SAS Global Forum 2009 Coders' Corner

Paper 053-2009

Variable Names Don’t Begin with the Same Characters? No Problem: How to
Create Variable List without Copying, Pasting or Excel Intervention

Xu Zeng, Independent Consultant, Fairfax, VA

ABSTRACT

Working with hundreds even thousands of variables is very common for many SAS programmers. As such, SAS has
provided variable list tools like VAR1-VARN or VAR: so that we do not need to type variable names one by one.
However, when the variable names do not begin with the same character string, a.k.a. prefix, the SAS default
variable list will not work. This paper demonstrates a dynamic yet simple time-saver to generate variable lists when
variable names have other commonalities than prefixes using PROC SQL SELECT INTO with
DICTIONARY.COLUMNS table. This powerful and innovative method also enables the creation of new variable
names, renaming of variables, and identification of common variables without copying, pasting or Excel intervention.
In addition, the paper illustrates how to create dataset name list, which is not an inherent SAS tool. This presentation
is based on SAS® version 9.1.3, is not limited to any particular operating system, and is intended for intermediate to
advanced SAS programmers who are quite familiar with PROC SQL and SAS Macro.

INTRODUCTION

PROC SQL SELECT VARL1 INTO: MVARL1 creates a macro variable MVAR1 with the value of first observation of
VAR1. The power comes from using PROC SQL SELECT VAR INTO: MVAR1 with SEPARATED BY keywords.
PROC SQL SELECT VAR1 INTO: MVAR1 SEPARATED BY ' ' creates a macro variable MVAR1 with every single
value of VAR1 separated by blanks. It is even more powerful when we use WHERE clause to select certain values of
VARL. The following creates a macro variable MVAR1 with every value of VAR1 that satisfies the WHERE condition
separated by blanks.

PROC SQL;

SELECT VARl INTO: MVAR1 SEPARATED BY ' '
FROM TABLE1

WHERE VAR1 CONDITION;

QUIT;

Since we are going to create variable name lists, we need to select from a table that contains variable names. PROC
CONTENTS will probably be our first reaction. However, PROC CONTENTS DATA=TABLE1 OUT=TABLE1VARS is
not only an extra step, but it also gives us variables in only one table. How can we create a table that contains the
variables in every single table? We do not need to. SAS has already created it for us! SAS DICTIONARY tables are
special read-only PROC SQL tables. They retrieve information about all the SAS data libraries, SAS data sets, SAS
system options, and external files that are associated with the current SAS session®. We can only access them
through PROC SQL. There are total 21 tables and one of them, DICTIONARY.COLUMNS, contains information
about variables and their attributes of all SAS data files in the current SAS session. Issue command DESCRIBE
TABLE DICTIONARY.COLUMNS in PROC SQL, then we can see its contents in the log. Below, column “name”
stores variable names and “memname” stores SAS dataset names.

Create table DICTIONARY.COLUMNS

(

libname char (8) label='Library Name',
memname char (32) label='Member Name',
memtype char(8) label='Member Type',
name char (32) label='Column Name',
type char(4) label='Column Type',

! SAS® Online Doc 9.1.3 for the Web ->Base SAS®->SAS SQL Procedure User's Guide->Programming with the SQL Procedure->
Accessing SAS System Information Using DICTIONARY Tables

SAS Global Forum 2009 Coders' Corner

length num label='Column Length',

npos num label='Column Position',

varnum num label='Column Number in Table',
label char(256) label='Column Label',
format char (49) label='Column Format',
informat char(49) label='Column Informat',
idxusage char (9) label='Column Index Type',
sortedby num label='Order in Key Sequence',
xtype char(l12) label='extended Type',
notnull char(3) label='Not NULL?',
precision num label='Precision',

scale num label='Scale',

transcode char(3) label='Transcoded?'

) ;

Combining PROC SQL SELECT INTO with DICTIONARY.COLUMNS, we get the basic syntax of the method:

PROC SQL;

SELECT NAME INTO: MYVARLIST SEPARATED BY ' '
FROM DICTIONARY.COLUMNS

WHERE LIBNAME='MYLIB'

AND MEMNAME="MYDATASET'

AND NAME CONDITION;

QUIT;

Now let's go through some examples to see how the method works.

VARIABLE NAMES END WITH THE SAME CHARACTER

During my work in anti-dumping programming, | worked with foreign manufacturers cost and sales files of products
they sold in both their home country and the US. The Import Administration of Department of Commerce requires that
all home country variable names end with an 'H' and US variable names end with a 'U'. Here are examples of some
cost variables:

Description Home country variable US variable
Quantity QTYH QTYU
Moving cost MOVEH MOVEU
Inland freight INLFTWH INLFTWU
Packing cost PACKH PACKU
Warehouse cost WAREHSH WAREHSU

Except quantity, all other variables are per unit basis. Sometimes | had to manipulate just home country variables or
US variables. For example, to calculate sums of all US variables weighted by quantity without typing the variables
one by one or copying and pasting, | can do the following:

PROC SQL NOPRINT;

SELECT NAME INTO: USVARS SEPARATED BY ' '
FROM DICTIONARY.COLUMNS

WHERE UPCASE (LIBNAME)="'WORK'

AND UPCASE (MEMNAME) ='COST'

AND UPCASE (NAME) LIKE '$U'

AND UPCASE (NAME) NE 'QTYU';

QUIT;

The above SQL procedure creates a macro variable USVARS. It contains all the variable names ending with 'U’
except QTYU from WORK.COST, and they are separated by blanks. UPCASE is used to help character matching.

$LET USVARS=&USVARS;

SAS Global Forum 2009 Coders' Corner

The %LET allows me to see the value of &USVARS in log and also gets rid of trailing blanks. Here is what | see in
the log file when | have SYMBOLGEN turned on:

SYMBOLGEN: Macro variable USVARS resolves to MOVEU WAREHSU INLEFTWU INSUREU
WARRU PACKU VCOMU TCOMU FURMANU

Then, | can use PROC MEANS to calculate the weighted sum of each US variable and output them into a new data
set USWGT. The weighted sum variables have the same names as original cost variables:

PROC MEANS DATA=COST NOPRINT;
VAR &USVARS;

WEIGHT QTYU;

OUTPUT OUT=USWGT SUM=;

RUN;

Let's take the above example up a level. Suppose | have to add a prefix WGT_ to all weighted sum variables, i.e.
weighted sum of MOVEU will be named WGT_MOVEU. Without any copying and pasting, here is what | can do:

PROC SQL NOPRINT;

SELECT COMPRESS('WGT_'\\NAME) INTO: WGT_USVARS SEPARATED BY v
FROM DICTIONARY.COLUMNS

WHERE UPCASE (LIBNAME)="'WORK'

AND UPCASE (MEMNAME) ="'COST'

AND UPCASE (NAME) LIKE '$%U'

AND UPCASE (NAME) NE 'QTYU';

QUIT;

$LET WGT USVARS=&WGT USVARS;
The log shows:

SYMBOLGEN: Macro variable WGT USVARS resolves to WGT MOVEU WGT WAREHSU
WGT_INLFTWU WGT_INSUREU WGT_WARRU WGT_PACKU WGT_VCOMU WGT_TCOMU WGT_FURMANU

Then | just simply add &NGT_USVARS after SUM=:

PROC MEANS DATA=COST NOPRINT;
VAR &USVARS;

WEIGHT QTYU;

OUTPUT OUT=USWGT SUM=&WGT USVARS;
RUN;

Now in the USWGT dataset, weighted sum variable names have prefix WGT_'. When using SUM=NAMES in the
OUTPUT statement of PROC MEANS, we must make sure that the output variable order is the same as that of the
input variables in the VAR statement. This method guarantees the same order.

ADD ONE YEAR TO ALL THE DATE VARIABLES

Date variables are stored as numeric variables and usually have format associated with them. In the US sales
dataset, each sales transaction is marked with several dates. Below are some examples:

Description Name Format
Sale invoice date SALINDTU date9.

Sale date SALEDATU date?.

Ship date SHIPDATU date7.

Pay date PAYDATEU yymmdd8.
Surcharge date SURDATEU mmddyy10.
Enter date ENTDTU mmddyy10.

SAS Global Forum 2009 Coders' Corner

Usually they assume one format; however, | changed them to different formats in order to show the programming
flexibility.

Let's say there was a data preparation error, and all the dates are in year 2005 instead of 2006. | need to add one
year to all the dates. Even though the above date variable names contain common text like '‘DATE', 'DAT' or 'DT', |
cannot use character matching to get all the right variables because in the same sales dataset, there are other
variable names that contain text '‘DT'. However, | can utilize the date format since non-date variables should not have
one.

PROC SQL NOPRINT;

SELECT NAME INTO: DATEVARS SEPARATED BY ' '
FROM DICTIONARY.COLUMNS

WHERE UPCASE (LIBNAME)='WORK'

AND UPCASE (MEMNAME) ='USSALES'

AND (UPCASE (FORMAT) CONTAINS 'MMDD'

OR UPCASE (FORMAT) CONTAINS 'DATE'

OR UPCASE (FORMAT) CONTAINS 'YYMM'

OR UPCASE (FORMAT) CONTAINS 'DDMM') ;

/* C STANDS FOR CORRECTED */
SELECT COMPRESS('C_'||NAME) INTO: C_DATEVARS SEPARATED BY ' '
FROM DICTIONARY.COLUMNS
WHERE UPCASE (LIBNAME)="'WORK'
AND UPCASE (MEMNAME) ='USSALES'
AND (UPCASE (FORMAT) CONTAINS 'MMDD'
OR UPCASE (FORMAT) CONTAINS 'DATE'
)
)

(
OR UPCASE (FORMAT) CONTAINS 'YYMM'
OR UPCASE (FORMAT) CONTAINS 'DDMM') ;
QUIT;

'MMDD','DATE','YYMM' and 'DDMM' cover most of the commonly used date formats.

SLET DATEVARS=&DATEVARS;
$LET C_DATEVARS=&C DATEVARS;

Below is displayed in the log, and the two variable lists have the same variable order:

SYMBOLGEN: Macro variable DATEVARS resolves to SALINDTU SALEDATU SHIPDATU
PAYDATEU SURDATEU ENTDTU

SYMBOLGEN: Macro variable C DATEVARS resolves to C SALINDTU C_SALEDATU
C _SHIPDATU C_PAYDATEU C_ SURDATEU C ENTDTU

Now | can correct the date variables as the following:

DATA USSALES (DROP=I);

SET USSALES;

ARRAY WRONGDATE[*] &DATEVARS;

ARRAY CORRECTDATE[*] &C DATEVARS;

DO I=1 TO DIM (WRONGDATE) ;
CORRECTDATE [I]=WRONGDATE [I]+365;

END;

RUN;

RENAMING VARIABLES

When | was at Capital One, | worked with monthly credit bureau files of credit card accounts. Each monthly file
contained 400-500 variables. Sometimes, | had to merge multiple monthly files together by account number and

SAS Global Forum 2009 Coders' Corner

analyze variable trend. Since the variable names were the same, | had to rename them before the merge. For
example, | renamed variable P1 to P1_1 for month 1, P1_2 for month 2, etc. Sometimes | used Excel to create
rename equations. It turns out that the same PROC SQL SELECT INTO can generate all the rename equations in
one simple step. No more Excel intervention is needed.

Suppose | have three monthly files | need to merge together by ACCTNO. Each file has 464 variables besides
ACCTNO. | will add suffix _1, 2 and _3 to them respectively. Below is the complete code:

$MACRO RN (FILE, SUFFIX) ;

PROC SQL NOPRINT;

SELECT COMPRESS (NAME| |"="| |[NAME | |" &SUFFIX") INTO: RENAME &SUFFIX
SEPARATED BY ' '

FROM DICTIONARY.COLUMNS

WHERE UPCASE (LIBNAME)='WORK'

AND UPCASE (MEMNAME) ="&FILE"

AND UPCASE (NAME) NE 'ACCTNO';

QUIT;

PROC DATASETS LIB=WORK NOLIST NODETAILS;
MODIFY &FILE;

RENAME &&RENAME &SUFFIX;

QUIT;

SMEND;

$RN (MONTH1, 1) ;
N (MONTHZ, 2) ;
%RN (MONTH3, 3) ;

In SELECT statement, COMPRESS(NAME]||"="||[NAME||"_&SUFFIX") constructs the rename equations. For example,
variable P1 of month 1 file will have P1=P1_1. All the equations are separated by blanks and are stored in macro
variables RENAME_1, RENAME_2 and RENAME_3. Of course, | have to exclude ACCTNO since it is the merge by
variable.

Below is value of RENAME_1 displayed in the log:

SYMBOLGEN: Macro variable RENAME 1 resolves to P1=P1 1 P2=P2 1 P3=P3 1 P4=P4 1
P5=P5 1 P6=P6_1 P7=P7 1 P8=P8 1 P9=P9 1 P10=P10 1 P11=P11 1 P12=pP12 1 P13=P13 1
P14=P14 1 P15=P15 1 P1l6=P16_1 P17A=P17A 1 P17B=P17B_1 P18A=P18A 1 P18B=P18B 1
P19=pP19 1 P20=P20 1 P21=P21 1 P22=P22 1 P23=P23 1 P24=P24 1 P25=P25 1 P26=P26 1
P27=p27 1 P28=P28 1 P29=P29 1 P30=P30_1 P31=P31 1 P32=P32 1 P33=P33 1 P34=P34 1
P35=P35 1 P36A=P36A 1 P36B=P36B 1 P36C=P36C 1 P36D=P36D 1 P37A=P37A 1 P37B=P37B 1
P37C=P37C_1 P37D=P37D 1 P38A=P38A 1 P38B=P38B 1 P38C=P38C_ 1 P38D=P38D 1 P38E=P38E 1
P38F= P38F 1 P39=P39 1 P40=P40 1 P41A= P41A 1 P41B= P41B 1 P42=P42 1 E1=E1 1 E2=E2 1
E3=E3 1 E4=E4 1 E5=E5 1 E6=E6 1 E7A1=E7Al 1 E7A2=E7A2 1 EJA3=E7A3 1 ETA4=E7A4 1
E7A5= E7A5_1 E7A6= E7A6_1 E7A7T= E7A7_1 E7Bl= E7B1_1 E7B2= E7B2_1 E7B3= E7B3_1 E7B4= E7B4_1
E7B5=E7B5_1 E7B6=E7B6_1 E7B7=E7B7_ 1 E8=E8 1 E9=E9 1 E10=E10_1 El1l1=E1l 1 E12=El2 1
E13=E13 1 "E14=F14 1 E15= E15 1 El6= E16 1 E17=E17 1 E18=E18 1 E19=E19 1 E20=E20 1
E21=E21 1 E22=E22 1 E23=E23 1 E24=E24 1 E25=E25 1 E26=E26 1 E27=E27 1 E28=E28 1
E29=E29 1 E30=E30_1 E31=E31 1 E32=E32 1 E33=E33 1 E34=E34 1 E35=E35 1 E36=E36 1
E37=E37_1 E38=E38 1 E39=E39 1 E40=E40 1 E41=E41 1 E42A=E42A 1 E42B=E42B 1 E42C=E42C 1
E43A=E43A 1 E43B=E43B_1 E43C=E43C_1 E44A=E44A 1 E44B=E44B 1 E44C=E44C_1 E45A=E45A 1
E45B=E45B 1 E45C=E45C 1 E46A=E46A 1 E46B=E46B 1 E46C=E46C 1 E47A=E47A 1 E47B=E47B 1
E47C=EA47C_1 E48=E48 1 E49=E49 1 E50=E50 1 E51=E51 1 E52=E52 1 E54=E54 1 SC7=SC7_1
SC8=SC8 1 SC9=SCY 1 SC10=SC10 1 SC11=SC1l 1 SC12=SC12 1 SC13=SC13 1 SC14=SC14 1
SC15=5C15 1 SC16=SC16 1 SC17=SC17 1 SC18=SC18 1 SC19=SC19 1 SC20=5C20 1 SC21=5C21 1
SC22=SC22 1 SC23=SC23 1 SC24=SC24 1 SC25=SC25 1 SC26=S5C26 1 SC27=SC27 1 SC28=SC28 1
SC29=5C29 1 SC30=SC30_ 1 SC31=SC31 1 SC32=SC32 1 SC33=SC33 1 SC34=SC34 1 SC35=SC35 1

SAS Global Forum 2009 Coders' Corner

SC36=SC36_1 SC37=5C37 1 SC38=SC38 1 SC39=SC39 1 SC40=SC40 1 SC41=5C41 1 SC42=SC42 1
SL1=SL1 1 SL2=SL2 1 SL3=SL3 1 SL4=SL4 1 SL5=SL5 1 SL6=SL6 1 SL7=SL7 1 SL8=SL8 1
SL9=SL9 1 SL10=SL10 1 SL11=SL11l 1 AM6A1=AM6Al 1 AMG6A2=AM6A2 1 AMGA3=AM6A3 1
AM6A4=AM6A4 1 AMG6AS=AM6AS 1 AM6AG6=AM6A6 1 AM6AT=AM6AT 1 AM6B1=AM6B1 1 AM6B2=AM6B2 1
AM6B3=AM6B3 1 AM6B4=AM6B4 1 AM6B5=AM6B5 1 AM6B6=AM6B6 1 AM6B7=AM6B7 1 AM7=AM7 1
AM8=AM8 1 AM9=AM9 1 AM10=AM10 1 AM11=AM11 1 AM12=AM12 1 AM13=AM13 1 AM14=AM14 1
AM15=AM15 1 AM16=AM16 1 AM17=AM17 1 AM18A=AM18A 1 AM18B=AM18B 1 AM19A=AM19A 1
AM19B=AM19B 1 AM20=AM20 1 AM21A=AM21A 1 AM21B=AM21B 1 AM21C=AM21C_1 AM21D=AM21D 1
AM21E=AM21E 1 AM21F=AM21F 1 AM21G=AM21G 1 AM22A=AM22A 1 AM22B=AM22B 1 AM22C=AM22C 1
AM22D=AM22D_1 AM22E=AM22E 1 AM22F=AM22F 1 AM22G=AM22G_1 AM23A=AM23A 1 AM23B=AM23B 1
AM24=AM24 1 AM25=AM25 1 AM26=AM26 1 AM27A=AM27A 1 AM27B=AM27B 1 AM27C=AM27C 1
AM27D=AM27D_1 AM28A=AM28A 1 AM28B=AM28B 1 AM28C=AM28C_1 AM28D=AM28D 1 AM29=AM29 1
AM30=AM30 1 AM31=AM31 1 AM32A=AM32A 1 AM32B=AM32B 1 AM32C=AM32C_ 1 AM32D=AM32D 1
AM32E=AM32E 1 AM32F=AM32F 1 AM33A=AM33A 1 AM33B=AM33B_1 AM33C=AM33C 1 AM33D=AM33D 1
AM33E=AM33E_1 AM33F=AM33F 1 AM34A=AM34A 1 AM34B=AM34B_1 AM34C=AM34C 1 AM34D=AM34D 1
AM34E=AM34E 1 AM34F=AM34F 1 AM35A=AM35A 1 AM35B=AM35B 1 AM35C=AM35C 1 AM35D=AM35D 1
AM35E=AM35E_1 AM35F=AM35F 1 AM35G=AM35G_1 AM36A=AM36A 1 AM36B=AM36B 1 AM36C=AM36C 1
AM36D=AM36D 1 AM36E=AM36E 1 AM36F=AM36F 1 AM36G=AM36G_l AM37A=AM37A 1 AM37B=AM37B 1
AM37C=AM37C_1 AM38=AM38 1 AM39=AM39 1 AM40=AM40 1 AM41A=AM41A 1 AM41B=AM41B 1
AM42A=AM42A 1 AM42B=AMA42B 1 AM42C=AM42C 1 AM43A=AM43A 1 AM43B=AM43B_1 AM43C=AM43C 1
RM1A=RM1A 1 RMI1B=RM1B 1 RM1C=RMI1C 1 RM1D=RM1D 1 RM2A=RM2A 1 RM2B=RM2B_1 RM2C=RM2C_ 1
RM2D=RM2D 1 RM3A=RM3A 1 RM3B=RM3B 1 RM3C=RM3C 1 RM3D=RM3D 1 RM4A=RM4A 1 RM4B=RM4B 1
RM4C=RM4C_1 RM4D=RM4D 1 RM5A=RM5A 1 RM5B=RM5B 1 RM5C=RM5C_1 RM5D=RMS5D 1 RM6=RM6 1
RM7=RM7 1 RM8A=RMSA 1 RM8B=RM8B 1 RM8C=RM8C 1 RM9=RM9 1 RM10=RM10 1 RM11=RM11l 1
RM12=RM12 1 RM13=RM13 1 RM14=RM14 1 RM15=RM15 1 RM16=RM16 1 RM17=RM17 1 RM18=RM18 1
AlA=A1A 1 A1B=A1B 1 AIC=A1C_1 A1D=A1D 1 AlE=AlE 1 A1F=A1F 1 A2A=A2A 1 A2B=A2B 1
A2C=A2C 1 A2D=A2D 1 A2E=A2E 1 A2F=A2F 1 A3A=A3A 1 A3B=A3B 1 A3C=A3C_1 A3D=A3D 1
A3E=A3E_1 A3F=A3F 1 CS11A=CS11A 1 CS11B=CS11B 1 CS12A=CS12A 1 CS12B=CS12B 1
RECO1=REC01 1 REC02=REC02 1 REC03=REC03 1 REC04=REC04 1 RECO5A=REC05A 1
REC05B=RECO5B_1 REC0O5C=REC05C_1 REC06A=RECO6A 1 REC06B=REC06B 1 REC06C=REC06C 1
RECO7=REC07 1 RECO8A=REC08A 1 REC08B=REC08B 1 REC09=REC09 1 REC10=REC10 1
REC11=REC11 1 REC12=REC12 1 MTG01=MTGOl 1 TRIG16B=TRIG16B 1 TRIG33B=TRIG33B 1
TRIG34B=TRIG34B 1 TRIG35B=TRIG35B 1 TRIG37B=TRIG37B_1 MTG02=MTG02 1 MTG03=MTG03 1
MTG04=MTGO4 1 MTG05=MTG05 1 MTG06=MTG06 1 REC13=REC13 1 AM44=AM44 1 REC14=REC14 1
REC15=REC15 1 REC16=REC16 1 REC17=REC17 1 REC18=REC18 1 REC19=REC19 1 MTGO7=MTGO07 1

MTG08=MTG08 1 MTG09=MTGO9 1 MTG10=MTG10 1 MTG1l1=MTGll 1 SPAMO1=SPAMO1l 1

SPAMO2=SPAM02 1
SPAMO7=SPAMO7_1
SPAM12=SPAM12 1
SPAM17=SPAM17 1
SPAM22=SPAM22 1
SPAM27=SPAM27 1
SPAM32=SPAM32_1
SPAM37=SPAM37 1

AUTO1=AUTOl 1 AUTO2=AUTO2 1 AUTO3=AUTO3 1 AUTO4=AUTO4 1 AUTO5=AUTO5 1 AUTO6= AUTO6 1

SPAMO3=SPAMO03 1
SPAM08=SPAMO8_1
SPAM13=SPAM13 1
SPAM18=SPAM18 1
SPAM23=SPAM23 1
SPAM28=SPAM28 1
SPAM33=SPAM33 1
SPAM38=SPAM38 1

SPAM04=SPAM04 1
SPAM09=SPAMO9 1
SPAM14=SPAM14 1
SPAM19=SPAM19 1
SPAM24=SPAM24 1
SPAM29=SPAM29 1
SPAM34=SPAM34_1
SPAM39=SPAM39 1

SPAMO5=SPAMO05 1
SPAM10=SPAM10 1
SPAM15=SPAM15 1
SPAM20=SPAM20 1
SPAM25=SPAM25 1
SPAM30=SPAM30 1
SPAM35=SPAM35 1
SPAM40=SPAMA40 1

SPAMO6=SPAM06 1
SPAM11=SPAM11 1
SPAM16=SPAM16 1
SPAM21=SPAM21 1
SPAM26=SPAM26_1
SPAM31=SPAM31 1
SPAM36=SPAM36_1
SPAM41=SPAM41 1

AUTO7= AUTO7_1 AUTO8= AUTOS_I AUTO9= AUTO9_1 AUTO10= AUTOIO_I AUTO1l1= AUTOll_l

AUTO12=AUTO12 1
AUTO17=AUTO17 1
AUTO22=AUTO022 1
AUTO27=AUT027 1
AUTO32=AUTO32 1
SC6=SC6_1

AUTO13=AUTO13 1
AUTO18=AUTO18 1
AUTO23=AUTO023 1
AUTO28=AUTO28 1
AUTO33=AUTO33 1

AUTO14=AUTO14 1
AUTO19=AUTO19 1
AUTO24=AUTO24 1
AUTO29=AUTO29 1
AUTO34=AUTO34 1

AUTO15=AUTO15 1
AUTO20=AUT020 1
AUTO25=AUTO025 1
AUTO30=AUTO30 1
AUTO35=AUTO35 1

AUTO16=AUTO16 1
AUTO21=AUTO21 1
AUTO26=AUT026_1
AUTO31=AUTO31 1

SC4=sC4_1 SC5=5C5 1

Is this too much text for one macro variable? No. SAS Macro variable can store up to 65,534 characters?, which is

quite a large number. In the above example, RENAME_1, RENAME_2 and RENAME_3 each has 5871 characters,
which is less than 10% of the maximum. This is very powerful. We can use it to generate other SAS statements on
thousands of variables.

2 SAS® Online Doc 9.1.3 for the Web ->Base SAS®->SAS Macro Language-> Understanding and Using the Macro Facility->Macro
Variables-> Macro Variables Defined by Users.

SAS Global Forum 2009 Coders' Corner

IDENTIFYING COMMON VARIABLES IN DIFFERENT DATASETS

At my current consulting job, | often have to compare two related datasets and identify common variables. In one
simple step, the following code identifies and stores common variables of two datasets in a macro variable, which |
can refer to in later programming:

PROC SQL NOPRINT;

SELECT A.NAME INTO: SAMEVARS SEPARATED BY ' '
FROM

(SELECT NAME

FROM DICTIONARY.COLUMNS

WHERE UPCASE (LIBNAME)="XU"

AND UPCASE (MEMNAME)='DATASET1') A,
(SELECT NAME

FROM DICTIONARY.COLUMNS

WHERE UPCASE (LIBNAME)="XU"

AND UPCASE (MEMNAME)='DATASET2') B
WHERE A.NAME=B.NAME;
QUIT;

To identify the variables in the first dataset but not in the second, | can simply replace the inner join with the EXCEPT
union:

PROC SQL NOPRINT;

SELECT NAME INTO: FIRSTVARS SEPARATED BY ' '
FROM

(

SELECT NAME

FROM DICTIONARY.COLUMNS

WHERE UPCASE (LIBNAME)='"'XU"

AND UPCASE (MEMNAME) ='DATASET1'
EXCEPT

SELECT NAME

FROM DICTIONARY.COLUMNS

WHERE UPCASE (LIBNAME)="'XU"

AND UPCASE (MEMNAME) ='DATASET2'
)7
QUIT;

CREATE SAS DATASET NAME LIST

SAS dataset name list is not directly supported by SAS, i.e. we cannot use DATA1-DATAN in SET or MERGE
statement. However, we can create our own using PROC SQL SELECT INTO with DICTIONARY.TABLES. As |
mentioned earlier, there are 21 DICTIONARY tables. DICTIONARY.TABLES or DICTIONARY.MEMBERS can be
used to manage current session SAS tables/views and SAS files®. Here are some important columns in
DICTIONARY.TABLES:

libname char(8) label='Library Name',

memname char (32) label='Member Name',

memtype char(8) label='Member Type'

dbms memtype char (32) label='DBMS Member Type',

memlabel char(256) label='Dataset Label',

typemem char (8) label='Dataset Type',

crdate num format=DATETIME informat=DATETIME label='Date Created',
modate num format=DATETIME informat=DATETIME label='Date Modified',

® SAS® Online Doc 9.1.3 for the Web ->Base SAS®->SAS SQL Procedure User’s Guide->Programming with the SQL Procedure->
Accessing SAS System Information Using DICTIONARY Tables

SAS Global Forum 2009 Coders' Corner

nobs num label='Number of Physical Observations',
obslen num label='Observation Length',
nvar num label='Number of Variables'

At my current consulting job, a statistical model score dataset named SCORE_MMDDYY is generated daily.
Sometimes, | need to set multiple days of the score datasets together. The following code creates a macro variable
SCORESDS. It contains the names of datasets that were created between DATE1 and DATE2 separated by blanks.

PROC SQL NOPRINT;

SELECT MEMNAME INTO: SCORESDS SEPARATED BY ' '
FROM DICTIONARY.TABLES

WHERE LIBNAME='SCORE'

AND UPCASE (MEMNAME) LIKE 'SCORE%'

AND DATEPART (CRDATE) BETWEEN DATEI AND DATEZ2;
QUIT;

Then, | can simply call the macro variable in SET statement as follows:

DATA ALLSCORES;
SET &SCORESDS;
RUN;

CONCLUSION

As my paper shows, PROC SQL SELECT INTO with SAS DICTIONARY.COLUMNS table is an amazing tool. It
allows us to create custom variable lists, create new variable names, rename variables, and identify common
variables without copying, pasting or Excel intervention. Furthermore, with DICTIONARY.TABLES, we can create
dataset name list, which is not directly supported by SAS. Using this method since | first discovered it in 2005, | have
dramatically saved time and increased my productivity. | hope | have brought forward a valuable tool that you can
utilize and adapt for your work.

REFERENCES

SAS Institute Inc. “SAS Macro Language” “SAS SQL Procedure User's Guide” SAS® OnlineDoc 9.1.3 for the Web
<http://support.sas.com/onlinedoc/913/docMainpage.jsp>

CONTACT INFORMATION

Your comments and questions are valued and encouraged. Contact the author at:

Xu Zeng

3012 Hickory Grove Court
Fairfax, VA 22031
703-864-8914
xuzeng@hotmail.com

SAS and all other SAS Institute Inc. product or service names are registered trademarks or trademarks of SAS
Institute Inc. in the USA and other countries. ® indicates USA registration.

Other brand and product names are trademarks of their respective companies.

http://support.sas.com/onlinedoc/913/docMainpage.jsp

	2009 Table of Contents

