
Paper 301-2009

Test-Driving the Improvements to the
INFOMAPS Procedure and LIBNAME Engine

Bill McNeill, SAS Institute Inc., Cary, NC

ABSTRACT
SAS® information maps provide a layer of metadata that describes your physical data structures in terms that
business users can understand. The INFOMAPS procedure and LIBNAME engine, introduced in SAS 9.1, allow from
Base SAS for the creation, modification, and deletion of information maps along with querying of the data described
by the information map. For SAS 9.2, these products now include enhanced functionality. This paper is written for the
customers with the role of utilizing the power of information maps in Base SAS. It will test drive the new features of
the procedure and the engine. Common changes to both INFOMAPS products include support on all SAS BI
platforms and the use of trusted peer connections. The procedure side includes support for stored processes,
enhanced INSERT and OPEN statements, and new MOVE and UPDATE statements. On the engine side are
additional filter Boolean operators, surfacing of aggregate data, and new SQL dictionary tables.

INTRODUCTION
Information maps provide a layer of metadata that describes your physical data structures in terms that business
users can understand. They have been used by various SAS tools such as Web Report Studio for some time.
Beginning with SAS 9.1.3, information maps became available for use within Base SAS via the INFOMAPS
procedure and LIBNAME engine. This paper will use portions of demonstration code and the resulting output to
highlight new functionality that has been introduced to the INFOMAPS procedure and LIBNAME engine in SAS 9.2.
The full demonstration code and output are available online. See the information at the end of this paper. The set up
of the metadata that is needed to define the information map is not addressed by this paper. Instructions on how the
metadata was set up for use in the demonstration are included in the demonstration code.

CONNECTION PARAMETERS
There are three ways to specify parameters to establish a connection to the metadata server:

1. The INFOMAPS procedure and LIBNAME engine statement

2. The SAS system options

3. A trusted peer connection

But first, there is one parameter that both the INFOMAPS procedure and LIBNAME engine require, the MAPPATH
option. This option specifies the path to the information maps within the metadata repository. Throughout the
demonstration, the value for this option is specified using a macro variable that is defined by using syntax similar to
this:

%LET infomap_path=/this/is/the/path/to/the/maps;

Specifying the connection parameters in each invocation of the INFOMAPS procedure or LIBNAME engine looks like
this:

 PROC INFOMAPS METAUSER="CARYNT\user1"
 METAPASS=super_secret_password
 METASERVER=server.na.sas.com
 METAPORT=8561
 MAPPATH=”&infomap_path”;

 LIBNAME emp INFOMAPS METAUSER="CARYNT\user1"
 METAPASS=super_secret_password
 METASERVER=server.na.sas.com
 METAPORT=8561
 MAPPATH="&infomap_path";

Specifying the connection parameters (using the group of SAS system options that begin with META) looks like this:

 OPTIONS METAUSER="CARYNT\user1"
 METAPASS=super_secret_password
 METASERVER=server.na.sas.com
 METAPORT=8561;

With those SAS system options in place, the INFOMAPS procedure and LIBNAME engine statements can now be
reduced to:

 PROC INFOMAPS MAPPATH="&infomap_path";
 LIBNAME emp INFOMAPS MAPPATH="&infomap_path";

If the METAUSER and METAPASS options are not specified in SAS system options and are not specified in the
procedure or LIBNAME statement, a trusted peer connection is used. In these cases, the process ID of your current
user account is used to authenticate the connection and allow access to the metadata server.

CREATION OF THE INFORMATION MAP
Let's start with defining the information map with one data source, the “EMPINFO” data set. This is done using the
INFOMAPS procedure.

 PROC INFOMAPS MAPPATH="&infomap_path";
 NEW INFOMAP "Employee Info" AUTO_REPLACE=YES;

 INSERT DATASOURCE SASSERVER="SASMain"
 TABLE="HR".empinfo
 ALL
 ID="Empinfo";

 SAVE;
 RUN;

Now given the information map with data items created from the physical columns of the “EMPINFO” data source
table, let's compare the columns in the “EMPINFO” data source to the corresponding data items in the information
map. We'll start by looking at the CONTENTS procedure output of the “EMPINFO” data set.

 LIBNAME HR BASE "C:\Program Files\SAS\SASFoundation\9.2\core\sample";
 PROC CONTENTS DATA=hr.empinfo;
 RUN;

Output:
 The CONTENTS Procedure

 Data Set Name HR.EMPINFO Observations 309
 Member Type DATA Variables 17
 Engine BASE Indexes 0
 Created Wed, Oct 01, 2008 11:22:43 AM Observation Length 216
 Last Modified Wed, Oct 01, 2008 11:22:43 AM Deleted Observations 0
 Protection Compressed NO
 Data Set Type Sorted NO
 Label
 Data Representation WINDOWS_32
 Encoding us-ascii ASCII (ANSI)

 Engine/Host Dependent Information

 Data Set Page Size 16384
 Number of Data Set Pages 5
 First Data Page 1
 Max Obs per Page 75
 Obs in First Data Page 62
 Number of Data Set Repairs 0
 Filename C:\Program Files\SAS\SASFoundation\9.2\core\sample\empinfo.sas7bdat

 Release Created 9.0202B0
 Host Created XP_PRO

 Alphabetic List of Variables and Attributes

 # Variable Type Len Format Informat Label

 3 ADDR1 Char 32 ADDRESS
 4 ADDR2 Char 32 ADDRESS
 14 BIRTHDAY Num 8 DATE9. DATE9. Birth date
 1 DEPTCODE Char 3
 16 DIVCODE Char 3
 6 DIVISION Char 40
 13 EDLEV Num 8 8. 8. Education level
 10 EMPNO Char 6 $6. $6. Employee number
 11 GENDER Char 1 Employee Gender
 15 HDATE Num 8 DATE9. DATE9. Hire date
 5 IDNUM Num 8 SSN11. F11. Identification Number
 17 JOBCODE Char 8
 7 LOCATION Char 8
 2 NAME Char 32 $32. NAME
 8 PHONE Char 8 $8. extension number
 9 ROOM Char 8 $8. Office Location
 12 STATUS Char 1 Status

Now assign a libref to the location of the information map. This is done using the Information Maps LIBNAME engine,
INFOMAPS. The LIBNAME engine provides a read-only way to access data generated from an information map and
to bring it into a SAS session.

 LIBNAME emp INFOMAPS MAPPATH="&infomap_path";
 PROC CONTENTS DATA=emp.’Employee Info’n;
 RUN;

Output:

 The CONTENTS Procedure

 Data Set Name EMP.'Employee Info'n Observations .
 Member Type DATA Variables 17
 Engine INFOMAPS Indexes 0
 Created . Observation Length 0
 Last Modified . Deleted Observations 0
 Protection Compressed NO
 Data Set Type Sorted NO
 Label
 Data Representation Default
 Encoding Default

 Alphabetic List of Variables and Attributes

 # Variable Type Len Format Label

 1 Address Char 32 Physical column ADDR1
 2 Address_2 Char 32 Physical column ADDR2
 3 Birth_Date Num 8 DATE9. Physical column BIRTHDAY
 4 Deptcode Char 3 Physical column DEPTCODE
 5 Divcode Char 3 Physical column DIVCODE
 6 Division Char 40 Physical column DIVISION
 7 Education_Level Num 8 8. Physical column EDLEV

 8 Employee_Gender Char 1 Physical column GENDER
 9 Employee_Number Char 6 $6. Physical column EMPNO
 10 Extension_Number Char 8 $8. Physical column PHONE
 11 Hire_Date Num 8 DATE9. Physical column HDATE
 12 Identification_Number Num 8 SSN11. Physical column IDNUM
 13 Jobcode Char 8 Physical column JOBCODE
 14 Location Char 8 Physical column LOCATION
 15 Name Char 32 $32. Physical column NAME
 16 Office_Location Char 8 $8. Physical column ROOM
 17 Status Char 1 Physical column STATUS

The first noticeable difference is the change in the variable names. The default behavior of the INFOMAPS procedure
is to use the label assigned to the variable in the data set as the data item name in the information map. In the case
of the data set variable “ADDR1”, its label is "ADDRESS". So, in the information map, that data item should be
named "ADDRESS". It would follow that the variable in the data set surfaced by the INFOMAPS LIBNAME engine
should also be named "ADDRESS". But, as the CONTENTS procedure output shows, the variable is named
"Address". Something has happened here. That something is found in the NEW INFOMAPS statement of the
INFOMAPS procedure. The option INIT_CAP defaults to YES. This option specifies whether to capitalize the first
letter of each word in the data item name. Therefore, the data set variable "ADDR1" with the label "ADDRESS"
becomes the data item named "Address" in the information map.

Also note that now the label for the "Address" variable uses the variable name from the data set, “ADDR1” in the label
"Physical column ADDR1". Where the original data set variables had no assigned label, the information map data
item name is the same as the data set variable name. This can be seen in the data set variables “DEPTCODE” and
“DIVCODE”. The variable names from the data set are the same names for the data items in the information map.

The next noticeable difference is some of the "Employee Info" data set variable names are slightly different from the
data set variable labels of the “EMPINFO” data set. Let's start with the first 2 "Employee Info" data set variables,
"Address" and Address_2". Note that in the “EMPINFO” data set, the labels for these two variables were of the same
value, "ADDRESS". Based on the default behavior for the procedure mentioned above, these two variables should be
named the same in the "Employee Info" data set. In fact, if you look at this information map via Information Map
Studio, you will see that these two data item names (that form the basis of the SAS variables names) are the same.
You will also notice in Information Map Studio when you open the “Employee Info” information map you receive a
warning that these two data items have the same name. The warning encourages you to change one of the names so
that both can have unique data items names within the information map. The information map will work with the two
data items having the same name, but the repetition will be confusing.

The INFOMAPS LIBNAME engine does not allow this condition. Notice that the variables listed in the CONTENTS
procedure output all have unique names. When the information map is created, each data item is assigned a unique
identifier. Normally, this identifier is based on the data item name. In the case of the two "Address" data items, the
second occurrence of the same data item name is given a unique identifier. So, the first "Address" data item is named
"Address" and has an ID of "Address". The second "Address" data item is named "Address" but it has an ID of
"Address_2". These unique IDs are what allows Information Map Studio to display multiple data items with the same
name yet still keep proper track of the data items as they are used in Information Map Studio. This is why the
INFOMAPS LIBNAME engine uses the data item's unique ID as the basis of the variable name and not the data item
name. This ensures that the SAS variables will always be unique and this is also why the second "Address" has a
SAS variable name of "Address_2".

The last noticeable difference in the variable names is that the “EMPINFO” data set labels contain embedded spaces.
When these labels were made into data item names, the embedded spaces were retained for the data item name and
unique ID. But, the "Employee Info" data set variable names must correspond to SAS variable naming rules.
Therefore, embedded spaces in the data item's unique ID have been converted to underscore characters. The same
substitution would have happened to any other character in the name that would be illegal in a SAS variable name.
This is why you should always use the CONTENTS procedure to determine the name of the SAS variables when
using the INFOMAPS LIBNAME engine. The embedded spaces and other illegal characters can be retained by using
the SAS system option VALIDVARNAME. By setting this option to ANY, normally illegal characters in SAS variable
names are retained. But, this also means that these variable names need to be specified as SAS name literals if they
contain embedded spaces or other illegal characters. Here is an example of the CONTENTS procedure output after
setting the VALIDVARNAME option to ANY:

 OPTION VALIDVARNAME=ANY;
 PROC CONTENTS DATA=emp.’Employee Info’n;
 RUN;

Output (showing only the CONTENTS variable listing):

 The CONTENTS Procedure

 Alphabetic List of Variables and Attributes

 # Variable Type Len Format Label

 1 Address Char 32 Physical column ADDR1
 2 Address_2 Char 32 Physical column ADDR2
 3 Birth Date Num 8 DATE9. Physical column BIRTHDAY
 4 Deptcode Char 3 Physical column DEPTCODE
 5 Divcode Char 3 Physical column DIVCODE
 6 Division Char 40 Physical column DIVISION
 7 Education Level Num 8 8. Physical column EDLEV
 8 Employee Gender Char 1 Physical column GENDER
 9 Employee Number Char 6 $6. Physical column EMPNO
 10 Extension Number Char 8 $8. Physical column PHONE
 11 Hire Date Num 8 DATE9. Physical column HDATE
 12 Identification Number Num 8 SSN11. Physical column IDNUM
 13 Jobcode Char 8 Physical column JOBCODE
 14 Location Char 8 Physical column LOCATION
 15 Name Char 32 $32. Physical column NAME
 16 Office Location Char 8 $8. Physical column ROOM
 17 Status Char 1 Physical column STATUS

UPDATE AN EXISTING DATA ITEM
To make the information map easier for all to use requires a modification to make all the data item names unique.
This is done with the following code:

 PROC INFOMAPS MAPPATH="&infomap_path";
 UPDATE INFOMAP "Employee Info";
 UPDATE DATAITEM "Address_2" NAME="Address 2"
 DESCRIPTION="Address line #2";
 SAVE;
 RUN;

 PROC CONTENTS DATA=emp.’Employee Info’n;
 RUN;

Output (showing only the CONTENTS “Address” variables):

 The CONTENTS Procedure

 Alphabetic List of Variables and Attributes

 # Variable Type Len Format Label

 1 Address Char 32 Physical column ADDR1
 2 Address_2 Char 32 Address line #2

Notice that the SAS variable name for the second address variable has not changed. Updating a data item's name
will not change the unique ID associated with the data item. So, even though the VALIDVARNAME option is still set
to ANY, the variable "Address_2" still contains an underscore as that is how the unique ID for that data item is
defined in the information map by the INFOMAPS procedure. Also note that the data item description (which shows
up as a label for the variable) has been updated.

ADDING DATA SOURCES

Now two more data sources will be added to the information map. The first new data source is the "Jobcodes" data
set. The only column we want to display from this data source is the "Title" column. Therefore, the COLUMNS
option is used so that just that column is made into a data item in the information map. When the relationship

between the “Jobcodes” and “EMPINFO” data sources is defined, the data sources are joined by the “Jobcode”
column. Since this column is already contained in the “EMPINFO” data source, it would be redundant to include it in
the “Jobcodes” data source as well.

The second data source is the “Salary” data set. All the columns in this data source will be made into data items
within the information map. Here is the code to add the data source to the information map:

 PROC INFOMAPS MAPPATH="&infomap_path";
 UPDATE INFOMAP "Employee Info";

 INSERT DATASOURCE SASSERVER="SASMain"
 TABLE="HR".jobcodes
 COLUMNS=("TITLE")
 ID="Jobcodes" /* force case of ID name; default is JOBCODES */
 DESC="Job Code Information";

 INSERT RELATIONSHIP LEFT_TABLE="Empinfo"
 RIGHT_TABLE="Jobcodes"
 JOIN=INNER
 CONDITION="(<<Empinfo.JOBCODE>>=<<Jobcodes.JOBCODE>>)";

 INSERT DATASOURCE SASSERVER="SASMain"
 TABLE="HR".salary
 ID="Salary";

 INSERT RELATIONSHIP LEFT_TABLE="Empinfo"
 RIGHT_TABLE="Salary"
 JOIN=INNER
 CONDITION="(<<Empinfo.IDNUM>>=<<Salary.IDNUM>>)"
 DESC="Employee Salary Information";

 SAVE;
 RUN;

FOLDERS IN METADATA

In the previous code, the “SALARY” data source has been inserted into the information map but there are no data
items defined. Now the data items will be defined. But first, it would be nice to keep the data items associated with
this data source separate within the information map. This does not affect the usage of the information map as it
pertains to access within a SAS program. When the information map is accessed via Information Map Studio, it can
help to have the data items residing in folders based on the data source. In this case, the data items derived from the
“SALARY” data source will be placed in the “Salary” Info folder. Here is the code that creates the folder:

 PROC INFOMAPS MAPPATH="&infomap_path";
 UPDATE INFOMAP "Employee Info";
 INSERT FOLDER "Salary Info";

 INSERT DATAITEM COLUMN="Salary".salary
 NAME="Annual Salary"
 FOLDER="Salary Info";

 INSERT DATAITEM COLUMN="Salary".enddate
 FOLDER="Salary Info";

 SAVE;
 RUN;

Figure 1 shows what the currently defined information map looks like in Information Map Studio. Note that the folders
have been expanded to show the data items contained in the folders.

Figure 1: Folders with Data Items

The "Salary Info" folder has been created, but what created the "Empinfo" folder? When the “EMPINFO” data source
was added earlier, the _ALL_ option was specified. When this option is specified, the data items created in the
information map are placed under a folder named for the data source.

Now notice the difference when viewing the CONTENTS procedure output of the "Employee Info" data set. This is
how the "Employee Info" information map looks when surfaced in SAS. The folder structure is ignored and the data
items all appear as variables on the same level.

 PROC CONTENTS DATA=emp.’Employee Info’n;
 RUN;

Output:
 The CONTENTS Procedure

 Data Set Name EMP.'Employee Info'n Observations .
 Member Type DATA Variables 20
 Engine INFOMAPS Indexes 0
 Created . Observation Length 0
 Last Modified . Deleted Observations 0
 Protection Compressed NO
 Data Set Type Sorted NO

 Label
 Data Representation Default
 Encoding Default

 Alphabetic List of Variables and Attributes

 # Variable Type Len Format Label

 1 Address Char 32 Physical column ADDR1
 2 Address_2 Char 32 Address line #2
 19 Annual Salary Num 8 DOLLAR12. Physical column SALARY
 3 Birth Date Num 8 DATE9. Physical column BIRTHDAY
 4 Deptcode Char 3 Physical column DEPTCODE
 5 Divcode Char 3 Physical column DIVCODE
 6 Division Char 40 Physical column DIVISION
 7 Education Level Num 8 8. Physical column EDLEV
 8 Employee Gender Char 1 Physical column GENDER
 9 Employee Number Char 6 $6. Physical column EMPNO
 20 Enddate Num 8 DATE9. Physical column ENDDATE
 10 Extension Number Char 8 $8. Physical column PHONE
 11 Hire Date Num 8 DATE9. Physical column HDATE
 12 Identification Number Num 8 SSN11. Physical column IDNUM
 13 Jobcode Char 8 Physical column JOBCODE
 14 Location Char 8 Physical column LOCATION
 15 Name Char 32 $32. Physical column NAME
 16 Office Location Char 8 $8. Physical column ROOM
 17 Status Char 1 Physical column STATUS
 18 Title Char 20 $F20. Physical column TITLE

ADDING FILTERS
With all the data items defined, attention can be turned to creating filters for the information map. A filter is
comparable to the WHERE statement in SAS. Its purpose is to restrict the data being retrieved. To retrieve the data,
an SQL procedure query is generated and executed behind the scenes. Filters that are applied to the data set that is
based on the information map show up in the SQL procedure query as WHERE (or, in some cases HAVING)
statements. You can see the resultant SQL query from Information Map Studio.

The difference between filters and the SAS WHERE statement is that filters are applied when the query is obtaining
the data from the data source. This has the potential to reduce the number of observations read into the SAS data
set. The SAS WHERE statement acts on the observations in SAS and therefore does not reduce the number of
observations in the data set. The SAS WHERE statement can keep only certain observations in the data set from
being used. The following code creates four filters in the information map. The first filter created is placed in the
"Salary Info" folder. The second filter, "Education and Publications Departments", contains the SUBSTRN function.
This function takes the first three characters of the job code and tries to match them to the values "EDU" or "PUB".
The CONTENTS procedure then shows the available filters.

 PROC INFOMAPS MAPPATH="&infomap_path";
 UPDATE INFOMAP "Employee Info";

 INSERT FILTER "Status is Current"
 CONDITION="<<root.Enddate>> IS NULL" folder="Salary Info"
 DESC="Currently employed";

 INSERT FILTER "Education and Publications Departments"
 CONDITION='SUBSTRN(<<root.Jobcode>>, 1, 3) IN ("EDU","PUB")'
 DESC="Employees in Education and Publications";

 INSERT FILTER "Host Systems Development"
 CONDITION='<<root.Division>>="HOST SYSTEMS DEVELOPMENT" '
 DESC="Employees in Host Systems Development";

 INSERT FILTER "Cary HQ"
 CONDITION='<<root.Location>>="Cary" '
 DESC="Located in Cary, North Carolina HQ";

 SAVE;
 RUN;
 PROC CONTENTS DATA=emp.’Employee Info’n;
 RUN;

Output (suppressing the CONTENTS variable list):

 The CONTENTS Procedure

 Data Set Name EMP.'Employee Info'n Observations .
 Member Type DATA Variables 20
 Engine INFOMAPS Indexes 0
 Created . Observation Length 0
 Last Modified . Deleted Observations 0
 Protection Compressed NO
 Data Set Type Sorted NO
 Label Filters 4
 Data Representation Default
 Encoding Default

 Information Maps

 FilterName FilterType FilterDesc

 Status is Current Unp Currently employed
 Education and Publications Depar Unp Employees in Education and Publications
 Host Systems Development Unp Employees in Host Systems Development
 Cary HQ Unp Located in Cary, North Carolina HQ

In the header, a "Filters" line has been added to note the total number of filters that are available to the INFOMAPS
LIBNAME engine. Note that the filter name "Education and Publications Departments" has been shortened. In SAS,
filter names follow the same rules as SAS variables and are therefore limited to 32-byte lengths. So when specifying
the filter "Education and Publications Departments", the shortened version, "Education and Publications Depar" must
be used.

MOVING OBJECTS WITHIN THE INFORMATION MAP

For moving objects around in the information map, the MOVE statement was added to the INFOMAPS procedure.
The MOVE statement can be used to better organize objects within the information map. The filters were created at
the top level of the information map. It might be better to have the filters grouped in their own folder. In the code
below, a folder is created and the listed filters are then moved into the newly created folder. This is followed by code
that moves the "Title" data item into the existing "Empinfo" folder.

 PROC INFOMAPS MAPPATH="&infomap_path";
 UPDATE INFOMAP "Employee Info";

 MOVE FILTER ID_LIST=("Education and Publications Departments"
 "Host Systems Development"
 "Cary HQ")
 NEW_LOCATION="Filters"/CREATE;

 MOVE DATAITEM "Title" NEW_LOCATION="Empinfo";

 SAVE;
 RUN;

Figure 2 shows how the moved filters and data item now look in Information Map Studio:

Figure 2: Folders, Data Items, and Filters

Remember that moving objects within the information map has no impact on the data set that the INFOMAPS
LIBNAME engine surfaces. The INFOMAPS LIBNAME engine ignores the folder structure within the information map.

EXAMPLE OF WHERE STATEMENT AND FILTER OPTION
As noted earlier, there are differences between the SAS WHERE statement and the filter option in the INFOMAPS
LIBNAME engine. This example will show those differences. Consider that an ad hoc report was requested showing
all employees who have a job code of "HSD007" in the Host Systems Development Division. The filter for restricting
the data to just the Host Systems Development Division employees already exists in the information map. The
restriction for the job code does not exist. While a filter can be created for this restriction, recall that this is an ad-hoc
report that will be run only once. Therefore, a SAS WHERE statement can be used. Here is the code:

 TITLE "Job Code HSD007 in the Host Systems Development Division";
 PROC PRINT DATA=emp.’Employee Info’n(FILTER='Host Systems Development'n);
 WHERE jobcode=”HSD007”;
 RUN;

Output:
 Job Code HSD007 in the Host Systems Development Division

 Birth
 Obs Address Address_2 Date Deptcode Divcode

 8 670 ATLANTIC ROAD CARY, NC 27513 27DEC1952 HSD HSD
 9 28 SUNRAY STREET RALEIGH, NC 27610 12FEB1947 HR0 HR0
 17 1688 KINGDOM DRIVE APEX, NC 27502 31MAY1956 HR0 HR0
 21 6918 CHATHAM STREET DURHAM, NC 27713 14MAR1952 HSD HSD

 Education Employee Employee Extension
 Obs Division Level Gender Number Number Hire Date

 8 HOST SYSTEMS DEVELOPMENT 16 F 000963 1441 30JUN1991
 9 HOST SYSTEMS DEVELOPMENT 18 F 000226 37 07OCT1992
 17 HOST SYSTEMS DEVELOPMENT 16 F 000239 1323 10MAY1982
 21 HOST SYSTEMS DEVELOPMENT 20 M 000069 1400 13SEP1991

 Identification Office
 Obs Number Jobcode Location Name Location

 8 373-67-1896 HSD007 Cary Eagle, Susan K. 3117
 9 736-90-6683 HSD007 Cary Fiorentino, Megan L. 7869
 17 736-60-6336 HSD007 Cary Quinones, Patricia R. 9198
 21 380-57-6510 HSD007 Cary Weber, Phil H. 9312

 Annual
 Obs Status Title Salary Enddate

 8 N PRODECT MGR $60,000 .
 9 N PRODECT MGR $57,000 .
 17 N PRODECT MGR $79,000 .
 21 N PRODECT MGR $67,000 .

The "Obs" column notes that at least 21 observations are in the data set, but the SAS WHERE statement permits
only four observations to be displayed by the PRINT procedure. In fact, there are 21 observations in the data set.
These are the Host Systems Development Division records. Without any filters on the query, there would be 317
observations in the data set. Using the "Host Systems Development" filter allows for only the 21 matching
observations to be read into the SAS session. Of those 21 observations, the SAS WHERE statement allows only 4 of
the observations from the data set to be displayed by the PRINT procedure. The FILTER statement restricted the
number of observations in the data set. The SAS WHERE statement allowed the PRINT procedure to display only 4
of the 21 observations in the data set.

Hatcher (2004) gives details about information maps and ad hoc reporting.

DATA ITEMS WITH AGGREGATE FUNCTIONS OR EXPRESSIONS

New to the INFOMAPS LIBNAME engine for SAS 9.2 is the ability to display data items that use aggregate functions
or are defined with expressions. The following code updates the "Jobcode" data item to use a default aggregate
function and adds the "Monthly Salary" data item to the information map. The "Jobcode" data item has the aggregate
function COUNT DISTINCT added as the default aggregation. The "Monthly Salary" data item is defined with an
expression. Therefore, it is a calculated data item. It does not appear in the original data source, but is created from a
physical column in the original data source. The calculated "Monthly Salary" data item being created here is 1/12 of
the yearly salary. Here is the code (note that AGGREGATE=YES needs to be specified as a data set option In the
CONTENTS procedure statement):

 PROC INFOMAPS MAPPATH="&infomap_path";
 UPDATE INFOMAP "Employee Info";

 INSERT DATAITEM EXPRESSION="<<Salary.SALARY>>/12"
 TYPE=NUMERIC
 NAME="Monthly Salary"
 FOLDER="Salary Info"
 DESC="Monthly salary computed from the yearly salary"
 CLASSIFICATION=MEASURE
 FORMAT="DOLLAR12.2";

 UPDATE DATAITEM "Jobcode" NAME="Jobcode"
 AGGREGATION=COUNTDISTINCT
 CLASSIFICATION=MEASURE;

 SAVE;
 RUN;

 PROC CONTENTS DATA=emp.’Employee Info’n(AGGREGATE=YES);
 RUN;

Output (from the CONTENTS procedure except the filter listing):

 The CONTENTS Procedure

 Data Set Name EMP.'Employee Info'n Observations .
 Member Type DATA Variables 21
 Engine INFOMAPS Indexes 0
 Created . Observation Length 0
 Last Modified . Deleted Observations 0
 Protection Compressed NO
 Data Set Type Sorted NO
 Label Filters 4
 Data Representation Default Aggregate Variables 5
 Encoding Default

 Alphabetic List of Variables and Attributes

 Default
 # Variable Type Len Format Aggregation Label

 1 Address Char 32 Physical column ADDR1
 2 Address_2 Char 32 Address line #2
19 Annual Salary Num 8 DOLLAR12. SUM Physical column SALARY
 3 Birth Date Num 8 DATE9. Physical column BIRTHDAY
 4 Deptcode Char 3 Physical column DEPTCODE
 5 Divcode Char 3 Physical column DIVCODE
 6 Division Char 40 Physical column DIVISION
 7 Education Level Num 8 8. SUM Physical column EDLEV
 8 Employee Gender Char 1 Physical column GENDER
 9 Employee Number Char 6 $6. Physical column EMPNO
20 Enddate Num 8 DATE9. Physical column ENDDATE
10 Extension Number Char 8 $8. Physical column PHONE
11 Hire Date Num 8 DATE9. Physical column HDATE
12 Identification Num 8 SSN11. SUM Physical column IDNUM
 Number
13 Jobcode Num 8 COUNT Physical column JOBCODE
 {Distinct}
14 Location Char 8 Physical column LOCATION
21 Monthly Salary Num 8 dollar12.2 SUM Monthly salary computed
 from the yearly salary
15 Name Char 32 $32. Physical column NAME
16 Office Location Char 8 $8. Physical column ROOM

17 Status Char 1 Physical column STATUS
18 Title Char 20 $F20. Physical column TITLE

With the AGGREGATE=YES option set, the output from the CONTENTS procedure has been changed. In the
header, an "Aggregate Variables" line has been added to note the total number of variables that contain default
aggregate functions. Also, the "Default Aggregation" column has been added to the list of variables section. This
column will display the default aggregation function for each aggregated variable. The "Monthly Salary" variable has
been added as the 21st variable in the data set. The "Jobcode" variable now displays the default aggregation
function, "COUNT{Distinct}". Sharp eyes will also note that the "Jobcode" variable's type has changed from character
to numeric. What happened? Since the AGGREGATE option is enabled, this variable no longer returns the job code
(which is a character value). This variable now returns the distinct count (a numeric value) of the job codes assigned
to the employees. This is demonstrated with the code:

 TITLE "Number of unique job codes assigned to employees";
 PROC PRINT DATA=emp.’Employee Info’n(AGGREGATE=YES KEEP=jobcode);
 RUN;

Output:
 Number of unique job codes assigned to employees

 Obs Jobcode

 1 192

The change in variable type appears only because the AGGREGATE option is set. If the option is not set, the
"Jobcode" variable would then return the actual job codes. The "Monthly Salary" variable values, as noted previously,
will be 1/12 of the Salary values. To display those values:

 TITLE "Show the Salary and Monthly Salary values";
 PROC PRINT DATA=emp.’Employee Info’n(OBS=5 KEEP='Annual Salary'n
 'Monthly Salary'n);
 RUN;

Output:
 Show the Salary and Monthly Salary values

 Annual Monthly
 Obs Salary Salary

 1 $183,000 $15,250.00
 2 $38,000 $3,166.67
 3 $85,000 $7,083.33
 4 $69,000 $5,750.00
 5 $100,000 $8,333.33

COMPLEX FILTER USAGE
Before SAS 9.2, the INFOMAPS LIBNAME engine supported multiple filter usage only with the Boolean AND
operator. Complex filter usage can now be created with the Boolean OR operator and the NOT operator. Also,
clauses of the FILTER option can now be grouped by using parentheses. In this next example, three filters are used
to create a complex filter clause. In this case the filters are restricting the data to only current employees who do not
work in host systems development or do not work at headquarters. Note that due to the use of the parentheses, the
NOT operator contains two filters: "Host Systems Development" and "Cary HQ". The results of these two filters are
joined together by the OR operator. Then the NOT operator is applied. With the AGGREGATE option turned on, the
results will show the total annual salary for each division outside host systems development and Cary headquarters.
Here is the output using the filters:

 TITLE "Total Annual Salary for Divisions outside Host Systems and HQ";
 PROC PRINT DATA=emp.’Employee Info’n
 (KEEP=’Annual Salary’n Division
 AGGREGATE=YES
 FILTER=(’Status is Current’n
 AND (NOT(’Host Systems Development’n
 OR ’Cary HQ’n))));
 RUN;

Output:
 Total Annual Salary for Divisions outside Host Systems and HQ

 Annual
 Obs Division Salary

 1 CALIFORNIA REGIONAL $96,500
 2 EDUCATION $193,000
 3 SALES & MARKETING $197,000
 4 TEXAS REGIONAL $918,000

STORED PROCESS

The INFOMAPS procedure enables you to set a stored process for an information map. A stored process is a
SAS program that is stored on a server and can be executed as required by requesting applications. Once the stored
process is set for the information map, it is automatically invoked when the INFOMAPS LIBNAME engine accesses
the information map. Therefore, no options need to be set on the LIBNAME engine statement to use the stored
process. Here is an example of setting a stored process:

 PROC INFOMAPS MAPPATH="&infomap_path";
 UPDATE INFOMAP "Employee Info";
 SET STORED_PROCESS NAME="infomap_revert"
 LOCATION="/BIP Tree/StoredProcess" ;
 SAVE;
 RUN;

SURFACING INFORMATION MAP DETAILS VIA SQL DICTIONARY TABLES

There is much information available on the information maps. The DATASETS and even the enhanced CONTENTS
procedures can surface only so much. To surface the additional information, new tables were created for the
INFOMAPS LIBNAME engine in the SQL procedure's dictionary tables. The new INFOMAPS LIBNAME engine-
specific tables are: INFOMAPS, DATAITEMS, and FILTERS.

INFOMAPS DICTIONARY TABLE

The INFOMAPS table contains details about the information maps available via the INFOMAPS LIBNAME engine.
The following code is used to see the data in the INFOMAPS dictionary table. Be careful to note that the values
contained in quotes in the WHERE clause are case sensitive. The LIBNAME value always has to be specified in
uppercase letters. The MEMNAME value is in mixed case. This is the default for the INFOMAPS LIBNAME engine.
When in doubt on how to specify the values in the SQL procedure WHERE clause while using the dictionary tables,
note how the library name, member name, variable name, and/or filter name are specified in the CONTENTS
procedure output. The WHERE clause will want the same value specified within the quotes.

 LIBNAME SQLDICT infomaps MAPPATH="&infomap_path"
 AGGREGATE=YES;

 PROC SQL;
 TITLE "SQL Dictionary Table INFOMAPS";
 SELECT * FROM dictionary.infomaps WHERE LIBNAME="SQLDICT"
 AND MEMNAME="Employee Info";

Output:

 SQL Dictionary Table INFOMAPS

Library
Name Member Name
 Information Map Information
Information Map Name Repository Map Path
Information Map Information Map
Prompt ID Description
ƒƒ
SQLDICT Employee Info
Employee Info /BIP
 Tree/Users/
 sasbim/demo

The output shows the details available for the information map that is surfaced as the "Employee Info" data set:

• the SAS library name, "SQLDICT"
• the SAS member name, "Employee Info"
• the information map name, "Employee Info"
• the path to the information map, "/BIP Tree/Users/sasbim/demo".

The rest of the information map information values do not contain data.

DATAITEMS DICTIONARY TABLE

The DATAITEMS table contains details about the data items contained in the data sets surfaced by the INFOMAPS
LIBNAME engine. The following code is used to see the data in the DATAITEMS dictionary table:

 TITLE "SQL Dictionary Table DATAITEMS";
 SELECT * FROM dictionary.dataitems WHERE LIBNAME="SQLDICT"
 AND MEMNAME="Employee Info"
 AND NAME="Jobcode";
Output:
 SQL Dictionary Table DATAITEMS

 Library
 Name Member Name Column Name Data Item Name
 Data Item
 Data Item ID Data Item Path Classification
 Data Item Data
 is Item is
 Data Item Default Aggregation Calculated? Usable?
 Data Item Data Item
 Prompt ID Description
 ƒƒƒ
 SQLDICT Employee Info Jobcode Jobcode
 Jobcode /Empinfo MEASURE
 COUNT {Distinct} NO YES
 Physical column
 JOBCODE

The output shows the details available for the data items in the "Employee Info" data set:

• the SAS Library Name, "SQLDICT"
• the SAS Member Name, "Employee Info"
• the SAS Column Name, "Jobcode"
• the Data Item Name, " Jobcode "
• the Data Item ID, " Jobcode "
• the Data Item Path, "/Empinfo"
• the Data Item Classification, "MEASURE"
• the Data Item Default Aggregation, “COUNT {Distinct}”

• if the Data Item is Calculated, "NO"
• if the Data Item is Usable, "YES"
• the Data Item Description, "Physical column JOBCODE"

The rest of the data item information values do not contain data.

FILTERS DICTIONARY TABLE

The FILTERS table contains details about the filters available to the data sets surfaced by the INFOMAPS LIBNAME
engine. The following code is used to see the data in the FILTERS dictionary table:

 TITLE "SQL Dictionary Table FILTERS";
 SELECT * FROM dictionary.filters WHERE LIBNAME="SQLDICT"
 AND MEMNAME="Employee Info"
 AND NAME="Cary HQ";
Output:
 SQL Dictionary Table FILTERS

 Library
 Name Member Name SAS Name for Filter Filter Name
 Filter Prompt ID
 Prompt Usage with Filter
 Filter ID Filter Path Usage Filter Description
 ƒƒƒ
 SQLDICT Employee Info Cary HQ Cary HQ
 Cary HQ /Filters Located in
 Cary, North
 Carolina HQ

The output shows the details for the filters available for use with the "Employee Info" data set:

• the SAS Library Name, "SQLDICT"
• the SAS Member Name, "Employee Info"
• the SAS Name for Filter, "Cary HQ"
• the Filter Name, "Cary HQ"
• the Filter ID, "Cary HQ"
• the Filter Path, "/Filters"
• the Filter Description, "Located in Cary, North Carolina HQ"

The rest of the filter information values do not contain data.

CONCLUSION
Information maps are a powerful tool. The use of information maps in Base SAS is new as of 9.1.3 and 9.2, and it
brings many modifications. Therefore, now that you know how to use this tool in Base SAS, it will enhance THE
POWER TO KNOW®

REFERENCES
Hatcher, Diane. 2004. “Designing Information Maps for Ad Hoc Reporting.” Proceedings of the Twenty-Nineth Annual
SAS Users Group International Conference. Cary, NC: SAS Institute Inc. Available at
http://www2.sas.com/proceedings/sugi29/104-29.pdf

SAS Institute Inc. 2009. Base SAS 9.2 Guide to Information Maps Cary, NC: SAS Institute Inc.

RESOURCES

You can download both this SAS Global Forum 2009 paper and the program that it uses from
http://support.sas.com/saspresents

ACKNOWLEDGMENTS
I am indebted to the INFOMAPS team for their invaluable help putting together this paper:

Sue Her and Helen Wolfson (INFOMAPS procedure)

Carlotta Hicks and Giselle Smith (INFOMAPS LIBNAME engine)

CONTACT INFORMATION
Your comments and questions are valued and encouraged. Contact the author:

Bill McNeill
SAS Campus Drive
SAS Institute Inc.
E-mail: Bill.McNeill@sas.com

SAS and all other SAS Institute Inc. product or service names are registered trademarks or trademarks of
SAS Institute Inc. in the USA and other countries. ® indicates USA registration.

Other brand and product names are trademarks of their respective companies.

