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ABSTRACT 
With increasingly complex analytics, growing data volumes and tightening batch windows, businesses are 
facing an ever greater need for guaranteed uptime and continuity of services commonly referred to as high 
availability.   At the heart of such a system is resilient infrastructure that provides the architecture for 
successfully running SAS applications without fail - scheduling and managing the execution of a wide variety 
of daily computing tasks across shared and networked hardware.  For SAS applications, this infrastructure is 
based on SAS Grid Manager – grid middleware deployed specifically for SAS applications and providing 
critical services such that all SAS computing tasks running in the grid can be completed optimally. 

 

SAS Grid Manager now includes high availability capabilities for all of the services that are critical to your 
SAS environment.  This has three immediate benefits to customers who require a high availability SAS 
environment: 

   - eliminates operating system dependencies 

   - eliminates the requirement of a hot-standby for failover 

   - eliminates the expense of purchasing a third-party tool to provide high availability. 

The high availability capability discussed in this paper is part of the Platform Suite for SAS Version 4.1. This 
is shipped as part of SAS Grid Manager 9.2 and is available for download through SAS Technical Support 
for use with SAS 9.1.3. This paper focuses on a SAS Grid deployment, however the concepts also apply to 
an environment using the Platform Suite for SAS Version 4.1 to perform enterprise scheduling on a single 
server. 

This paper discusses the necessary steps to implement high availability for critical services in a SAS Grid 
environment using the SAS Metadata Server as an example. Details are also given on the built-in failover 
capabilities of the Platform Suite for SAS itself. Finally, the last discussion will focus on current research 
efforts in leveraging SAS 9.2 checkpoint support to further improve availability in a SAS Grid environment. 

INTRODUCTION  
Before delving into the details of configuring a highly available environment for SAS servers, let’s clarify 
some terminology of what components are required.  The terms cluster, grid and high availability often mean 
different things to different people and require further discussion to clarify.  Wikipedia defines cluster as “a 
small group or bunch of something”.  More specifically, with respect to computing, Wikipedia defines cluster 
as “a group of loosely coupled computers that work together closely”.  But even this definition is not specific 
enough; we must define the purpose of the computers working together closely.  The two purposes that are 
relevant to this paper are to provide computing resources and to provide high availability. 

 

A compute cluster or grid is a collection of compute, storage, network and data resources that can be shared 
by multiple users to run multiple applications.  One of the promises of a grid architecture is increased 
availability of the underlying compute resources due to inherent system redundancy provided by multiple 
nodes in the grid. Also, because the applications running on the grid are not bound to specific components 
in the grid, hardware can be removed or introduced to the grid without disruption to the business users 
running the applications.  SAS Grid Manager integrates SAS technology with components from Platform 
Computing to provide load balancing, policy enforcement, efficient resource allocation and prioritization for 
SAS products and solutions running in a shared grid environment.  In addition, it de-couples the SAS 
applications and the infrastructure used to execute the applications, which allow hardware resources to 
transparently grow or contract as needed and provides tolerance of hardware failures within the grid 
infrastructure.  SAS Grid Manager includes the Platform Suite for SAS, which allows you to create a 
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managed, flexible and shared environment to efficiently process multiple users, parallel workloads and 
enterprise scheduling. 

But what happens if a machine in the grid goes down and that machine is running a SAS server or process 
that is critical to the continued operation of the overall environment?  High availability ensures that all of the 
SAS applications and services are available nearly all of the time.  A typical SAS deployment on a grid will 
include components such as the SAS Metadata Server, object spawner, SAS Workspace Server and SAS 
Stored Process Server.  Failure of any one of these components can have a cascading affect on the clients 
and other applications running in the environment.  The SAS Metadata Server is a central component to any 
SAS deployment.  It contains information that is used by all of the other SAS products and components 
running in the environment. For example, it contains user information that is used to provide authentication 
and authorization as well as definitions of all of the SAS servers that have been configured for use.  
Because the SAS Metadata Server is such a critical component of the SAS environment, the examples in 
this paper will focus on providing high availability for this server.   However, the concepts and processes can 
be applied to all components in your environment that require maximum availability. 

The following diagram illustrates the multiple tiers in a SAS Business Analytics grid deployment. 

 

WHAT IS HIGH AVAILABILITY? 
High availability is a system design protocol and associated implementation that ensures a certain absolute 
degree of operational continuity during a given measurement period.  Availability refers to the ability of the 
user community to access the system, whether to submit new work, update or alter existing work, or collect 
the results of previous work. If a user cannot access the system, it is said to be unavailable1.   

Common examples of unplanned downtime as a result of hardware or software failures include the following: 

• Power outages 

• Failed CPU, RAM, Disks NICs, … 

• Over-temperature related shutdown 

• Security breaches  

                                                             
1 Wikipedia – High Availability 

Figure 1.  Sample SAS Business Analytics Architecture 
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• Application, middleware, and operating system failures 

Many solutions have been implemented to deal with specific types of failure of specific components. These 
solutions typically provide high availability through the following processes:  

• Monitor – discover service (hardware or software) failures  

• Recover – restart services when failures are detected 

• Synchronize – ensure components in the environment are aware of the new configuration 

• Reconnect – enable clients and applications to access the service again  

Our discuss will follow a similar process for implementing high availability for critical system services in a 
SAS Grid environment.  

SAS GRID ENVIRONMENT 
Grid computing is, simply, the linking together of multiple computing resources – including processors and 
storage devices – to provide a much larger, more powerful single virtual computer. Grid computing offers a 
variety of benefits, including: 

• Making individual applications run much faster. 

• Allowing multiple applications to share computing resources. 

• Increasing the use of all available computing resources. 

• Removing knowledge of IT infrastructure from applications. 

• Providing flexibility to add more resources to the grid as needed. 

Because SAS is so analytically powerful, many SAS applications tend to be very data intensive, compute 
intensive or both. The performance of these SAS applications often can be improved dramatically by running 
in a grid environment. In addition, no business runs on a single application. A SAS grid environment 
provides a way to efficiently manage multiple SAS applications being run by multiple users and possibly 
many business units within an organization. 

  

Figure 2. SAS Grid Topology 
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With the above topology, we highlight the key availability challenges as follows: 

 

Components Key Functions High Availability Challenges 

Metadata 
Server 

SAS Metadata Server 

• Provides access to metadata used by all SAS 
products and solutions 

• Must appear to exist at a constant host name 
which can be resolved to the IP address of 
the new failover host 

Grid Control 
Server 

SAS Workspace Server 

• Executes SAS programs submitted from clients 
such as SAS Enterprise Guide and SAS Data 
Integration Studio 

Platform LSF 

• Receive job requests from Grid clients and 
dispatches them to best available grid node 

Platform Process Manager 

• Schedule job flows with LSF 

Platform Grid Management Service 

• Provide status info 

• Must recover from previous state after 
failover 

• Must restart SAS workspace server 

• Must make Grid Nodes aware of new 
configuration after failover 

• Only one Grid Control Server exists per Grid 

Grid Nodes • Receive requests from Grid Control Server and 
execute SAS workload 

 

• Re-run job on a different Grid Node 

• Re-run job from previous checkpoint on the 
same or a different Grid Node 

Grid Clients • Client applications / GUI frontend for accessing 
Grid services 

• Knowing new service arrangement after 
failover 

• Re-establish connection with servers 

Central File 
Server 

• A shared file repository across all Grid 
machines 

 

• Critical dependency, Grid will not function 
without a central file server 

• Numerous solutions exist for implementing 
HA for a file server  (this topic is beyond the 
scope of this paper) 

 

In addition, monitoring services must be in place to automatically discover failure of critical services and 
trigger the corresponding recovery process.  

 

The rest of our discussion will address the above challenges through the following sections:  

• High availability for the SAS Metadata Server 

• Eliminating the need for a hot stand-by during failover 

• Failover of Platform Suite for SAS 

• High availability for running SAS jobs with SAS checkpoint integration   
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HIGH AVAILABILITY FOR THE SAS METADATA SERVER 
This section discusses how to configure the SAS Metadata Server to achieve high availability such that it 
can be monitored and recovered automatically.  The same approach can be applied to other critical SAS 
services such as the SAS Object Spawner for example.    

This section will outline the desirable failover behavior for the SAS Metadata Server, and provide step-by-
step configuration instructions for setting up high availability for the SAS Metadata Server. These steps 
apply to all supported Windows, Unix and Linux platforms.  

 

A DESIRABLE FAILOVER BEHAVIOR FOR SAS METADATA SERVER 
 

1. The SAS Metadata Server is configured to be started by EGO on one of the hosts within the grid 

2. SAS grid clients can lookup the host address where the SAS Metadata Server is. For example: 
 
$nslookup 
$server SASMeta.ego.sas.com 
Server:         172.25.241.134     <-- corporate DNS server 
Address:      172.25.241.134#53 
 
Name:   SASMeta.ego.sas.com 
Address: 172.25.235.50 
 
It is important that clients must be configured to use the hostname (SASMeta.ego.sas.com) instead 
of the IP address for accessing the server since the IP address will change during failover.  

3. SAS Metadata Server goes down unexpectedly as the host crashes. 

4. EGO detects that the SAS Metadata Server is gone, and tries to restart it on the next available host 
based on the control policy and resource requirements. 

5. SAS Metadata Server is successfully restarted: 
 
$nslookup 
$server SASMeta.ego.sas.com 
Server:         172.25.241.134 
Address:      172.25.241.134#53 
 
Name:   SASMeta.ego.sas.com 
Address: 172.25.235.55            
 
Notice the hostname resolves into a new IP address.  

6. The recovery is completed. Clients can still access the SAS service by connecting to 
SASMeta.ego.sas.com2, even though the SAS service is restarted on a different host. 

                                                             
2 Client connection state information may not be preserved after failover, client connections will 
eventually timeout and re-establish automatically with server again  
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WHAT IS PLATFORM EGO?    
Platform Enterprise Grid Orchestrator (EGO) is part of the Platform Suite for SAS Version 4.1 and is 
provided as part of SAS Grid Manager for 9.2. It can also be obtained through SAS Technical Support for 
use with SAS 9.1.3.  EGO is a collection of cluster orchestration software components that, among other 
things, provide high availability to critical services. The following figure shows the overall architecture and 
how these components fit within the SAS grid failover context:  

 

 Services Role in a HA arrangement 
EGO cluster kernel  EGO cluster kernel process starts automatically on grid control server. It is 

responsible for launching EGO service controller 
EGO system services  EGO system services include EGO service controller, EGO service director, 

WEBGUI services, and etc. 
EGO service controller  EGO service controller always starts on the grid control node. It starts EGO 

and consumer system services on remote grid nodes. It ensures that 
services are running by detecting failures and restarting service instances 
based on availability plans 

EGO service director  EGO service director redirects client requests to the new service instance 
running on the failover node 

Consumer system 
services 

 Consumer system services are third-party services that are registered to 
and controlled by EGO 

 
Figure 3. How Different Services Fit into the EGO Architecture 
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HOW TO CONFIGURE HIGH AVAILABILITY FOR THE SAS METADATA SERVER  
 
This section presents the configuration instructions to setup failover for the SAS Metadata Server with 
techniques discussed from the previous sections. Failover configuration for the SAS Metadata Server 
requires the setup of two EGO components and modifications to the Corporate DNS:  

 

1. Register the SAS Metadata Server to EGO 

• Make sure EGO is correctly installed and configured. The Platform Suite for SAS Version 
4.1 includes LSF7 and installs and enables EGO by default. 

• Write a service definition file for the SAS application, and place it under 

%LSF_ENVDIR%\ego\<clustername>\eservice\esc\conf\services (Windows) 
$LSF_ENVDIR/ego/<clustername>/eservice/esc/conf/services (Unix) 
 
This service definition file will be loaded by the EGO service controller when it starts. An 
example is provided in Figure 5.  

• Restart EGO to register and start the SAS Metadata Server. 

 
2. Configure EGO service director 

• Make sure EGO ServiceDirector is running by running the “egosh service list” 
command (see Step 3 below)  

• Configure the default service director plug-in file under  

%LSF_ENVDIR%\ego\<clustername>\eservice\esd\conf\esddefault.xml 
(Windows) 
$LSF_ENVDIR/ego/<clustername>/eservice/esd/conf/esddefault.xml 
(Unix) 

to change the out-of-box service configuration to reflect your high availability needs. An 
example is provided in Figure 6. 

3. Configure your Corporate DNS server by adding an NS record for the EGO service director  

STEP 1: INSTALL LSF 
 

1. Install the Platform Suite for SAS 4.1 provided with SAS Grid Manager 9.2. Make sure hostA and 
hostB are both server hosts. Make sure the shared configuration directory (e.g., \\hostF\LSFShare) 
is fully accessible by the account that runs LSF services. 

2. Make sure hostA and hostB belong to the master list by adding hostA and hostB to 
EGO_MASTER_LIST in %EGO_CONFDIR%\ego.conf ($EGO_CONFDIR/ego.conf on Unix). 

STEP 2: INSTALL THE SAS METADATA SERVER  (NEED TO DECIDE SAS VERSION? 9.1 OR 9.2) 
1. Before installing the SAS Metadata Server, proper domain IDs must have been created for 

administering and running the SAS Metadata Server. 

2. The SAS Metadata repository and configuration information must be on a disk that is shared 
between fail-over cluster nodes. For example, the UNC path to the shared directory can be 
\\hostF\SAS. The user account under which the SAS Metadata Server runs should have full control 
over the shared directory.  

3. Choose two hosts, for example hostA and hostB to be the primary host and failover host to run the 
SAS Metadata Server. The two hosts must belong to the LSF/EGO cluster that was created in Step 
1: Install LSF.  
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4. Steps to install the SAS Metadata Server for 9.2: 

a. Start the SDW 

b. Select “Install SAS Software”; Press Next 

c. Select the order to install; Press Next 

d. Select “Perform a Deployment” and make sure the “Configure SAS Software” is checked. 
Also check “Install SAS Software” if SAS has not been installed. Press Next 

e. Choose a standard plan option and scroll down to the plan for “Metadata Server, one 
machine”. Press Next 

f. Choose ‘Custom’ install type. Press Next 

g. Set the configuration directory to the shared directory \\hostF\SAS. Make sure the 
configuration level is the same on both metadata server machines. Press Next 

h. Take the defaults for all configuration dialogs until you get to the Windows Options dialog. 

i. Make sure the “Run from Management Scripts” option is selected for Server Operation 
Type. Press Next 

j. Complete the configuration, taking the defaults where provided and filling in fields where 
needed. 

k. Repeat on hostB. 

 
5. Steps to install the SAS Metadata Server for 9.1.3: 

a. Start SAS Software Navigator on hostA and select Advanced for deployment. 

b. Click Select a standard plan from the Select a deployment plan page and use the drop-
down box to select SAS Metadata Server. 

c. At the end of installation, the SAS Configuration Wizard is launched. Specify the 
configuration directory location (For example: \\hostF\SAS). 

d. Specify Run as scripts on the SAS Server Configuration Options panel. 

e. On the Enter SAS Metadata Server Information page, enter the fully qualified physical 
node name of hostA, in the field SAS Metadata Server Host Name.  

f. Complete the Configuration Wizard and proceed with the instructions.html document 
produced by the SAS Software Navigator. Notice, the batch programs that come with the 
instructions will not work, as it does not recognize a UNC path.  You must complete the 
configuration manually according to the instructions. 

g. Complete the installation and configuration of the SAS Metadata Server on hostB, using 
standard installation methodology. When prompted for configuration directory location, 
use the shared configuration directory (e.g. \\hostF\SAS). When prompted for the SAS 
Metadata Server Host Name, use the fully qualified physical node name of hostB. 

STEP 3: CONFIGURE THE EGO SERVICES 
1. Create the service definition file for the SAS Metadata Server and modify the service definition file 

for Service Director 
 
To create the service definition file for SAS Metadata Server, copy and rename a template from 
%LSF_ENVDIR%\ego\<clustername>\eservice\esc\conf\services\service.xml.TMPL to 
%LSF_ENVDIR%\ego\<clustername>\eservice\esc\conf\services\sasmeta.xml An example is 
provided in Figure 5. 

To modify the service definition file for Service Director, edit 
%LSF_ENVDIR%\ego\<clustername>\eservice\esc\conf\services\named.xml as 
shown in the example provided in Figure 6. 
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In order for EGO to monitor a service, it must be registered with EGO by defining the service 
definition file. EGO service controller then reads this file and request the EGO kernel to launch the 
service on the host(s) that has been defined. It further ensures that the service will continue to run 
by detecting failures and restarting service instances similar to the way that init on UNIX systems 
and Service Control Manager on Windows system work. The key parameters that require editing 
are listed in the following table. 

 

Key parameters Description Example 

Service Name Defines the name of the service, this 
is a handle for EGO 

SASMeta 

Service Description Provides a service description for 
the end user 

SAS Metadata Server 

StartType Start service automatically  AUTOMATIC 

HostFailoverInterval Threshold for EGO to trigger failover  PT2M0S (two minutes) 

EGOCommand Command line to start the service  C:\Program Files\SAS\SAS 
9.1\sas.exe" -config 
"\\HostF\SAS\MetadataServer\Lev
1\SASMain\MetadataServer\sasv9_
MetadataServer.cfg 
Note: Use the appropriate Unix 
command to start the SAS 
Metadata Server if you have a 
Unix environment. 
 
Note: For SAS 9.2 use the 9.2 
command to start the SAS 
Metadata Server.  For example: 
C:\Program 
Files\SAS\SASFoundation\ 
9.2\sas.exe" -config 
"\\HostF\SAS\MetadataServer\Lev
1\SASMain\MetadataServer\sasv9_
MetadataServer.cfg 

ResourceRequirement Host candidates for service select('hostA' || 'hostB') 

ExecutionUser User ID that runs the service LSF\sas 
Note: Specify the appropriate 
Unix account in a Unix 
environment. 

 
Figure 4. Key Parameters for the EGO Service Definition File 
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Figure 5. Sample Service Definition File for the SAS Metadata Server 
%LSF_ENVDIR%\ego\<clustername>\eservice\esc\conf\services\sasmeta.xml 
 
Note: On Unix, the location for sasmeta.xml is 
$LSF_ENVDIR/ego/<clustername>/eservice/esc/conf/services/sasmeta.xml 
 
• The Command to launch the SAS Metadata Server should be changed to the appropriate command for your 

corresponding platforms 
• The ExecutionUser should have sufficient privilege to run the service (for example root) 

 
 
 

 
 
 
 
 
 
 
 
 
 
 
 

  

<?xml version="1.0" encoding="UTF-8"?> 
<sc:ServiceDefinition xmlns:sc="http://www.platform.com/ego/2005/05/schema/sc" 
xmlns:ego="http://www.platform.com/ego/2005/05/schema" 
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" 
xmlns:xsd="http://www.w3.org/2001/XMLSchema" 
xsi:schemaLocation="http://www.platform.com/ego/2005/05/schema/sc ../sc.xsd 
http://www.platform.com/ego/2005/05/schema ../ego.xsd" ServiceName="SASMeta"> 
  <sc:Version>1.2</sc:Version> 
  <sc:Description>SAS Metadata Server</sc:Description> 
  <sc:MinInstances>1</sc:MinInstances> 
  <sc:MaxInstances>1</sc:MaxInstances> 
  <sc:Priority>1</sc:Priority> 
  <sc:MaxInstancesPerSlot>1</sc:MaxInstancesPerSlot> 
  <sc:MaxInstancesPerHost>1</sc:MaxInstancesPerHost> 
  <sc:NeedCredential>FALSE</sc:NeedCredential> 
  <sc:ControlPolicy> 
    <sc:StartType>AUTOMATIC</sc:StartType> 
    <sc:MaxRestarts>10</sc:MaxRestarts> 
    <sc:HostFailoverInterval>PT2M0S</sc:HostFailoverInterval> 
  </sc:ControlPolicy> 
  <sc:AllocationSpecification> 
    <ego:ConsumerID>/ManagementServices/EGOManagementServices</ego:ConsumerID> 
<!--The ResourceType specifies a "compute element" identified by the URI used below--> 
    <sc:ResourceSpecification ResourceType="http://www.platform.com/ego/2005/05/schema/ce"> 
    <ego:ResourceGroupName>ManagementHosts</ego:ResourceGroupName> 
    <ego:ResourceRequirement>select('hostA' || 'hostB')</ego:ResourceRequirement>     
</sc:ResourceSpecification> 
  </sc:AllocationSpecification> 
  <sc:ActivityDescription> 
    <ego:Attribute name="hostType" type="xsd:string">all</ego:Attribute> 
    <ego:ActivitySpecification> 
    <ego:Command> 
"C:\Program Files\SAS\SAS 9.1\sas.exe" -config 
"\\HostF\SAS\MetadataServer\Lev1\SASMain\MetadataServer\sasv9_MetadataServer.cfg" 
       </ego:Command> 
      <ego:ExecutionUser>LSF\sas</ego:ExecutionUser> 
      <ego:Umask>0022</ego:Umask> 
    </ego:ActivitySpecification> 
  </sc:ActivityDescription> 
</sc:ServiceDefinition> 
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Figure 6. Sample Service Definition File for the Service Director   
%LSF_ENVDIR%\ego\<clustername>\eservice\esc\conf\services\named.xml  
 
Note:  On Unix, the location for named.xml is  
$LSF_ENVDIR/ego/<clustername>/eservice/esc/conf/services/named.xml 
 
The Service Director service definition file is generated automatically by EGO. You only need to modify the 
following two places (apply to both Windows and Unix):  
- Change the StartType from MANUAL to AUTOMATIC  
- Modify the ResourceRequirement to select the appropriate primary and failover host (e.g., hostA and hostB) 
 
 
 

<?xml version="1.0" encoding="UTF-8"?> 
<sc:ServiceDefinition xmlns:sc="http://www.platform.com/ego/2005/05/schema/sc" 
xmlns:ego="http://www.platform.com/ego/2005/05/schema" 
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" 
xmlns:xsd="http://www.w3.org/2001/XMLSchema" 
xsi:schemaLocation="http://www.platform.com/ego/2005/05/schema/sc ../sc.xsd 
http://www.platform.com/ego/2005/05/schema ../ego.xsd" ServiceName="ServiceDirector"> 
  <sc:Version>1.2</sc:Version> 
  <sc:Description>EGO: Service Director</sc:Description> 
  <sc:MinInstances>1</sc:MinInstances> 
  <sc:MaxInstances>1</sc:MaxInstances> 
  <sc:Priority>10</sc:Priority> 
  <sc:MaxInstancesPerSlot>1</sc:MaxInstancesPerSlot> 
  <sc:MaxInstancesPerHost>1</sc:MaxInstancesPerHost> 
  <sc:NeedCredential>FALSE</sc:NeedCredential> 
  <sc:ControlPolicy> 
    <sc:StartType>AUTOMATIC</sc:StartType> 
    <sc:MaxRestarts>1</sc:MaxRestarts> 
    <sc:HostFailoverInterval>PT1M0S</sc:HostFailoverInterval> 
  </sc:ControlPolicy> 
  <sc:AllocationSpecification> 
    <ego:ConsumerID>/ManagementServices/EGOManagementServices</ego:ConsumerID> 
<!--The ResourceType specifies a "compute element" identified by the URI used below--
> 
    <sc:ResourceSpecification 
ResourceType="http://www.platform.com/ego/2005/05/schema/ce"> 
      <ego:ResourceGroupName>ManagementHosts</ego:ResourceGroupName> 
      <ego:ResourceRequirement>select('hostA' || 'hostB')</ego:ResourceRequirement> 
    </sc:ResourceSpecification> 
  </sc:AllocationSpecification> 
  <sc:ActivityDescription> 
    <ego:Attribute name="hostType" type="xsd:string">all</ego:Attribute> 
    <ego:ActivitySpecification> 
      <ego:Command> 
        ${EGO_TOP}\7.0\scripts\egosrvloader.bat ${EGO_TOP}\7.0\etc\named –f  
      </ego:Command> 
      <ego:ExecutionUser>LSF\sas</ego:ExecutionUser> 
      <ego:EnvironmentVariable name="PATH">  
         ${EGO_TOP}\7.0\bin;${EGO_TOP}\7.0\lib 
      </ego:EnvironmentVariable> 
      <ego:EnvironmentVariable name="ESD_CONF">  
         ${EGO_TOP}\conf\ego\cluster1\eservice\esd\conf  
      </ego:EnvironmentVariable> 
      <ego:Umask>0022</ego:Umask> 
    </ego:ActivitySpecification> 
  </sc:ActivityDescription> 
</sc:ServiceDefinition> 
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2. Configuring EGO and Corporate name services  

 
Parameters Description 

ESD_EGO_NAMESERVER The service director DNS server name. The cluster administrator must 
add an NS resource record into CORP DNS database, indicating that 
this server is used as the service director DNS server 

ESD_EGO_DOMAIN EGO sub-domain name  

ESD_CORP_DOMAIN Corporation domain name 

ESD_EGO_KEY TSIG KEY used to update the service director DNS server (optional)  

ESD_CORP_KEY TSIG KEY used to update Corporation DNS server (optional)  

 
Figure 7. Key Parameters for EGO Service Director 
 
Edit  
%LSF_ENVDIR%\ego\<clustername>\eservice\esd\conf\esddefault.xml 
($LSF_ENVDIR/ego/<clustername>/eservice/esd/conf/esddefault.xml on Unix): 

 
 
 
 
 
 
 
 
 
 
 
 

 
Figure 8. Sample EGO Service Director Configuration File 
 
 
Edit 
%LSF_ENVDIR%\ego\<clustername>\eservice\esd\conf\named\conf\named.conf 
($LSF_ENVDIR/ego/<clustername>/eservice/esd/conf/named/conf/named.conf on 
Unix): 
 
 
 
 
 
 
 
 
 
 
 

 
 

Figure 9. Sample EGO Name Service Configuration File 

<?xml version="1.0" encoding="UTF-8"?> 
<ESDDefaultPluginConfiguration> 
  <!-- EGO DNS server name --> 
  <ESD_EGO_NAMESERVER>egonameserver</ESD_EGO_NAMESERVER> 
  <!-- EGO DNS domain name --> 
  <ESD_EGO_DOMAIN> ego.sas.com</ESD_EGO_DOMAIN> 
  <!-- Corporation DNS domain name --> 
  <ESD_CORP_DOMAIN>sas.com.</ESD_CORP_DOMAIN> 
  <!-- EGO DNS sub-domain TSIG key created by dnssec-keygen --> 
  <ESD_EGO_KEY name="ego.platform.com.">EGOSD_DNS_TSIG_KEY</ESD_EGO_KEY> 
  <!-- CORP DNS domain TSIG key created by dnssec-keygen --> 
  <ESD_CORP_KEY name="platform.com.">CORP_DNS_TSIG_KEY</ESD_CORP_KEY> 
</ESDDefaultPluginConfiguration> 
 

…   key ego.sas.com {  
                 algorithm HMAC-MD5.SIG-ALG.REG.INT;  
                 secret "EGOSD_DNS_TSIG_KEY"; 
    }; 
 
… 
    zone " ego.sas.com." IN { 
                  type master;  
                  file "db.ego.sas.com";  
                  allow-update { key ego.sas.com; }; 
    }; 
… 
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Rename the file TMPL.db.EGODOMAIN.CORPDOMAIN under 
%LSF_ENVDIR%\ego\<clustername>\eservice\esd\conf\named\namedb\ 
($LSF_ENVDIR/ego/<clustername>/eservice/esd/conf/named/namedb/ on Unix) 
to db.ego.sas.com, edit db.ego.sas.com: 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 10. Sample Corporate DNS Configuration 

 

3. Restart the cluster by running: egosh ego restart all 

4. Check EGO service status by running: egosh service list 

 

 

 

 

 

 

 

 

 

 

 

5. Once the SAS Metadata Server and EGO service director are running, you need to configure your 
DNS server to point to the EGO service director name server so that the names of the active EGO 
service instances can be resolved.  Alternatively, you can configure your Corporate DNS by adding 
an NS record such that all ego sub-domain DNS lookup will be forwarded to the EGO service 
director.  For example: ego NS egonameserver 

Refer to Figure 7 – Figure 10 for a sample configuration of EGO service director. 

Note: Refer to Appendix – EGO Service Director for more details on how EGO service director 
interacts with your Corporate DNS.  

6. It is important to disable the DNS cache on the client machine, so that when failover of the EGO 
name server occurs, the client will query the new name server instead of using the stale copy of 
name entries in the DNS cache. To disable DNS cache, go to the windows Services panel, stop 
DNS Client service, and change the startup Type to Manual.   

$ORIGIN . 
$TTL 0 ; 0 seconds  
ego.sas.com IN SOA egonameserver.sas.com. root.ego.sas.com. (  
                        84           ; serial 
                        10800     ; refresh (3 hours)  
                        900         ; retry (15 minutes)  
                        604800   ; expire (1week)  
                        0             ; minimum (0 seconds)  
                        ) 
              NS   egonameserver.sas.com.  
            NS   egonameserver.ego.sas.com. 
 

Applications DevelopmentSAS Global Forum 2009

 



 - 14 -  

 

7. Test to make sure that your hostname can be resolved:  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

8. When configuring other SAS software, make sure to always use SAS Metadata Server service 
name (e.g. SASMeta.ego) rather than the physical host name when specifying the location of the 
SAS Metadata Server.  

 

STEP 4: FAILOVER TESTS 
1. At this point, you have a functioning SAS Metadata Server that leverages EGO to provide failover. In 

order to validate this, install SAS Management Console outside of the LSF/EGO cluster. Configure the 
metadata profile to connect to the Metadata Server using SASMeta.ego, as shown in the following 
diagrams: 
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2. To validate failover, shut down hostA. After a while, EGO master will failover to hostB, and the EGO 
service director and SAS Metadata Server will then be started on hostB: 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

3. Restart SAS Management Console, and it should connect to the new SAS Metadata Server correctly. 

 

ELIMINATING THE NEED FOR A HOT-STANDBY DURING FAILOVER 
 
One advantage of EGO is that it does not require a hot-standby during failover of EGO services.  This is 
achieved by configuring one of the grid nodes as the failover host. When an EGO service such as the SAS 
Metadata Server experiences failover to a new host, we can configure EGO to automatically reconfigure 
LSF such that no jobs will be dispatched to this host from this point forward. Therefore, the failover host will 
be used exclusively for running EGO services.  

To implement this, we have to replace the EGO command (refer to figure 4 & 5) with a wrapper script like 
the one below: 

 
 
 
 
 
 
 
 

Figure 11. Sample Wrapper Script for Stopping a Failover Host from Accepting Jobs 
 

Before running the normal EGO service, the above wrapper script will stop LSF from dispatching any more 
jobs to the failover host by closing the host with the “badmin hclose” command.   

It should be noted that jobs that had started before the failover will continue to run until they complete. 

 

@ ECHO OFF 
 
REM Close the local host 
badmin hclose 
 
REM Add the path to the EGO service command here 
C:\Program Files\SAS\SAS 9.1\sas.exe" -config 
"\\HostF\SAS\MetadataServer\Lev1\SASMain\MetadataServer\sasv9_MetadataServer.cfg" 
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FAILOVER OF PLATFORM SUITE FOR SAS   
 
The Platform Suite for SAS also has inherent failover capabilities built-in to many of its components 
specifically LSF and EGO. 

 

FAULT-TOLERANT DESIGN IN LSF  
SAS Grid topology requires a single control node to be present for orchestrating activities among the rest of 
the grid nodes.  Because of this important function, ability to recover from a control node failure is of critical 
importance for achieving high availability. 

One of the critical services running in the control node is the LSF Load Index Manager (LIM).  LIM runs on 
every host with one host running in the master mode, and the rest of the hosts running in slave mode.  We 
will use this as an example to illustrate how failure is detected and recovered.    

 

FAILURE DETECTION AND MASTER SELECTION 
Each host within a cluster has a unique host number (hostNo) according to the sequence in the master 
candidate list, starting from 0. The hostNo of the master host should always be the smallest one among all 
active hosts.  Slave LIM only accepts master with smaller host number. When two slave hosts compete for 
master, the one with smaller hostNo will always become the master. 

The master and slave hosts communicate with each other periodically to ensure all parties are functioning. 
More specifically, the master LIM sends master announcement (LIM_MASTER_ANN) to slave hosts 
periodically, and the slave hosts return with its load and configuration information. 

Each slave host maintains a master inactivity count, which will continue to increase unless it receives a 
master announcement.  If the inactivity count reaches certain threshold, the slave host will attempt to 
promote itself as the master.  

Figures 12 and 13 illustrate the interaction between the master and slaves, and the transition diagram of a 
slave self-promoting to master. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 12. The Interaction Between Master and Slave Daemons 

 Master-slave interaction: 
 
 
 

LIM_MASTER_ANN LIM_MASTER_ANN 

Master host 

Slave host Slave host 

LIM_LOAD_UPD 
LIM_CONF_INF
O 
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       Figure 13. The Slave to Master Transition 
 

FAILOVER OF EGO 
 
A frequently asked question is what will happen when EGO itself fails or the machine on which it is running 
fails?   

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

  Figure 14. Start Sequence of EGO Daemons  
 
LIM is always the first daemon to start on a host. If it is a master LIM, it will start up EGO kernel (VEMKD), 
which in turn starts up the EGO Service Controller (EGOSC). 

During its running, master LIM keeps monitoring VEMKD. If VEMKD exits, master LIM will restart it to 
support host-level fail over. In case VEMKD core dumps or exits abnormally, master LIM will gradually 
extend VEMKD restart interval. 

During its running, VEMKD keeps monitoring EGOSC. If EGOSC exits, VEMKD will automatically restart 
EGOSC.  

If master host goes down, one of slave LIMs on master candidate list will take over mastership. Once this 
LIM becomes master, it will start up VEMKD and then EGOSC on its host. 

Start sequences of EGO daemons: 

LIM 

VEMKD PEM 

EGOSC 

If Master 

 Slave to master transition: 

Master Unknown I am the new 
master 

Inactivity > threshold 

LIM_MASTER_ANN 
recvd, reset Inactivity 
Counter 

LIM_MASTER_ANN 
recvd, give up mastership 

LIM_MASTER_ANN 
recvd 

Probe last master for 
RETRY_LIMIT intervals 

Master Known 
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All EGO service instances information (e.g., instance location, instance status, and etc.) is persisted for 
recovery purposes. All service instances running on hosts that are not reachable will be restarted during 
failover. 

HA FOR RUNNING SAS JOBS WITH SAS CHECKPOINTING INTEGRATION   
If a grid node crashes while running a SAS job, LSF has the built-in capability to detect and restart all jobs3 that were 
running on the crashed node on other suitable nodes.   One drawback for this arrangement is that a job must be 
rerun again from the beginning.  For long running jobs, this may imply a significant lost of productivity.  

To address this problem,  we are currently testing functionality to integrate the SAS checkpoint/restart feature with 
LSF such that jobs can be automatically restarted from the last checkpoint image rather than starting from the very 
beginning.  We expect to release this functionality in an early 9.2 maintenance release. 

SAS 9.2 CHECKPOINT AND RESTART MODE 
Checkpointing consists of storing a snapshot of the current application state, and use it for restarting in case of 
failure.  When checkpoint mode is enabled, SAS records information about DATA and PROC steps in a checkpoint 
library. When a batch program terminates prematurely, we can resubmit the program in restart mode to complete 
execution.  

In restart mode, global statements and macros are re-executed and SAS reads the data in the checkpoint library to 
determine which steps completed. Program execution resumes with the step that was executing when the failure 
occurred. 

JOB RERUN AND REQUEUE IN LSF 
Automatic job rerun occurs when the execution host becomes unavailable while a job is running. When a job is rerun 
or restarted, it is returned to the queue from which it was dispatched with the same options as the original job. The 
priority of the job is set sufficiently high to ensure that the job gets dispatched before other jobs in the queue. The job 
uses the same job ID number. It is executed when a suitable host is available.  

A similar feature to job rerun is job requeue.  Automatic job rerun occurs when a job finishes and has a specific exit 
code.   This exit code can be used by a SAS program to indicate whether it should be rerun from scratch or from the 
last checkpoint.     

By combining job rerun and requeue, we can automatically restart SAS jobs from last checkpoint on another suitable 
host when the original execution host failed.  We can also automatically restart a failed job from the last checkpoint 
automatically on a suitable host should the exit code indicates that the job should be rerun.  

CONCLUSION 
We discussed challenges in providing high availability in a SAS Grid environment, and described in details some of 
the built-in failover mechanism to overcome these challenges. In addition, we introduced the EGO technology and 
provided step-by-step configuration examples to enable failover support for SAS Metadata Server.  To recap, this 
approach has the following unique advantages: 

• Works under all SAS supported Windows, Unix and Linux platforms  

• No hot-standby required – can leverage one of the grid node for failover, keeping all hardware fully utilized at 
all time 

• Included in SAS 9.2 version of Platform Suite for SAS 

Finally, we discussed the possibility of integrating SAS checkpoint support with LSF as our future research focus.  

 

                                                             
3 Jobs must be set as rerunnable jobs, otherwise LSF will report a job failed status. Currently the only way to set a 

SAS job as rerunnable is using the Advanced Properties tab in the Scheduling Manager plug-in. 
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APPENDIX - EGO SERVICE DIRECTOR 
The EGO service director is an EGO system service that functions as a locating mechanism for other system 
services. The service director contains a stand-alone Domain Name Server (DNS), which is the authoritative name 
server for the EGO DNS sub-domain and responds to DNS queries for system services. 

The service director runs on the EGO master host and relies on the service controller to provide location information 
and state change notifications of service instances. When a service instance enters the RUN state, the service 
director adds its location information into the service director DNS server. When a service instance transfers from the 
RUN state into other states, the service director deletes the location information from its DNS server. 

A client who is looking to find a host with an EGO service started on it must directly query/point to the service director 
DNS server as nameserver. The nameserver entries (e.g. /etc/resolv.conf in linux) gets updated each time to point to 
the service director DNS server and to resolve the name and IP address. To avoid making operating system 
configuration changes each time there is a query, one can configure service director to provide name-to-address 
mapping to the corporation DNS server (corpdns). Doing this provides location independence for the hosts such that 
a service can start on anywhere. 

When the location of the service director DNS server is changed, the service director updates the corresponding 
resource record in the DNS database of the corporation DNS server. When the locations of EGO system service 
instances are changed, the service director updates the corresponding resource records in the service director DNS 
server. 

 

 
Figure 15. The Interaction Between Client Application, Corporate and EGO DNS Servers 
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