SAS Global Forum 2009 SAS Presents

Paper 333-2009

Troubleshoot Your Performance Issues:
SAS® Technical Support Shows You How
Michael Williams, Gretel Easter, and Steve Bradsher, SAS Institute Inc., Cary, NC

ABSTRACT

When customers contact SAS Technical Support for help in improving the performance of processes running in the
UNIX environment, the answer is frequently as simple as determining which SAS system options need to be
modified. This paper demonstrates that if you learn how to analyze a SAS log, and if you know what portable and
host SAS options are available to you and how to set them for maximum effectiveness, you can improve the
performance of many of your SAS processes without resorting to making changes at the operating system level.

USING THE FULLSTIMER SAS® SYSTEM OPTION TO IDENTIFY PERFORMANCE
CONSTRAINTS

When you are diagnosing performance issues, the single most useful tool that you have at your disposal is the
FULLSTIMER system option, which writes additional statistics to your SAS log file. You can set this option either
during invocation of a SAS session or in an OPTIONS statement within your SAS code. The wealth of information
you %ain by using this system option is invaluable. Consider, for example, the following note that appears in your
SAS™ 9.2 log if you have the default system option, STIMER, in effect in a UNIX environment:

NOTE: PROCEDURE SORT used (Total process time):
real time 3:41.74
user cpu time 1:11.11

Contrast that note with this example of information that appears in the log if you use the FULLSTIMER option:

NOTE: PROCEDURE SORT used (Total process time):

real time 3:41.74

user cpu time 1:11.11

system time 1:47.47

Memory 2110365k
0S Memory 2114432k
Page Faults 395

Page Reclaims 0

Page Swaps 0
Voluntary Context Switches 405317
Involuntary Context Switches 21080
Block Input Operations 83625
Block Output Operations 44513

Both STIMER and the FULLSTIMER options include information about how much time the SORT procedure
requires. In the log, the value for the Real Time statistic is the total elapsed real time, also called the “wall clock
time.” The value for the User CPU Time statistic is the total elapsed CPU time, or the actual amount of time the CPU
spends processing the SAS code associated with the SORT procedure step.

The FULLSTIMER option also generates the System CPU Time statistic, which specifies the time that the CPU
spends performing system overhead tasks on behalf of the SAS process (for example, retrieving data from RAM).
This one new statistic is useful because, as a general rule, the User CPU Time value added to the System CPU
Time value should be fairly close to the Real Time value. If the Real Time value is much higher, as it is in this
example, then you have a problem that needs to be corrected. If, on the other hand, the User CPU Time value plus
the System CPU Time value are in line with the real time value, then you know that the process is running as
efficiently as it can on the server on which you are running, and only a faster server can make the step or process
run faster. This topic is discussed further in the first case study, later in this paper.

The next statistic listed in the FULLSTIMER output is Memory, which specifies the amount of memory that is required
by PROC SORT. It is important to note that in SAS® 9.1.3, this statistic does not include memory usage for the
threaded kernel. PROC SORT is a threaded procedure and a case study later in this paper shows some logs in
which the memory usage remains unchanged. OS Memory is a new statistic in SAS 9.2. This statistic represents the
amount of memory SAS allocates from the operating system that is to be used by the threaded kernel and by SAS

1

SAS Global Forum 2009 SAS Presents

DATA steps and procedures. In the FULLSTIMER summary at the end of the SAS log, the value for OS Memory
reflects the peak memory usage for the entire process.

One of SAS Technical Support’s most commonly reported issues is the fact that processes fail as a result of
insufficient memory. If a process runs successfully, the FULLSTIMER option produces a grand total at the end of the
log that closely reflects the peak memory usage for the process. If your process fails, however, you can still get an
idea of how much memory was used by looking at the amount of memory used by the most memory-intensive step.

You are probably familiar with the MEMSIZE system option, which caps the amount of memory available to a single
SAS process. If your system has a lot of memory available, it might not be worth the trouble to determine how much
memory your process uses; you can simply set the MEMSIZE value higher. However, if memory is scarce,
determining the amount helps you arrive at a reasonable value for the MEMSIZE system option.

The Page Faults statistic indicates the number of memory pages that SAS tries to access, but that are not in the
main memory and that require 1/0 activity. A consistently high number of page faults that occur across multiple steps
might indicate that not enough memory is available to the process. It can also mean that the application is reading a
very large sequential file without doing any serious processing, causing high (but normal) values for Page Faults.

The Page Reclaims statistic indicates the number of page faults that are serviced without any I/O activity. I/O activity
is avoided by the process of reclaiming a page frame from the list of memory pages that are awaiting reallocation.
The Page Swaps statistic indicates the number of times a process is swapped out of main memory.

Values for the Voluntary Context Switches and Involuntary Context Switches statistics reflect the number of times the
process switches from an active to inactive state, and vice versa. A voluntary context switch indicates that the
process relinquished the CPU. This usually occurs when the process is waiting for the availability of a resource. For
example, suppose you have a process that needs to read a large data set. When SAS recognizes that this process
will not use a CPU during a lengthy reading, the software efficiently (and voluntarily) releases the CPU to serve
another process until the reading is complete.

An involuntary context switch indicates that the kernel forces the process into an inactive state. For example, if you
have a higher-priority process starting on the system, the kernel forces your lower-priority process into an inactive
state while it runs the one with the higher priority.

If the number of involuntary context switches is consistently high, it might be an indication that the step or process is
experiencing a computer-resource constraint. At this point, you should use vendor-supplied tools to monitor the CPU
to determine whether a resource constraint is the cause.

If you determine that a step or process is not experiencing a resource constraint, check the number of voluntary
context switches. A number that is consistently high compared with the number of involuntary context switches
might indicate that the process or step is being paged to swap space. This behavior indicates a problem with the
operating system’s 1/0 subsystem, and you should also monitor it with your vendor-supplied tools.

High values for any of the statistic discussed here might indicate a performance problem. The best way to determine
the cause of high values is to use system tools that are provided by the vendor of the operating system or third-party
vendors. For more details on third-party tools, see the section “When SAS System Options Are Not Enough.”

SAS® SYSTEM OPTIONS THAT AFFECT PERFORMANCE

When evaluating a performance problem, you need to know precisely what your current SAS option settings are so
that you can determine which values might need to be modified. You can use the OPTIONS procedure to generate a
complete list of your SAS option settings, as shown in this example:

proc options group=(performance memory);
run;

The list of options is written to your SAS log file. For the purposes of troubleshooting a performance problem,
examine the options that relate both to performance and memory. You can find descriptions of all these options in
the SAS 9.2 OnlineDoc, but you should take particular note of the settings described in the following sections
because they most affect performance.

MEMSIZE SYSTEM OPTION

The MEMSIZE system option specifies the limit on the total amount of memory that is available to a single SAS
process. Its primary purpose is to prevent a SAS process from growing too large and consuming too much memory.

UNIX is a shared environment and memory is a shared resource, so be considerate of others. Do not set a
MEMSIZE value that enables your process to potentially grow larger than it needs to be. For example, if you have
32 GB of real memory on your server and 10 concurrent SAS processes running, setting MEMSIZE to 4G might
result in a shortage of real memory. That said, you should be aware that MEMSIZE does not allocate memory, nor
does it automatically reserve a certain amount of memory for your process. Its function is simply to limit the size to
which a process can grow. Some SAS processes only request and use the amount of memory that is needed to

2

SAS Global Forum 2009 SAS Presents

perform their tasks. For example, if you set MEMSIZE to 4G but only 512 MB is required, only 512 MB will be used.
Other processes are not so well-behaved. It is important that you understand this concept because if MEMSIZE is
set to a high value for all processes, and other processes are running concurrently with yours, there might not be
enough memory available for your process to run. In that situation, your process will fail, and you will receive an out-
of-memory error in your log. In some situations, the process can end in a segmentation violation.

Therefore, be conservative when you set a default MEMSIZE value in the sasv9.cfg file. For processes that require a
great deal of memory, you can set MEMSIZE at invocation for individual processes. If your process truly requires all
of the real memory on the server, set MEMSIZE accordingly for that process, then use either the cron or the at

command to schedule it to run at a time when no others are running.

A further reason to refrain from setting MEMSIZE to a very high value is that processes that use too much memory
can cause excessive paging and adversely impact system performance. If, on the other hand, you set the value of
MEMSIZE too low for your process to complete, the process fails, and you receive an error. You will have to
experiment to determine the best value, and the Memory statistic in the FULLSTIMER summary provides a good
idea of how much memory the process actually needs.

The default MEMSIZE value for SAS®9 in the UNIX environment is 128M, but most likely you will find that not all of
your processes can run to completion using that value. A more realistic MEMSIZE value for most processes is either
256M or 512M. However, some SAS procedures are memory-intensive, and you need to increase the MEMSIZE
value simply to enable the process to run to completion.

Increasing the MEMSIZE value to improve performance is a different issue. In certain situations, giving a procedure
more memory than the minimum it needs might enable it to hold the data in memory instead of causing it to create a
temporary file. In such a case, you are trading memory for performance. This concept is examined later in “Case
Study 2.”

In SAS 9.2 Phase 2, you can set MEMSIZE to 0 or to MAX for test purposes. These values do not mean that all of
the memory on the server becomes available. With a setting of 0 or MAX, SAS queries how much real memory is on
the system, calculates how much memory can be used without swapping, and then uses that value for MEMSIZE.

In SAS 9.1.3 you can set MEMSIZE to O for testing purposes, but you should never leave it at that setting because
doing so causes MEMSIZE to be set to an impractically high value. In SAS 9.2 Phase 2, these issues are planned to
be resolved.

As a general rule, you should not specify a value for MEMSIZE that is greater than the amount of real memory on the
server. However, it is possible to do this, as explained in the next section.

REALMEMSIZE SYSTEM OPTION

The REALMEMSIZE system option specifies the amount of real memory that the SAS process can expect to have
available to it at invocation. By default, REALMEMSIZE is set to O, which means it is hardcoded to a value that is
80% of the MEMSIZE setting.

It is possible to set MEMSIZE to a value that is higher than the amount of real memory on the server, taking into
account any additional virtual memory that is available. If you find that it is necessary to set a very large value for
MEMSIZE, then you might need to lower the value of REALMEMSIZE to a practical limit for the amount of real
memory that you expect to have available.

Remember: The value you choose for REALMEMSIZE influences the behavior of SAS processes; therefore, it is
critical that you set it to the amount of real memory that the SAS process can expect to have available to it.

SORTSIZE SYSTEM OPTION

The SORTSIZE system option is specific to PROC SORT, but note that it is also used when sorting is performed by
the SQL procedure or any other SAS procedure that performs sorting behind the scenes. SORTSIZE is similar to
MEMSIZE in that it sets a limit on the amount of memory that is available to the SORT procedure. It does not
allocate or reserve memory for the process.

The default value for SAS®9 is 80M in the UNIX environment. In previous releases of SAS, setting a large
SORTSIZE value was a great way to speed up sorting, particularly when the sort could be done completely in
memory. Because the speed of file systems has improved, though, this advantage has largely disappeared. Values
in the range of 256 MB-512 MB seem to work best, but a smaller value will probably suffice as a default value (the
one specified in the sasv9.cfg file). Keep in mind that if you modify SORTSIZE from its default value, you must be
sure to maintain the difference between the SORTSIZE and MEMSIZE values or even increase that difference as
you use larger MEMSIZE values.

SAS Global Forum 2009 SAS Presents

SUMSIZE SYSTEM OPTION
Like the MEMSIZE system option, this option sets a limit on the amount of memory that is available.

The SUMSIZE system option affects only the MEANS, OLAP, REPORT, SUMMARY, SURVEYFREQ,
SURVEYLOGISTIC, SURVEYMEANS, and TABULATE procedures. Setting SUMSIZE properly can improve the
performance of these procedures by restricting the swapping of memory that is controlled by the operating
environment.

You might wonder why SAS provides additional options to control the memory that is used by individual procedures.
The case studies later in this paper, illustrate that different procedures have different memory needs. Using these
individual memory options, you can specify different settings for multi-step programs that contain procedures with
varying needs. A good example of this is a program that contains both a SUMMARY procedure step and a PROC
SORT step that has a very large input data set that cannot be sorted in memory. In such a case, you should specify
a large value for MEMSIZE so that the value for SUMSIZE (the default value of which is 80% of the MEMSIZE value)
is also large. However, you should set SORTSIZE to a smaller value because the data set is too large to sort in
memory, and PROC SORT steps generally run faster with smaller SORTSIZE settings.

WORK SYSTEM OPTION

The WORK system option specifies the location of the directory that is to be used as the WORK library. The WORK
library contains temporary SAS data sets and other temporary files that are required for SAS processing; therefore
the location you choose is crucial. Pointing WORK to a file system that processes quickly, for example, will boost
performance. Likewise, you should point WORK to a file system that is separate from the one where your data is
stored. The more you can spread the load, the better your performance will be.

A new feature of SAS 9.2 Phase 2 is the ability to define multiple WORK libraries. Case Study 1 demonstrates how
doing so can improve performance in some situations. Note that although you can define multiple WORK libraries, a
single process uses a single library. SAS chooses which library is used for each process.

UTILLOC SYSTEM OPTION

The UTILLOC system option is used by thread-enabled applications, and it specifies one or more file system
locations for the storage of utility files. Thread-enabled SAS applications are able to create temporary utility files that
can be accessed in parallel by separate threads, so the file system or systems that you choose for UTILLOC can
potentially experience a great deal of I/O activity.

By default, the UTILLOC system option points to the same file system or systems as the WORK system option.
However, because of the amount of I/O activity that occurs in these locations, you should point UTILLOC to another
file system, or perhaps to multiple file systems. This spreads the high I/O activity over several file systems.

To point UTILLOC to multiple directories via the sasv9.cfg file, use this syntax:
-UTILLOC (/locationl /location2 /location3)
To point UTILLOC to multiple directories at invocation, use the following command:

sas —utilloc \(/locationl /location2 /location3\)

In this command, locationl, location2, and location3 are paths to directories on different file systems.

As with the WORK option, SAS chooses which library is used for each process. Case Study 1 demonstrates how to
bind a particular directory with an individual process and discusses why this is useful.

For Foundation SAS processes, specifying UTILLOC locations on two different file systems and specifying a WORK
location on a third file system is ideal. Some other SAS procedures, such as REG and DMREG, might benefit from
having additional UTILLOC locations.

THREADS SYSTEM OPTION

The THREADS system option specifies that SAS should use threaded processing if it is available. The DATA step is
not threaded, and most procedures are not threaded. For an up-to-date list of which procedures support threading,
see the list in “Scalable SAS Procedures” (support.sas.com/rnd/scalability/procs/index.html).

CPUCOUNT SYSTEM OPTION

SAS uses the CPUCOUNT value to calculate how many threads a thread-enabled application will create. By default,
the value for CPUCOUNT is 4 or less. For example, when you run SAS on hardware with 12 CPUs, the default
value of CPUCOUNT is 4. When you run SAS on hardware with two CPUs, the default value of CPUCOUNT is 2.

4

http://support.sas.com/rnd/scalability/procs/index.html

SAS Global Forum 2009 SAS Presents

Capping the default CPUCOUNT value at 4 began in SAS 9.1.3 SP4. In previous releases, SAS set the value of

CPUCOUNT to the actual number of processors available. On servers that contain a lot of CPUs, this sometimes
resulted in performance degradation because the processes spawned too many threads. The new limit matches

SAS Technical Support’s observation that the ideal setting for CPUCOUNT is in the range of 4—6 on servers with
more than six CPUs. Great performance gain has not been noted when CPUCOUNT is set higher than 6.

Be aware that the function of CPUCOUNT is to tell the thread-enabled applications how many threads to create, not
to bind those threads to a specific CPU or group of CPUs. To bind a SAS process and threads to specific CPUs, you
must use the operating system tools.

You should never set CPUCOUNT to a value that is higher than the actual number of CPUs on the server. Doing so
can hurt performance, not improve it.

CASE STUDIES

The two case studies described in this section are based on the following system details, which include the hardware
and file systems that were used, the processor speeds, and the amount of available RAM.

System Configuration: Sun Microsystems sun4u Sun Fire E2900
System clock frequency: 150 MHZ
Memory size: 16GB

CPUs
E$ CPU CPU
CPU Freq Size Implementation Mask Status Location

0,512 1500 MHz 32 MB SUNW,UltraSPARC-IV+ 2.2 online SBO/PO
1,513 1500 MHz 32 MB SUNW,UltraSPARC-IV+ 2.2 online SBO/P1
2,514 1500 MHz 32 MB SUNW,UltraSPARC-IV+ 2.2 online SBO/P2
3,515 1500 MHz 32 MB SUNW,UltraSPARC-IV+ 2.2 online SBO/P3

10 Devices
Bus Freq Slot + Name +
Type MHz Status Path Model
pci 66 PCIO SUNW,qglc-pcil077,2312 (scsi-+
okay /ssm@0,0/pci@19,600000/SUNW,glc@1
pci 66 PCI1 SUNW,qglc-pcil077,2312 (scsi-+
okay /ssm@0,0/pci@19,600000/SUNW,glc@2
pci 66 1 pcil00b,35 (network) SUNW ,pci-ce
okay /ssm@0,0/pci@18,700000/network@1
pci 66 2 scsi-pcil000,30 (scsi-2) LSI,1030
okay /ssm@0,0/pci@18,700000/scsi@2
pci 66 2 scsi-pcil000,30 (scsi-2) LSI,1030
okay /ssm@0,0/pci@18,700000/scsi
pci 33 2 pcil095,680 (ide)
okay /ssm@0,0/pci@18,700000/pci@4/ide
pci 66 3 pci1l00b,35 (network) SUNW,pci-ce
okay /ssm@0,0/pci@18,700000/network@3
pci 33 3 bootbus-controller-sgsbbc ~ SUNW,sgsbbc
okay /ssm@0,0/pci@18,700000/pci@4/bootbus-controller@3

The saswork directory is located on a Sun StorEdge 3510 that is accessed by two fiber-attached channels. Total
storage is 1.5 terabytes. Drives are 10,000rpm SCSI drives at 146 GB each. There are 12 drives in the enclosure.
The file system is set up as a striped partition.

SAS Global Forum 2009 SAS Presents

CASE STUDY 1

This case study uses PROC SORT as an example because it is a threaded procedure, and users often experience
performance problems with it. The tests in this study were run with SAS 9.2 Phase 2 on a mid-range Solaris 10
server

To begin, we create a data set to sort. However, before sorting the data set, we set the FULLSTIMER option in order
to see all of the statistics in the log file, as shown below. Then, as described in “Using the FULLSTIMER System
Option to Identify Performance Issues,” we can try different remedies to troubleshoot this performance problem.

1 options fullstimer;

2 libname x "/sasworkl/sorttest”;

NOTE: Libref X was successfully assigned as follows:
Engine: V9

Physical Name: /sasworkl/sorttest
data x.random;
array x (100);
do i=1 to 100;
x(i)=ranuni(i);
end;
do i=1 to 7500000;
output;
10 end;
11 run;

O©Coo~NOUThW

NOTE: The data set X.RANDOM has 7500000 observations and 101 variables.
NOTE: DATA statement used (Total process time):

real time 1:05.64

user cpu time 4_50 seconds

system cpu time 20.91 seconds
Memory 757k
0S Memory 4392k
Page Faults 77
Page Reclaims 0
Page Swaps 0
Voluntary Context Switches 788
Involuntary Context Switches 2375
Block Input Operations 85
Block Output Operations 21977

This data set is approximately 6 GB in size. Note that there is quite a big difference between the total CPU time (user
CPU time plus system CPU time) and the real time. This difference occurs because the step performs a lot of I/O
activity.

Next, we sort the data set on a single, random BY variable, after which we can look at performance with all of the
default settings:

> sas sortrandom.sas

5 proc sort in=big.random out=big.sorted;
6 by x1;
7 run;

NOTE: There were 7500000 observations read from the data set BIG.RANDOM.
NOTE: SAS threaded sort was used.

NOTE: The data set BIG.SORTED has 7500000 observations and 101 variables.
NOTE: PROCEDURE SORT used (Total process time):

real time 3:45.95

user cpu time 1:06.18

system cpu time 1:35.73

Memory 83935k
0S Memory 87864k
Page Faults 2994
Page Reclaims 0

Page Swaps 0
Voluntary Context Switches 495527
Involuntary Context Switches 9386
Block Input Operations 53539
Block Output Operations 31837

6

SAS Global Forum 2009 SAS Presents

Earlier, this paper mentions that some procedures benefit from having a large amount of memory available. With that
in mind, we run the same program again, this time with the MEMSIZE value increased to 3G and the SORTSIZE
value increased to 2G:

> sas —-memsize 3G —sortsize 2G sortrandom.sas
5 proc sort in=big.random out=big.sorted;
6 by x1;
7 run;

NOTE: There were 7500000 observations read from the data set BIG.RANDOM.
NOTE: SAS threaded sort was used.

NOTE: The data set BIG.SORTED has 7500000 observations and 101 variables.
NOTE: PROCEDURE SORT used (Total process time):

real time 3:41.74

user cpu time 1:11.11

system cpu time 1:47.47

Memory 2110365k
0S Memory 2114432k
Page Faults 395

Page Reclaims 0

Page Swaps 0
Voluntary Context Switches 405317
Involuntary Context Switches 21080
Block Input Operations 83625
Block Output Operations 44513

The Real Time statistic decreased only by a few seconds, but the User CPU Time and the System CPU Time
statistics increased. This appears to validate the recommendation against setting large values for PROC SORT, but
some procedures do benefit greatly from having a larger amount of memory available to them, as is demonstrated in
Case Study 2.

Next, we want to see what happens when there is more contention and the server is busier. In this test, we run two
copies of the program concurrently with the default system settings to see how performance is affected. The
following is a log from one of the processes:

> sas sortrandom.sas &

> sas sortrandom2.sas &
5 proc sort in=big.random out=big.sorted;
6 by x1;
7 run;

NOTE: There were 7500000 observations read from the data set BIG.RANDOM.
NOTE: SAS threaded sort was used.

NOTE: The data set BIG.SORTED has 7500000 observations and 101 variables.
NOTE: PROCEDURE SORT used (Total process time):

real time 7:14.24

user cpu time 1:18.15

system cpu time 2:01.05

Memory 83935k
0S Memory 87864k
Page Faults 1125
Page Reclaims 0

Page Swaps 0
Voluntary Context Switches 483350
Involuntary Context Switches 49208
Block Input Operations 49445
Block Output Operations 101570

Here, the real-time value has increased, at just over seven minutes, and both the user and system CPU times have
also increased. Still, the two processes ran in less time than it would have taken to run them sequentially.

Take note of the voluntary and involuntary context switches. The server is now busier, and processes that perform a
lot of I/0 are ideal candidates for being switched out because they spend a lot of time waiting for system resources.

SAS Global Forum 2009 SAS Presents

Therefore, you see here that both of these values have increased. In the next test, we will see if that continues to be
true when we run four copies of the program concurrently, again with the default system settings:

> sas sortrandom.sas &

> sas sortrandom2.sas &

> sas sortrandom3.sas &

> sas sortrandom4.sas &
5 proc sort in=big.random out=big.sorted;
6 by x1;
7 run;

NOTE: There were 7500000 observations read from the data set BIG.RANDOM.
NOTE: SAS threaded sort was used.

NOTE: The data set BIG.SORTED has 7500000 observations and 101 variables.
NOTE: PROCEDURE SORT used (Total process time):

real time 16:29.95

user cpu time 1:19.02

system cpu time 2:32.87

Memory 83935k
0S Memory 87864k
Page Faults 989
Page Reclaims 0

Page Swaps 0
Voluntary Context Switches 578109
Involuntary Context Switches 96432
Block Input Operations 209383
Block Output Operations 248495

Look at the real-time value and compare it with the combined value of the user and system CPU times. This test
takes longer to run than it takes to run the four copies sequentially. Notice also that the context switches do continue
to escalate as the server is busier.

The easiest way to run these processes faster is to take advantage of using multiple WORK directories, which is a
new feature in SAS 9.2. Keep in mind that the UTILLOC option defaults to the same location as the WORK library;
that means that our utility files will also be spread around, which should help performance.

To use multiple directories, we create a file called workfiles, which contains the paths to the locations we want to use
for two WORK libraries. The contents of workfiles are as follows:

/opt/saswork
/saswork2/sasutill
/saswork3/sasutil2
method=random

We are going to run four processes concurrently again, so instead of adding the WORK system option to each sas
command, it makes more sense to add the new setting for WORK to the sasv9.cfg file. The contents of sasv9.cfg are
as follows:

-fullstimer
-msglevel i
-work /sasworkl/sorttest/workfiles

After the four processes run, the following log is written for one of the processes:

5 proc sort in=big.random out=big.sorted;
6 by x1;
7 run;

NOTE: There were 7500000 observations read from the data set BIG.RANDOM.
NOTE: SAS threaded sort was used.

NOTE: The data set BIG.SORTED has 7500000 observations and 101 variables.
NOTE: PROCEDURE SORT used (Total process time):

real time 13:45.61
user cpu time 1:14.76
system cpu time 1:57.72
Memory 83935k
0S Memory 87864k

SAS Global Forum 2009 SAS Presents

Page Faults 238
Page Reclaims 0
Page Swaps 0
Voluntary Context Switches 506315
Involuntary Context Switches 40954
Block Input Operations 50340
Block Output Operations 98874

Simply by writing the results to two libraries instead of one, the real-time value decreases by nearly three minutes, or
a little over 20%. This automated method of avoiding contention on the WORK libraries is promising, but further
improvement is possible.

If we include the UTILLOC paths in each sas command at invocation, we maintain complete control over where the
files are written. With multiple UTILLOC paths set, I/O activity on each file system is much lighter and, therefore,

faster. Similarly, it is also reasonable to include the location of the WORK directory at invocation, spreading it over
multiple file systems.

If you have enough file systems, consider spreading out the libraries that contain the input data sets as well. Ideally,
spread your 1/O activity as much as possible by using unique paths for the WORK and the UTILLOC options as well
as for the input and output libraries for each process.

The following example shows the UTILLOC paths added into the Sas commands in an attempt to further improve

performance.
» sas -utilloc /opt/saswork sortrandom2.sas &
» sas -utilloc /opt/saswork sortrandom.sas &
» sas -utilloc /saswork2/sasutill sortrandom3 2.sas &
» sas -utilloc /saswork3/sasutil2 sortrandom4_2.sas
5 proc sort in=big.random out=big.sorted;
6 by x1;
7 run;

NOTE: There were 7500000 observations read from the data set BIG.RANDOM.
NOTE: SAS threaded sort was used.

NOTE: The data set BIG.SORTED has 7500000 observations and 101 variables.
NOTE: PROCEDURE SORT used (Total process time):

real time 8:39.09

user cpu time 1:09.01

system cpu time 1:52.92

Memory 83942k
0S Memory 87864k
Page Faults 230
Page Reclaims 0

Page Swaps 0
Voluntary Context Switches 509628
Involuntary Context Switches 16778
Block Input Operations 53728
Block Output Operations 76692

The first time four concurrent copies of the step were run, the real-time value was 16:29.95.

By splitting the output libraries over two directories and spreading temporary file creation over three separate file
systems using the WORK and UTILLOC options, the real-time value for each of the four processes is reduced by
nearly eight minutes. That’s quite an improvement.

Previously, when we sorted only one copy of the data set, we tried increasing the MEMSIZE and SORTSIZE values,
but performance was not much improved.

Now, we set MEMSIZE to 3G and SORTSIZE to 2G and sort four copies concurrently. Everything else remains the

same.
5 proc sort in=big.random out=big.sorted;
6 by x1;
7 run;

NOTE: There were 7500000 observations read from the data set BIG.RANDOM.
NOTE: SAS threaded sort was used.

NOTE: The data set BIG.SORTED has 7500000 observations and 101 variables.
NOTE: PROCEDURE SORT used (Total process time):

9

SAS Global Forum 2009 SAS Presents

real time 10:38.85

user cpu time 1:09.50

system cpu time 2:12.20

Memory 2110372k
0S Memory 2114432k
Page Faults 6610
Page Reclaims 0

Page Swaps 0
Voluntary Context Switches 437244
Involuntary Context Switches 27516
Block Input Operations 62618
Block Output Operations 107701

This test does not show an improvement. In fact, performance decreases by 20%. This decrease happens because
the current file systems, which cache very aggressively, are better at handling 1/O activity than the operating system
is at managing the large amounts of memory that are made available to the process.

For more details, see the section “When SAS System Options Are Not Enough.”

CASE STUDY 2

Sometimes a step has plenty of memory to run to completion, but setting MEMSIZE higher provides a performance
improvement. As mentioned previously, different procedures have different memory needs, and the SUMMARY
procedure is one such procedure.

This case study illustrates that the performance of PROC SUMMARY does, in fact, benefit from having additional
memory available. First, we create a large data set with 1 million observations and 30 variables:

data sum_data (drop=j k m ind);
array nvars (20) vv1l-wv20;
array cvars(10) $10 cvil-cv10;
do j=1 to 1000000;
do k=1 to 20;
nvars(k)=ceil (60*ranuni(-1));
end;

do m=1 to 10;
ind=ceil(6*ranuni(0));
cvars(m)=put(ind,words10.);

end;

output;
end;
run;

In this initial test, the MEMSIZE is set to 1G, which results in the following log:

17 options fullstimer;

18 proc summary data=sum_data n min max mean nway;
19 class _character_;

20 var _numeric_;

21 output out=sums;

22 run;

NOTE: Multiple concurrent threads will be used to summarize data.

NOTE: Processing on disk occurred during summarization. Peak disk usage was
approximately 2264 Mbytes. Adjusting SUMSIZE may improve performance.

NOTE: There were 1000000 observations read from the data set WORK.SUM_DATA.
NOTE: The data set WORK.SUMS has 4959465 observations and 33 variables.
NOTE: PROCEDURE SUMMARY used (Total process time):

real time 1:13.25

user cpu time 51.55 seconds

system cpu time 31.60 seconds

Memory 711173k
0S Memory 716056k
Page Faults 100
Page Reclaims 0

10

SAS Global Forum 2009 SAS Presents

Page Swaps 0
Voluntary Context Switches 98300
Involuntary Context Switches 8390
Block Input Operations 106
Block Output Operations 8080

PROC SUMMARY issues a note saying that it was necessary to use disk space to complete processing. In this
case, the recommendation is to increase the value of the SUMSIZE option, but because the default value of
SUMSIZE is 80% of the MEMSIZE setting, we simply increase MEMSIZE to 4G.

17

18 proc summary data=sum_data n min max mean nway;
19 class _character_;

20 var _numeric_;

21 output out=sums;

22 run;

NOTE: Multiple concurrent threads will be used to summarize data.

NOTE: There were 1000000 observations read from the data set WORK.SUM_DATA.
NOTE: The data set WORK.SUMS has 4959665 observations and 33 variables.
NOTE: PROCEDURE SUMMARY used (Total process time):

real time 35.27 seconds

user cpu time 43.70 seconds

system cpu time 8.31 seconds

Memory 1235522k
0S Memory 1240600k
Page Faults 3

Page Reclaims 0

Page Swaps 0
Voluntary Context Switches 7896
Involuntary Context Switches 8489
Block Input Operations 5

Block Output Operations 1836

Notice that in both cases, the real-time value is significantly smaller than the combined user CPU and system CPU
times. As you can see, PROC SUMMARY takes advantage of threading very well.

Notice also that when MEMSIZE was set to 4G, there was a marked decrease in both the real-time value and the
user and system CPU times because this process was able to run entirely in memory. We know that this is the case
because there is no note in the log to suggest that the availability of more memory can result in better performance.

WHEN SAS® SYSTEM OPTIONS ARE NOT ENOUGH

While the output from the FULLSTIMER option can quickly show you where your problem lies, it might also indicate
that the problems are more complex and require the use of host-based monitors.

“Solving Performance Problems: Employing Host-Based Tools” (SAS Institute Inc. 2008) discusses an iterative,
disciplined approach to diagnosing performance problems with the SAS System running in the UNIX and Windows
environments.

The paper details the employment and interpretation of the most commonly available host-based performance
monitors to help you understand what resource constraints existed as the process was running. It also explains how
to overlay this information with SAS logs to reconcile episodes of bad performance on the host and on external
storage systems (for example, NetApp) to the SAS steps. This process helps identify the performance constraints
with SAS processes and, in doing so, leads to their quick resolution.

The paper also includes attachments that contain a log-information macro and monitoring scripts for AIX, HP-UX,
Linux, Solaris, and Windows.

CONCLUSION

You can improve performance tremendously by making adjustments to SAS system options. Output from the
FULLSTIMER system option offers statistics that help you determine where to look for ways to improve performance.
Finally, solving performance issues requires a solid understanding of your environment: the location of the WORK
library, what file systems are available to you, and so on. It also requires an understanding of the SAS procedures
that you are using because they handle memory in different ways.

11

SAS Global Forum 2009 SAS Presents

RECOMMENDED READING

Brown, Tony. 2008. “Solving Performance Problems: Employing Host-Based Tools.” Cary, NC: SAS Institute Inc.
2008. Available at support.sas.com/rnd/papers/sugi31/practicalperf.pdf.

ACKNOWLEDGEMENTS

We would like to thank Margaret Crevar, Tony Brown, and Clarke Thacher for their assistance and continued
support. Thanks also to our colleague Tim Braam for his help with the PROC SUMMARY case study.

CONTACT INFORMATION

Your comments and questions are valued and encouraged. Contact the authors at:

Michael Williams

SAS Institute Inc.

SAS Campus Drive

Cary, NC 27513

Phone: (919) 677-8008
Fax: (919) 531-9449
E-mail: support@sas.com
Web: support.sas.com/ts

Gretel Easter

SAS Institute Inc.

SAS Campus Drive

Cary, NC 27513

Phone: (919) 677-8008
Fax: (919) 531-9449
E-mail: support@sas.com
Web: support.sas.com/ts

Steve Bradsher

SAS Institute Inc.

SAS Campus Drive

Cary, NC 27513

Phone: (919) 677-8008
Fax: (919) 531-9449
E-mail: support@sas.com
Web: support.sas.com/ts

SAS and all other SAS Institute Inc. product or service names are registered trademarks or trademarks of SAS Institute Inc. in the
USA and other countries. ® indicates USA registration.

Other brand and product names are trademarks of their respective companies.

12

http://support.sas.com/rnd/papers/sugi31/practicalperf.pdf
http://support.sas.com/ts
MAILTO: support@sas.com
http://support.sas.com/ts
MAILTO: support@sas.com
http://support.sas.com/ts
mailto: support@sas.com

	2009 Table of Contents

