
1

Paper 008-2009

Using Formats, MP Connect®, and Other SAS® Efficiency

Techniques to save Time and Disk Space
John Charles Gober, Arumugam Sutha

U.S. Bureau of the Census, American Community Survey

ABSTRACT

Working with historic household Census data can be quite challenging. Semi-annual data sets can exceed
50 gigabytes and when working with multi-year data it is often necessary to extract information from yearly
clusters of data sets exceeding 300 gigabytes. These yearly clusters, until recently, have been processed
sequencally, each independent process relying on the completion of the previous process before continuing.
The sorting alone of some of these data sets can take over an hour of clock time. Processing six data set
representing three years of data can take six hours. By using format tables and eliminating sorts and
merges, reducing repeated passes through the data, and the use of MP connect for independent processes
processing time and temporary storage can be reduced by over 50 percent. This paper will explore several
techniques using format tables, combining data steps, and MP connect to achieve these results.

KEYWORDS

CNTLIN, CPUCOUNT, THREADS, Format, FMTSEARCH, MP connect, PROC DATA SETS, PROC
FORMAT, rsubmit, SASCMD, %bquote, %syslput.

INTRODUCTION

The American Community Survey (ACS) was fully implemented in 2005. When the 2005 data was released
only single year processing could be undertaken. With the introduction of 2007 data the Bureau is now is
now able to process not only single year statistics but also three year statistics. In 2010 five years of data
will be ready for analysis.

Sorting, merging, and analyzing large data sets can be quite challenging when CPU time and disk space are
at a premium. Insertions of a single variable from one data set into another can double or triple processing
time. Using user generated formats as an alternative to the commonplace technique of sort-sort-merge can
eliminate a significant amount of time. Eliminating multiple passes through large data sets can also reduce
processing time. It is also more economical to process data sets in parallel, not sequentially, when the
processes are independent of each other. This paper will present several simple but effective techniques
that can increase performance and save resources for the average power user.

SIMPLE FORMATS AND EFFICIENCIES

In order to save disk space an attempt has been made to normalize the ACS data into a relational structure.
This works well for most of the end users who only need to retrieve and process small segments of data, i.e.
Data at the county, zip code, or community level. However, at the state and national level, the re-integration
of data from multiple data sources can be extremely cumbersome. Especially when the user only uses
PROC SORTs and data step MERGEs.

The following is a code excerpt from one of our programs before any efficiency enhancements were made
(extraneous code has been removed to reduce clutter).

proc sort data=temp.m00

 (keep=fipst fcnty bst bcnty btrat 132,763,331 observations temp.m00

 block blks1 blks2) real time 38:22.80

 out=m00; cpu time 13:16.31

 by fipst fcnty bst bcnty btrat block

 blks1 blks2;

run;

(continued)

Applications DevelopmentSAS Global Forum 2009

2

data temp2;

 merge m00

 temp.g00

 (keep=fipst fcnty bst bcnty 132,763,331 observations m00

 btrat block blks1 blks2 9,504,014 observations temp.g00

 sbstr); real time 4:02.77

 by fipst fcnty bst bcnty btrat block cpu time 3:08.98

 blks1 blks2;

run;

proc sort data=temp2; 132,763,331 observations temp2

 by sbstr; real time 2:09.98

run; cpu time 3:15.88

data temp3(keep=sbstr count);

 retain count 0;

 set temp2; 132,763,331 observations temp2

 by sbstr; 5 observations temp3

 if first.sbstr then count = 0; real time 24.29 seconds

 count = count + 1; cpu time 23.74 seconds

 if last.sbstr then output;

run;

data wk.cnt00(keep=cnt1-cnt5);

 array cnt{5} (5*0); 5 observations wk.cnt00

 set temp3 end=last; real time 0.04 seconds

 cnt[input(sbstr,1.)] = count; cpu time 0.00 seconds

 if last;

run;

The M00 data set has over one hundred thirty two million records and takes over 10 gigabytes of disk space.
The G00 dataset has only nine million and is considerably smaller in size, fourteen times smaller than M00.
In addition note that there were four passes made through the M00 data set. Considering the record count
difference alone between these two datasets an intellectual flag for an alternative programming solution
should have been triggered. In addition, this process needed to be repeated three times in order to collect
data from three distinct and independent cycles of data. Total temporary disk space for the three cycles
exceeded one hundred twenty gigabytes. CPU usage typically exceeded typically one hour, real time three
hours. This was unacceptable when the final outcome was only a single record, five variable dataset per
cycle.

After a brief and independent analysis of the existing code it was discovered that by using format tables all
of the PROC SORTs could be eliminated. In addition the repeated reading and re-reading of the same
dataset only to produce summary counts could be combined into a single data step thus simplifying the code
and reducing clock time, cpu usage, and i/o costs. In addition eliminating multiple copies of the data would
save precious disk space. The code would also be cleaner and easier to manage,

The first efficiency item that was addressed was the sorting of the large TEMP.M00 data set which took over
thirteen minutes of cpu time and the consequent merging of the relatively small TEMP.G00 data set which
took an additional four minutes, all done to add a single variable to TEMP.M00. It would be good at this time
to point out that this process is a many to one match where the two datasets contain a disproportionate
number of observations, a good use for format tables. Below is the code that was used to create a simplified
version of the code.

Custom format tables are not hard to produce. There are numerous conference papers and SAS technical
example and tips on formats so this paper will not go into great detail. The primary skepticism of creating
formats is the idea that a table cannot be created when there are multiple classification variables or the
resulting label has multiple variables. This is easily resolved with concatenation as shown in the below code.

Applications DevelopmentSAS Global Forum 2009

3

libname myfmtlib "/work1";

/*format routine control dataset */

data currfmt(keep=fmtname start end

 label hlo type);

 length fmtname label $12. start end $22.;

 retain type "C";

 set temp.g00

 (keep=fipst fcnty bst bcnty btrat

 block blks1 blks2 sbstr) end=last;

 by fipst fcnty bst bcnty btrat block

 blks1 blks2 sbstr;

 fmtname = "$currmstrfmt"; 9,504,015 observations currfmt

 start = fipst||fcnty||{…}||blks2; real time 1:35.33

 end = start; label = sbstr; cpu time 21.64

 output;

 if last then do;

 start = ""; end = "";

 hlo = "O"; label = "X";

 output;

 end;

run;

proc format cntlin=currfmt library=myfmtlib; 9,504,015 observations currfmt

run; real time 1:08.18

 cpu time 1:03.00

Notice the use of a permanent format library. This was necessary since the format had to be available for
separate but simultaneous processing in an MP/connect environment.

In addition to using format tables a number of other efficiencies were made. In the original program the M00
and G00 were merged in one data step process to add the classification variable sbstr. The resulting data
set was then sorted in preparation for tallying that variable (sbstr contains only the character values “1”
through “5”). Another pass through the data was made to generate a data set containing one record for each
of the five classifications and their associated counts. Finally the data set was normalized in another data
step process to create a single record data set containing five separate variables, one for each of the
classifications. Using the format created above and creating a summary variable up front for each
classification of SBSTR the code was reduced.

data wk.cnt00(keep=cnt1 - cnt5);

 set temp.m00(keep= fipst fcnty bst bcnty btrat

 block blks1 blks2 valdf)

 end=last;

 sbstr=put(var1||{…}||var8, 132,763,331 observations temp.m00

 $currmstrfmt.); 1 observations wk.cnt00

 if sbstr="1" then cnt1+1; real time 26:06.73

 else if sbstr="2" then cnt2+1; cpu time 14:21.87

 else if sbstr="3" then cnt3+1;

 else if sbstr="4" then cnt4+1;

 else if sbstr="5" then cnt5+1;

 if last then output;

run;

Again, the resulting data set was placed in a permanent location because this portion of code was to be
used in an MP/connect environment and repeated three times for different data cycles.

It was hoped that by creating and using a format table created from TEMP.G00 thus elimination the PROC
SORT and reading the table directly into TEMP.M00 considerable cpu savings would be realized. However it
ended up that cpu savings were significant but minimal. Clock time and I/O were significantly reduced,
nineteen minutes versus sixteen minutes cpu, forty four minutes verses twenty eight minutes clock time, one
gigabyte I/O versus five hundred thirty two million I/O.

Applications DevelopmentSAS Global Forum 2009

4

NESTED FORMATS

Some programmers have concerns over generating a format table with over nine million entries. They feel
that once a table becomes too large there is not any efficiency gain over using a PROC SORT and a data
step merge routine. By comparing the original code with the enhanced code it was discovered cpu
processing time for the data step routine using the format table actually was increased by two percent. This
could partially be explained by the combining of code from other data steps into the data step using the
format, there was a noticeable decrease when comparing the entire processes, not just a single process.
Over all though the savings in space alone made the new code beneficial having saved over 100 gigabytes.

Knowing that further changing the code to use nested formats would probably not result in any more
efficiency it was decided to go ahead with the change as an education and training tool for future projects.

Nested formats are useful when several formats share the same associations. By removing these common
associations and creating a new format that is then reference by the original formats written code can be
reduced creating a smaller and cleaner program.

Creating a nested format is very similar to a simple format when they are created using the PROC FORMAT
routine. However when creating a control data set to be used as input to PROC FORMAT it was discovered
there are several nuances that have to be considered before the format will function properly.

/*nested format routine control dataset*/

data currfmt(keep=fmtname start end label hlo type);

 length fmtname label $12. start $22;

 retain starta " " type "C";

 set temp.g00(keep=fipst fcnty {…} blks2 sbstr) end=last;

 by fipst fcnty {…} blks2;

 fmtname = "$x"||fipst||fcnty||"x";

 start = fipst||fcnty||{…}||blks2;

 end = fipst||fcnty||{…}||blks2;

 label = sbstr;

 output;

 if last then do;

 start = ""; end = "";

 fmtname = "$x"||fipst||fcnty||"x";

 hlo = "O"; label = "X"; 9,504,014 observations temp.g00

 output; 9,507,234 observations currfmt

 end; real time 20.94 seconds

 if first.fcnty then do; cpu time 20.64 seconds

 fmtname = "$currmstrfmt"; hlo = "F";

 starta = fipst||fcnty||{…}||blks2;

 label = "$x"||fipst||fcnty||"x1.";

 end;

 if last.fcnty then do;

 fmtname = "$currmstrfmt"; hlo = "F";

 start = starta;

 end = fipst||fcnty||{…}||blks2;

 label = "$x"||fipst||fcnty||"x1.";

 output;

 end;

run;

proc sort data = currfmt; 9,507,234 observations currfmt

 by fmtname label; real time 1:39.87

 cpu time 1:38.36

proc format cntlin=currfmt lib=myfmtlib; real time 1:21.30

run; cpu time 1:07.06

In the above code the target (nested) formats and the referencing format were both created using one data
step. Hindsight now dictates that even though cpu costs would go up (negligible for application) it would
have been better to have used two separate data steps for better readability.

Applications DevelopmentSAS Global Forum 2009

5

When creating a label referencing a format using PROC FORMAT and internally assigning values and labels
the label assignment for formats are enclosed in brackets as in the following statements.

proc format;

 value $currmstrfmt

 “0100100000000000” - “0100101001021100” = “[$x01001x.]”

 …

 “7215100000000000“ - “0201302013000100” = “[$x72151x.]”

 other = “X”;

 value $x01001x

 “0100101001020100” = “1”

 …

 “0100101001021100” = “9”;

run;

In the improved code where a control dataset was used to populate the format contents the brackets are not
necessary. But tagging the label as containing a format reference was necessary. This was accomplished by
assigning the HLO variable to the value of “F” instead of “O”. The PROC SORT procedure was also
necessary. Because of the technique used to generate the values and labels the records for the nested
formats were intermixed with the calling format. This caused the calling format to be loaded again and again
after each loading of the nested formats. This in turn cause the controlling format to only contain records
associated with the last nested format.

MULTI PROCESSING

The change of SAS/Connect from a synchronous to an asynchronous client server environment in SAS 8
now allows programmers to submit tasks with independent parallelism to execute simultaneously instead of
consecutively. As mentioned earlier this application requires the input and processing of three extremely
large but independent cycles of data. Granted three separate programs could have been written and a fourth
to collect, combine, and process the resulting data but this would also require a program or code to
constantly monitor the independent processes for completion. This has all been built into MP/connect. The
below code was developed base on information primarily found on SAS technical support web pages, tech
tips, and conference paper. The code is very similar to the existing code. Only some pre and post
processing parameters needed to be set along with the creation of a few macro variables.

options sascmd="sas9 -memsize 56k -threads -cpucount 4";

options autosignon threads cpucount=5 source source2 mprint;

signon remote=task1; signon remote=task2; signon remote=task3;

%let locdir1=/cycle1; %let locdir2=/cycle2; %let locdir3=/cycle3;

%syslput remdir1=%bquote(&locdir1) /remote=task1;

%syslput remdir2=%bquote(&locdir2) /remote=task2;

%syslput remdir3=%bquote(&locdir3) /remote=task3;

rsubmit process=task1 wait=no;

 options fmtsearch=(myfmtlib work);

 libname myfmtlib "/temp1/sastmp";

 libname temp "&remdir1";

 libname wk "/temp1/sastmp";

 data wk.cnt00(keep=cnt1-cnt5);

 set temp.m00(keep=fipst fcnty bst bcnty btrat block blks1 blks2)

 end=last;

 sbstr = put(fipst||fcnty||{…}||blks2,$currmstrfmt.);

 if sbstr = "1" then cnt1 + 1;

 else if sbstr="2" then cnt2 + 1; 136,123,017 observations temp.m00

 else if sbstr="3" then cnt3 + 1; 1 observations wk.cnt00

 else if sbstr="4" then cnt4 + 1; real time 36:13.91

 else if sbstr="5" then cnt5 + 1; cpu time 16:31.78

 if last then output;

 run;

endrsubmit;

Applications DevelopmentSAS Global Forum 2009

6

rsubmit process=task2 wait=no; 132,763,331 observations

 {repeat code for second cycle} real time 29:19.18

endrsubmit; cpu time 15:34.41

rsubmit process=task3 wait=no; 135,049,806 observations

 {repeat code for third cycle} real time 36:53.10

endrsubmit; cpu time 17:01.98

waitfor _all_ task1 task2 task3;

signoff remote=task1; signoff remote=task2; signoff remote=task3;

Notice the use of permanent data sets allowing access of the remote processed data by the parent process.
These data sets can always be deleted using PROC DATASETS at the end of the parent process. The
option AUTOSIGNON eliminates the need for a userid and password. The option SASCMD contains the
name of the SAS call and any options needed for the remote sessions. %SYSLPUT was used to pass and
create macro variables to each remote session. The use of %BQUOTE was necessary because the
argument to %SYSLPUT contained special characters. Finally WAITFOR was used to suspend processing
of the parent program until all remote tasks were completed. Total cpu time for all remote processes was
forty seven minutes (one hour forty minutes clock time). The maximum cpu time used by any one remote
process was seventeen minutes. Unfortunately cpu time cannot be reduced, just extended across
processors. However because clock time was shared it was reduced to thirty six minutes., a reduction of
over sixty percent.

CONCLUSION

SAS has always been criticized as being a resource hog. In most cases this is not the fault of the software
but of the programmer. Programmers tend to seek out the simplest and fastest coding methods causing
excessive use of cpu and disk space. With a little effort, determination, and due diligence it is possible to
increase efficiency by a factor of five. In this application, by eliminating and combining processes and using
efficient coding techniques, this application now runs in under an hour instead of two and a half hours. Just
as important temporary disk space has gone from over one hundred gigabytes to practically nothing.

AKNOWLEGMENTS

Kimberly Dee Wortman, Census Bureau, Technical Support Group, SAS Branch.

AUTHOR CONTACT

John Charles Gober Arumugam Sutha
Bureau of the Census Bureau of the Census
4710 Silver Hill Road 4710 Silver Hill Road
HQ 3H460E HQ 3H465
Suiltland, Maryland 20746-1912 Suiltland, Maryland 20746-1912
301-763-5964 301-763-5400

REFERENCES

SAS Institute Inc. 2008.SAS® 9.2 Companion for UNIX Environments. Cary, NC: SAS Institute Inc.

SAS Institute Inc. 2008.Base SAS® 9.2 Procedures Guide. Cary, NC: SAS Institute Inc.
SAS Institute Inc., 2008.Communications Access Methods for SAS/CONNECT® 9.2 and SAS/SHARE® 9.2. Cary,

NC: SAS Institute Inc.

Multiprocessing with Version 8 of the SAS System, Cheryl Doninger, SAS Institute Inc.,

http://support.sas.com/techsup/technote/ts632.pdf, April 18,2000.
Building and Using User Defined Formats, Art Carpeneter, SUGI29 Proceedings, Paper 236-29,
http://www2.sas.com/proceedings/sugi29/236-29.pdf, May2004.

TRADEMARK INFORMATION

SAS and all other SAS Institute Inc. product or service names are registered trademarks or trademarks of
SAS Institute Inc. in the United States of America and other countries. ® Indicates USA registration. Other
brand or product names are registered trademarks or trademarks of their respective companies.

Applications DevelopmentSAS Global Forum 2009

	2009 Table of Contents

