
1

Paper 080-2009

Keeping Up to Date: Using Build Tools with SAS®
Robert Burnham, Tuck School of Business, Hanover, NH

ABSTRACT
Complex SAS projects can have many program files, datasets and outputs that need to be managed. Build tools,
such as Make, automate the updating of inter-dependent files and are used extensively in software development.
Build tools function by observing when files are modified and applying internal rules to decide which programs need to
be run in order to keep project results current. This tutorial starts with a simple example and then introduces new
features that show how build tools can make SAS programmers more efficient at managing large projects. Versions of
Make are available on almost all Unix/GNU Linux systems and instructions for setting up GNU Make on a Windows
PC are included.

INTRODUCTION: USING BUILD TOOLS WITH SAS
Build tools work by looking at the times when files were modified and taking actions to update the files that are
dependent on those changes. Take the simplest possible example, a three line SAS program named hello.sas:

data _null_;
 put "hello, world";
 run;

This program will write hello, world to the program’s log file, which SAS names hello.log by default. The program’s
output is dependent on the instructions recorded in hello.sas. If the program is changed such so that it says hello, joe
then it will need to be run again.

To use a build tool, such as GNU Make, we need to describe the relationships between the outputs (also called the
targets), the programs, and any external data that is used. The build tool also needs to know the actions required to
update the outputs. When using GNU Make, this information is written in a Makefile. Here is a first Makefile for the
project:

hello.log: hello.sas
 sas hello.sas

The first line indentifies the target (hello.log) and its dependency (hello.sas) with a colon delimiting the two. The
second line, indented by a tab character, is the action needed to bring the target up to date. To update the project the
user types make at the prompt and sees the action, sas hello.sas, echoed back as SAS starts up and runs the
program. If make is invoked again a different message appears:

$ make
make: `hello.log' is up to date.

A MORE REALISTIC EXAMPLE
Build tools become more helpful as a project grows. Consider a large file of financial data, e.g. daily stock returns
from many firms, which are analyzed and reported on monthly. There are initially two files:

monthly_report.sas
stockreturns.csv

The program, monthly_report.sas, reads in stockreturns.csv and produces a report in PDF format called
stock_report.pdf. In the parlance of the build tool, stock_report.pdf has two dependencies: monthly_report.sas and
stockreturns.csv. This is expressed in a Makefile as:

stock_report.pdf: monthly_report.sas stockreturns.csv
 sas monthly_report.sas

Invoking make runs SAS and generates stock_report.pdf along with the expected .lst and .log files. The build tool
checks the timestamps of both dependencies to see if either was updated more recently than the target and starts the
action to update the report if necessary.

Coders' CornerSAS Global Forum 2009

2

In addition to automatically checking the timestamps, the build tool has another benefit. Having a Makefile means
that a user, who may not know SAS at all, can drop in new data and generate updated reports without knowing any of
the steps involved.

The current system works but every month the data file becomes larger, processing time increases and business
units send in additional requests for different types of analysis. Instead of reading and processing the raw .csv file
each time that an analysis is required it now makes sense to load the data into a permanent SAS dataset, perhaps
with indices, and have separate programs for the analysis. After refactoring a few things you have the following files
in your directory:

Makefile
finance_report.sas
president_report.sas
process_stockreturns.sas
stockreturns.csv

The new process has a program called process_stockreturns.sas which reads, sorts and indexes the raw data and
saves it as a SAS dataset named stockreturns.sas7bdat. Two additional SAS programs, president_report.sas and
finance_report.sas generate PDF and RTF files respectively for the different consumers of the analysis. The Makefile
has expanded to encompass all of these relationships:

stockreturns.sas7bdat: process_stockreturns.sas
 sas process_stockreturns.sas

president_report.pdf: president_report.sas stockreturns.sas7bdat
 sas president_report.sas

finance_report.rtf: finance_report.sas stockreturns.sas7bdat
 sas finance_report.sas

The new dependencies are represented, but now typing the make command only updates stockreturns.sas7bdat and
not the other targets. A quick search through the make documentation indicates that targets can be specified as
arguments, e.g. make finance_report.rtf, but that re-introduces some complexity. The solution is to define a default
target, a list of outputs that the build tool should always update. Adding this line to the top of the Makefile solves the
issue:

default: president_report.pdf finance_report.rtf

stockreturns.sas7bdat: process_stockreturns.sas
 sas process_stockreturns.sas

president_report.pdf: president_report.sas stockreturns.sas7bdat
 sas president_report.sas

finance_report.rtf: finance_report.sas stockreturns.sas7bdat
 sas finance_report.sas

Updating the reports monthly is very now straightforward. A change in a particular report will tell make to run only the
program that creates that report while a change in the underlying data will trigger updates for all of the targets.

BEYOND BUILDING
Creating a Makefile for the project has automated the process of updating the monthly reports, but that is not the only
task that it can handle. Makefiles are commonly used to automate other data handlings chores, e.g. cleaning out old
log files and outputs so that the project is in a pristine state to update all of its targets. Many programmers will code a
clean target in their Makefiles with no dependencies, for example:

clean:
 rm -f *.lst *.log *.rtf *.pdf *.sas7bdat

Typing make clean at the prompt will now delete all of the project’s targets prompting a complete build the next time
that make is invoked. In addition to a clean target, many Makefiles will include targets to install programs, build help
files, or run tests.

Coders' CornerSAS Global Forum 2009

3

USING VARIABLES
All of the commands in the Makefiles to this point have been hard coded, but in practice most Makefiles take
advantage of a variable syntax that allows for more flexibility.

The current actions defined in the Makefile take the form sas the_program.sas, which works well when the version of
SAS that we want to use is the first one in the current path. To use a different version of SAS installed in another
location, or perhaps pass in command line arguments to SAS when it runs, would require changing each action in the
Makefile. Variables provide a more flexible option. For example, the project is currently running on a Windows
machine and having the splash screen and logo popup every time the project is updated is not desirable. Define a
variable, which can be called SAS for clarity, at the top of the Makefile like this:

SAS = sas -nosplash -nologo -icon -sysin

The syntax to use a variable in a Makefile is $(variable_name), so all of the actions should be modified from this:

sas president_report.sas

To this:

$(SAS) president_report.sas

When invoked the build tool now echoes these commands:

$ make clean; make
rm -f *.lst *.log *.rtf *.pdf *.sas7bdat
sas -nosplash -nologo -icon -sysin process_stockreturns.sas
sas -nosplash -nologo -icon -sysin president_report.sas
sas -nosplash -nologo -icon -sysin finance_report.sas

This is a simple example of the power of variables in Makefiles, but it opens up a number of possibilities. For
example, perhaps the project has certain key parameters for analysis, e.g. the beginning and start dates for reports.
The top of the Makefile could be modified like this:

STARTD=01JAN2005
ENDD=31DEC2007
SAS=sas -nosplash -nologo -icon -set startd $(STARTD) -set endd $(ENDD) -sysin

The set command line option creates variables in the SAS environment which can be accessed using the %SYSGET
macro. If the programs are modified to use those values in a WHERE clause, for example, then the build tool has
become a very easy to use system for running different versions of analyses without ever having to actually edit the
underlying SAS code.

PHONY TARGETS
The previous examples all listed outputs, dependencies and the actions needed to update the results. Makefiles also
allow you to define “phony” rules which do not update a specific target but specify an order for the build process. For
example, consider the invocation above:

$ make clean; make

In order to force a rebuild of the outputs we had to invoke make twice; once to build the clean target and delete the
existing datasets and the second time to update all of the outputs. If we need to do this frequently then building a
phony Makefile rule can simplify the process. A phony rule for this could be stated as:

force: clean default

Invoking make force would then be the equivalent of make clean; make. Defining phony targets can make the build
process more legible and easier to use and maintain over time.

PREVIEWING A MAKEFILE’S ACTIONS
There are some times when it is advantageous to be able to see what steps the build process is going to take before
running it. This is particularly true when you are debugging Makefiles and when run times are long. Most versions of
make have flags such as -n, --just-print, --dry-run, or --recon that tells make to print out the actions it would take to
update the targets. For example:

Coders' CornerSAS Global Forum 2009

4

$ make clean
rm -f *.lst *.log *.rtf *.pdf *.sas7bdat

$ make --just-print
sas -nosplash -nologo -icon -sysin process_stockreturns.sas
sas -nosplash -nologo -icon -sysin president_report.sas
sas -nosplash -nologo -icon –sysin finance_report.sas

The output is pretty straightforward; after deleting everything the build system reports that it would need to run all of
the programs to update the targets.

CONCLUSION
It is hard to overestimate the utility of using a build tool, particularly as projects get larger and more complicated.
Aside from the efficiency that the tools give in terms of only running those programs which need to be executed to
bring a project up to date; Makefiles serve as living history for projects documenting what they do and all of the inputs
and outputs that they generate. In the immediate term Makefiles provide power and flexibility, over the long term
when you are trying to recreate analyses that were conducted years ago with complex workflows, they are absolutely
invaluable.

CONTACT INFORMATION
Your comments and questions are valued and encouraged. Contact the author at:

Name: Robert Burnham
Enterprise: Tuck School of Business at Dartmouth
Address: 100 Tuck Hall
City, State ZIP: Hanover, NH 03755
E-mail: robert.a.burnham@dartmouth.edu
Web: http://www.dartmouth.edu/~bburnham/

SAS and all other SAS Institute Inc. product or service names are registered trademarks or trademarks of SAS
Institute Inc. in the USA and other countries. ® indicates USA registration.

Other brand and product names are trademarks of their respective companies.

Coders' CornerSAS Global Forum 2009

	2009 Table of Contents

