
Paper 074-2009

The Perils of End-of-File Processing when Subsetting Data
Leonard Landry, Statistics Canada, Ottawa, Ontario, Canada

ABSTRACT
End-of-file processing in a SAS® DATA step occurs when an entire file is read and some specific processing takes
place only after the last record is read from the dataset being processed. When selecting a subset of the data from
the dataset using a subsetting IF statement, problems can arise due to improper placement of the end-of-file
processing code. This paper will explain why the problem occurs and offer several suggestions on how to avoid it.

INTRODUCTION
SAS offers a simple way of detecting end-of-file by using the END=variable option on a SET or MERGE statement.
This option will define a variable whose value is set to 1 when the last record is read. We can then perform some
end-of-file processing by using a simple IF statement to test for a value of 1 for this variable.

The placement of this IF statement is critical when using a subsetting IF statement to process only a subset of the
dataset. There are some situations when the code will not be executed if the IF statement is not properly placed.
However, the problem may be difficult to detect as there are some situations where it will work properly and also
when the code is not executed there will be no error message. Similarly, a problem may occur when executing a
match/merge and attempting to perform some specific processing after all records are read.

The purpose of this paper is to show when the problem will occur, explain why it occurs, and offer several
suggestions as to how it can be avoided.

EXAMPLE 1 – THE PROBLEM
The first example will demonstrate the problem when reading a SAS dataset and processing a subset of the dataset
using a subsetting IF statement. We will use the following data as input.

Obs Sex VarA

 1 M 10
 2 F 5
 3 M 20
 4 F 15
 5 M 15
 6 F 5
 7 M 12
 8 F 20

The program below will read the entire dataset. As it reads the dataset it will accumulate the sum of VarA and after
all records are read it will print to the log the accumulated sum of the variable VarA. Also shown below is the log
which shows that the program worked successfully.

Data _null_;
 set test end=end1;
 retain total 0;
 total = total + VarA;
 if end1 then put total=; /* end-of-file processing */
run;

total=102
NOTE: There were 8 observations read from the data set WORK.TEST.
NOTE: DATA statement used (Total process time):
 real time 0.00 seconds
 cpu time 0.00 seconds

Now we will try subsetting out only the records where sex = ‘F’ by using a subsetting IF statement. Here is the
modified program and the log showing that it also works.

 1

Coders' CornerSAS Global Forum 2009

Data _null_;
 set test end=end1;
 if sex = 'F'; /* subsetting if */
 retain total 0;
 total = total + varA;
 if end1 then put total=; /* end-of-file processing */
run;

total=45
NOTE: There were 8 observations read from the data set WORK.TEST.
NOTE: DATA statement used (Total process time):
 real time 0.00 seconds
 cpu time 0.00 seconds

Now we will change the subsetting IF statement to subset out the records where sex = ‘M’. The program is shown
below with the log which, this time, does not contain the total, indicating that the end-of-file processing code did not
execute.

Data _null_;
 set test end=end1;
 if sex = 'M'; /* subsetting if */
 retain total 0;
 total = total + varA;
 if end1 then put total=; /* end-of-file processing */
run;

NOTE: There were 8 observations read from the data set WORK.TEST.
NOTE: DATA statement used (Total process time):
 real time 0.00 seconds
 cpu time 0.00 seconds

Although it may not be obvious why one of these programs works and not the other, the problem occurs only when
the last record in the dataset is deleted by the subsetting IF. The reason this happens is that when a record is
deleted by a subsetting IF, SAS stops processing and returns to the next iteration of the DATA step. Thus, any
executable statements placed after the subsetting IF do not get executed.

EXAMPLE 1 – THE SOLUTION
There are many ways to avoid this problem. Some programmers make it a practice to never use a subsetting IF.
The program could easily be rewritten without the subsetting IF such as the following and would give the correct
results as shown here.

Data _null_;
 set test end=end1;
 retain total 0;
 if sex = 'M' then total = total + varA;
 if end1 then put total=; /* end-of-file processing */
run;

total=57
NOTE: There were 8 observations read from the data set WORK.TEST.
NOTE: DATA statement used (Total process time):
 real time 0.01 seconds
 cpu time 0.00 seconds

 2

Coders' CornerSAS Global Forum 2009

Another option would be to use a WHERE statement instead of the subsetting IF. This option may not always be
available depending on the criteria on which the subsetting is based but when it is available it will work. The program
and log below show that this approach works.

Data _null_;
 set test end=end1;
 where sex = 'M';
 retain total 0;
 total = total + varA;
 if end1 then put total=; /* end-of-file processing */
run;

total=57
NOTE: There were 4 observations read from the data set WORK.TEST.
 WHERE sex='M';
NOTE: DATA statement used (Total process time):
 real time 0.04 seconds
 cpu time 0.00 seconds

Another option is to use the subsetting IF statement and place the end-of-file processing code before the SET
statement. This will work because it is the SET statement that triggers the end of the implicit looping. After the last
record is read and processed (or not processed as in the case where it is deleted by the subsetting IF) control returns
to the next iteration of the DATA step and then stops when it reaches the SET statement and there are no more
records to read. This is illustrated in Figure 1, the flow chart shown below from SAS documentation “Step-by-Step
Programming with Base SAS® Software, How the DATA Step Works: A Basic Introduction”. The following code
shows this technique along with the log which verifies that it works.

Data _null_;
 if end1 then put total=; /* end-of-file processing */
 set test end=end1;
 if sex = 'M'; /* subsetting if */
 retain total 0;
 total = total + varA;
run;

total=57
NOTE: There were 8 observations read from the data set WORK.TEST.
NOTE: DATA statement used (Total process time):
 real time 0.00 seconds
 cpu time 0.00 seconds

 3

Coders' CornerSAS Global Forum 2009

Figure 1

Flow of Action in a Typical DATA Step
Copyright 2001, SAS Institute Inc., Cary, NC, USA. All Rights Reserved. Reproduced with permission of SAS
Institute Inc., Cary, NC

 4

Coders' CornerSAS Global Forum 2009

EXAMPLE 2 – THE PROBLEM
The second example will demonstrate the problem when performing a match/merge and selecting only the records
common to both files. We will use the following data as input.

 FileA FileB

ID VarA ID VarB
1 10 1 5
2 15 2 8
3 12 4 25
5 20 5 11

The program below will perform a match/merge keeping only the records where the value of ID is the same in both
FileA and FileB. For these records, sums will be accumulated for VarA and VarB. After all records are read these
two sums will be written to a SAS dataset called sums. The log shows that there were 3 records retained where the
value of ID matched and 1 record was written to the dataset “sums”.

Data FileAB(keep=ID varA varB) sums(keep=SumvarA SumvarB);
 retain SumvarA SumvarB 0;
 merge FileA(in=inA) FileB(in=inB) end=end1;
 by ID;
 if inA & inB; /* subsetting if */
 SumvarA = SumvarA + VarA;
 SumvarB = SumvarB + VarB;
 output FileAB;
 if end1 then output sums; /* end-of-file processing */
run;

NOTE: There were 4 observations read from the data set WORK.FILEA.
NOTE: There were 4 observations read from the data set WORK.FILEB.
NOTE: The data set WORK.FILEAB has 3 observations and 3 variables.
NOTE: The data set WORK.SUMS has 1 observations and 2 variables.
NOTE: DATA statement used (Total process time):
 real time 0.01 seconds
 cpu time 0.00 seconds

To illustrate how the problem can occur we will add one additional record to FileB having an ID of 6 and rerun the
same code. The data now looks like this.

 FileA FileB

ID VarA ID VarB
4 10 1 5
5 15 2 8
6 12 4 25
5 20 5 11
 6 20

Below is the log from this run. Again there are the same three records that are retained having the common ID but
this time the “sums” dataset has 0 observations indicating that the end-of-file processing code did not execute.

NOTE: There were 4 observations read from the data set WORK.FILEA.
NOTE: There were 5 observations read from the data set WORK.FILEB.
NOTE: The data set WORK.FILEAB has 3 observations and 3 variables.
NOTE: The data set WORK.SUMS has 0 observations and 2 variables.
NOTE: DATA statement used (Total process time):
 real time 0.00 seconds
 cpu time 0.00 seconds

 5

Coders' CornerSAS Global Forum 2009

The problem in this case is the same as in Example 1. The statement “IF inA & inB;” is a subsetting IF statement.
When the last record is read from FileB and the ID is not common to both files the subsetting IF causes SAS to stop
processing and return to the top of the DATA step so the end-of-file processing code is not executed. When the
MERGE statement is executed there are no more records to read from either FileA or FileB and the DATA step
closes.

EXAMPLE 2 – THE SOLUTION
In this situation a WHERE statement cannot be used as the criteria in the subsetting IF are not fields in the SAS
datasets. Similar to the solutions shown above in Example 1 we can avoid the use of the subsetting IF or we can
place the end-of-file processing code before the MERGE statement. Both techniques are shown below with the logs
showing that 1 record was written to the “sums” dataset.

Data FileAB(keep=ID varA varB) sums(keep=SumvarA SumvarB);
 retain SumvarA SumvarB 0;
 merge FileA(in=inA) FileB(in=inB) end=end1;
 by ID;
 if inA & inB
 then do;
 SumvarA = SumvarA + VarA;
 SumvarB = SumvarB + VarB;
 output FileAB;
 end;
 if end1 then output sums; /* end-of-file processing */
run;

NOTE: There were 4 observations read from the data set WORK.FILEA.
NOTE: There were 5 observations read from the data set WORK.FILEB.
NOTE: The data set WORK.FILEAB has 3 observations and 3 variables.
NOTE: The data set WORK.SUMS has 1 observations and 2 variables.
NOTE: DATA statement used (Total process time):
 real time 0.00 seconds
 cpu time 0.00 seconds

 6

Coders' CornerSAS Global Forum 2009

Data FileAB(keep=ID varA varB) sums(keep=SumvarA SumvarB);
 retain SumvarA SumvarB 0;
 if end1 then output sums; /* end-of-file processing */
 merge FileA(in=inA) FileB(in=inB) end=end1;
 by ID;
 if inA & inB;
 SumvarA = SumvarA + VarA;
 SumvarB = SumvarB + VarB;
 output FileAB;
run;

NOTE: There were 4 observations read from the data set WORK.FILEA.
NOTE: There were 5 observations read from the data set WORK.FILEB.
NOTE: The data set WORK.FILEAB has 3 observations and 3 variables.
NOTE: The data set WORK.SUMS has 1 observations and 2 variables.
NOTE: DATA statement used (Total process time):
 real time 0.00 seconds
 cpu time 0.00 seconds

CONCLUSIONS
The examples presented in this paper show that when using a subsetting IF statement improper placement of the
end-of-file processing code can result in the code not being executed. The problem may go undetected as it will only
occur when the last record read is deleted by the subsetting IF and no error messages will be written to the log. The
problem does not occur when subsetting using a WHERE statement. Placing the end-of-file processing code before
the SET or MERGE statement will avoid the problem.

REFERENCES
Step-by-Step Programming with Base SAS® Software – SAS Institute

CONTACT INFORMATION
Your comments and questions are valued and encouraged. Please contact the author at:

 Leonard Landry
 Database Manager,
 Business and Labour Market Analysis Division,
 Statistics Canada
 leonard.landry@statcan.gc.ca

SAS and all other SAS Institute Inc. product or service names are registered trademarks or trademarks of SAS
Institute Inc. in the USA and other countries. ® indicates USA registration.

Other brand and product names are trademarks of their respective companies.

 7

Coders' CornerSAS Global Forum 2009

mailto:leonard.landry@statcan.gc.ca

	2009 Table of Contents

