
 - 1 -

Paper 001-2009

Achieving High Availability in a SAS® Grid Environment
Daniel Wong, Platform Computing Inc., Markham, Canada

ABSTRACT
With increasingly complex analytics, growing data volumes and tightening batch windows, businesses are
facing an ever greater need for guaranteed uptime and continuity of services commonly referred to as high
availability. At the heart of such a system is resilient infrastructure that provides the architecture for
successfully running SAS applications without fail - scheduling and managing the execution of a wide variety
of daily computing tasks across shared and networked hardware. For SAS applications, this infrastructure is
based on SAS Grid Manager – grid middleware deployed specifically for SAS applications and providing
critical services such that all SAS computing tasks running in the grid can be completed optimally.

SAS Grid Manager now includes high availability capabilities for all of the services that are critical to your
SAS environment. This has three immediate benefits to customers who require a high availability SAS
environment:

 - eliminates operating system dependencies

 - eliminates the requirement of a hot-standby for failover

 - eliminates the expense of purchasing a third-party tool to provide high availability.

The high availability capability discussed in this paper is part of the Platform Suite for SAS Version 4.1. This
is shipped as part of SAS Grid Manager 9.2 and is available for download through SAS Technical Support
for use with SAS 9.1.3. This paper focuses on a SAS Grid deployment, however the concepts also apply to
an environment using the Platform Suite for SAS Version 4.1 to perform enterprise scheduling on a single
server.

This paper discusses the necessary steps to implement high availability for critical services in a SAS Grid
environment using the SAS Metadata Server as an example. Details are also given on the built-in failover
capabilities of the Platform Suite for SAS itself. Finally, the last discussion will focus on current research
efforts in leveraging SAS 9.2 checkpoint support to further improve availability in a SAS Grid environment.

INTRODUCTION
Before delving into the details of configuring a highly available environment for SAS servers, let’s clarify
some terminology of what components are required. The terms cluster, grid and high availability often mean
different things to different people and require further discussion to clarify. Wikipedia defines cluster as “a
small group or bunch of something”. More specifically, with respect to computing, Wikipedia defines cluster
as “a group of loosely coupled computers that work together closely”. But even this definition is not specific
enough; we must define the purpose of the computers working together closely. The two purposes that are
relevant to this paper are to provide computing resources and to provide high availability.

A compute cluster or grid is a collection of compute, storage, network and data resources that can be shared
by multiple users to run multiple applications. One of the promises of a grid architecture is increased
availability of the underlying compute resources due to inherent system redundancy provided by multiple
nodes in the grid. Also, because the applications running on the grid are not bound to specific components
in the grid, hardware can be removed or introduced to the grid without disruption to the business users
running the applications. SAS Grid Manager integrates SAS technology with components from Platform
Computing to provide load balancing, policy enforcement, efficient resource allocation and prioritization for
SAS products and solutions running in a shared grid environment. In addition, it de-couples the SAS
applications and the infrastructure used to execute the applications, which allow hardware resources to
transparently grow or contract as needed and provides tolerance of hardware failures within the grid
infrastructure. SAS Grid Manager includes the Platform Suite for SAS, which allows you to create a

Applications DevelopmentSAS Global Forum 2009

 - 2 -

managed, flexible and shared environment to efficiently process multiple users, parallel workloads and
enterprise scheduling.

But what happens if a machine in the grid goes down and that machine is running a SAS server or process
that is critical to the continued operation of the overall environment? High availability ensures that all of the
SAS applications and services are available nearly all of the time. A typical SAS deployment on a grid will
include components such as the SAS Metadata Server, object spawner, SAS Workspace Server and SAS
Stored Process Server. Failure of any one of these components can have a cascading affect on the clients
and other applications running in the environment. The SAS Metadata Server is a central component to any
SAS deployment. It contains information that is used by all of the other SAS products and components
running in the environment. For example, it contains user information that is used to provide authentication
and authorization as well as definitions of all of the SAS servers that have been configured for use.
Because the SAS Metadata Server is such a critical component of the SAS environment, the examples in
this paper will focus on providing high availability for this server. However, the concepts and processes can
be applied to all components in your environment that require maximum availability.

The following diagram illustrates the multiple tiers in a SAS Business Analytics grid deployment.

WHAT IS HIGH AVAILABILITY?
High availability is a system design protocol and associated implementation that ensures a certain absolute
degree of operational continuity during a given measurement period. Availability refers to the ability of the
user community to access the system, whether to submit new work, update or alter existing work, or collect
the results of previous work. If a user cannot access the system, it is said to be unavailable1.

Common examples of unplanned downtime as a result of hardware or software failures include the following:

• Power outages

• Failed CPU, RAM, Disks NICs, …

• Over-temperature related shutdown

• Security breaches

1 Wikipedia – High Availability

Figure 1. Sample SAS Business Analytics Architecture

Applications DevelopmentSAS Global Forum 2009

 - 3 -

• Application, middleware, and operating system failures

Many solutions have been implemented to deal with specific types of failure of specific components. These
solutions typically provide high availability through the following processes:

• Monitor – discover service (hardware or software) failures

• Recover – restart services when failures are detected

• Synchronize – ensure components in the environment are aware of the new configuration

• Reconnect – enable clients and applications to access the service again

Our discuss will follow a similar process for implementing high availability for critical system services in a
SAS Grid environment.

SAS GRID ENVIRONMENT
Grid computing is, simply, the linking together of multiple computing resources – including processors and
storage devices – to provide a much larger, more powerful single virtual computer. Grid computing offers a
variety of benefits, including:

• Making individual applications run much faster.

• Allowing multiple applications to share computing resources.

• Increasing the use of all available computing resources.

• Removing knowledge of IT infrastructure from applications.

• Providing flexibility to add more resources to the grid as needed.

Because SAS is so analytically powerful, many SAS applications tend to be very data intensive, compute
intensive or both. The performance of these SAS applications often can be improved dramatically by running
in a grid environment. In addition, no business runs on a single application. A SAS grid environment
provides a way to efficiently manage multiple SAS applications being run by multiple users and possibly
many business units within an organization.

Figure 2. SAS Grid Topology

Applications DevelopmentSAS Global Forum 2009

 - 4 -

With the above topology, we highlight the key availability challenges as follows:

Components Key Functions High Availability Challenges

Metadata
Server

SAS Metadata Server

• Provides access to metadata used by all SAS
products and solutions

• Must appear to exist at a constant host name
which can be resolved to the IP address of
the new failover host

Grid Control
Server

SAS Workspace Server

• Executes SAS programs submitted from clients
such as SAS Enterprise Guide and SAS Data
Integration Studio

Platform LSF

• Receive job requests from Grid clients and
dispatches them to best available grid node

Platform Process Manager

• Schedule job flows with LSF

Platform Grid Management Service

• Provide status info

• Must recover from previous state after
failover

• Must restart SAS workspace server

• Must make Grid Nodes aware of new
configuration after failover

• Only one Grid Control Server exists per Grid

Grid Nodes • Receive requests from Grid Control Server and
execute SAS workload

• Re-run job on a different Grid Node

• Re-run job from previous checkpoint on the
same or a different Grid Node

Grid Clients • Client applications / GUI frontend for accessing
Grid services

• Knowing new service arrangement after
failover

• Re-establish connection with servers

Central File
Server

• A shared file repository across all Grid
machines

• Critical dependency, Grid will not function
without a central file server

• Numerous solutions exist for implementing
HA for a file server (this topic is beyond the
scope of this paper)

In addition, monitoring services must be in place to automatically discover failure of critical services and
trigger the corresponding recovery process.

The rest of our discussion will address the above challenges through the following sections:

• High availability for the SAS Metadata Server

• Eliminating the need for a hot stand-by during failover

• Failover of Platform Suite for SAS

• High availability for running SAS jobs with SAS checkpoint integration

Applications DevelopmentSAS Global Forum 2009

 - 5 -

HIGH AVAILABILITY FOR THE SAS METADATA SERVER
This section discusses how to configure the SAS Metadata Server to achieve high availability such that it
can be monitored and recovered automatically. The same approach can be applied to other critical SAS
services such as the SAS Object Spawner for example.

This section will outline the desirable failover behavior for the SAS Metadata Server, and provide step-by-
step configuration instructions for setting up high availability for the SAS Metadata Server. These steps
apply to all supported Windows, Unix and Linux platforms.

A DESIRABLE FAILOVER BEHAVIOR FOR SAS METADATA SERVER

1. The SAS Metadata Server is configured to be started by EGO on one of the hosts within the grid

2. SAS grid clients can lookup the host address where the SAS Metadata Server is. For example:

$nslookup
$server SASMeta.ego.sas.com
Server: 172.25.241.134 <-- corporate DNS server
Address: 172.25.241.134#53

Name: SASMeta.ego.sas.com
Address: 172.25.235.50

It is important that clients must be configured to use the hostname (SASMeta.ego.sas.com) instead
of the IP address for accessing the server since the IP address will change during failover.

3. SAS Metadata Server goes down unexpectedly as the host crashes.

4. EGO detects that the SAS Metadata Server is gone, and tries to restart it on the next available host
based on the control policy and resource requirements.

5. SAS Metadata Server is successfully restarted:

$nslookup
$server SASMeta.ego.sas.com
Server: 172.25.241.134
Address: 172.25.241.134#53

Name: SASMeta.ego.sas.com
Address: 172.25.235.55

Notice the hostname resolves into a new IP address.

6. The recovery is completed. Clients can still access the SAS service by connecting to
SASMeta.ego.sas.com2, even though the SAS service is restarted on a different host.

2 Client connection state information may not be preserved after failover, client connections will
eventually timeout and re-establish automatically with server again

Applications DevelopmentSAS Global Forum 2009

 - 6 -

WHAT IS PLATFORM EGO?
Platform Enterprise Grid Orchestrator (EGO) is part of the Platform Suite for SAS Version 4.1 and is
provided as part of SAS Grid Manager for 9.2. It can also be obtained through SAS Technical Support for
use with SAS 9.1.3. EGO is a collection of cluster orchestration software components that, among other
things, provide high availability to critical services. The following figure shows the overall architecture and
how these components fit within the SAS grid failover context:

 Services Role in a HA arrangement
EGO cluster kernel EGO cluster kernel process starts automatically on grid control server. It is

responsible for launching EGO service controller
EGO system services EGO system services include EGO service controller, EGO service director,

WEBGUI services, and etc.
EGO service controller EGO service controller always starts on the grid control node. It starts EGO

and consumer system services on remote grid nodes. It ensures that
services are running by detecting failures and restarting service instances
based on availability plans

EGO service director EGO service director redirects client requests to the new service instance
running on the failover node

Consumer system
services

 Consumer system services are third-party services that are registered to
and controlled by EGO

Figure 3. How Different Services Fit into the EGO Architecture

  

  

Platform EGO Cluster Kernel

  

  

  

  

  
 EGO System Services

Service
Controller

 …

  

  

  

  

  
 Consumer System Services

SAS Metadata
Server

Process
Manager

 …

Information Allocation Execution

WEBGUI

Service
Director

Batch
Manager

Applications DevelopmentSAS Global Forum 2009

 - 7 -

HOW TO CONFIGURE HIGH AVAILABILITY FOR THE SAS METADATA SERVER

This section presents the configuration instructions to setup failover for the SAS Metadata Server with
techniques discussed from the previous sections. Failover configuration for the SAS Metadata Server
requires the setup of two EGO components and modifications to the Corporate DNS:

1. Register the SAS Metadata Server to EGO

• Make sure EGO is correctly installed and configured. The Platform Suite for SAS Version
4.1 includes LSF7 and installs and enables EGO by default.

• Write a service definition file for the SAS application, and place it under

%LSF_ENVDIR%\ego\<clustername>\eservice\esc\conf\services (Windows)
$LSF_ENVDIR/ego/<clustername>/eservice/esc/conf/services (Unix)

This service definition file will be loaded by the EGO service controller when it starts. An
example is provided in Figure 5.

• Restart EGO to register and start the SAS Metadata Server.

2. Configure EGO service director

• Make sure EGO ServiceDirector is running by running the “egosh service list”
command (see Step 3 below)

• Configure the default service director plug-in file under

%LSF_ENVDIR%\ego\<clustername>\eservice\esd\conf\esddefault.xml
(Windows)
$LSF_ENVDIR/ego/<clustername>/eservice/esd/conf/esddefault.xml
(Unix)

to change the out-of-box service configuration to reflect your high availability needs. An
example is provided in Figure 6.

3. Configure your Corporate DNS server by adding an NS record for the EGO service director

STEP 1: INSTALL LSF

1. Install the Platform Suite for SAS 4.1 provided with SAS Grid Manager 9.2. Make sure hostA and
hostB are both server hosts. Make sure the shared configuration directory (e.g., \\hostF\LSFShare)
is fully accessible by the account that runs LSF services.

2. Make sure hostA and hostB belong to the master list by adding hostA and hostB to
EGO_MASTER_LIST in %EGO_CONFDIR%\ego.conf ($EGO_CONFDIR/ego.conf on Unix).

STEP 2: INSTALL THE SAS METADATA SERVER (NEED TO DECIDE SAS VERSION? 9.1 OR 9.2)
1. Before installing the SAS Metadata Server, proper domain IDs must have been created for

administering and running the SAS Metadata Server.

2. The SAS Metadata repository and configuration information must be on a disk that is shared
between fail-over cluster nodes. For example, the UNC path to the shared directory can be
\\hostF\SAS. The user account under which the SAS Metadata Server runs should have full control
over the shared directory.

3. Choose two hosts, for example hostA and hostB to be the primary host and failover host to run the
SAS Metadata Server. The two hosts must belong to the LSF/EGO cluster that was created in Step
1: Install LSF.

Applications DevelopmentSAS Global Forum 2009

 - 8 -

4. Steps to install the SAS Metadata Server for 9.2:

a. Start the SDW

b. Select “Install SAS Software”; Press Next

c. Select the order to install; Press Next

d. Select “Perform a Deployment” and make sure the “Configure SAS Software” is checked.
Also check “Install SAS Software” if SAS has not been installed. Press Next

e. Choose a standard plan option and scroll down to the plan for “Metadata Server, one
machine”. Press Next

f. Choose ‘Custom’ install type. Press Next

g. Set the configuration directory to the shared directory \\hostF\SAS. Make sure the
configuration level is the same on both metadata server machines. Press Next

h. Take the defaults for all configuration dialogs until you get to the Windows Options dialog.

i. Make sure the “Run from Management Scripts” option is selected for Server Operation
Type. Press Next

j. Complete the configuration, taking the defaults where provided and filling in fields where
needed.

k. Repeat on hostB.

5. Steps to install the SAS Metadata Server for 9.1.3:

a. Start SAS Software Navigator on hostA and select Advanced for deployment.

b. Click Select a standard plan from the Select a deployment plan page and use the drop-
down box to select SAS Metadata Server.

c. At the end of installation, the SAS Configuration Wizard is launched. Specify the
configuration directory location (For example: \\hostF\SAS).

d. Specify Run as scripts on the SAS Server Configuration Options panel.

e. On the Enter SAS Metadata Server Information page, enter the fully qualified physical
node name of hostA, in the field SAS Metadata Server Host Name.

f. Complete the Configuration Wizard and proceed with the instructions.html document
produced by the SAS Software Navigator. Notice, the batch programs that come with the
instructions will not work, as it does not recognize a UNC path. You must complete the
configuration manually according to the instructions.

g. Complete the installation and configuration of the SAS Metadata Server on hostB, using
standard installation methodology. When prompted for configuration directory location,
use the shared configuration directory (e.g. \\hostF\SAS). When prompted for the SAS
Metadata Server Host Name, use the fully qualified physical node name of hostB.

STEP 3: CONFIGURE THE EGO SERVICES
1. Create the service definition file for the SAS Metadata Server and modify the service definition file

for Service Director

To create the service definition file for SAS Metadata Server, copy and rename a template from
%LSF_ENVDIR%\ego\<clustername>\eservice\esc\conf\services\service.xml.TMPL to
%LSF_ENVDIR%\ego\<clustername>\eservice\esc\conf\services\sasmeta.xml An example is
provided in Figure 5.

To modify the service definition file for Service Director, edit
%LSF_ENVDIR%\ego\<clustername>\eservice\esc\conf\services\named.xml as
shown in the example provided in Figure 6.

Applications DevelopmentSAS Global Forum 2009

 - 9 -

In order for EGO to monitor a service, it must be registered with EGO by defining the service
definition file. EGO service controller then reads this file and request the EGO kernel to launch the
service on the host(s) that has been defined. It further ensures that the service will continue to run
by detecting failures and restarting service instances similar to the way that init on UNIX systems
and Service Control Manager on Windows system work. The key parameters that require editing
are listed in the following table.

Key parameters Description Example

Service Name Defines the name of the service, this
is a handle for EGO

SASMeta

Service Description Provides a service description for
the end user

SAS Metadata Server

StartType Start service automatically AUTOMATIC

HostFailoverInterval Threshold for EGO to trigger failover PT2M0S (two minutes)

EGOCommand Command line to start the service C:\Program Files\SAS\SAS
9.1\sas.exe" -config
"\\HostF\SAS\MetadataServer\Lev
1\SASMain\MetadataServer\sasv9_
MetadataServer.cfg
Note: Use the appropriate Unix
command to start the SAS
Metadata Server if you have a
Unix environment.

Note: For SAS 9.2 use the 9.2
command to start the SAS
Metadata Server. For example:
C:\Program
Files\SAS\SASFoundation\
9.2\sas.exe" -config
"\\HostF\SAS\MetadataServer\Lev
1\SASMain\MetadataServer\sasv9_
MetadataServer.cfg

ResourceRequirement Host candidates for service select('hostA' || 'hostB')

ExecutionUser User ID that runs the service LSF\sas
Note: Specify the appropriate
Unix account in a Unix
environment.

Figure 4. Key Parameters for the EGO Service Definition File

Applications DevelopmentSAS Global Forum 2009

 - 10 -

Figure 5. Sample Service Definition File for the SAS Metadata Server
%LSF_ENVDIR%\ego\<clustername>\eservice\esc\conf\services\sasmeta.xml

Note: On Unix, the location for sasmeta.xml is
$LSF_ENVDIR/ego/<clustername>/eservice/esc/conf/services/sasmeta.xml

• The Command to launch the SAS Metadata Server should be changed to the appropriate command for your

corresponding platforms
• The ExecutionUser should have sufficient privilege to run the service (for example root)

<?xml version="1.0" encoding="UTF-8"?>
<sc:ServiceDefinition xmlns:sc="http://www.platform.com/ego/2005/05/schema/sc"
xmlns:ego="http://www.platform.com/ego/2005/05/schema"
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xmlns:xsd="http://www.w3.org/2001/XMLSchema"
xsi:schemaLocation="http://www.platform.com/ego/2005/05/schema/sc ../sc.xsd
http://www.platform.com/ego/2005/05/schema ../ego.xsd" ServiceName="SASMeta">
 <sc:Version>1.2</sc:Version>
 <sc:Description>SAS Metadata Server</sc:Description>
 <sc:MinInstances>1</sc:MinInstances>
 <sc:MaxInstances>1</sc:MaxInstances>
 <sc:Priority>1</sc:Priority>
 <sc:MaxInstancesPerSlot>1</sc:MaxInstancesPerSlot>
 <sc:MaxInstancesPerHost>1</sc:MaxInstancesPerHost>
 <sc:NeedCredential>FALSE</sc:NeedCredential>
 <sc:ControlPolicy>
 <sc:StartType>AUTOMATIC</sc:StartType>
 <sc:MaxRestarts>10</sc:MaxRestarts>
 <sc:HostFailoverInterval>PT2M0S</sc:HostFailoverInterval>
 </sc:ControlPolicy>
 <sc:AllocationSpecification>
 <ego:ConsumerID>/ManagementServices/EGOManagementServices</ego:ConsumerID>
<!--The ResourceType specifies a "compute element" identified by the URI used below-->
 <sc:ResourceSpecification ResourceType="http://www.platform.com/ego/2005/05/schema/ce">
 <ego:ResourceGroupName>ManagementHosts</ego:ResourceGroupName>
 <ego:ResourceRequirement>select('hostA' || 'hostB')</ego:ResourceRequirement>
</sc:ResourceSpecification>
 </sc:AllocationSpecification>
 <sc:ActivityDescription>
 <ego:Attribute name="hostType" type="xsd:string">all</ego:Attribute>
 <ego:ActivitySpecification>
 <ego:Command>
"C:\Program Files\SAS\SAS 9.1\sas.exe" -config
"\\HostF\SAS\MetadataServer\Lev1\SASMain\MetadataServer\sasv9_MetadataServer.cfg"
 </ego:Command>
 <ego:ExecutionUser>LSF\sas</ego:ExecutionUser>
 <ego:Umask>0022</ego:Umask>
 </ego:ActivitySpecification>
 </sc:ActivityDescription>
</sc:ServiceDefinition>

Applications DevelopmentSAS Global Forum 2009

 - 11 -

Figure 6. Sample Service Definition File for the Service Director
%LSF_ENVDIR%\ego\<clustername>\eservice\esc\conf\services\named.xml

Note: On Unix, the location for named.xml is
$LSF_ENVDIR/ego/<clustername>/eservice/esc/conf/services/named.xml

The Service Director service definition file is generated automatically by EGO. You only need to modify the
following two places (apply to both Windows and Unix):
- Change the StartType from MANUAL to AUTOMATIC
- Modify the ResourceRequirement to select the appropriate primary and failover host (e.g., hostA and hostB)

<?xml version="1.0" encoding="UTF-8"?>
<sc:ServiceDefinition xmlns:sc="http://www.platform.com/ego/2005/05/schema/sc"
xmlns:ego="http://www.platform.com/ego/2005/05/schema"
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xmlns:xsd="http://www.w3.org/2001/XMLSchema"
xsi:schemaLocation="http://www.platform.com/ego/2005/05/schema/sc ../sc.xsd
http://www.platform.com/ego/2005/05/schema ../ego.xsd" ServiceName="ServiceDirector">
 <sc:Version>1.2</sc:Version>
 <sc:Description>EGO: Service Director</sc:Description>
 <sc:MinInstances>1</sc:MinInstances>
 <sc:MaxInstances>1</sc:MaxInstances>
 <sc:Priority>10</sc:Priority>
 <sc:MaxInstancesPerSlot>1</sc:MaxInstancesPerSlot>
 <sc:MaxInstancesPerHost>1</sc:MaxInstancesPerHost>
 <sc:NeedCredential>FALSE</sc:NeedCredential>
 <sc:ControlPolicy>
 <sc:StartType>AUTOMATIC</sc:StartType>
 <sc:MaxRestarts>1</sc:MaxRestarts>
 <sc:HostFailoverInterval>PT1M0S</sc:HostFailoverInterval>
 </sc:ControlPolicy>
 <sc:AllocationSpecification>
 <ego:ConsumerID>/ManagementServices/EGOManagementServices</ego:ConsumerID>
<!--The ResourceType specifies a "compute element" identified by the URI used below--
>
 <sc:ResourceSpecification
ResourceType="http://www.platform.com/ego/2005/05/schema/ce">
 <ego:ResourceGroupName>ManagementHosts</ego:ResourceGroupName>
 <ego:ResourceRequirement>select('hostA' || 'hostB')</ego:ResourceRequirement>
 </sc:ResourceSpecification>
 </sc:AllocationSpecification>
 <sc:ActivityDescription>
 <ego:Attribute name="hostType" type="xsd:string">all</ego:Attribute>
 <ego:ActivitySpecification>
 <ego:Command>
 ${EGO_TOP}\7.0\scripts\egosrvloader.bat ${EGO_TOP}\7.0\etc\named –f
 </ego:Command>
 <ego:ExecutionUser>LSF\sas</ego:ExecutionUser>
 <ego:EnvironmentVariable name="PATH">
 ${EGO_TOP}\7.0\bin;${EGO_TOP}\7.0\lib
 </ego:EnvironmentVariable>
 <ego:EnvironmentVariable name="ESD_CONF">
 ${EGO_TOP}\conf\ego\cluster1\eservice\esd\conf
 </ego:EnvironmentVariable>
 <ego:Umask>0022</ego:Umask>
 </ego:ActivitySpecification>
 </sc:ActivityDescription>
</sc:ServiceDefinition>

Applications DevelopmentSAS Global Forum 2009

 - 12 -

2. Configuring EGO and Corporate name services

Parameters Description

ESD_EGO_NAMESERVER The service director DNS server name. The cluster administrator must
add an NS resource record into CORP DNS database, indicating that
this server is used as the service director DNS server

ESD_EGO_DOMAIN EGO sub-domain name

ESD_CORP_DOMAIN Corporation domain name

ESD_EGO_KEY TSIG KEY used to update the service director DNS server (optional)

ESD_CORP_KEY TSIG KEY used to update Corporation DNS server (optional)

Figure 7. Key Parameters for EGO Service Director

Edit
%LSF_ENVDIR%\ego\<clustername>\eservice\esd\conf\esddefault.xml
($LSF_ENVDIR/ego/<clustername>/eservice/esd/conf/esddefault.xml on Unix):

Figure 8. Sample EGO Service Director Configuration File

Edit
%LSF_ENVDIR%\ego\<clustername>\eservice\esd\conf\named\conf\named.conf
($LSF_ENVDIR/ego/<clustername>/eservice/esd/conf/named/conf/named.conf on
Unix):

Figure 9. Sample EGO Name Service Configuration File

<?xml version="1.0" encoding="UTF-8"?>
<ESDDefaultPluginConfiguration>
 <!-- EGO DNS server name -->
 <ESD_EGO_NAMESERVER>egonameserver</ESD_EGO_NAMESERVER>
 <!-- EGO DNS domain name -->
 <ESD_EGO_DOMAIN> ego.sas.com</ESD_EGO_DOMAIN>
 <!-- Corporation DNS domain name -->
 <ESD_CORP_DOMAIN>sas.com.</ESD_CORP_DOMAIN>
 <!-- EGO DNS sub-domain TSIG key created by dnssec-keygen -->
 <ESD_EGO_KEY name="ego.platform.com.">EGOSD_DNS_TSIG_KEY</ESD_EGO_KEY>
 <!-- CORP DNS domain TSIG key created by dnssec-keygen -->
 <ESD_CORP_KEY name="platform.com.">CORP_DNS_TSIG_KEY</ESD_CORP_KEY>
</ESDDefaultPluginConfiguration>

… key ego.sas.com {
 algorithm HMAC-MD5.SIG-ALG.REG.INT;
 secret "EGOSD_DNS_TSIG_KEY";
 };

…
 zone " ego.sas.com." IN {
 type master;
 file "db.ego.sas.com";
 allow-update { key ego.sas.com; };
 };
…

Applications DevelopmentSAS Global Forum 2009

 - 13 -

Rename the file TMPL.db.EGODOMAIN.CORPDOMAIN under
%LSF_ENVDIR%\ego\<clustername>\eservice\esd\conf\named\namedb\
($LSF_ENVDIR/ego/<clustername>/eservice/esd/conf/named/namedb/ on Unix)
to db.ego.sas.com, edit db.ego.sas.com:

Figure 10. Sample Corporate DNS Configuration

3. Restart the cluster by running: egosh ego restart all

4. Check EGO service status by running: egosh service list

5. Once the SAS Metadata Server and EGO service director are running, you need to configure your
DNS server to point to the EGO service director name server so that the names of the active EGO
service instances can be resolved. Alternatively, you can configure your Corporate DNS by adding
an NS record such that all ego sub-domain DNS lookup will be forwarded to the EGO service
director. For example: ego NS egonameserver

Refer to Figure 7 – Figure 10 for a sample configuration of EGO service director.

Note: Refer to Appendix – EGO Service Director for more details on how EGO service director
interacts with your Corporate DNS.

6. It is important to disable the DNS cache on the client machine, so that when failover of the EGO
name server occurs, the client will query the new name server instead of using the stale copy of
name entries in the DNS cache. To disable DNS cache, go to the windows Services panel, stop
DNS Client service, and change the startup Type to Manual.

$ORIGIN .
$TTL 0 ; 0 seconds
ego.sas.com IN SOA egonameserver.sas.com. root.ego.sas.com. (
 84 ; serial
 10800 ; refresh (3 hours)
 900 ; retry (15 minutes)
 604800 ; expire (1week)
 0 ; minimum (0 seconds)
)
 NS egonameserver.sas.com.
 NS egonameserver.ego.sas.com.

Applications DevelopmentSAS Global Forum 2009

 - 14 -

7. Test to make sure that your hostname can be resolved:

8. When configuring other SAS software, make sure to always use SAS Metadata Server service
name (e.g. SASMeta.ego) rather than the physical host name when specifying the location of the
SAS Metadata Server.

STEP 4: FAILOVER TESTS
1. At this point, you have a functioning SAS Metadata Server that leverages EGO to provide failover. In

order to validate this, install SAS Management Console outside of the LSF/EGO cluster. Configure the
metadata profile to connect to the Metadata Server using SASMeta.ego, as shown in the following
diagrams:

Applications DevelopmentSAS Global Forum 2009

 - 15 -

2. To validate failover, shut down hostA. After a while, EGO master will failover to hostB, and the EGO
service director and SAS Metadata Server will then be started on hostB:

3. Restart SAS Management Console, and it should connect to the new SAS Metadata Server correctly.

ELIMINATING THE NEED FOR A HOT-STANDBY DURING FAILOVER

One advantage of EGO is that it does not require a hot-standby during failover of EGO services. This is
achieved by configuring one of the grid nodes as the failover host. When an EGO service such as the SAS
Metadata Server experiences failover to a new host, we can configure EGO to automatically reconfigure
LSF such that no jobs will be dispatched to this host from this point forward. Therefore, the failover host will
be used exclusively for running EGO services.

To implement this, we have to replace the EGO command (refer to figure 4 & 5) with a wrapper script like
the one below:

Figure 11. Sample Wrapper Script for Stopping a Failover Host from Accepting Jobs

Before running the normal EGO service, the above wrapper script will stop LSF from dispatching any more
jobs to the failover host by closing the host with the “badmin hclose” command.

It should be noted that jobs that had started before the failover will continue to run until they complete.

@ ECHO OFF

REM Close the local host
badmin hclose

REM Add the path to the EGO service command here
C:\Program Files\SAS\SAS 9.1\sas.exe" -config
"\\HostF\SAS\MetadataServer\Lev1\SASMain\MetadataServer\sasv9_MetadataServer.cfg"

Applications DevelopmentSAS Global Forum 2009

 - 16 -

FAILOVER OF PLATFORM SUITE FOR SAS

The Platform Suite for SAS also has inherent failover capabilities built-in to many of its components
specifically LSF and EGO.

FAULT-TOLERANT DESIGN IN LSF
SAS Grid topology requires a single control node to be present for orchestrating activities among the rest of
the grid nodes. Because of this important function, ability to recover from a control node failure is of critical
importance for achieving high availability.

One of the critical services running in the control node is the LSF Load Index Manager (LIM). LIM runs on
every host with one host running in the master mode, and the rest of the hosts running in slave mode. We
will use this as an example to illustrate how failure is detected and recovered.

FAILURE DETECTION AND MASTER SELECTION
Each host within a cluster has a unique host number (hostNo) according to the sequence in the master
candidate list, starting from 0. The hostNo of the master host should always be the smallest one among all
active hosts. Slave LIM only accepts master with smaller host number. When two slave hosts compete for
master, the one with smaller hostNo will always become the master.

The master and slave hosts communicate with each other periodically to ensure all parties are functioning.
More specifically, the master LIM sends master announcement (LIM_MASTER_ANN) to slave hosts
periodically, and the slave hosts return with its load and configuration information.

Each slave host maintains a master inactivity count, which will continue to increase unless it receives a
master announcement. If the inactivity count reaches certain threshold, the slave host will attempt to
promote itself as the master.

Figures 12 and 13 illustrate the interaction between the master and slaves, and the transition diagram of a
slave self-promoting to master.

Figure 12. The Interaction Between Master and Slave Daemons

 Master-slave interaction:

LIM_MASTER_ANN LIM_MASTER_ANN

Master host

Slave host Slave host

LIM_LOAD_UPD
LIM_CONF_INF
O

Applications DevelopmentSAS Global Forum 2009

 - 17 -

 Figure 13. The Slave to Master Transition

FAILOVER OF EGO

A frequently asked question is what will happen when EGO itself fails or the machine on which it is running
fails?

 Figure 14. Start Sequence of EGO Daemons

LIM is always the first daemon to start on a host. If it is a master LIM, it will start up EGO kernel (VEMKD),
which in turn starts up the EGO Service Controller (EGOSC).

During its running, master LIM keeps monitoring VEMKD. If VEMKD exits, master LIM will restart it to
support host-level fail over. In case VEMKD core dumps or exits abnormally, master LIM will gradually
extend VEMKD restart interval.

During its running, VEMKD keeps monitoring EGOSC. If EGOSC exits, VEMKD will automatically restart
EGOSC.

If master host goes down, one of slave LIMs on master candidate list will take over mastership. Once this
LIM becomes master, it will start up VEMKD and then EGOSC on its host.

Start sequences of EGO daemons:

LIM

VEMKD PEM

EGOSC

If Master

 Slave to master transition:

Master Unknown I am the new
master

Inactivity > threshold

LIM_MASTER_ANN
recvd, reset Inactivity
Counter

LIM_MASTER_ANN
recvd, give up mastership

LIM_MASTER_ANN
recvd

Probe last master for
RETRY_LIMIT intervals

Master Known

Applications DevelopmentSAS Global Forum 2009

 - 18 -

All EGO service instances information (e.g., instance location, instance status, and etc.) is persisted for
recovery purposes. All service instances running on hosts that are not reachable will be restarted during
failover.

HA FOR RUNNING SAS JOBS WITH SAS CHECKPOINTING INTEGRATION
If a grid node crashes while running a SAS job, LSF has the built-in capability to detect and restart all jobs3 that were
running on the crashed node on other suitable nodes. One drawback for this arrangement is that a job must be
rerun again from the beginning. For long running jobs, this may imply a significant lost of productivity.

To address this problem, we are currently testing functionality to integrate the SAS checkpoint/restart feature with
LSF such that jobs can be automatically restarted from the last checkpoint image rather than starting from the very
beginning. We expect to release this functionality in an early 9.2 maintenance release.

SAS 9.2 CHECKPOINT AND RESTART MODE
Checkpointing consists of storing a snapshot of the current application state, and use it for restarting in case of
failure. When checkpoint mode is enabled, SAS records information about DATA and PROC steps in a checkpoint
library. When a batch program terminates prematurely, we can resubmit the program in restart mode to complete
execution.

In restart mode, global statements and macros are re-executed and SAS reads the data in the checkpoint library to
determine which steps completed. Program execution resumes with the step that was executing when the failure
occurred.

JOB RERUN AND REQUEUE IN LSF
Automatic job rerun occurs when the execution host becomes unavailable while a job is running. When a job is rerun
or restarted, it is returned to the queue from which it was dispatched with the same options as the original job. The
priority of the job is set sufficiently high to ensure that the job gets dispatched before other jobs in the queue. The job
uses the same job ID number. It is executed when a suitable host is available.

A similar feature to job rerun is job requeue. Automatic job rerun occurs when a job finishes and has a specific exit
code. This exit code can be used by a SAS program to indicate whether it should be rerun from scratch or from the
last checkpoint.

By combining job rerun and requeue, we can automatically restart SAS jobs from last checkpoint on another suitable
host when the original execution host failed. We can also automatically restart a failed job from the last checkpoint
automatically on a suitable host should the exit code indicates that the job should be rerun.

CONCLUSION
We discussed challenges in providing high availability in a SAS Grid environment, and described in details some of
the built-in failover mechanism to overcome these challenges. In addition, we introduced the EGO technology and
provided step-by-step configuration examples to enable failover support for SAS Metadata Server. To recap, this
approach has the following unique advantages:

• Works under all SAS supported Windows, Unix and Linux platforms

• No hot-standby required – can leverage one of the grid node for failover, keeping all hardware fully utilized at
all time

• Included in SAS 9.2 version of Platform Suite for SAS

Finally, we discussed the possibility of integrating SAS checkpoint support with LSF as our future research focus.

3 Jobs must be set as rerunnable jobs, otherwise LSF will report a job failed status. Currently the only way to set a

SAS job as rerunnable is using the Advanced Properties tab in the Scheduling Manager plug-in.

Applications DevelopmentSAS Global Forum 2009

19

APPENDIX - EGO SERVICE DIRECTOR
The EGO service director is an EGO system service that functions as a locating mechanism for other system
services. The service director contains a stand-alone Domain Name Server (DNS), which is the authoritative name
server for the EGO DNS sub-domain and responds to DNS queries for system services.

The service director runs on the EGO master host and relies on the service controller to provide location information
and state change notifications of service instances. When a service instance enters the RUN state, the service
director adds its location information into the service director DNS server. When a service instance transfers from the
RUN state into other states, the service director deletes the location information from its DNS server.

A client who is looking to find a host with an EGO service started on it must directly query/point to the service director
DNS server as nameserver. The nameserver entries (e.g. /etc/resolv.conf in linux) gets updated each time to point to
the service director DNS server and to resolve the name and IP address. To avoid making operating system
configuration changes each time there is a query, one can configure service director to provide name-to-address
mapping to the corporation DNS server (corpdns). Doing this provides location independence for the hosts such that
a service can start on anywhere.

When the location of the service director DNS server is changed, the service director updates the corresponding
resource record in the DNS database of the corporation DNS server. When the locations of EGO system service
instances are changed, the service director updates the corresponding resource records in the service director DNS
server.

Figure 15. The Interaction Between Client Application, Corporate and EGO DNS Servers

Applications DevelopmentSAS Global Forum 2009

20

ACKNOWLEDGMENTS
The author of this paper would like to acknowledge the contributions and help he has received from the following
people:

 Cheryl Doninger of SAS Institute Inc.

 Gary Ciampa of SAS Institute Inc.

 Qingda Wang of Platform Computing Inc.

 Meng Ding of Platform Computing Inc.

CONTACT INFORMATION
Your comments and questions are valued and encouraged. Contact the author at:

Name: Daniel Wong
Enterprise: Platform Computing Inc.
Address: 3760 14th Avenue, Suite 600
City, State ZIP: Markham, ON L3R 3T7
Work Phone: (905) 948-4531
Fax: (905) 948-9975
E-mail: dwong@platform.com
Web: www.platform.com

SAS and all other SAS Institute Inc. product or service names are registered trademarks or trademarks of SAS
Institute Inc. in the USA and other countries. ® indicates USA registration.

Other brand and product names are trademarks of their respective companies.

Applications DevelopmentSAS Global Forum 2009

	2009 Table of Contents

