 allw New
— = e =
PS CLASS TBLSTRM="8STRM" W — and SDCF_COURSE_DIM.STRM = PS_TERM_TBEL.STRM]
i - -] 1 al B eI R OF O CUREE e BOERE_F GMCAT
S| TR | 2 = = _n n 3|
[[] Display columis in alphabstical order [Display columins in alphabetical order [;nd SDCRICOURSEDIMSTRM ={&STRM I =T
] < I[EL ST |
Nate Valus where [| Source [| Lou [Natne alie where [| Source ¥ | Log i

Figure 6. Course Information Where Clause

Figure 7.

SQL Join Where Clause

The next step was to deploy the job as a stored process. To do this you right-click on the job and select Stored
Process — New... (Figure 8). The Stored Process Wizard will guide you step-by-step to complete the properties for
the new stored process. Figure 9 shows the properties of the stored process we deployed from the POPULATE
SCH_FACT TABLE job. The name and description in the General tab are entered for you by the application when

you start the wizard.

File Edt view Project Tools window Help
b B & & Em BB X w2 o 8 & i == %
= LaF Repostories
= @ Foundation
Lid BIP Tree
|| Integration Technologiss
L_| Partal Appiication Tree
|| samples
|| S&% Data Integration Studio Custor Tree
= [lJobs
@ |__|Job Group For Intermediste Target Tables New
= |l Jobs Group For Final DIM Tables
Z5# sPPEND AF ADMITS HISTORICAL
APPEND AF_ADMTS
APPEND AF_CPF
APPEND AF_DEMC
3% 2PPEND AF_REQS
E3# aPPEND AF_KCEPT
@ || Jobs Group for Backup Tables
[Jobs Group for Historical Data
= | Job= Group for Term Data
% APPEND NEVY TERM TO ADMISSIONS_DIN
5% APPEND NEVY TERM TO PRELIM_SDCF_COURSE_DIM
5% APPEND MNEVY TERM TO PRELIM_SDCF_DATA,_Div
5% APPEND NEVY TERM TO PRELIM_SDCF_WAnRS _Ditd
5% APPEND MNEVY TERM TO SDCF_COURSE_DiM
9% APPEND NEVY TERM TO SDCF_DATA_Din
5% APPEND MNEVY TERM TO SDCF_FLYWSHP_Div
9% A PPEND NEVY TERM TO SDCF_STPHD_Ditd
5% APPEND MNEVY TERM TO SDCF_WWRS_DIM
9% A PPEND NEVY TERM TO SIFD_DEMO_DIM
S APPEND NEV TERM TO SIFD_DGREE_DIM
@ [- " oopss

BEEE

EH Properties

“izw Job

wisw Code
& Suby b

@[] Jobs Group 1o " -

B8 POPULATE AVG_S Web Sendce > bummer
@[] SAS Piot Group Export Job to File
| Source Data Librar Scheduling...
| Source Tables Gro
L1 Target Data Library oy
[__| Target Tables Grou (%
Ll unarouped
@ [l User Transtorms
|| Shared Data

Rename
< Delete
Move to Folder...

s Export, .

i

invertory B* Custom i | Process change Managerment b

| Refresh

Figure 8. Deploy Job as a Stored Process

Y

Ramne:

Type:
Description:

Folder:
Created:
Modified:

Keywords:

Responsibilties:

A=)

General | Execution || Parameters

@ Stored Process

Create an SCH_FACT table containing data from SDCF_COURSE_DIM
and other tables for SCH reparting

4 Studlio Custom Treedlobsilobs Growp For Final DIM Tablesilobs Group for Testing
924105 436 PM
S24i08 4:43 P

A

Mamne Role | Add

[Ok ” Cancel] [Help]

Figure 9. General Properties

SAS Global Forum 2009 Data Integration

The Execution properties specify the SAS server for the stored process execution, the path for the program file that
will be generated, the name for this generated file, input and/or output properties (Figure 10). If the desired path has
not been previously defined in your metadata then you can click on the Manage... tab to add a new path (source
code repository). The Parameters tab as shown in Figure 11 is where we added the global parameter we specified
during the parameter creation process. The next step is to execute the stored process in SAS Enterprise Guide.

& HEE @ BER

General | Execution | Parameters General | Execution | Parameters

SAS server. Parameter Groups

Source code repostory |EASCHProfile\Database I - || Parameters

Source file: POPULATE SCH_FACT TABLE sas

Inpaut:

Outtpoutt: Mane

(=

Figure 10. Execution Properties Figure 11. Parameters Properties

If changes are made to the DI job, or the job is promoted from one environment to another, then the stored process
must be redeployed. Selecting Tools — Redeploy Jobs to Stored Processes from the Menu Bar will redeploy all
jobs so you need to right-click on the job, select Stored Process — Name of stored process — Redeploy. The
user’s guide explains the deployment steps in greater detail.

STORED PROCESS EXECUTION

The stored process that is deployed from a SAS Data Integration Studio job can be executed from many SAS
Applications such as SAS Enterprise Guide, SAS® Add-In for Microsoft Office, SAS® Information Delivery Portal, and
others as detailed in the SAS® Data Integration Studio 3.4: User’s Guide. We chose to use SAS Enterprise Guide for
this project. To begin, open SAS Enterprise Guide and begin a new project. Select File — Open — Stored Process
from the Menu Bar. Navigate the SAS Data Integration Custom Tree to select the stored process from the
appropriate folder (navigation differs depending on version of client software). Select the stored process in the
Process Flow and right-click to open the Stored Process Manager. General Information allows you to specify a
name, description, and searchable keywords for the stored process. The SAS Code window (Figure 12) should show
the generated code from the data integration job. We needed to select all options available in the Include code for
drop-down list to resolve the macro variable. The Metadata Location window is where you specify the location of the
metadata for the stored process. If the location you prefer is not available from the Choose location... button then
you will need to have a metadata location created in SAS® Management Console. The Execution Environment
window provides the option to change the properties you specified when you deployed the job as a stored process.

SAS Global Forum 2009 Data Integratio

e Tl
£} Sty Bruesss WHIEPET, \.j_.’j@
General Information SAS Code
545 Code
Metadata Location R R R R TR AR AR AR R A AR AR AR R AA TR R AR TR AT AAFAA AT ARAFAATTAATAAA
Execution Enviranment ® Jok: POFULATE SCH FACT TAELE LEVELR
Parameters * Description: Create an SCH FACT table containing data from
[IUtpULA IFpGt * SDCF COURSE DIM and other tables for SCH report:
Summary " = =
* Repository: Foundation Aoooool
T BEENEL DIippl LSVEAER"
*
* Hource Tables: 3DCF COURSE DIM - DIM.SDCF COURSE DIN LEVELR®
£ SDCF_DATA DIM - DIM.SDCF_DATA DIN LEVELR®
* P5_TERM TEL — HEFROD.F3_TERM TEL LESVELR®
o P53_CIF_CODE_TEL - HEFROD.FP3 CIP_CODE_TEL ASVEBARS
= P5_CLASS TBEL — HEPROD.P3_CLAZS TEL LEVELR®
& P53_CLAZS ATTRIEUTE - LEVELR®
* HEPROD.P3_CLAZS ATTRIEUTE
* Target Table: SCH FACT - 3CH.3CH FACT LEVELR"
+
<] —]|
I Replace with code ~] [Include code for ~ J I Clear code
Specify whether to include th -:V | stored process macros variables, LIBMAME references, or stored
 process definitions. | v | Global macro variables
|] More F1]..
v | LIBMAME references
v | Stored process definition d Fun] [Save] [Cancel]

Figure 12. SAS Code Window and Options

The Parameters window, as shown in Figure 13, is where you can add, edit, or delete any parameters for the stored
process. We selected Add — Parameters from SAS Code to add the STRM parameter to this stored process. Other
macro variables from the SAS code were skipped.

@ Stuyarl Mpne WHITHEETE \-j\-’jﬂ
General Information Parameters
SAS Code
Metadata Location Group o parameter name Data tupe Optionz Description Add -
Execution Environment = (& General n'a néa -
55 Mew Parameters...
Parameters =] Please enter PS temid.. - Stiing EMRY =
Output # [nput -] Parameters From 3AS Code...
Summary

)

[T Mew Group...

Allaw graups within groups

Enables you to add a new parameter, parameters from 545 code, or parameters from a task. Y'ou can also organize
the parameters into groups.

L|_| L{ Mare [F1]..
<e—— View source code [(seveondfun J [Save J[Conced |

Figure 13. Stored Process Parameter Window in SAS Enterprise Guide

Output/Input options were set to None in this project. The Summary window provides summarized details about the

current stored process. The editor icon allows you to view the generated source code for the stored process. Figure
14 shows the parameter code that Enterprise Guide added. This code is needed so the application will prompt you for

the specified parameter(s) at run time.

j Meszages

Begin EG generated code [(do not edit this line):;

stored process registered by
Enterprise Guide Ztored Process Manager wd.1

Stored process name: Build 3CH Profile Datsbase

Stored process parameter dictionary:

STEM
Type: String
Group: = General

Attr: Visikble, Modifiskble, Reguired

S R T A T T T S

*ProcessBody;

tglobal ITREM:

5 STPBEGIN:

* End EG generated code (do not edit this line):

Label: Please enter P3 term identifier (STREM) for huild term

Figure 14. Stored Process SAS Code Window

SAS Global Forum 2009 Data Integration

To execute the stored process you can select Save and Run in the Stored Process Manager or you can right-click on
the node in the Process Flow and select Run Name of Stored Process as shown in Figure 15. When we execute the
stored process for the SCH_FACT table append, the parameter prompt window (Figure 16) requests the value for the
term to be appended (STRM). If the process does not execute properly there will be a red X on the node and the

errors will appear in the log.

AEE)

3

ASHE Frtarnrises Sl - BUile SERF Ry fle L rsa

File Edit WYiew Code Data Describe Graph Analyze Add-In Help

B S« DiE X 2 B | ? _ Bog Project Designer 72
Libom Py A 7

gﬁ Project Designer x |fg
gq Process Flow ‘ IE4
n

@

=

b

=)

B

Qpen
Open Log.

| = Bun Build SCH Profile Database

7 Delete & B3

Tas [/ Properties

R rl ecollado as Evangeline Collado, connected to irsas. ucl. edu: 3561 /Foundation

E»Jr Builil SERN M file s i e
| General |

Please enter PS term identifier (STRM] far build term

[* dencotes required pararneter]

Sas

Cancel

B

Figure 15. Run Stored Process

Figure 16. Prompt for Parameter Value

SAS Global Forum 2009 Data Integration

Our process ran successfully, after much trial and error, and the data for the most recent term was added to the table.
We have a reusable, easily-maintained process that can be executed by any member of our DI development team.

CONCLUSION

Due to the time period requirements for loading new data into the enterprise data warehouse a more robust DI
process is required at the University of Central Florida. The SAS®9.1.3 Intelligence Platform provides multi-faceted
solutions to fulfill requirements in many environments. The capability to create parameters in a data integration
process using SAS Data Integration Studio 3.4 was the stepping stone needed to accomplish our task. We identified
that the tool would enable a developer to use parameters in an iterative job but we still needed a way to prompt the
user for those input parameters when the process was executed. Discovering that the job can be deployed as a
stored process, and having experience developing stored processes that prompt for user input, led to the customized
solution we needed to work through this data integration challenge. Now it has become a staple in our data integration
repertoire.

REFERENCES

SAS Institute Inc. 2007. SAS® Data Integration Studio 3.4: User’s Guide. Cary, NC: SAS Institute Inc.
Available at http://support.sas.com/documentation/onlinedoc/etls/usage34.pdf.

CONTACT INFORMATION
Your comments and questions are valued and encouraged. Contact the author at:

Name: Evangeline (Angel) Collado

Enterprise: University of Central Florida, Office of Institutional Research
Address: P.O. Box 160021

City, State ZIP: Orlando, FL 32816-0021

Work Phone: (407) 823-4968

Fax: (407) 823-4769

E-mail: ecollado@mail.ucf.edu

Web: www.iroffice.ucf.edu

SAS and all other SAS Institute Inc. product or service names are registered trademarks or trademarks of SAS
Institute Inc. in the USA and other countries. ® indicates USA registration.

Other brand and product names are trademarks of their respective companies.

http://support.sas.com/documentation/onlinedoc/etls/usage34.pdf

	2009 Table of Contents

