Paper 319-2009

Best Practice: Optimizing the cube build process in SAS® 9.2
Mary Simmons, SAS Institute, Cary, NC
Michelle Wilkie, SAS Institute, Cary, NC

ABSTRACT

The loading and processing of your data into a cube needs to be controlled and optimized to get the best
performance out of your system and meet appropriate time window constraints that may be set by IT or the business
user. The SAS® OLAP Server 9.2 shows several performance improvements and changes in the cube building
process compared to that in SAS® 9.1.3. This paper will introduce factors that affect the cube building process;
options that are available to control and optimize the cube building process; best practices for cube building; logging
options and understanding possible problems that can occur, in relation to these improvements in SAS® 9.2.

INTRODUCTION

SAS OLAP Server (On-Line Analytical Processing) provides users with the ability to build and view cubes. Cubes
allow users to gain knowledge of the data by slicing, dicing and analyzing it in a summarized, multidimensional
approach. This helps surface interactions within the data so that users can make informed decisions about their
business. It is essential for these decisions, therefore, to make sure that the data is served to the user in a timely and
relevant fashion.

The SAS OLAP Server supports Multidimensional OLAP (MOLAP), Relational OLAP (ROLAP) and Hybrid OLAP
(HOLAP) structured cubes. A SAS MOLAP structure is a proprietary data store, in which data is feed from a
warehouse into the cube building process; for summarization, defining data relationships via metadata, and
computation of analytical variables. To build such a cube is simple; however, it is important to understand the cube
building process so that:

the appropriate SAS System options and PROC OLAP options are utilized correctly

the system utilization of memory, 1/0 and storage is optimized
the cube can be built successfully and in the time window necessary

Getting the OLAP cube into the business users’ hands as fast as possible is the ultimate goal of optimizing the cube
build process. The major focus of this paper will be on changes made in the SAS 9.2 cube build process; this will be
illustrated using PROC OLAP.

SAS 9.2 PROC OLAP

In SAS® 9.2, the underlying OLAP cube structure changed significantly, automatically providing several benefits
including:

Better performance for the cube building process
Lifting the Hierarchy member limitation
Significantly faster member metadata creation
Updateable cubes (providing incremental updates)

Better query performance allowing faster response times for reporting applications surfacing OLAP data

In addition to these benéefits, it may be possible to further optimize your cube build process. To do so, it is important to
understand the underlying components of the cube, the phases of the PROC OLAP process, the options that apply to
each phase and to understand the needs of your environment so that you can make the most of the resources that
are available to you.

Cube Components and Build Phases

In Figure 1, you will see the OLAP cube broken down into its components. Cubes contain a Metadata Registration,
navigational files that contain internal cube member metadata (separate from the Metadata Registration), as well as
the NWAY and aggregation tables and indices.

Meatadata Registration

Sales Cube

scmmn _I H!W-Mrr 'il

Mawigation fil

w

1]

' -

l-—-Cutj Jredations

~

Input Data Physical Cube

Figure 1 Components of an OLAP cube

The cube build process can be broken down into 2 major phases that are closely related to the cube components.
Phase | is when the data summarization begins and the navigation files are created. In Phase Il the NWAY,
Aggregation tables and related indices are built.

~
Phase1 |—» Metadata
Metadata creation
sUmimarization
J
Mweay

5 Imdax craation
sLimimarization

Phase 2 >

\ /

Figure 2 Phases of the OLAP cube build process

PROC OLAP — PHASE |

Phase | comprises the internal metadata preparation which includes metadata summarization and sorting of member
infomation, and the creation of the internal cube metadata.

Cube metadata includes information about:

location of the data

the cube structure

members and their relationship with each other for navigation purposes, formats, member properties
calculated members

The first phase occurs immediately upon execution and completes just prior to the NWAY message relating to
number of records. The log shown in Figure 3 is that of a cube build using a star schema input source, the first phase
is highlighted with the red box.

Notes about “Empty caption,” are indicators that ragged and/or unbalanced hierarchies exist in this cube. These
messages occur when members in levels are identified that match the EMPTY_NUM or EMPTY_CHAR option. In the
example below, the EMPTY_CHAR="" option was used on the PROC OLAP statement.

Log - (Untitled)

;ggs & MBHE ="fuptelisvomer b ' -
H ;

FA25 ADGREGATIOR 'f--r i Ilmlh_hh- Eml—-jruq: Cuxtomer_Typs Cuztoser _ender Custoner_fge_Oroup
FAPE s Produst Categmy Produnt Gron

g;g -" RARE = llmthl!ﬁ.l:twl.lye

223 AGGREGATIDR TW I Fnth_Mus Cont |nent I:n-umry Product_L ing Product_Category Frodu b oug
g_gg'il £ RARE = 'Honthl] oba i Produs s '

Faa2 AOGREGNTI0R Prnd:tJ.ln- Pl-nﬁmt_l:-l.ﬂnry Froduct_lrousp Custoper_Group Cuztoser_Tyepse

#3133 Gresrycher Do gy _ps_Groun

23 o “"Wmm:tmse

#3335 H

FA9E rum}

WOTE:! Empiy caption " " wnn foirw For levsl "Siats™

ROTE! Erpty caption ' * paxm fourd for Bowsl “Region' .

ROTE: Espiy capbion '™ " opam Pownd Tor Bewel "Prose nce™ .

ROTE; Eppty oaption '™ " owas found for lews| 'Counie',
rl'.ITi Elﬂ'h' caption " " waw Pound For Jewsl "City

- At luaxt ono l.n--e n:nl‘xr af = |-.|rr- archye 1 refecred b by sultiple o erlxlrn- luwx
ERCT MUAY opt | 2 - i

ROTE ; | heer op of this option Lk
ROTE ; I‘.-IIJ-B-’ sl IIHT FE-:u-’I.ID '!SIEE':I
ROTE! Promessing of all cube aggregeticns ix completed.
ROTE! Aggregation "COUNTRYCUSTOREAUSE™ wax crmated with 30155 rocords.
ROTE; fggerepption "HTATECIHTORERLEE" wvas oroated with FIT4LE records
ROTE ! Agoeragat ion '“lﬂ_mlm o -nr-e-anu-d with |HFH reoprds
ROTE! fggregstion N0 PRODUC FUSE" wvax oreated w=ith 33630 records.
ROTE : mﬂ:‘ilm 'mm‘m g ermabed with 3198 records

1 Cudian IDRCUNE™ wan oreatsd socessful by
ROTE; FROCEDURE (AP vmed [Totel process time)

real &ims 1145 ¥9

e opu bime 108,50
c:.-cm apis L 4,42 co0onds

IB ll-cry 797 TiR e

glre of the Final BUAT

Figure 3 PROC OLAP log with first phase of the cube build process identified
PROC OLAP — PHASE I

The second phase of build process is the creation of the NWAY and aggregation tables (and their related indices, if
requested). The indices make data retrieval faster and more efficient, choosing to “not build” the indices will result in
slower query performance and is not recommended. This second phase can be identified in log shown in Figure 4
with a red box and always starts just prior to the note “Number of NWAY records” and concludes with a message
which indicates the successful cube build. (See Logging Section for further granularity in identifying the start of Phase

1)

2UEF & ORANE s Histelum bomerlizs .

2oe4

FAPL ARRHFEAT IR TM-' 18 Honth_Bees e broer _fermean Disiness_Tpnes Coe tomes_Tasoafies s fnases_fge_Toene i
ELT Produnt_|Line Profint Category Profist_Group

ggg f FTRE = PO |5 s e L

2@ nGOREMAT 10K 'I'-nr 1§ Homth Bk Cant irent Country Frocct Line Frocet Categery Product frous
Faae . RiiE = Flonth Iyl | osa | Provuct e

Fdul

002 AGEIOGAT IOM Meaduct_L lna Product_Catsgory Meaduci_Gross Cunbosar_Grosp Custoss_ T

21y Coig tomer Govafer Cusiosss Aos ook

M ¢ m P nduotLustoRoefon

Aaas

23 rum|

WOTE: Empiy caption ” o amx_ h'nnd for lmwsl "State'.

RUTE: Empiy caption " max Found for leval “Heglos

ROTE - Esply capfion = “ wpr fond Tor Beosl "I‘\p'wl-:n"

ROTE - Espiv caniion i o wes found Tor Reusl “Conda”

WOTE: Espiy cantion ®oaaps found For Bewed "'Citw

pull:-'\h HE FeBET Dne leal sesbor of & hiorarohe i relereed B0 b @il vipie o s den letnas
. s i

i oF T tooer et ATeen, A

WOTE - H-mulm ef sl cubae aggrugat ionx iz meg lokad .

RUTE: hggregat ion “LUUHTETLAUSIISEHEE " var crested with 301%% records.
ROTE: Aggragat ion "EIATEILE TOMEMEE" was crantad with SHME Feosedn .

ROTE - éaoreeai Lo "HJHTII. FRUETIHERIEE" uns orestpd with 15833 recprds,
ROTE = #gorogal ion HIRTHL TGLOBEMDMICTIEE © wos Dreated with 181 records,

ROTE = Higois llm mlmlm uhs oreated with 3199 records
[i zpn orog Fullye
0 i oiemd | Tobal procexx Laes)l
raal tinm 114529
MERr Cpu AiER 1:0m_5a
n bl oped blme A 4F pEconde
Hzmary Ragidk
05 Hesor THITER it
g *

Figure 4 PROC OLAP log with the second phase of the cube build process identified

SAS OPTIONS

Below are specific SAS options that help optimize and control the cube build process at each phase. For more detalil

on each option please refer to the SAS 9.2 OLAP Server: Users Guide.

Option

Type

Description

Relevance

MEMSIZE

REALMEMSIZE

SUMSIZE

SORTSIZE

UTILLOCn

SPDEUTILLOC

INDEXSORTSIZE

MAXTHREADS

ASYNCINDEXLIMIT

ADDNWAYINDEX

INDEX | NOINDEX

CONCURRENT

COMPRESS

SYSTEM

SYSTEM

SYSTEM

SYSTEM

SYSTEM

SYSTEM

PROC OLAP

PROC OLAP

PROC OLAP

PROC OLAP

PROC OLAP

PROC OLAP

PROC OLAP

Specifies the limit on the total amount of virtual
memory that can be used by a SAS session.

Specifies the amount of real (physical) memory SAS
can expect to allocate.

Specifies the limit on the memory allocation for the
Summarization Process

Specifies the limit on the memory allocation for the
Sort Process

Specifies one or more file system locations in which
applications can store utility files. (WORK will be
used if UTILLOC is not set)

Specifies one or more file system locations in which
temporarily utility files can be written. (UTILLOC will
be used if SPDEUTILLOC is not set)

INDEXSORTSIZE indicates the max amount of
memory per thread of execution you want to make
available during NWAY and aggregation index
creation.

Specifies the maximum number of threads that are
used to asynchronously create aggregation indexes.
Setting MAXTHREADS too high can lead to
performance degradations.

The ASYNCINDEXLIMIT option is new to SAS® 9.2.
It gives the user the control over how many indexes
for one table can be built at a time.

Ability to create NWAY indexes after the initial
PROC OLAP cube build process, in which NOINDEX
was used for the NWAY.

Specifies whether or not to create aggregations with
indexes.

Specifies the maximum number of aggregations to
create in parallel. It does not impact the NWAY
which is always built first.

Compress the resulting NWAY and aggregation
tables, reducing the size of the cube.

PHASE | and PHASE Il

PHASE | and PHASE Il

PHASE | and PHASE Il

PHASE | and PHASE Il

PHASE | and PHASE Il

PHASE Il

PHASE I

PHASE Il

PHASE I

PHASE Il

PHASE I

PHASE Il

PHASE I

Table 1 Relevant Options to control cubes build process

RECOMMENDATIONS
Input Data:

A star schema is the optimal data source for building a MOLAP cube. A star schema is comprised of dimension
tables and a fact table which allows SAS to read and translate the information faster. Additional features are available
only with a star schema such as multiple language support and more flexibility during cube update.

Avoid where possible using a data set view as an input data source as this requires additional system resources for
processing the view and can cause contention with the resources that are required for the cube building process.

Memory Options:
MEMSIZE:

Memsize is an indicator of the total memory you want to allow for this SAS process. Setting this value to 0
(or MAX) is useful for debugging or testing purposes but highly discouraged in a production environment.
You can use the fullstimer option in SAS combined with MEMSIZE=MAX to determine how much your cube
build will actually need and then set your MEMSIZE slightly larger for your production builds. If you are
building cubes concurrently you should adjust the MEMSIZE smaller to avoid contention for system
resources.

REALMEMSIZE:
REALMEMSIZE should be a percentage of MEMSIZE but this will be dependent on the size of your data.
SUMSIZE:

Proper specification of SUMSIZE= can improve procedure performance by restricting the swapping of
memory that is controlled by the operating environment. Generally, the value of the SUMSIZE= system
option should be less than the physical memory available to your process. If the procedure you are using
needs more memory than you specify, the system creates a temporary utility file. If the value of SUMSIZE is
greater than the values of the MEMSIZE option and the REALMEMSIZE option, SAS uses the values of the
MEMSIZE option and REALMEMSIZE option.

Temporary work space:
UTILLOC:

During the summarization phase, if both UTILLOC1 and UTILLOC?2 are specified, they will each be used for
two distinctly different functions of the summarization process. At a minimum both UTILLOC1 and
UTILLOC? should be big enough to hold the size of the input data (give a little more than just the exact size
of the input table for each location) and UTILLOC locations should be of equal size.

For Phase II, SPDEUTILLOC (or UTILLOC) should be set to allow for a separate location for the temporary
utility files needed in this phase.

It is strongly recommended that ALL temporary workspace locations be located on physically separate disks
from that of the input data to avoid disk contention.

NWAY Creation:
ASYNCINDEXLIMIT:

This is most effective for the NWAY table which will contain indexes for all hierarchies in the cube. The
default behavior at SAS 9.1.3 was unlimited. This meant that all indices were being created at one time
which has lead at times to thread contention when indexing very large tables (such as the NWAY). It is
recommended not to use this function when dealing with small data and low cardinality as it will not add to
performance and may have an adverse interaction with the cube build process.

ADDNWAYINDEX:

It was added for cubes that completed successfully but the NWAY index build failed. At SAS® 9.2, if this
occurred you would also want to consider bumping up your MEMSIZE and using the ASYNCINDEXLIMIT
option described above.

General Aggregation Index Creation:
INDEXSORTSIZE/MAXTHREADS:

Typically MAXTHREADS should be set to a number less than the number of CPUs available. The default is
calculated off of the CPUCOUNT option which is an “indicator” of the number of available CPUs (it is not a
hard and fast limit). On UNIX machines at SAS® 9.2, CPUCOUNT defaults the min value of 4 and
ACTUAL. Example: INDEXSORTSIZE=4096. If MAXTHREADS was set to 4, you would be telling the
subsystem that each thread has 1G of memory it can use. The INDEXSORTSIZE applies to a certain
subset of the memory usage during index creation. Additional memory is needed for other functionality at
that time so it is important to keep that in mind when setting this option.

PROBLEMS AND RESOLUTIONS
Work Space (Utility) Problems:

a.

If you get a message mentioning “Utility write failed” or “disk full condidtion” check both UTILLOC
locations. If one location is full but the other is not, this is an indication that the size for both UTILLOC
locations should be increased.

If you receive the error “Utility File read failed” make sure that nolargefiles is not set on the file systems
as no file will be created greater than 2GB. This is specific to UNIX operating systems. You can validate
if this option is set by checking /etc/mnttab.

If one of the UTILLOC locations has been set too small expect a system error (not a SAS error) in
PHASE | during the data summarization step “ERROR: Complex utility space issue” or you may see the
operating system CPU usage drop to ~1% and hang. Increase the UTILLOC location as per the
recommendation mentioned above in PHASE | — Recommendations.

PHASE | (data summarization) Problems:

a.

Errors with the terms “classification”, “summarization” or “category” are usually indicators that SUMSIZE
needs to be increased. (and / or MEMSIZE and REALMEMSIZE).
Example:

ERROR Qut of nenory.
ERROR A probl em was encountered during data summarization phase (8).
NOTE: The initial nmenory limt for classification tables was 1239026K byt es.

Actual nenory acquired was 1244992K byt es.

If you are encountering a “Critical memory shortage” or “Memory exhausted message” during the data
summarization step MEMSIZE and REALMEMSIZE need to be adjusted. To make sure that you can
track memory usage during the summarization step use %let syssumtrace=3; Refer to the logging
section below for more details.

PHASE Il (NWAY and Aggregation creation) Problems:

a.

If an error occurs after the message “IN PROGRESS: NWAY index creation” and it contains the
keyword “index/es” and “NWAY aggregation” investigate using ASYNCINDEXLIMIT, INDEXSORTSIZE
and tuning MEMSIZE to control a successful NWAY creation.

If you are adding aggregations to an existing cube for improving query performance and receive the
below error messages or a message containing the words “No memory can be allocated” , “index” or
“aggregation” and “aggregate”; resource contention may be the issue. Consider the interaction of PROC
OLAP options MAXTHREADS=, CONCURRENT= and INDEXSORTSIZE= and reduce memory
utilization.

ERROR | nsufficient nenory

ERROR A failure occurred as a result of a problemin creating cube
aggregations

ERROR: New aggregati ons cannot be created for the existing cube. Al
AGCGREGATI ON st atenents will be ignored

INCREMENTAL UPDATE

With the release of SAS 9.2 OLAP Server, you can now add new data to your cubes without rebuilding the entire

cube via the incremental update process. An incremental update typically involves adding cell data and members to
an existing cube as shown in Figure 5.

New input data

MNew
HE . a I!&_I'i'ﬂ.-'it_]arif_':n
- ; - iles
L q' ."ﬂ
N
_‘"T” e . “Sm |
&2 LOAD . New

Original cube

Aggregation
siices -

Figure 5 Incremental Update Process for an OLAP Cube and the addition of new data

There are several decisions at cube creation that can impact the cube build process for incremental updates. These
were discussed at length in “Paper 330-2008 Avoid Growing Pains: New Cube Update Features You Should Know
About” (Weinberger, Tierney). In the following sections, two key decisions will be discussed and the impact these
decisions can make on Phase | and Phase Il of the cube build process:

Do all dimensions need updating (typically only some dimensions such as time will need updating)?

What information is being updated (is it metadata information, actual data values or both)?

DO ALL DIMENSIONS NEED UPDATING?

We would recommend that you take time, prior to the initial build of your cube, to review your cube’s dimensions.
Identify any dimensions that contain fixed number of distinct values, these dimensions can be pre-loaded and the
dimension can be marked NONUPDATEABLE. For example, a relatively static dimension would be Geography, while
a dimension such as time or customer would require regular additions of new members.

Benefits

Smaller footprint:

The first is the smaller disk footprint. All aggregations that include this dimension will take up less space when
this option is used.

NOTE: By default, dimensions are UPDATEABLE.

Table 2 illustrates the effect of the NONUPDATEABLE option specified on the PROC OLAP statement, on the
overall disk footprint for that cube. With NONUPDATEABLE option used on PROC OLAP statement instead of the
DIMENSION statement all dimensions will be stored in the non-updateable format.

Cube All All % Smaller

Name dimensions dimensions

UPDATEABLE NON-

(MB) UPDATEABLE

(MB)

Cubel 209 173 17%
Cube2 142 89.4 37%
Cube3 386 244 37%
Cube4 360 220 39%
Cubeb 261 116 56%

Table 2 Cube size comparisons with NONUPDATEABLE option

Update performance boost:

The second benefit to using the NONUPDATEABLE option is a performance boost during cube update.
Dimensions that are updateable will have their dimension tables scanned for every update. Non-updateable
dimension tables will never be re-scanned for potential new members.

WHAT INFORMATION IS BEING UPDATED?

As mentioned above, a cube comprises of metadata, navigation files and aggregations. Typically when updating a
cube you will either be:

updating the navigation files which contain member information (UPDATE_DIMENSION option)

or the aggregations which contain the summarized data values (ADD_DATA option)

or both.

ADD_DATA

The ADD_DATA option on the PROC OLAP statement enables you to add new members and data to a cube. You
can update a cube in-place or create generations of the cube (see SAS 9.2 OLAP Server: Users Guide for more
details). Here is an example of the ADD_DATA option used with PROC OLAP:

PRCC OLAP dat a=nyl i b. newdat a cube=cubeA add_dat a

out cube=cubeB out schema=t est Schena;

nmet asvr host ="nyhost" port=8561 repository=nyrepository
ol ap_schema=pr odSchens;

run;

The ADD_DATA option requires that either UPDATE_IN_PLACE, OUTCUBE=, or OUTSCHEMA= also be specified.

UPDATE_DIMENSION

The UPDATE_DIMENSION option on the DIMENSION statement gives you the flexibility on the updateable
dimensions to control whether or not the dimension table is scanned. By default if the dimension is updateable the
table will be scanned during each update event (default: UPDATE_DIMENSION=MEMBERS)

The values for the UPDATE_DIMENSION statement are as follows:
MEMBERS:

This means that the dimension table currently associated with the dimension should be read and processed
for new members of every hierarchy in that dimension. When specified on a star schema cube without the
PROC OLAP ADD_DATA option, the MEMBERS option provides a way to update the cube with new
members without having to add data to the cube.

MEMBERS_AND_PROPERTIES:

This means that the dimension table currently associated with the dimension should be read and processed
for new members PLUS member properties for existing members should be changed with the new values in

the dimension table. When specified on a star schema cube without the PROC OLAP ADD_DATA option,
the MEMBERS_AND_PROPERTIES option provides a way to update the cube with new members and
properties without having to add data to the cube.

OFF:

This means that the dimension table currently associated with the dimension should NOT be read at all. It
applies only to cubes loaded from a star schema and never to a cube loaded from a single detail table. If the
ADD_DATA option is used on the PROC, and an updateable dimension’s table should not be processed,
then this option must be used to avoid a table scan. If the ADD_DATA option is not used on the PROC, then
OFF is the DEFAULT option for all dimensions in the cube.

INCREMENTAL UPDATE - PHASE |

Remember that the two steps of PHASE | cube build process is metadata summarization and metadata creation. In
incremental update the process is similar — metadata summarization of the new member information occurs and then
the existing member metadata is updated.

There are instances, however, where neither of these steps is performed when updating a cube. If the cube was
originally created using the NONUPDATEABLE option on the PROC OLAP statement then PHASE | will not be
needed.

Also, PHASE I is not performed for specific dimensions in an incremental update when the DIMENSION statement
has either NONUPDATEABLE or UPDATE_DIMENSION=OFF option specified.

INCREMENTAL UPDATE — PHASE Il
If the option ADD_DATA is specified then the new data is read. An NWAY and aggregation tables are created for
that new data and is added as a slice of the cube as depicted in Figure 5.

LOGGING OPTIONS

There are many different logging options available through SAS, for general logging information refer to the “Paper
304-2009 The SAS OLAP Server: Understanding and Solving Common Problems” (Budlong).

The following table describes additional logging options that our customers have found particularly useful in gaining a
better understanding of the build process and diagnosing issues when they occur.

Logging Option and Description Usage Sample output

SYSSUMTRACE

Turns on additional logging for PHASE | of
the PROC OLAP process. Showing
summarization memory usage.

IN PROGRESS: WRITE NWAY TO DISK

(TSTLVL TIMING)Begin time for writing nway to disk: 14H:45M:1S
NOTE: The initial memory limit for classification tables was
1219133K bytes. Actual memory acquired was 2368K bytes.

NOTE: The utility file buffer size selected was 16K bytes.

% et syssuntrace=3;

PROC OPTIONS (MEMORY)

Get information about MEMORY settings and
how they got their values — from the
command line, shipped default, config file
etc.

PROC OPTIONS (PERFORMANCE)

Get information about PERFORMANCE
settings and how they got their values.

TEST_LEVEL=2

Gives finer grained logging of the cube build
process.

The actual beginning of Phase Il is clearly
demarcated, by the test _level message:

IN PROGRESS: NWAY creation

This message occurs well before the first
NOTE in the log about the NWAY.

PLEASE NOTE! TEST_LEVEL is an
undocumented option of the PROC OLAP
statement

PROC OPTI ONS
gr oup=MEMORY val ue;
run;

PROC OPTI ONS
gr oup=PERFORVANCE val ue;
run;

PROC CLAP CUBE=nane
TEST_LEVEL=2

<addi ti onal
PROC OLAP
st at enent
opti ons>;

Option Value Information For SAS Option MEMSIZE
Option Value: 2147483648
Option Scope: SAS Session
How option value set:

Option Value Information For SAS Option SPDEUTILLOC

Option Value:
Option Scope: Default

How option value set: Shipped Default

General TEST_LEVEL log format
PHASE |

o Connect with metadata server
o Initialize cube build
o Per hierarchy —
get captions
create member metadata
elapsed times
PHASE I

N WAYcreation begins

NWAY write to disk

NWAY index build

Aggregation builds begin (aka subaggregation)
Cube files disked

Metadata server updated with cube information
Elapsed times

Oo0Oo0oo0oo0o0oo

See Figure 6 for “Sample Output”

10

SAS Session Startup Command Line

#SAS
File Edt Yiew Took Soluiors Window Hep
v > D@ @0 L am - DE@

“Log - (Untitled) =/0Ed
IH PRIGRESS: Meaber sobodato oreation for USEHIMFO" hierarohe -

ETED: Mesbsr motadats creation For ‘m_lﬁ-'[l‘ i i mrmhss
Time to oreate sesbher astadata for "USER_INFD" hierarohey @
TATLVL TIMING) Clooktime @ 0.00156 seo

TETLVL TIAING |} Syt ime ¢ 0.0908 seo

TETLVL TIRING) CPi ime ! 0.0158 seo

1IN PROGRESS: MUAY oreation
IH PROGAESS: WHITE MUAT TO 0ISK
TETLVL TIAING Megin btime For eritbing oeap b odisk: 846 3068

IN PROGRERS: MEAT index creation
TETLVL TIRING Eeain time for creating incdes foc noee s TEHER: 305
ETED: HEAT index craation

mE to eraate WHAYT indes

TETLYL TIMING) Clocktima G 5410 ame
TATLVL TIMING) Lime 0. 0156 swc
TETLVL TIHING } CPULime 0. 0463 sec

m
-
m
=
E
5

E BHAY TO DISK

Time to weibe oeay, incloeding indes crealion:
TESTLVL TIMING) ClockEims @ 0.7870 seo
TETLVL TIMING) Svatime 00312 sen
TSTLVL TIMING § CPULime 0078 sen

TE: Mambor of HEAT roooerds: 4836
ETED; MuAY praatiopn |

H PRIGRESS : Buboagoregat ion orsat ion
TETLVL TIAIHG Eegin bime for making subsggreget i omes TEH BH: 308
TE: Procoszing of all cube eggrogetions iz cosple
TETLVL TIMIRG End time For meaking suvhegogregst jons: | VEH BN 328
ETED; Fudeagoregat ion creat ion
TETLWL TIHING) Clocktime @ |.7500 sec
TETLYL TIHING | Systime P07 Eme "

[Poutput - .| JLog- (u.. [Program ...

Figure 6 Sample output of TEST_LEVEL=2 option

CONCLUSION

By understanding the components of a MOLAP cube, metadata and data, the cube build process can be explained
using two Phase approach. PHASE | is associated to processing the metadata, and PHASE Il the processing of the
data. Being aware of the appropriate SAS options and PROC OLAP options and how they can be applied can:

Ensure a successful build especially when assigning memory consumption and disk space

Optimization the build processes, maximizing the delivery of the data while minimizing the impact to your
system

In addition, recommendations have been made so that you can design, architect and recognize problems with your
build process, allowing you to make decisions relating to:

Input data

Temporary work space
NWAY creation
Aggregation creation

Ultimately, this paper will aid in the success of building your cube therefore, providing your business user information
in a timely manner. Allowing the business user to focus on the right business decision they need to make for your
company.

11

ACKNOWLEDGMENTS

Thank you to all who helped out with testing and contributing to the content of this paper.

RECOMMENDED READING
SAS® 9.2 OLAP Server: User's Guide

Paper 330-2008 Avoid Growing Pains: New Cube Update Features You Should Know About (Weinberger, Tierney)

Paper 304-2009 The SAS® OLAP Server: Understanding and Solving Common Problems (Budlong)

CONTACT INFORMATION

Your comments and questions are valued and encouraged. Contact the author at:

Mary Simmons

SAS Institute Inc.

Campus Drive

Cary, NC, 27513

Email: mary.simmons@sas.com
Web: www.sas.com

Michelle Wilkie

SAS Institute Inc.

Campus Drive

Cary, NC, 27513

E-mail: michelle.wilkie@sas.com
Web: www.sas.com

SAS and all other SAS Institute Inc. product or service names are registered trademarks or trademarks of SAS
Institute Inc. in the USA and other countries. ® indicates USA registration.

Other brand and product names are trademarks of their respective companies.

12

mailto:mary.simmons@sas.com
http://www.sas.com
mailto:michelle.wilkie@sas.com
http://www.sas.com

