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ABSTRACT  

The Food and Drug Administration has challenged researchers to demonstrate whether or not gene expression data 
can reliably predict future disease. JMP

®
 Genomics responded with a suite of predictive modeling tools suitable for 

short, fat data: tens of observations with tens of thousands of variables. Our approach is to compare a variety of 
models, as we do not know a priori what is appropriate for a particular data set. The number of types and subtypes of 
models that are practical to consider is primarily limited by CPU time. SAS

®
 Grid Manager, in conjunction with JMP 

Genomics, provides the intelligent allocation of distributed computing resources and parallel application execution 
necessary to provide more accurate and timely predictive modeling. In this paper, we describe our approach: the 
model suite, learning curves for evaluating the number of observations, cross-validation model comparison, and 
SAS

®
 Grid Computing.  

THE BIRTH AND ADVANCE OF GENOMIC SCIENCES 

During the last decade of the 20
th

 century the United States embarked on one of the most audacious and potentially 
transformative human endeavors in recent memory: the sequencing of the human genome.  The project had its 
genesis at the National Institutes of Health, under the direction of James D. Watson, but it quickly morphed into a 
competitive race between government and private industry. At the dawn of the 21

st
 century, the first draft of the 

genome was released. Three years later, in April 2003, a final draft was completed, giving us the ability for the first 
time to interrogate the mother of all codes: the genetic code that makes us human.  Expression technology, the ability 
to assay the expression of hundreds of thousands of genes at a time, quickly followed suit, and the science continues 
to evolve at a phenomenally rapid pace, spawning industry after industry, and bringing ever closer the tantalizing 
prospect of truly personalized medicine.  Today genomics labs around the world are churning out reams of both 
sequence and expression data around the clock. The sheer volume of data is overwhelming. A single run from a next 
generation sequencing instrument can generate over a terabyte of data. The transformation of this genomic data into 
actionable clinical information is the great challenge of this century.  

JMP GENOMICS: A UNIQUE DISCOVERY PRODUCT FROM SAS  

While statisticians and biostatisticians typically handle analyses of clinical genomics data sets intended to support the 
development and validation of diagnostic tests, many scientists in discovery groups are not statisticians.  These 
biologists and bioinformaticists might not be expert programmers, but they desire statistically rigorous tools to analyze 
their genomics data sets.  In response to this demand, some genomics software applications, such as JMP Genomics 
from SAS, have incorporated point-and-click applications for building and validating predictive models. JMP 
Genomics is a comprehensive software application specifically designed for the analysis, manipulation, and 
visualization of data derived from large-scale genomics experiments.  In addition to predictive modeling processes, 
JMP Genomics has flexible import processes that can accommodate data structures from a wide variety of platforms 
and perform robust statistical analytics on the resulting data sets.  While expression data sets have typically been 
derived from spotted or manufactured array-based microarray platforms or real-time PCR experiments, bead-based 
array platforms and summarized data from next generation sequencing runs are also becoming heavily used.  JMP 
Genomics provides clustering tools that can be useful in helping scientists to identify candidate biological pathways 
affected by disease or treatments.  This application also offers whole genome Single Nucleotide Polymorphism (SNP) 
analysis capabilities as well as powerful and efficient analysis of data derived from gene expression experiments.  

ROLE OF PREDICTIVE MODELING IN GENOMICS  

An important role of predictive modeling in genomics is to estimate the probability of a disease from genetic or gene 
expression data. The model is trained on historical data in which the disease state is known, and then applied to 
patients in whom the risk of disease is unknown. The model is generally not built with biological knowledge because 
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too little biology is known about the relationship between the genes and the disease. On the contrary, the model is 
usually trained from statistical associations from which a biologist might hope to discover predictive genetic markers 
that could then be used in a diagnostic setting.  
 
The lack of a known biological relationship is one of three significant obstacles for creating a model. The others are a 
weak relationship and too many genes per person in the data. The model builder therefore needs to explore a wide 
variety of relationships, and to guard against overfitting the model to the over-abundant genetic variables. 

 

OVERFITTING 
 
Overfitting occurs when the model not only fits the signal, but also fits the noise in the historical data. For example, if 
some genes are partially related to a disease state and some others have nothing to do with the disease, we can 
imagine training a model to use up all the information in the partially related genes, and then to search the unrelated 
gene data for an association with the still unexplained occurrence of disease. To the extent that the model 
incorporates these spurious associations, the model is overfitting. The more people per gene in the historical data, 
the less likely a spurious association occurs. Unfortunately, gene expression data typically has 50 to 500 times as 
many gene expression variables than people. If nothing is done to prevent it, a model will be based on spurious 
associations. 
 
JMP Genomics addresses overfitting first by “honest” cross-validation. 

 

CROSS-VALIDATION 
 
When a model overfits the training data, the error rate of the model will be worse when the model is applied to new 
data than when applied to the original training data.  The error rate on new data is called the generalization error of 
the model. 
 
Cross-validation is a method of evaluating the generalization error of a model.  A number of models are trained, each 
with a different subset of the data, and then evaluated on the data excluded from the training. The training process is 
the same for each model, only the training data differs. Notice that the model actually deployed on new data is usually 
trained with all the available data. Cross-validation does not use that model, even though it is evaluating it.  
 
JMP Genomics offers several methods of cross-validation within its Cross-Validation Model Comparison Analytical 
Process (CVMC). Stratified 5-fold cross-validation is used in the examples in this paper. In K-fold cross-validation, the 
available data is partitioned into K subsamples. K models are trained.  The training data from the Kth model consists 
of all but the Kth subsample of observations. After all K models are trained, each observation will have been used 
exactly once in evaluating a model. The cross-validation estimate of error is the average of the evaluations. For 
example, the cross-validation estimate of classification accuracy is the proportion of observations correctly classified, 
where an observation in the Kth subsample is classified using model K. Note the cross-validation estimate is not the 
error estimate of a particular model. Rather, it estimates the generalization error of the specific modeling algorithm for 
a given number of observations. Using K=10 produces a much more optimistic estimate. For example, it provides a 
higher accuracy rate than K=5. Using K=2 tends to produce a more pessimistic estimate. Whether the estimate over- 

or underestimates the "true" generalization error is usually not known. Without knowing this, cross-validation is still 
helpful for comparing different models, as is done in CVMC. 

 

STRATIFICATION AND REPEATED CROSS-VALIDATION 
 
JMP Genomics stratifies the cross-validation of a categorical trait: the proportions of the category within each 
subsample are as close as possible to the proportions in the original data. Stratified cross-validation tends to reduce 
the variance of the cross-validation estimates. JMP Genomics also repeats cross-validation by using different 
partitions in each individual cross-validation run. The resulting scatter of estimates gives an impression of their range-
-a crude impression of their standard deviation.  The impression can be deceptive though, especially for a large K 
model, because a training data set in one cross-validation run will have many observations in common with a training 
data set in a repeated run. 

 

CROSS-VALIDATION MODEL COMPARISON RESULTS  
 
Generating cross-validation estimates from several types of models is the purpose of the JMP Genomics Cross-
Validation Model Comparison Analytical Process (CVMC). We show two examples, one from a gene expression data 
with 30 observations, and the other using intensities from Single Nucleotide Polymorphism (SNP) microarray with 
about 3500 observations. 
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GENE EXPRESSION DATA 
 
Figure 1 shows CVMC results for gene expression data consisting of 30 observations and 45105 expression 
measurements.  The data originates from a toxicological study:  An animal is given a chemical being studied, 
expression data is subsequently collected, and, months later, the animal is examined for cancer.   

 
 

Figure 1. 5-Fold Random Cross-Validated Model Accuracy Comparison 
 
If a model can use expression data to predict whether the animal will get cancer, researches would have another clue 
for early detection of cancer and possibly reduce the time and expense of testing for chemical carcinogens. 
 
The vertical axis measures accuracy, or the proportion of observations the model correctly predicts. The horizontal 
axis shows eight types of models.  For each type, 5-fold cross-validation was repeated 50 times. The estimate of 
accuracy for each of the 50 CV runs is plotted. Because there are only 30 observations, the number of distinct values 
of accuracy is limited.  Ten distinct points are the most that appear for any model. 
 
A box-plot is overlaid on the points to indicate the quartiles of the points. Within the box-plot is a diamond, giving the 
impression of standard errors. The horizontal line in the middle of the diamond is the average of the 50 runs. It is the 
estimate of the accuracy to compare other models with. 
 
The model on the left has the highest accuracy.  Notice that the range of points includes the averages of the 
accuracies of each of the other models, suggesting that the model is not a clear winner. The panel on the right 
contains overlapping circles, one for each model. The center of a circle is the same height as the accuracy for its 
model. In an idealized situation, two circles only intersect if there is no statistical difference between the models.  The 
present example is not ideal because the cross-validation runs are not independent: different runs have different 
training data in common. 
 
One of the most important lines on the plot is the horizontal line near the height, 0.57.  That marks the accuracy of an 
estimate with no model: 0.57 of the 30 observations had the same outcome, cancer.  A model with less accuracy than 
this baseline is worse than having no model at all.  Fortunately, none of the models shown have this problem, on 
average. 
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Figure 2 shows the same results with a different error measure. Instead of accuracy, the vertical axis is the root-
mean-square-error (RMSE), sometimes known as the square root of the Brier score. Smaller values of RMSE are 
better, which is the opposite of accuracy. Notice that there are more points above each model than in the previous 
plot. RMSE is a more refined measure than a simple proportion of counts. That is why some people prefer it. 
 

 
 

Figure 2. 5-Fold Random Cross-Validated Model RMSE Comparison 
 
Next notice that the average RMSE for four of the models are above the baseline. Those models are overfitting so 
much they are worse than having no model. Even the first model, the model that has the best CV accuracy, is worse 
than having no model on this plot. If the purpose of model is limited to classification accuracy, then perhaps the first 
model can be used.  However, if the model will be used to estimate the probability of disease, then the best model on 
the RMSE plot should be used. 
 
Another type plot, called the Reliability plot, reveals the problem. The vertical axis ranges from 0 to 1.  It represents 
the proportion of observations with cancer. The horizontal axis ranges from 0 to 1 and is divided into 10 equally 
spaced bins. Each bin collects those observations whose predicted probability of cancer is within the range of the bin.  
The point plotted in the bin is the fraction of proportion of observations with cancer among those observations whose 
predicted probability of cancer is within the bin range. 
 
The reliability plot in Figure 3 shows the CV results from the first model, which is the model with the best accuracy. 
Going from left to right, points are plotted with a higher probability of cancer, according to the model. Notice that the 
actual proportion of cancer patients does not increase much with the probability. 
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Figure 3. Reliability Diagram from Discriminant Analysis Model 
 
Figure 4 shows the results from the model with the best average cross-validated RMSE. The proportion of cancer 
patients increases with the probability of cancer. This model is much more reliable for statements about the 
probability of cancer. 
 

 
 

Figure 4. Reliability Diagram from Partial Least Squares Model 

 

LEARNING CURVES 
 
Some types of models need more observations than others to achieve good results. A learning curve is a plot of 
model error against the number of observations in the training data. Generally, the curve starts relatively steep, slowly 
flattens out, and might, eventually, turn back from whence it came. The slope of the curve indicates the improvement 
in prediction for each additional observation in the training sample. After drawing one curve, others can be drawn 
using different samples for training data.  If the curves are approximately parallel, then the dependence between error 
and training size is fairly stable over training samples. On the other hand, if the curves seem unrelated to each other 
over a range of initial training sample sizes, the generalization error from models trained with these sample sizes is 
unreliable. 
 
The Learning Curve Model Comparison Analytical Process (LCMC) in JMP Genomics plots a point to mark the error 
estimate from the repeated cross-validation of a model. The same model is rebuilt with different sizes of training data,  
producing the different points along the curve. Larger training data sets include all the observations of smaller data 
sets. Different learning curves are made for the same type of model by using different subsets of the available data 
for the training data sets. The envelope of these curves is narrow or wide depending on whether the model is 
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reproducible on different data or not. 
 
Learning curves are not informative unless there are enough observations to show a difference in model prediction. 
The Welcome Trust Case Control Consortium (WTCCC) has provided 2519 SNP microarray intensities for about 
2000 cases with Coronary Artery Disease and about 1500 control observations. Figure 5 shows learning curves for 
three types of models run on these data. The vertical axis represents RMSE.  Smaller values represent better 
models. The three thick lines are the average learning curves for the three models. For each, the RMSE moves 
downward, left to right, from small training data sets to larger ones. The learning curve with the highest RMSE, 
becomes horizontal around 1000 observations, indicating that more data is superfluous. It even rises a little at the 
end, suggesting the model might be overfitting with so much data. The bottom two curves are smoother, and continue 
to descend at the largest data sizes, suggesting that more training data would improve the models. The model with 
the middle RMSE at small data sizes becomes the preferred model when there are more than 1500 observations. 
In general, different models require different amounts of training data to achieve comparable fit, and some that 
require more data can end up fitting better.  
 

 
 

Figure 5. Average RMSE Fixed Test and Models Individuals Learning Curve 
 
The individual learning curves are shown as thin, dotted lines. The individual curves of the highest RMSE model vary 
greatly in height compared to the individual curves of the two models with smaller RMSEs. Individual curves that vary 
greatly are a warning that the model predictions on new data will be much different than expected. In this example, 
the model with the worst RMSE also has the worst variability. This is a coincidence: The best model can have the 
worst variability. 

 

MODEL SPACE 
 
Having cross-validation and learning curve tools, the question is now which models to consider. The quick answer is 
"all of them." However, so little is known about the dependence of phenotypes on genetics information that no 
modeling relationship should be overlooked. "All of them," though, are too many: Suppose there are 10 algorithms, 
each with 10 parameter settings, and five different preliminary variable selection methods. Ten iterations of 5-fold 
cross-validation would require 25,000 models being fit to the data. The ability to train this many depends on the 
available computing resources. Since the computational capabilities of standard issue research computers are 
limited, it is imperative to develop parallelized algorithms and implement them in such a fashion that multiple 
"clusters" of computers  can be used to solve the problem.  

 

PARALLELIZATION IN JMP GENOMICS USING SAS GRID MANAGER 
 
JMP Genomics addresses the need to parallelize by effectively harnessing the power of SAS Grid Computing.  SAS 
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Grid Computing enables processes that can be run independently, such as modeling within CVMC and LCMC, to run 
on multiple computers at once.  This is accomplished by virtue of the SAS Grid Manager product, which enables a 
single “master control node” to direct computational nodes to perform the parallelized operations. 
JMP Genomics enables the user to configure their Grid environment using the Grid tab, which is located on the 
“Configure Genomics Settings” dialog box. The  Grid tab is shown in Figure 6. 

 

 
 

Figure 6:  The Grid Tab of Configure Genomics Settings Dialog Box. 
 

The Cross Validation Model Comparison dialog box (Figure 7) has the option Use Grid Computing. When this option 

is selected and an authenticated grid is present, the process branches so that the various models are distributed to 
the computational nodes in the grid. 
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Figure 7:  Options Tab of Cross Validation Model Comparison Dialog Box with Use Grid Computing Check 

Box Selected. 
 

The distribution algorithm counts the number models to be evaluated, and the number of available nodes in the grid.  
It then attempts to make a connection to each node. When a connection is successful, an RSUBMIT statement is 
executed that sends one of the models to be evaluated to that node.  Once a node is in use, it cannot be connected 
to a second time, so the algorithm moves on to the next node. Once a job is finished, a node becomes available. This 
process continues until all requested models are evaluated. The results are then collated in a special folder 
designated as the “Share Grid Folder” and surfaced to the user in JMP with the graphics used in JMP’s internal one-
way modeling platform. 

 

BENCHMARKING USING THE MICROARRAY QUALITY CONSORTIUM AND WELCOME TRUST 
DATA SETS. 
 
To quantify the computational advantage gained by implementing a parallelized model comparison program we ran 
several benchmarks.  In the first case, we ran CVMC with 84 predictive models. The analysis parameter conditions 
for CVMC were Stratified Random as the holdout method, the holdout size was K=5 and the number of random 

holdout iterations equaled 50.  Our test box was a single computational node, (Dell Optiplex 755 with Intel Dual Core 
CPU E6550 running at 2.33 GHz clock speed and equipped with 4 Gigabytes of RAM, with JMP Genomics installed 
on Windows XP Service Pack 3. On this node CVMC ran for over 95 hours.  Using a grid of nine computational nodes 
with similar specifications, CVMC finished in 11.5 hours.   
 
In the second case, the input table for predictive models contained 30 observations and 45105 variables.  Two 
predictive models were used in the CVMC. The first model was the Partial Least Squares that defined 120 as the 
maximum number of filtered predictor, t-test as the statistical testing method for continuous predictors, and the 
proportional as assumed prior proportions of each of the classes. The second model was the Partition Trees that also 
defined 120 as maximum number of filtered predictor, t-test as statistical testing method for continuous predictors, 
and the proportional as assumed prior proportions of each of the classes, plus we chose Forest as the automated 
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model type with 100 as maximum number of trees for four being the maximum number of variables to consider for 
splitting a node.  The CVMC selected Random Partition as the holdout method, specified the holdout size of the 
number of folds or groups in the partition (K fold) as 5, and then changed the number of random holdout iterations as 
10,  25, 50, 75 and 100 with and without the active grid. Figure 8 shows the results of this comparison. As indicated in 
the graph, the increase in speed very closely approximated a linear relationship.  
 
Figure 8 shows a comparison of the amount of time required for various iterations when the grid was used, and when 
it was not used. The red dots indicate time required when not using the grid. The triangles indicate time required with 
the grid. Triangle are color coded based on the number of nodes in the grid. Green = 10 nodes.  Light Blue = 12 
nodes. Dark Blue = 13 nodes. 
 

 
Figure 8. A Comparison of the Amount of Time Required for Various Iterations When the Grid Was Used 

and When It Was Not Used.  

 
Figure 9 gives us a plot of versus actual results when using the grid environment. 

 

 
 

Figure 9. Plot of Optimal Versus Actual Results When Using the Grid Environment. 

SAS Presents... JMPSAS Global Forum 2009

 



10 

 

 
 
Figure 10 shows a comparison of the amount of time required for various iterations when the grid was used, and 
when it was not used. The blue line indicates time required when not using the grid. The red line indicates time 
required with the grid. 
 
A third case used eight predictive models: 
 

1. The Discriminant Analysis model defined 30 as the maximum number of filtered predictor, t-test as the 
statistical testing method for continuous predictors, specified quadratic metric for computing distances 
between groups and the proportional as assumed prior proportions of each of the classes and selected 
stepwise as variable selection method with significance level for significance variables as 0.05 and 
significance level for retaining variables as 0.05.   

2. The Distance Scoring model defined 30 as maximum number of filtered predictor, t-test as the statistical 
testing method for continuous predictors, specified the Euclid method for computing distances between 
observations with Mean Class Centroid as nominal dependent variables, selected  proportional as assumed 
prior proportions of each of the classes, and Gaussian as threaded kernel function for computing posterior 
probabilities.  

3. The GLM Select model defined 30 as the maximum number of filtered predictor, t-test as the statistical 
testing method for continuous predictors, selected  proportional as assumed prior proportions of each of the 
classes and using Stepwise as the model selection method with SBC for the criterion for stopping model 
selection. 

4. The  K Nearest Neighbors Model defined 30 as maximum number of filtered predictor, t-test as the statistical 
testing method for continuous predictors, specified 5 as number of nearest neighbors, used Mahalanobis as 
distance metric, and selected  proportional as the assumed prior proportions of each of the classes. 

5. The Logistic Regression model defined 120 as maximum number of filtered predictor, t-test as the statistical 
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testing method for continuous predictors, used Penalized as the variable selection method with –log 10 
equal to 1 as controlling the severity of the penalty, and selected  proportional as assumed prior proportions 
of each of the classes.  

6. The Partial Least Squares model defined 120 as maximum number of filtered predictor, t-test as statistical 
testing method for continuous predictors, selected  proportional as the assumed prior proportions of each of 
the classes and specified 10 as number of PLS components. 

7. The Partition Tree model defined 120 as maximum number of filtered predictor, t-test as the statistical 

testing method for continuous predictors, and proportional as the assumed prior proportions of each of the 
classes, and chose Forest as the automated model type with 100 as maximum number of trees for four 
maximum number of variables to consider for splitting a node.   

8. The Radial Basis Machine model defined 60 as the maximum number of filtered predictor, t-test as the 

statistical testing method for continuous predictors, and proportional as the assumed prior proportions of 
each of the classes. 

 
Eight nodes were used on the grid. Each model was run for 25 and 50 iterations with and without the grid nodes. 
Figure 11 shows these results. 
 

 
Figure 11.  Time Necessary to Run 25 and 50 Iterations on Eight Models.   

 
The presence of the grid sped up compute time by 94.6%  when running  25 iterations on 8 models. Compute time 
was improved by 90.8% when running 50 iterations on 8 models.  

 
CONCLUSION 
 
These results confirmed our instinct that modeling problems that have thus far been intractable become tractable 
when one adopts a parallelization strategy.  Grid-enabled JMP Genomics 4.0, the first release of the software that 
includes parallelization, combined with SAS Grid Manager represents a quantum leap forward in terms of 
computational tractability. Future releases will refine and improve this paradigm, and it is hoped that those problems 
that are currently not addressed due to their computationally intense nature will be able to be quickly and efficiently 
addressed using JMP Genomics.  

 

CONTACT INFORMATION 

Your comments and questions are valued and encouraged. Contact the author at: 
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Email:  Stan.Martin@jmp.com 
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SAS and all other SAS Institute Inc. product or service names are registered trademarks or trademarks of SAS 
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