
 1

Paper 044-2009

Implementing a BI reporting environment – making dashboards more OLAP
friendly

Gerard Quinn, Credit Corp Group, Sydney, Australia

ABSTRACT

The Credit Corp reporting environment is used on a daily basis by the management team to track performance at all
levels of the business. Taking advantage of SAS® Enterprise BI Server (in particular SAS BI dashboards, SAS OLAP
Server®, and SAS® Web Report Studio), users are able to get a high-level view of performance through a series of
dashboards and then can further analyze data at a lower level with OLAP reports. This presentation is aimed at
SAS® users implementing or thinking of implementing a BI portal solution. It discusses in detail the main features of
the reporting environment including applying data security to OLAP cubes in an automatic way and building BI
dashboards that are dynamically generated to show the appropriate information for each user.

INTRODUCTION

As a SAS BI consultant previously I wasn’t new to the prospect of implementing a SAS® Business Intelligence
solution, but in my first role since leaving SAS it was great to work with the new SAS® BI dashboard framework for
the first time.

Credit Corp was very much a blank canvas with limited reporting capability. This meant there was the opportunity to
approach the design from a fresh perspective. The implemented solution is an online reporting environment that
makes use of SAS® Enterprise BI Server components like SAS® Information Delivery Portal, SAS® OLAP Server for
slice and dice analysis, the SAS® BI Dashboard to show performance indicators at a glance and report delivery
components like SAS® Web Report Studio and stored processes to provide a more detailed level of reporting.

KPI performance monitoring and dashboards tailored to the individual levels of management have been delivered in
the first phase of development to monitor the health of the business and be able to react to the ever changing
landscape of the credit industry. Credit Corp is becoming more and more focused on driving higher returns from an
aging debt portfolio rather than collections from regular periodic purchases. This means working smarter not harder.

The project to implement the BI portal at Credit Corp, named Creditport, began in July 2007. The time to delivery from
initial requirements gathering to the first phase going live was about 6 months including both data and report
development. Since that time we have continued to add new reports and increase the user base. As with any project
of this nature there were a number of pressing business ‘pain points’ creating the need for a robust reporting solution:

• Limited visibility of company wide performance through existing reports
• Limited effective capability to recreate historical figures accurately
• The need to create a single version of information that is not open to interpretation
• There was little or no security on the existing reports so we needed a way to introduce data security for

different levels of management.

The BI environment at Credit Corp is predominately powered by OLAP cubes. Data visualization tools like SAS®
Web Report Studio provide some great functionality for the end users but this in turn introduces some challenges
when trying to reuse that data to display key performance indicators using the BI dashboard. The purpose of this
paper is to share knowledge with the audience about some of the fine details involved in an implementation of SAS®
BI Server. Particular attention is paid to the variety of ways data is disseminated to the user base and also showing
some techniques to better integrate OLAP cubes and dashboard functionality.

There are a lot of examples and screen shots taken from the completed reporting environment to give you a real
picture of how the implementation was done and how challenges were overcome. We know the information contained
within the reporting environment is directly contributing to increased efficiency and accounts being worked more
thoroughly by collections staff. Some figures regarding improvements to productivity and ROI will be presented later.
To protect the intellectual property contained within the reports used at Credit Corp I have changed measure names
to unrelated topics.

I have split the paper into two main sections, the first relating to data and security related issues and the second
focused on the reporting side of the implementation.

Business Intelligence User ApplicationsSAS Global Forum 2009

 2

1. DATA AND SECURITY

During the initial requirements gathering phase of the project an important aspect that emerged was that reports had
to be flexible enough that power users had the ability to navigate around a report and even change the view to find
points of interest. At the same time, it had to be easy enough to use so that people with little or no training could open
and understand key pieces of information that were being presented. This core requirement made OLAP cubes and
multidimensional reports the natural choice as the primary report delivery mechanism. This also fit in very well with
our data security requirements as OLAP cube security is defined in the SAS® Metadata Server and is applied
automatically in nearly every case as opposed to trying to protect datasets that require data security rules to be
applied whenever the data is used.

To make reports easy to use and understand, wherever possible they have been built with common hierarchies for
navigation. The benefit being that all reports have a familiar element even though each one deals with a different
subject area. The organizational structure of Credit Corp’s collections group is the basis for one of the common
hierarchies used in all reports and is the key element in the underlying security model.

There are 4 levels of the current structure

• Company wide (top) level
• Site level – based on geographical location (Sydney, Brisbane, …)
• Team level – each site has many collection teams (Team Moneybags, All Stars, Bandits, Pirates, Gold

Diggers)
• Account manager level – Collectors are responsible for negotiating a manageable ongoing payment

arrangement with our customers (debtors)

A partial organizational structure can be seen in Figure 1 below. The figure shows a sample of reporting lines for
account managers or customer relationship managers (CRMs). This same structure is used for summarization when
required in reports.

The other common hierarchy is Time which allows the user to compare historical performance figures at different
levels of the hierarchy such as day, week and month. Depending on the report, different components of the time
hierarchy will be used. Some reports may go down to the day level whereas others only go as far as month. The
deciding factor is usually the amount of storage for both the cube and the base table. For example, one report that
shows balances of accounts could not go down to day level as that would require too much data to be stored so
instead it stops at the month level. The following is a screen shot from SAS management console showing the levels
that make up the two core dimensions that are used in every report.

Figure 1
Partial organizational structure

Business Intelligence User ApplicationsSAS Global Forum 2009

 3

Besides being able to navigate through a report, it was also a major requirement for data level security to be applied
at every level so that a user could only see what was relevant to them, depending on their position in the
management hierarchy and geographical location. For most reporting needs a user should be able to see detailed
data for their group, plus everything in the hierarchy below them, plus summary information of the levels above them
to better put their own team’s performance into perspective. For example, using the structure in Figure 1 the team
leader for TeamA can see all information relating to TeamA as well as details regarding CRM1, CRM2 and CRM3.
The team leader can also see summary level information for Brisbane and summary level information on the
company wide performance. They cannot see how TeamB or TeamC are performing.

Figure 3 above shows an example from a web report where data security has been applied to a cube so the user has
the ability to see the summary for each site and then the detailed data of the site Parramatta2, which is the one they
belong to. The ability to view a lower level of detail is indicated on the report by the plus symbol and down arrow next
to the site Parramatta2. Clicking on the down arrow will change the report to show all of the teams in the site and
there will then be the option to drill down further to see all of the CRMs within a team. This is a variation on the
scenario described previously where the user was restricted from seeing other teams at the same level as their own.
This is the type of view that might be used by a site manager that allows them to compare the performance of their
site to the others across the company.

Figure 2
Common OLAP dimensions

Figure 3
Web report with security applied

Business Intelligence User ApplicationsSAS Global Forum 2009

 4

This type of data level security was achieved using MDX member level permission conditions. MDX is the language
that is used to query OLAP cubes. MDX stands for Multi Dimensional Expression and has a similar structure to SQL
queries. For details on how to use MDX see the MDX Guide section of the SAS OLAP Server chapter in the SAS
online documentation at http://support.sas.com/onlinedoc/913/ .

MDX permission conditions are applied in the metadata to a dimension for each user or group, and define what data
members a user is able to access. In the Credit Corp environment as much as possible data security has been
applied at the group level to utilize common MDX expressions for users with common data access requirements. The
following code in Figure 4 is an example of an MDX expression which applies security to a single cube for the team
leader of TeamA in Brisbane.

1. Ascendants([CRM_Grouping].[All CRM_Grouping].[Brisbane].[TeamA]),
2. [CRM_Grouping].[All CRM_Grouping].[Brisbane].[TeamA],
3. Descendants([CRM_Grouping].[All CRM_Grouping].[Brisbane].[TeamA])

To explain the expression I will address each of the 3 lines separately
1. Uses the MDX function ‘Ascendants’ to define access to the summary levels above Team A which in this

case is the Brisbane site and the All level
2. Defines access to TeamA at the team level summary
3. Uses the MDX function ‘Descendants’ to define access to all of the detailed Account manager level results

for Team A

These permission conditions need to be applied to the metadata in one of two ways. Either manually using the SAS®
Management Console or in batch using the Open Metadata Interface. Using the SAS® Management Console is the
easiest method to get started as it doesn’t require any coding or understanding of the underlying metadata structures.
But there are a number of steps that make it not viable for multiple users. To give you an idea of the effort required
the following example shows how to apply member level permission conditions using SAS® Management Console.

One cube at a time, open the properties window for the dimension that you are applying security to. In this case data
level security is being applied to the CRM_Grouping dimension.

On the Authorization tab, add the user or group and click the Grant check box for the Read permission so explicit
read access is granted. You can tell explicit read access has been granted when the background for that cell is white
instead of the grey which indicates implicit access. You must have explicit read permission granted for the Add/Edit

Figure 5
Applying security to an OLAP
dimension in SAS® Management
Console

Figure 4
Sample MDX code for a member level
permission condition

Business Intelligence User ApplicationsSAS Global Forum 2009

 5

condition button to be enabled. If the metadata identity does not already have a permission condition then the button
will say Add, otherwise it will say Edit.

Clicking on the Add\Edit condition button will open a window that will allow you to type in text. In this window you
enter the MDX code to be applied to the user/group. The expression needs to result in a MDX set that is the subset of
the particular dimension that you want the user to be able to see. In the case of the example in Figure 7 the returned
set is the CRM_Grouping All level, the site Parramatta2 and all teams and account managers that belong to the
Parramatta2 site.

Figure 6
Setting metadata permissions to
apply MDX security

Figure 7
MDX to apply member level
security for a metadata identity

Business Intelligence User ApplicationsSAS Global Forum 2009

 6

The problem with this manual approach is that each group requiring security would need to have it applied to each
cube. In the Credit Corp implementation there are currently 46 groups and ten cubes. That would mean a lot of point
and clicking. Instead, permission conditions get applied in a batch as part of the automated metadata synchronization
process. This process creates and deletes metadata users and groups to match changes in the business. The
metadata update process makes use of bulk load macros like %mduextr, %mduimpc, %mducmp, %mduchgv and
%mduchgl to extract the current metadata, compare it to the organizational structure in the transaction system and
apply updates. Documentation about how to apply this type of metadata update can be found in the appendix “Bulk-
Load Processes for Identity Management” of the SAS 9.1.3 Intelligence Platform Security Administration Guide.

Even though most of our reports are driven by OLAP cubes there are a few that use SAS datasets or direct queries to
the live transaction database. To maintain the same security policy for this type of data we used a combination of
information maps with a security association table and stored processes to apply a where clause to a dataset before
results are displayed to the user. Stored processes use the _metauser macro variable to dynamically subset each
summary table accessed by a user in Creditport.

PROC SQL noprint;
 SELECT DISTINCT

input(HR_Table.userID,4.)) into : userID
 FROM HR_Table AS HR_Table
WHERE HR_Table.userID NOT IS MISSING and HR_Table.WindowsID =
trim(left("%scan(&_metauser,1,@)"));
QUIT;

The code in Figure 8 above gets the username component from the _metauser macro variable which corresponds to
the Windows user ID and then subsets the table to get the transactional system user ID.

2. REPORTING ENVIRONMENT

The SAS Information Delivery Portal is the main user interface for Credit Corp’s BI solution, Creditport. Currently
there are approximately 90 web users from all levels of management across the business with plans to add access
for all account managers (350) this year. Each user sees only what is applicable to their role by implementing role
based security to control which pages each user can see with the three main roles being senior management
(company wide view), site manager (geographic site view) and team leader (single team view). These roles are
maintained by the same metadata synchronization program that updates OLAP cube MDX permission conditions.
The main components used to convey information in the portal are dashboards, web report studio reports, and stored
processes.

Figure 8
Example of using _metauser in a
stored process

Business Intelligence User ApplicationsSAS Global Forum 2009

 7

Figure 9 above shows the portal view of a member of senior management. Users in this group get the welcome page
which is visible to all users plus a ‘summary by site’ page and the ‘overall performance month to date page’ which
contains the month to date dashboards. Then, depending on what other roles the user has assigned, they may be
able to see one or more additional pages.

Being a member of a role gives access to a common set of reports in the Detail Report Links section but it is possible
to add more reports into that list that can only be seen by a smaller group of users. Using the BI Manager,
authorization can be changed for individual reports by denying ReadMetadata (RM) access to the wider group and
granting RM access for smaller groups or single users. Figure 10 shows where to find a web report definition in SAS®
Management Console. In the default setup web report can be found in Report Studio -> Shared -> Reports folder of
the BI Manager.

Figure 9
Senior manager view of Creditport

Figure 10
Selecting a shared SAS® Web Report Studio
report in the BI Manager

Business Intelligence User ApplicationsSAS Global Forum 2009

 8

After opening the properties window for a selected report, checking the deny ReadMetadata property will hide the
report from the wider audience.

2.1 USING THE BI DASHBOARD FRAMEWORK

The performance dashboard plays a crucial role in giving users a high level view of how performance is going against
the main indicators. The screen shots in Figure 12 and Figure 13 show examples of some of the dashboard types
that have been created using the BI Dashboard framework. The first is a series of bar charts that are used by upper
management to get a comparison of the same measure across multiple sites.

Figure 11
Changing permissions for a report

Figure 12
Site comparision dashboard

Business Intelligence User ApplicationsSAS Global Forum 2009

 9

The second is showing the same measures but for just one team. This type of view would be used by a team leader.

The original design was for all reporting levels to utilize the dashboard framework to display relevant figures from
OLAP cubes but this was changed part way through so only the company level is now built using the dashboard
framework. The main reasons for this are

• Scalability and maintenance
• Difficulty in displaying OLAP hierarchies

Early in the implementation phase it became clear that scalability and maintenance would be an issue as there was
simply too much overhead involved in using the BI Dashboard user interface to create dashboards at all levels. To
illustrate the issues, the following series of screen shots show the setup process for a single dashboard indicator.

First a data model must be defined to connect to a data source. A few of the choices for the data source type are
JDBC query and SAS Information Map. All of the data models in the Credit Corp implementation use OLAP
Information Maps as the data source. As part of the data model definition you must select what classification
variables and measures will be available in the data model.

Figure 13
Individual team dashboard

Business Intelligence User ApplicationsSAS Global Forum 2009

 10

Then the indicator needs to be defined to display data from a data model. It is possible to use one data model for
multiple indicators, but in the Credit Corp case the purpose of the dashboard was to show performance of different
parts of the operation - which meant, in most cases, different data sources. When defining each indicator as well as
setting up the type and metrics to be displayed, you have the opportunity to define other properties like indicator size
and HTML links to view more detailed reports.

The last step is to define a range - if a suitable one has not been defined already. Ranges are a form of traffic lighting
used to highlight poor, fair and good performance. Once the indicator is finished it can be added to one or more
dashboards.

Figure 14
Defining a data model

Figure 15
Setting up properties of an indicator

Business Intelligence User ApplicationsSAS Global Forum 2009

 11

During the implementation we ran into trouble when trying to set up data models using OLAP cubes as the data
source. OLAP hierarchies contain one or more levels (variables) that allow users to see the data summarized at
different levels of granularity. But I found that the data model for the dashboard does not let you choose which level of
the hierarchy to display. Looking at Figure 17 below, the two highlighted areas are the hierarchies of the OLAP cube.
By selecting these as part of the data model, the highest level values will be available to the indicator. For example, in
the CRM hierarchy only Site would be displayed. The value of Team or Account Manager could not be shown. The
way to work around this would be to create custom data items in the information map that would select all Teams or
all Account Managers but this is a little cumbersome.

Figure 16
Creating a range for indicators

Figure 17
Selecting a hierarchy on the data model

Business Intelligence User ApplicationsSAS Global Forum 2009

 12

Currently there are 11 dashboard indicators being used at all 3 levels of reporting. Even though the same metrics are
being shown, in the case of this implementation 8 data models were required for the 11 indicators at every level of
reporting. This means 33 dashboard indicators and 24 data models would need to be created and maintained.

The other issue with using OLAP as a data source was applying filters. Filters defined as part of an information map
will be applied when retrieving data through a BI Dashboard data model, but the catch is that it always applies all of
the filters that are defined in the information map. This becomes a problem if you want to use an information map to
meet more than one need. For example in the Credit Corp environment I created a filter that produces a rolling three
month subset but I also wanted to put in a filter to have the option to be able to see open accounts only. The end
result was that the data returned was always for a three month rolling window showing open accounts only. The way
around this issue is to create multiple information maps, one for each purpose.

2.2 AN ALTERNATIVE APPROACH

To overcome the issues relating to the BI Dashboard we decided to develop an alternative approach. We continued
to use the BI Dashboard when reporting at the company wide level as everything was already being summarized to
the highest level. Plus it is relatively easy to get new indicators setup and running at this level and most new reporting
requirements would come from senior management. This meant a fast turn around time on new requests. But for
people further down the organizational structure we needed some way to dynamically build a dashboard based on
the permissions of the user to avoid having to setup and maintain all of the components required for the BI
Dashboard.

As an alternative we developed a stored process that determines the role of the user by once again using the
_metauser automatic macro variable to determine the identity of the user calling the stored process and then produce
a dashboard with the indicators summarized to the appropriate level. If the user is a site manager then the indicators
needed to be summarized to a site level and if they are a team leader then it should be summarized to the team level.

As all of the data had already been built into OLAP cubes we decided to leverage that instead of creating more
datasets as part of the work around. The SQL pass through facility could be used to query an OLAP cube as long as
appropriate MDX can be generated based on the users’ security permissions. The key to making this process
successful is identifying that the user is a site manager or team leader and then generating MDX for the SQL query to
pick up the right level of information from the cube. Essentially, dynamically determining which level of a hierarchy in
the cube needs to be displayed based on the user’s role. The task of producing a dashboard via a stored process
follows this general set of steps.

1. Get the username of the person using the portal via _metauser
This can be achieved by using code similar to that in Figure 8.

2. Using security tables, determine the role and location of the user.
As part of our batch process that synchronizes metadata users with the Credit Corp transaction database,
we produce a dataset that groups users into their level of access and location. This security table makes it
easy to quickly lookup what a user’s access should be. A basic table similar to the one below is sufficient to
take the user’s portal login (WindowsUID) and use that to determine their team and site and whether they
are a site manager or not.

UserID TeamID SiteID SiteMgrID WindowsUID

3. Generate the MDX to pull out the appropriate level of information.
Based on the information from step 1 and 2 you can determine what the MDX should look like to access
data for a particular time period and team/site. For example the MDX to summarize to a single month is

[Time].[All Time].[2009].[1].[January]

The MDX to identify a single team is

[CRM].[All CRM].[Brisbane].[TeamA]

These pieces of MDX will be used in the SQL in step 4.

Business Intelligence User ApplicationsSAS Global Forum 2009

 13

4. Using PROC SQL pass-through, query OLAP cubes for each indicator required.
The following example code in Figure 18 shows the type of query used to extract data out for one dashboard
indicator.

PROC SQL;
CONNECT TO olap (host=SERVER port=5451 user="USERNAME" pass="PASSWORD");

CREATE TABLE revenue_indicator AS
SELECT *
FROM connection to olap
(
SELECT { CrossJoin ({[Time].[All Time].[2009].[1].[January]},
{[Measures].[Revenue], [Measures].[Revenue_TTD]})

 } ON COLUMNS ,
 non empty {[CRM].[All CRM].[Brisbane].[TeamA]}

ON ROWS
 FROM [Revenue_Performance]

);
DISCONNECT FROM olap;
QUIT;

This is a very fast way to pull data from an OLAP cube providing it is optimized for this type of task. As the
result of the query above will be a single row, as long as you have the appropriate aggregation setup up in
the cube, the SAS® OLAP server will not have to perform any summarization. If, on the other hand, your
cube has a large number of cells and no aggregations to speed things up then summarizing to a high level
could take some time. Querying an OLAP cube in this manner however raises another problem regarding
security. As with querying a regular database, the PROC SQL pass-through requires a connection be made
to the OLAP server using a username and password. So a system account is used to connect in this
situation. The issue is any member level security that is in place is dependant on the user so as soon as a
system account is used that security is not applied.

The result of the above query is a single row that contains the two measures Revenue and Revenue Target
to Date for the month of January 2009 and for TeamA which is part of the Brisbane site.

5. Create a dashboard layout including each indicator.
The dashboard itself is produced using a data NULL step to create a custom HTML table layout that is
streamed back to the portal page. Figure 19 contains an example of how the layout of a dashboard on a
page is controlled. In this case two measure dials with names and values will be displayed.

put '<table>';
put "<tr><td align='center'>Revenue % TTD<p> &teamname.</td><td
align='center'>Predicted % Target<p> &teamname.</td></tr>";
put "<tr><td align='center'>";

%generate_TTD_dynamic_dial(value=&ttd_pct., alttext=Revenue % TTD &teamname.:
&ttd_pct_display.,
reportlink=Report%2Bomi%3A%2F%2FFoundation%2Freposname%3DFoundation%2FTransformation%3
Bid%3DA5CSLH82.AY000A38);

put '</td><td>';
%generate_TTD_dynamic_dial(value=&predict_pct., alttext=Predicted % Target &teamname.:
&predict_pct_display.,
reportlink=Report%2Bomi%3A%2F%2FFoundation%2Freposname%3DFoundation%2FTransformation%3
Bid%3DA5CSLH82.AY000A3R);

put '</td></tr>';
put "<tr><td align='center'>&ttd_pct_display.</td><td align='center'>
&predict_pct_display.</td></tr></table>";

Figure 18
Querying an OLAP cube through PROC SQL

Figure 19
Creating a dashboard layout

Business Intelligence User ApplicationsSAS Global Forum 2009

 14

The code above contains calls to the user written macro generate_TTD_dynamic_dial, that generates the appropriate
HTML to display a dashboard indicator on the screen. By passing the value to be displayed as well as other
information like the URL of a detailed report we are able to create an indicator with traffic lighting to highlight
performance as well as drill down to a SAS® Web Report Studio report to get more detailed information.

Up to this point all that has been done is preparing data for the indicators and deciding how they will be organized on
the page. Actually producing a visual representation of the indicator has not been covered yet. The BI Dashboard
framework uses a model/viewer approach, meaning that the preparation of the data is performed by one component
and rendering that into an indicator is done by another. While working with the BI Dashboard we found that we were
able to utilize the application that displays the indicators by calling a URL and passing the appropriate parameters.

The output of the generate_TTD_dynamic_dial macro is simply a HTML anchor tag (<a>) with an associated image.
The anchor links to the detailed report and the image is actually a URL which calls the BI Dashboard application that
produces the indicator as shown below in Figure 26. All of the indicators are the dynamic dial type which behaves
differently to all of the static versions of indicators. Static indicators use a fixed image so the arrow on the dial points
to the general range of values but not the exact number. Dynamic dials, on the other hand, point to the exact number
which made them a better choice for our purposes.

Figure 25 below contains part of the URL created by the macro to produce the indicator, split into two parts. The first
part is the link to the detail report as the HREF, which is stored in the macro variable &reportlink. It also contains the
start of the image definition which is the indicator graphic by calling the BIDashboard web application. The final
name/value pair in the first section is the actual value to be shown by the indicator. The second half of the example is
a partial definition of the indicator range. Each segment requires a lower and upper boundary as well as the color of
the section.

<a href= "http://BIServer/Portal/syndication.do?com.sas.portal.ItemId=&reportlink
target=_top> <img border="0" width="150" height="110" src=
"BIDashboard/pdv?_pdv_handler=kpi_visual_handler&_pdv_program=full_color_tach&&_pdv_wi
dth=150&_pdv_height=110&_pdv_display_scale=true&_pdv_ds1_scale_format=PERCENTN&_pdv_or
ientation=h&_pdv_enhanced=true&_pdv_ghost_inactive_intervals=false&_pdv_ds1_value=.91

&&_pdv_rs1_id=belowTarget&_pdv_rs1_data_color=CC0000&_pdv_rs1_lower_bound=0.701&_pdv_r
s1_upper_bound=0.901&_pdv_rs1_lower_bound_operator=LT&_pdv_rs1_upper_bound_operator=LE
.
.
.
&&_pdv_rs1_id=aboveTarget&_pdv_rs1_data_color=A5D753&_pdv_rs1_lower_bound=1.002&_pdv_r
s1_upper_bound=1.202&_pdv_rs1_lower_bound_operator=LT&_pdv_rs1_upper_bound_operator=LE
.
&_pdv_rs1_lower_bound_operator=LT&_pdv_rs1_upper_bound_operator=LE&"
alt="&alttext"/>

When run in a stored process, the result is what you see in Figure 21. Building dashboards in this way utilizes the
look and feel of the BI Dashboard while at the same time makes better use of OLAP cubes by making dashboard
creation more dynamic.

Figure 20
URL to create a dashboard indicator

Figure 21
Dashoboard indicator produced
by a stored process

Business Intelligence User ApplicationsSAS Global Forum 2009

 15

The finished product looks the same as the original. As an example, Figure 22 shows a site manager’s performance
page using two stored process dashboards.

When a user wants to investigate a particular measure in more detail, there are a series of detailed reports to help
them do so. Every dashboard indicator has a report attached to it, so to investigate a particular aspect of the business
to see why it is performing the way it is, a user can click on an indicator to view a report Alternatively they can select
one from a list that is built with a collection portlet.

2.3 DETAILED REPORTS

Web reports in the Credit Corp environment come in three different types. The majority are OLAP reports produced in
Web Report Studio that allow the user to navigate through the data to see different aspects in more detail or view
historical performance. There are also some WRS reports based on data sets and finally when our reporting
requirements cannot be met using the BI tools we build a report as a stored process and surface it using the Stored
Process Web Application.

Most reports are time sensitive in some way and Creditport is no different. Creating Web Report Studio OLAP reports
can be a little tricky when it comes to setting a time period. In a normal SAS program it is easy to determine today’s
date using functions but when building calculated members with MDX you only have access to a limited number of
Base SAS functions. It is possible to build relative date expressions but it is usually a complex task and is dependant
on how your Time hierarchy is defined. So instead the conventional method is to define a filter as part of the web
report using the Web Report Studio interface. The options for doing this are to select a category value from the time
dimension, or to create a relative time filter. Each method has its pros and cons.

Selecting a category value will show each value in the dimension starting at the highest level and allowing the user to
expand out to the next level, eventually selecting one or more time periods to filter the report by. The main problem
with this method is that the filter will not automatically change as time rolls on so someone will have to update this
filter regularly. The advantage is that it is simple for users to make changes to this filter when using Web Report
Viewer and they can select time periods that are not continuous. For example a user may want to compare last
month to the same month for last year. This would involve simply selecting both of those months and they would be
included in the report.

A relative time filter allows you to select the next N periods from the first date or a selected point in time in the cube;
or previous N periods from the last date or a selected point in time in the cube. The obvious advantage of this method
is that by using the start date or end date of the cube, the filter will always move with time so the user does not have

STP1

STP2

Figure 22
Completed dashboard created with a stored process

Business Intelligence User ApplicationsSAS Global Forum 2009

 16

to manually update it. In the normal case you might create a relative time filter to show the last month from the ending
period. However if your cube has any future data in it like forecasted revenue then the end period cannot be used as
it will be well into the future.

A third option which is used sometimes in Creditport is to include the filter date into a level of the cube and then use
that value to subset the data. The date is determined as part of a SAS program that builds the base table for the
cube, and because we have access to the full set of SAS functions it is easy to programmatically set the date. Figure
23 shows an example of what the values in the date columns should look like to be used to subset a cube. There are
two different date columns because the time filters differ depending on the report.

AccountID ReceiptingDate LastWorkingDate
999999 Time].[Time].[All Time].[2009].[January].[14JAN09 Time].[Time].[All Time].[2009].[January].[15JAN09

The way that it is used is to create a named set based on the date and then use that named set when creating
calculated measures. Figure 24 below shows a named set being defined and then used in a measure as part of the
PROC OLAP code. The expression to create the member Today uses the value stored in lastWorkingDay, turns it
into a string, and then creates a set from the result.

DEFINE

SET '[KPI].[Today]' AS
 'strtoset(SAS!substr(membertostr([LastWorkingDay].[All
LastWorkingDay].lastchild),39))',
 MEMBER '[KPI].[Measures].[Daily Chocolate Consumption Total]' AS
 'SUM([Today],[Measures].[ChocolateConsumption]), FORMAT_STRING="12."'
;.

A good example of how to present time in different ways is the Creditport KPI report. It shows activity for all account
managers across the business summarized up to the appropriate level looking at different time periods.

• Time relative to the last business day
• A single day view of the users choice
• A comparison of multiple time periods

The first page doesn’t show a time period on the page at all. The measures on this page are calculated members like
the example in Figure 24 using the named set to determine the date to display. In this case the date is calculated as
the last week day not including public holidays.

Figure 24
Creating a named set

Figure 23
Variables containing dates to be
used to subset a cube

Business Intelligence User ApplicationsSAS Global Forum 2009

 17

The second page shows one day at a time and allows you to choose a day from the group break list box. This allows
team leaders to look at a day in the past as well as look at work that occurred on the weekend, which is not shown in
the default view.

The purpose of the final page is to perform analysis of a particular measure over time. The user can select one or
more measures by adding them into the columns on the table view and then navigate through the report to the
desired time series. In this example you can see the improvement of the amount of cake consumed per CRM over
the five weeks from 30th March to 27th April.

Figure 25
Report showing data for the last
working day

Figure 26
Report with option to select a previous day

Business Intelligence User ApplicationsSAS Global Forum 2009

 18

One of the benefits of using an OLAP table in a WRS report is the ability to reach through to detail data. The term
‘reach through’ refers to being able to click on a summary number and see the records in the underlying base table
(or other nominated table) that make up that summary number. We take advantage of this feature by using a WRS
report to identify some sort of behavior across the portfolio, and then the user can extract the detail table via reach
through and use that information to produce a task list or run a campaign. As long as the base table contains the right
variables to match rows to the OLAP cell selected, other pieces of information can be added to the table as well. For
example we could add basic contact information for an account and possibly a payment history to enhance what is
already in the cube. It is a basic form of self service without the users having to have in-depth knowledge of table
structures or be highly trained in using WRS. The screen shot in Figure 28 shows detail records that contribute to
summary numbers in an OLAP report. From here the user can view the data as is or export it into Microsoft Excel
format. Values shown here have been changed for privacy reasons.

Figure 27
Report with historical comparision

Figure 28
Reach through to detail

Business Intelligence User ApplicationsSAS Global Forum 2009

 19

CONCLUSION

Over a 6 month period the first implementation phase of the Credit Corp SAS® Enterprise BI Server laid the ground
work for the reporting environment needed. Now new reports are continually added as new requirements arise. This
has lead to a big push in productivity reporting as well as gaining a better understanding of the make-up of the Credit
Corp portfolio. Creditport has been and continues to be an effective tool for all levels of management, enabling
managers to focus their attention on the areas of the business that relate directly to them.

Through using dashboards and KPI reporting, Credit Corp is able to focus on setting goals to improve those activities
that drive revenue growth. Creditport is also used to coach Customer Relationship Managers, to focus on areas
requiring improvement and to reward improvements in performance.

Within the first three months of Creditport KPI Reporting, the following productivity improvements have occurred:

• Talk Time per Customer Relationship Manager increased by 12%
• Debtor locate rate has increased by 30%
• Daily Revenue per Customer Relationship Manager increased by 17%

The productivity increases that were seen in the first three months were very significant to the business. The ongoing
use of Creditport as a management tool means that these levels of activity have been maintained for the last 12
months.

As mentioned previously the fast changing landscape of the credit industry means that Credit Corp has had to
become more focused on driving higher returns from an aging debt portfolio rather than collections from regular
periodic purchases. Recent reporting additions in the last 6 months allow management to not only monitor CRM
activity but focus that activity on particular subsets of our portfolio and monitor the revenue impact. This means we
can now pinpoint where we want to put our time and effort, working smarter not harder.

As with everything in the SAS world there is always more than one way to approach a solution and I hope the Credit
Corp experience has given you some ideas for your own implementation.

REFERENCES

SAS OLAP Server: MDX Guide in the SAS OnlineDoc® documentation
http://support.sas.com/onlinedoc/913/docMainpage.jsp

SAS® BI Dashboard 3.1 User’s Guide Second Edition
http://support.sas.com/documentation/onlinedoc/91pdf/sasdoc_913/bidash_ug_10285.pdf

SAS® 9.1.3 Intelligence Platform Security Administration Guide Second Edition
http://support.sas.com/documentation/configuration/bisecag.pdf

CONTACT INFORMATION

Your comments and questions are valued and encouraged. Contact the author at:

Name: Gerard Quinn
Enterprise: Credit Corp Group
Address: 11/10 Barrack St
City, State ZIP: Sydney, NSW 2000
Country: Australia
Work Phone: +61 2 9347 3664
E-mail: gquinn@creditcorp.com.au

SAS and all other SAS Institute Inc. product or service names are registered trademarks or trademarks of SAS
Institute Inc. in the USA and other countries. ® indicates USA registration.

Other brand and product names are trademarks of their respective companies.

Business Intelligence User ApplicationsSAS Global Forum 2009

	2009 Table of Contents

