SAS Global Forum 2009 Coders' Corner

Paper 061-2009

Let SQL Write SQL Scripts for You — Counts Report
Christine Teng, Merck Research Labs, Merck & Co., Inc., Rahway, NJ

ABSTRACT

PROC SQL is a very powerful tool that can be used to easily build SQL scripts. Script-building can be used to
produce useful detailed SAS dataset information. The output explained in this paper will produce a counts report
which shows a list of variables with the total number of non-null values within its associated dataset between two data
sources. The output consists of the following: dataset name, variable name, variable attributes and the count of non-
null values.

SAS®9, Windows, Intermediate Level
Key Words: SAS DICTIONARY, PROC SQL, Macro

APPLICATION

To illustrate the SQL script-building capability, a mapping application is used as an example (Table — 1). The main
purpose of this application is to verify the mapping result between datasets. The details of the application will not be
described here. The focus of this paper is to show how to utilize SQL to write SQL code so only details related to this
topic will be described here. Table — 2, found below, is an Excel counts report produced from Table — 1 by
comparing two datasets created from two different data sources. Column A represents the converted(target) dataset
name and column B represents the variable name associated with the converted dataset; column C represents the

source dataset name and column D represents the variable name associated with the source dataset.

Table - 1

A E D
Domain = |SDTM_ Varia | cviorm =|rep_col -
AE AEACH Cv_FREMAE C_RDCAEACTION_ITMAEACTION
AE AEBODSYS Cv_FRMAE TMAESOC
AE AECLCRS1 CW_FRMAE THTSAECOURZET _ITMSAECOURSE
AE AECLCRSZ Cv_FREMAE THTSAECOURZEZ_ITMSAECOURSE
AE AECLINT Cv_FRMAE C_RDCEAEECIL_ITMZEAEECI
AE AECRSFUT CW_FREMAE THETFLUN_ITMEAEFU
AE AECREFUZ Cv_FEMAE THTFUZ_ITMSEAEFU
AE AECREFUS CW_FRMAE THTFUG_ITMEAEFU
AE AECRSTRT Cv_FRMAE [MTMEAETREATWMEMNT
AE AEDECOD Cv_FRMAE [TMAEFT
AE AEDUR Cv_FREMAE MTETDURATIONSEC_[TMAEQUTCORME
AE AEEMNDTC v _FRMAE OT_MDTMSTORDT1_ITMAEQLTCOME
AE AEEMDTC CW_FRMAE ODT_MDTMETORPDT_[TMAEQUTCOME
AE AEHODDGE | CW_FRMAE MMEAEDIAGHOSIS
AE AEHOEDTC Cv_FRMAE DTE_DThEAEHOSFITALIZATION__1
AE AELLT Cv_FRMAE MRAETLLT
AE AEOCEWVID Cv_FEMAE MMSAERECOWERY
AE AEOUT Cv_FREMAE C_RDCAEQUTCOME_ITMAEOUTCOME
AE AEREL Cv_FRMAE C_RDCAECAUSE_ITMAECALISE
AE AERELMET CW_FRMAE C_ROCEAESUSFECT _ITMESAESUSPECT
AE AESCAM CV_FREMAE C_CHESAECAMCER_SMPEAECANCE_1
AE AESRCH Cv_FRMAE C_RDCEAEREAFFEAR_ITMEAEREA_T
AE AESE1 CW_FRMAE THTSAESIGHST_ITMSAESIGMNS
AE AESEZ Cv_FEMAE THTSAESIGHSZ_ITMEAESIGMNS
AE AESTDTC Cv_FREMAE DT_ITMAEOMSETDT
AE AETERR v FRMAE MrAETERMM

Column E, F, G and H in Table — 2 below are derived through SAS Macro programming. Columns E and F are
derived from the SAS Dictionary.columns table. Column E represents the data attributes for the variables in column
B and Column F represents the data attributes for the variables in column D.

Example code for formatting column E from a PROC SQL Select statement using Dictionary.columns table:

propcase(catx(",type,put(length, best5.))) as STypelLen

SAS Global Forum 2009 Coders' Corner

Further details for columns G and H are described in a later section below. Based on the variable attributes in the
highlighted rows in Table — 2, there are count discrepancies that one would want to investigate further.

Table -2
A E | C | D | E | F | G | H

Domain = |SDTM_Vex|ovform =|rep_col =|STvpeLen x|CTypelen = |nathull_sd x|natnull_cv =]
AE AEACN Cv_FRMAE C_RDCAEACTION_[TMAEACTION Char1? Char1h 18 14
AE AEBODSYS CV_FRMAE ITMAESOC Charg0 Char2hh 15 15
AE AECLCRS1 CW_FRMAE THTSAECOURSET_ITMSAECOURSE Charzhh Charz00 5 b
AE AECLCRSZ CW_FRMAE TWTSAECOURSEZ_ITMSAECOURSE Charzhh Charz00 5 b
AE AECLINT | CW_FRMAE C_RDCSAEECI_ITMSAEECI CharZhh Charl 17 17
AE AECRSFUN CW_FRMAE THTFLI_ITMSAEFU Charzhh Charz00 4 4
AE AECRSFUZ CW_FRMAE THTFUZ_ITMSAEFL CharZhh Charz00 4 4
AE AECRSFU3 OV _FRMAE TXTFUS_ITMSAEFL Charzhh Charz00 4 4
AE AECRSTRT CV_FRMAE ITMSAETREATMENT Charzhh Char200 4 4
AE AEDECOD OV _FRMAE ITMAEPT Charz00 Charzhb 15 15
AE AEDUR CW_FRMAE (MTHTODURATIONSEC_ITMAEQUTCOME Charld MNumg 0 i}
AE AEENDTC CW_FRMAE DT_MOTMSTOPDTI_TMAEDUTCOME Charli MNumg 13 0
AE AEEMDTC | CW_FRMAE DT_MOTMSTOPDT_ITMAEQUTCOME Charli MNumg 13 13
AE AEHODDGS CW_FRMAE ITMSAEDIAGHNOSIS Charzhh Charz00 5 b
AE AEHOSDTC CV_FRMAE DTS_DTMSAEHOSPITALIZATION__1 Char1d Char4g 2 2
AE AELLT CW_FRMAE ITMAETLLT Charz00 Char2hb 15 15
AE AEQCEWID CV_FRMAE ITMSAERECOVERY Char2sh Chareno 4 4
AE AEOUT Cv_FRMAE C_RDCAEOUTCOME_ITMAEOUTCOME Char33 Char3z 19 19
AE AEREL Cv_FRMAE C_RDCAECAUSE_ITMAECAUSE Charz00 Charll 18 16
AE AERELMST CW_FRMAE (C_RDCSAESUSPECT_ITMSAESUSPECT Char200 Char11 17 17
AE AESCAM OV _FRMAE C_CHKSAECANCER_SMPSAECANCE_1 Char2 Charl 19 1
AE AESRCH | CV_FRMAE C_RDCSAEREAPPEAR_ITMSAEREA_1T Char20 Char14 17 17
AE AESET CV_FRMAE THTSAESIGNST_ITMSAESIGNS Charzhh Charz00 5 b
AE AESS2 CW_FRMAE TWTSAESIGMSZ_ITMSAESIGNS Charzhh Charz00 4 4
AE AESTDTC | CV_FRMAE DT_ITMAEOQMNSETDT Char1d MNumi 19 19
AE AETERM |CW_FRMAE ITMAETERM Charz00 Charz00 19 19

BASIC SQL CONCEPT USING MACRO VARIABLES

There are many features in PROC SQL. In this paper, only those features used in the example are addressed . The
macro program described in this paper uses PROC SQL user-defined macro variables created by the "INTO" clause.

The syntax of the SELECT statement to create user-defined macro variables using the "INTO" clause and range ‘-’ is
depicted as follows:

SELECT <column name in a table>
INTO :<Macro Variable namel> -

:<Macro Variable name999>
FROM < table>

The SELECT statement above stores row values in a list of user-defined macro variables. Only the required number
of macro variables will be created. A number large enough to hold the number of observations returned from the
SELECT statement must be specified.

Another type of macro variable in PROC SQL is called an automatic macro variable; SQLOBS is used in the
example. SQLOBS contains the number of rows or observations executed by a SQL statement.

THE COUNTS REPORTS

SAS code from the count macro is found below. The dataset, sdtmtbl (Table — 3), contains information from the
‘Domain’ dataset where the attributes (Column E in Table — 2) have been obtained from the SAS dictionary table in a
step not shown in this example. A separate table was created to hold the same information (Column F in Table — 2)
for 'cvform' datasets. The code below describes what was done for the 'Domain' dataset. Similar code was
completed using the same logic for the 'cvform' dataset which is not shown here.

SAS Global Forum 2009 Coders' Corner

Table -3
kember Mame zdtm_wvariable | STypelLen varl ype
AF AEACH Charl 7 C
AF AFBODSYS Char0 C
AF AECLCRS Char255 C
AE AECLCRSZ2 Char255 C
AE AECLIMT Char2g5 C
AF AECRSFLA Char255 C
AF AECRSFLZ Char255 C
AF AECRSFU3 Char255 C
AF AECRSTRT Char255 C
AF AEDECOD Char200 C
AF AEDTHAFR Char255 C
AE AEDTHAFZ2 Char255 C
AE AEDTHAFZ Char2g5 C
AF AEDTHAUT Char25 C
AF AEDTHDTC Charl3 C
AF AEDTHMOT Char255 C
AF AEDUR Charl3 C
/*-- Generate scripts to obtain counts for each variable within the domain dataset -- */
proc sql noprint;
create table TSD
(ds_name char(30), sdtm_variable char(40), notnull_sd num); 2> A
select "select " || quote(trim(left((memname)))|| ',' || quote(trim(left(sdtm_variable))) || ", count(*) > B
from DATADIR." || trim(left(memname)) || " where " || trim(left(sdtm_variable)) || " ne "' ;" as ab

into :sdsell- :sdsel999
from sdtmtbl
quit;

%let cntsc=&sqlobs; > C

proc sql;
%do i=1 %to &cntsc;
insert into TSD ->D
&&sdsel&i;
%end;
quit;

A. The CREATE TABLE statement is used to create a table called TSD which holds the result of the variable count
value for the Domain datasets. (Table — 4 below)

B. The SELECT statement reads from the SDTMTBL dataset (Table — 3) and builds SQL scripts that select the
variable Column B from its corresponding domain. Each script created is stored in the user-defined macro variables
:sdsell- :sdsel999. For example, one of the macro variables will have a value as follows:

select "AE","AEACN", count(*) from DATADIR.AE where AEACN ne'’;

C. The SQLOBS macro variable contains the number of rows or observations executed by the SELECT statement
that builds the script. The INSERT statement executes the number of times it is collected in SQLOBS. Please keep
in mind that this automatic macro variable changes for each SQL run. It should be re-assigned to another user-
defined macro variable to avoid getting a wrong value.

D. The INSERT statement is used to execute SELECT statements that are stored in the macro variables in Step B
above. One iteration of the script executes as follows:

insert into TSD
select "AE","AEACN", count(*) from DATADIR.AE where AEACN ne'’;

3

SAS Global Forum 2009 Coders' Corner

Table — 4
dz_name zdtrn_wariable notnull_zd
BE AEACH 18
BE AEBODSYS 15
AE AECLCRST 5
AE AECLCRSZ 5
AE AECLINT 17
AE AECRSFU1 4
AE AECRSFUZ 4
BE AECRSFU3 4
BE AECRSTRT 4
BE AEDECOD 15
AE AEDTHAFT 1
AE AEDTHAFZ 1
AE AEDTHAF3 1
AE AEDTHALT 0
AE AEDTHDTC 1
BE AEDTHMOT 1
BE AEDLUR 0

A similar process will be done to collect information from the cvform datasets. Once counts for variables from both
data sources are collected, they are merged together with the mapping specification(Table — 1) to produce the output
for Table — 2. The example here is to demonstrate how to construct SQL scripts in a PROC SQL statement. A
simple way to get non-missing value can be replaced by N function .

CONCLUSION

Using PROC SQL with macro variables can reduce the coding time for many data processing tasks. Using SQL to
build SQL simplifies coding and minimizes coding errors.

REFFERENCES

SAS SQL Procedure User’'s Guide

ACKNOWLEGEMENTS

The author would like to thank her management team for their encouragement and review of this paper.

TRADEMARKS

SAS and all other SAS Institute Inc. product or service names are registered trademarks or trademarks of SAS
Institute Inc. in the USA and other countries. ® indicates USA registration.

Other brand and product names are registered trademarks or trademarks of their respective companies.

CONTACT INFORMATION
Your comments and questions are valued and encouraged. Contact the author at:

Christine Teng
Merck & Co., Inc.
RY34-A320

P.O. Box 2000
Rahway, NJ 07065

SAS Global Forum 2009 Coders' Corner

christine teng@merck.com

S aS Certified Advanced
®

Programmer

	2009 Table of Contents

