SAS Global Forum 2009 Coders' Corner

Paper 052-2009

Creating SAS® Data Sets from HTML Table Definitions
Rick Langston, SAS Institute Inc.

ABSTRACT

This paper is a follow-up to my 2007 paper "Handling Large Stream Files with the @'string' Feature." In this paper, |
describe a SAS® program that will read an arbitrary HTML stream and create a separate SAS data set for each
<TABLE> definition in the stream. The variable names are determined from the table headings provided in the HTML.
I build upon the techniques first described in the 2007 paper and show new ways to accomplish the goals. Features
shown include the MISSOVER option used in conjunction with COLUMN=, INPUT @'string', and INPUT
@'expression’; the useful CAT and CATX functions; the ?? operator used with the INPUT function; and issues
involving %INCLUDE versus CALL EXECUTE.

INTRODUCTION

HTML tables are a common occurrence in web pages. They can contain any kind of tabular data, and you might want
to extract that data into a SAS data set. Because the URL access method can be used to access Web site HTML
streams, we have DATA step access to the HTML tables. With the macro described herein, SAS data sets can be
automatically constructed from the HTML tables.

HTML tables are delimited by tags <TABLE> ... </TABLE>. Each row of the table is delimited by tags <TR> ...
</TR>, and each row of the table has column detail data that is delimited by tags <TD> ... </TD>. The data between
the <TD>...</TD> tags are the values to be stored in individual variables. A given row corresponds to an observation
in a SAS data set.

DESCRIPTION OF THE MACRO

The SAS macro will read the contents of a URL, looking for all table definitions. It allows for the tags to be all
uppercase or all lowercase. Within each table, the total number of row tags and max column tags within each row is
determined. Then, a SAS data set is produced for each table, containing the number of determined rows and
columns. The text of each column is stripped of any tags such as <small> or . If there are tables within
tables, this will still work, but each table is treated as a separate entity and there is no apparent association between
the tables. Each data set created is named tablel, table2, and so on. The variable names are coll, col2, and so on. If
a column is determined to be all blank, the variable is dropped. If the column appears to contain only dates, the
variable is made numeric and is given a DATEO9. format. If the column otherwise appears to contain only numeric
data, the variable is made numeric but no format is associated.

TECHNIQUES USED
There are several special techniques used in this macro implementation that might not be recognized by the reader,
so they are explained in more detail below.

The contents of the URL are written to a temporary file byte by byte so we know the actual file size. Then all
subsequent accesses of the file use RECFM=F LRECL=n COLUMN=C MISSOVER so that we treat the file as one
big record. We need the @'text' feature of the INPUT statement, and because this feature does not work with
RECFM=N, we use the RECFM=F and LRECL=n options instead. Using MISSOVER allows us to continue execution
even though we hit EOF. The COLUMN= option will always let us know where we are.

In addition to INPUT @'text’, we use the associated feature INPUT @(trim(...)). In general, an expression can appear
after the @, and we are not limited to just a variable name or a quoted string. This feature proves very useful in our
macro implementation.

The CAT and CATX functions are used throughout. These functions are new with SAS®9 and allow for simplified
SAS code, because TRIM(LEFT(PUT(...))) can be replaced with a single function call.

This macro generates SAS code that is emitted to a temporary file (via the TEMP access method) and then includes
that SAS code using the %INCLUDE statement. This method is used instead of CALL EXECUTE due to scoping
issues for macro variables.

SAS Global Forum 2009 Coders' Corner

The macro makes use of the ?? operator in the INPUT statement. This operator ensures that the _ERROR_ flag is
not set to 1 when invalid data are seen. We expect to encounter invalid data and do not want to have disruption in the
logic.

THE OUTER MACRO - %READHTML

The %READHTML macro is the one the user will invoke. Within the macro body is the definition and invocation of the
%READTABLE macro, which will be discussed later in this paper. %READHTML takes one argument, the URL
containing table definitions.

%macro readhtml(url);
%global tabletag trtag tdtag closetags drops renames dates nobs ntables;

We start out with the FILENAME statement using the URL access method with the given URL. The entire contents of
the web page is read into a temporary file, using the RECFM=F LRECL=1 attributes. This allows every byte to be
properly counted for our complete file size. The FILESIZE macro variable is set to that file size, using the SYMPUTX
CALL routine, which allows us to pass numeric values to be set as macro variable values (with trimmed leading and
trailing blanks).

filename urltext url &url. &proxyinfo ;
filename myfile temp;
data _null_; infile urltext recfm=F Irecl=1 end=eof; file myfile recfm=F lrecl=1;
input @1 x $charl.; put @1 x $charl.;
if eof;
call symputx("filesize™, n_);
run;

This DATA step will make several passes through the file, looking for certain tags. First, it looks for <table, then
<TABLE, then </table, and then </TABLE. HTML does not have case-sensitive tags, and any of these are possible.
(In reality, mixed case such as <Table> are also permitted, but are not handled here). It is expected that an end tag
(for example, </table) will be found since, otherwise, all tables are nested inside each other. We have to look for both
"TABLE' and 'table’ since the subsequent use of input @"..." requires the proper casing. Note that the subsequent
code expects that all tags of the same type (table, tr, td) use consistent casing throughout. This code will look for <tr>
and <TR> tags and also <td> and <TD> tags and will output observations for each.

Note that the output observations always use uppercase for the tags, but the column number is saved as well. This
code will also set the TABLETAG, TRTAG, and TDTAG macro variables with the proper casing. CLOSETAGS will be
Y if end tags are found for TR and TD. NOBS is the number of observations emitted and NTABLES is the number of
TABLE tags found. Since this code uses RECFM=F LRECL=&FILESIZE, the entire file is being treated as a single
record. With the use of MISSOVER and COLUMN=, we will never go beyond the first record, and can conveniently
reposition to column 1 for rescanning of the file. Note that the @(TRIM(TAG)) feature is used here, allowing for an
expression. This is necessary since the tag might have trailing blanks that we do not want included in the search.

data detail (keep=text col);
infile myfile recfm=F lrecl=&Filesize. column=c missover;
array which{3} $8 _temporary_ ("table®,"tr","td");
array whichsrc{3} $8 _temporary_;
length tag $8;
closetags="N";
failure=0;
do i=1 to 3;

tag="<"| |which{i}; 1link readfile; n_lower_open = obscount;
tag=upcase(tag); link readfile; n_upper_open = obscount;
tag="</"||which{i}; link readfile; n_lower_close = obscount;
tag=upcase(tag); link readfile; n_upper_close = obscount;

nobs+n_lower_open+n_upper_open+n_lower_close+n_upper_close;
if which{i}*="table" and n_lower_close+n_upper_close>0 then closetags="Y";
if (n_upper_open>0 and n_lower_open>0) or
(n_upper_close>0 and n_lower_close>0) then do;
put "ERROR: There is a mixture of upper and lower case® which{i} " tags";
failure=1;

SAS Global Forum 2009 Coders' Corner

end;
if which{i}="table" then do;
ntables=n_lower_open+n_upper_open;
if ntables=0 then do;
put "ERROR: There are no tables defined in the HTML.";
failure=1;
end;
else if n_upper_close+n_lower_close=0 then do;
put "ERROR: There are no closing tags for tables in the HTML.";
failure=1;
end;
end;
whichsrc{i}=which{i};
if n_upper_open>0 then whichsrc{i}=upcase(whichsrc{i});
end;
call symput("tabletag”,trim(whichsrc{1}));
call symput("trtag”, trim(whichsrc{2}));
call symput("tdtag”, trim(whichsrc{3}));
call symput(“closetags”,closetags);
call symput(“nobs*”, cats(nobs));
call symput("ntables®, cats(ntables));
if failure then abort;
return;

readfile:;
obscount=0;
text=upcase(tag);
input @1 @;
do while(1);
input @Ctrim(tag)) @;
if c>&filesize then leave;
col=c;
obscount+1;
output;
end;
return;
run;
proc sort data=detail; by col; run;

This is the code that will determine how many rows and columns there are for each table. The %READTABLE macro
will be invoked for each table based on that information so that the tablel, table2, ... tablen data sets can be created.
This is done by first populating the taglist and tagstart arrays with the data from the detail data set. The tagend array
elements are set based on the location of the end tags. We can then examine each <tr> tag and determine which
table it is in. This is done by searching through the tablestart/tableend array to find a column range that contains the
<tr> tag location. Note that multiple tables can contain this <tr> tag if a table is defined within another table, so we
look for the surrounding table that is the smallest. Once we know the proper table, we increment the row count. Any
<td> tags encountered will cause an incrementation of column count for the same table. Note that the column count is
reset to 0 for each row and re-incremented since some rows might not contain all columns. This code also generates
a series of %readtable macro invocations, but places them in the SASCODE temporary file for a later %INCLUDE.
Although one could use CALL EXECUTE, | prefer to use the %INCLUDE statement with the /SOURCE?2 option to
have a better understanding of the code being invoked.

filename sascode temp;

data _null_;
array taglist{&nobs} $8 _temporary_;
array tagstart{&nobs} _temporary_;
array tagend{&nobs} _temporary_;
array tablestart{&ntables} _temporary_;
array tableend {&ntables} _temporary_;
array tablenrows{&ntables} _temporary_;

tag text;

start loc for the tag;
end loc for the tag;
start loc for each table;
end loc for each table;
no. of rows in the table;

SAS Global Forum 2009 Coders' Corner

array tablencols{&ntables} _temporary_; * no. of cols in the table;

populate the arrays from the detail data set

do i=1 to &nobs;
set detail point=i;
taglist{i}=text;
tagstart{i}=col;
end;

determine the end location for each tag if end tags given

do i=1 to &nobs;
if taglist{i}=:"</" then do j=i-1 to 1 by -1;
if substr(taglist{j},2)=substr(taglist{i},3) then do;

tagend{j}=tagstart{i}-length(taglist{i});

leave;
end;
end;
end;

1 to &nobs;

if taglist{i}="<TABLE" then do;
J+1;
tablestart{j}=tagstart{i};
tableend{j}=tagend{i};
end;

end;

(o]
1

33=0;
do i=1 to &nobs;

find smallest table containing each <tr tag

if taglist{i}="<TR" then do;
minsize=1e10;

do j=1 to é&ntables;
iT tablestart{j}<=tagstart{i}<=tableend{j} then do;

size=tableend{j}-tablestart{j}+1;
if size<minsize then do;
=
minsize=size;
end;
end;
end;
if jj>0 then do;
tablenrows{jj}+1;
end;
ncols=0;
end;

increment column count for the <td tags
else if jj>0 and taglist{i}="<TD" then do;

ncols+1;
tablencols{jj}=max(tablencols{jj}.,ncols);

end;
end;
determine if there is overlap (which would be a problem)

overlap=0;
do i=1 to &ntables;
put tablestart{i}= tableend{i}= tablenrows{i}= tablencols{i}=

SAS Global Forum 2009 Coders' Corner

if i>1 and tableend{i-1}>tablestart{i} then overlap=1;
else if i<&ntables and tablestart{i+1} < tableend{i} then overlap=1;
end;

put overlap=;

file sascode;
do i=1 to é&ntables;
if tablestart{i}>0 and tableend{i}>0 and tablenrows{i}>0 and tablencols{i}>0
then do;
args=catx(",",i,tablestart{i},tableend{i},tablenrows{i},tablencols{i});
put "%readtable(® args "):;";
end;
end;

stop;
run;
proc delete data=detail; run;

At this point, we can include the generated SAS code using %INCLUDE to produce all the SAS data sets from the
various table definitions. The SAS code consists of multiple %READTABLE invocations.

Fem - invoke the generated code that calls the readtable macro----- *;
%include sascode/source2; run;
filename sascode clear;

%mend readhtml;

THE INNER MACRO %READTABLE

The %READTABLE macro will be invoked via %INCLUDE for each table definition in the HTML. The start and end
column of the file (containing the entire table definition) is specified, along with the number of rows and columns so
that the SAS data set can be properly defined with variables coll-coln. As in %READHTML, we read the entire file as
a single record.

%macro readtable(tablenum,start,end,nrows,ncols);

data table&tablenum.;
infile myfile recfm=F lrecl=&Filesize. column=c missover;
array col{*} $200 coll-col&ncols.;
keep coll-colé&ncols.;

Fmm - start at the beginning of our table----- *;
input @&start @;
endrow=. ;

SAS Global Forum 2009 Coders' Corner

T read each row----- *3
do i=1 to &nrows;

F e row starts with <TR or <tr tag----- *3
input @"<&trtag" @;
startcol=c;

F e determine where to stop, using </tr, next <tr, or next <table----- >
%if &closetags.=Y %then %do;
input @"</&trtag"” @;
endrow=c-4;
%end;
%else %do;
if i<&nrows then do;
input @"<&trtag" @;
endrow=c-4;
end;
else do;
input @"<&tabletag " @;
endrow=c-7;
end;
%end;

K go back to start reading contents of row----- *;
input @startcol @;
do j=1 to é&ncols;

Fem - col starts with <TD or <td tag----- *;
input @"<&tdtag" @;

Fem—— blank out remaining columns if we hit the end----- *;
if c>=endrow then do;
do k=jJ to é&ncols;

col{j}=" ";
end;
input @endrow @;
leave;
end;
*---—get past end of tag----- *;

input @*>" @;
startcol=c;

Fmm - compute where to end the column data using </td, <tr, or <table----*;
%if &closetags.=Y %then %do;

input @'"</&tdtag" @;

%end; %else %do;

if j<&ncols then input @"<&tdtag" @;

else if I<&nrows then iInput @'"<&trtag" @;

else input @"</&tabletag” @;

Y%end;

SAS Global Forum 2009 Coders' Corner

Fmm—— read everything between----*;
I=c-5-startcol+1;
input @startcol text $varying32767. 1 @;

Femm - remove the prefixing tags like <small>, , etc.-—--- *;
do while(left(text)=:"<");

text=substr(text, index(text, ">")+1);

end;

Koo remove everything after a trailing <----- *-
k=index(text, "<");
it k then substr(text,k)=" *;

Fmmo—— change escape sequences to the right characters----- *
text=tranwrd(text, "&","&");

text=tranwrd(text, "&It;","<");

text=tranwrd(text, "&rt;",">");

text=tranwrd(text, " "," ");

K- remove any stray crlf chars and convert tabs to blanks----- *;
text=compress(text, "0d0a"x);
text=translate(text,” ","09"X);

Fmmo—— save this as our column value----- *;
col{j}=text;
end;
output;
end;
stop;
run;

Here, we attempt to improve the characteristics of the SAS data set. If a column is completely blank, we remove the
variable. If a column has only numeric values, we change the type to numeric. If a column consists solely of dates, we
convert to the proper SAS date values and associate the proper format. This conversion is done by introducing a
mirror set of numeric variables (numcoll-numcoln) and setting them to the numeric value representation of coll-coln.
If all values are found to be numeric, the &DROPS macro variable contains the DROP-= list of col* variables, and the
&RENAMES macro variable contains the list of renames from numcol* to col* variables. The &DATES macro
variable contains a list of all variables whose every value could be successfully informatted to a date value via the
ANYDTDTE informat.

data table&tablenum.; set table&tablenum. end=eof;
array col{*} coll-colé&ncols.;
array numcol{*} numcoll-numcol&ncols.;
keep coll-col&ncols. numcoll-numcolé&ncols.;
array status{&ncols.} $1 _temporary_;
length text $1024;
do i=1 to &ncols;
if status{i}="C" then continue;
text=left(col{i});
numcol{i}=.;
if text=" " then continue;
if status{i}=" " then do;
link try_numeric;
if numcol{i}"=. then do;
status{i}="N";
end;
else do;
link try_date;
if numcol{i}"=. then do;
status{i}="D";
end;

SAS Global Forum 2009 Coders' Corner

end;
if status{i}=" " then status{i}="C";
end;
else if status{i}="D" then do;
link try_date;
if numcol{i}=. then do;
status{i}="C";
end;
end;
else if status{i}="N" then do;
link try_numeric;
if numcol{i}=. then do;
status{i}="C";

end;
end;
end;
output;
if eof;

length renames drops dates $32767;
do i=1 to &ncols;
if status{i}="N" or status{i}="D" then do;
renames=cat(trim(renames), " numcol”,i,"=col”,i);
drops=cat(trim(drops),” col*,i);
end;
else iIf status{i}=" " then do;
drops=cat(trim(drops),” col",1i,
end;
else iIf status{i}="C" then do;
drops=cat(trim(drops),” numcol”,i);
end;
if status{i}="D" then do;
dates=cat(trim(dates)," col”,i);
end;
end;
if drops”™=" “ then drops="drop="]|]drops;
if renames™=" " then renames="rename=("||trim(renames)||")";
if dates™=" " then dates="format "||trim(dates)||":;";
call symput("drops”,trim(drops));
call symput(“renames”,trim(renames));
call symput(“dates”,trim(dates));
return;

numcol " ,1);

/* The TRY_NUMERIC link will use BEST32. on the field to see if it converts
to a number. We use the INPUT function with the ?? operator to indicate
that _ERROR_ will not be set and no warning message will appear about
invalid data. This link will not be invoked if text is blank, so any
other text causing numcol to become missing indicates an invalid numeric
value (except for ., which we will assume here to mean non-numeric). The
TRY_DATE link does the same except it uses ANYDTDTE, which allows for many
different types of date representations, such as 2008/01/02 or 02JAN2008. */

try _numeric:;
numcol{i}=input(text,?? best32.);
return;

try date:;
numcol{i}=input(text,?? anydtdte32.);
return;
run;

SAS Global Forum 2009 Coders' Corner

Fem—— recreate the data set with the changes----- *;

data table&tablenum.; set table&tablenum. (&drops &renames);
&dates;
run;

Fmm print the resultant table----- *;

options nocenter;
proc print data=table&tablenum.; title "table&tablenum."; run;
%mend readtable;

SAMPLE INVOCATION
Here we read from the European Central Bank Web site, from their page that contains exchange rates for the euro.

%readhtml ("http://www.ecb. int/stats/exchange/eurofxref/html/index.en.html®);

This resulted in a SAS data set containing coll with the 3-character currency code, col2 containing the character
description of the currency, and col3 as a numeric variable containing the exchange rate constant for that currency:

coll col2 col3
usb US dollar 1.57
JPY Japanese yen 162.97
BGN Bulgarian lev 1.96
CONCLUSION

The %READHTML macro is a convenient way to create SAS data sets from HTML tables that can appear on Web
sites. This macro uses a variety of techniques to produce an end result in the form of a SAS data set with numeric
and date values whenever feasible.

CONTACT INFORMATION
Your comments and questions are valued and encouraged. Contact the author:

Rick Langston

SAS Institute Inc.

SAS Campus Drive

Cary, NC 27513

E-mail: rick.langston@sas.com

SAS and all other SAS Institute Inc. product or service names are registered trademarks or trademarks of SAS
Institute Inc. in the USA and other countries. ® indicates USA registration.

Other brand and product names are trademarks of their respective companies.

	2009 Table of Contents

