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ABSTRACT 
This paper is designed for the beginner to intermediate practitioner of the form of analysis known as Design of 
Experiments (DOE).  Specific objectives include: 
 

• Defining some of the terminology 
• Introducing major thought processes, philosophy, strategies, and rules of thumb 
• Keeping objectives in the context of JMP® as an example of how this type of analysis is implemented in 

software 
• Presenting a relevant example of the use of DOE in assay development 

 
Letting the software worry about the how of DOE, this paper focuses on the when and why to do what. 
 
ALTERNATE TITLES 
 

How to Vary More Than One Variable at a Time & Still Survive Your Audit 
 
INTRODUCTION 
The programmers at the SAS Institute have labored long and hard to beef up the DOE module for JMP as the version 
number has increased.  In response to this effort, a primary objective of this paper is to answer the question, “Why 
should I pay any attention to the DOE module in JMP?”  Or perhaps in other words, “What’s in DOE for me?”  SAS 
documentation and training is one excellent way to both learn the software and the methodology, but here we will 
focus on some of the ideas not covered in that material as an introduction to the concept of DOE. 
 
WHAT IS DOE? 
 
DOE is an acronym for Design of Experiments, a collection of techniques sometimes known amongst statisticians as 
“multivariate experimental design and analysis.”  In somewhat plainer English, it is a methodology which allows the 
experimenter to systematically vary multiple factors within the context of one experimental design, and use the results 
to create mathematical models of the process being examined.  Using these models, it is then possible to find the 
true optimum of a process, accounting for interactions 
and revealing the most important inputs into that 
process.  This is in distinct contrast to the time honored 
tradition approach of one-factor-at-a-time. 

“Statistical analysis:  Mysterious, sometimes bizarre, manipulations 
performed upon the collected data of an experiment in order to 
obscure the fact that the results have no generalizable meaning for 
humanity.  Commonly, computers are used, lending an additional 
aura of unreality to the proceedings.” 
   · Author Unknown 

 
OFAT 
 
OFAT is another acronym frequently seen in this context, and does not refer to how one answers the wife’s question 
regarding how her new dress makes her look!  As concluded in the previous section, OFAT, or one-factor-at-a-time, 
is the guiding principle of the scientific method, especially when investigating the unknown.  In such cases, it is the 
method of choice.  However, when you know the input factors for a given process, and have an approximation of the 
values for those inputs that yield acceptable final product, OFAT fails to give you any information about interactions 
and consequently frequently results in finding secondary optima rather than the true optimum set of conditions for 
your process.  In addition, the statistical power of OFAT is considerable less than DOE and the ability to predict 
results when inputs vary is totally absent from OFAT. 
 
As an example of how OFAT works (or doesn’t work well, 
depending on your viewpoint), consider the situation of a 
process with two input variables.  With OFAT, the investigator chooses a fixed setting for one input variable and finds 
the optimum for the second variable.  As a second step, the second variable is fixed at this alleged optimum and now 
the first variable is investigated and the optimum found for it.  In so doing, the alleged optimum for the process is 
(sometimes) found.  In situations where there is an interaction between the two input variables, the possibility of 
finding a secondary optimum and not the true optimum of the process increases greatly.  In more complex cases 
where there are more than two input factors under investigation, the situation rapidly becomes unmanageable.  
Moreover, since the presence of the interaction is not revealed by OFAT, should problems arise in the future when 
natural variation leads to a shift in the input factors, there is no true characterization of the process thus minimizing 
the probability of finding a solution. 

“Prediction is very hard, especially when it is about the future.” 
  · Yogi Berra
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THE SPECIFIC GOALS OF DOE  
 
The specific goals of DOE are those which truly cannot be easily accomplished by OFAT, and all revolve around 
characterizing to a high degree the process under investigation.  The first goal is to identify critical parameters for 
further study, while eliminating those whose impact is minimal or totally insubstantial.  The second is to predict the 
performance of your process in a robust (reproducible) fashion.  The overarching goal of both of these is to do so with 
the minimum use of resources, both time and equipment/reagents, operationally defined as the smallest number of 
experimental trials that will give you meaningful data for analysis. 
 
At this point, it should be emphasized that DOE is not a panacea for shortcomings in your experimental situation.  It is 
a tool, and as any other tool, has its appropriate and inappropriate use.  One must know how and when to use it.  
That said, it is a very powerful tool when used 
properly. “[Don’t] use statistics as a drunken man uses lamp posts, for support 

rather than illumination.” 
  ·Andrew Lang

 
THE LOGICAL FLOW OF DOE 
 
When DOE was defined, an adjective used was “systematic.”  This suggests a logical flow to the methodology, and 
that flow may be summarized in the following bullet points: 
 

• State & document objectives 
• Select variables/factors & models to support the objective 
• Create a design to support the model 
• Collect the data based on the design 
• Execute the analysis with the software 
• Verify the model with check points 
• Report:  if it ain’t documented, signed and witnessed, you never done it! 

 
The remainder of this paper will expand upon each of these steps with some details, and then an example of DOE in 
use will be examined. 
 
OBJECTIVES 
 
Someone has aptly said that if you aim for nothing, you are bound to hit it.  Thus, it is crucial at the outset to have a 
clear picture of what you need to accomplish with the experiments you are planning.  There are two distinct goals for 
DOE that call for two distinct types of designs. 

 
The first is simply to identify critical factors.  This is called 
a SCREENING design and is accomplished with a 
simpler surface to allow the evaluation of a larger number 
of possible factors.  The idea is to first find out which 

factors have no impact on the final outcome of the process and thus can be ignored, or which have minimal impact on 
the final outcome and so can be fixed at values convenient to the purpose of the experimenter. 

“It’s better to solve the right problem approximately than to solve 
the wrong problem exactly.” 
   ·J. W. Tukey 

 
Once the critical factors which clearly have the greatest impact on the process have been identified, a RESPONSE 
SURFACE design (sometimes known as RSM, for Response Surface Method) will be used to characterize the 
response relative to these input factors.  Here the objective is to construct a model to predict process outcomes 
based on the input at various settings of the critical factors.  A model so constructed should also allow true 
optimization of the process.  Should the ultimate goals of the process change over time, the model in hand should 
then allow re-optimization.  Because fewer factors are evaluated, a more complex surface design can be used for 
RSM experiments.  In cases where the process is simple enough, a Screening design can also be predictive.  
Fortunately, reality is not always complex.  The software should give diagnostics to allow the experimenter to 
determine whether or not this is so. 
 
FACTORS (VARIABLES) 
 
The factors in an experiment also fall into two categories:  input or design factors, and output or response factors.  
The input factors are the independent control variables, essentially the knobs you turn to adjust your output.  They 
are the settings that define your process, and can be continuous, categorical, mixture, or blocking.  Continuous 
factors are measured on a continuous scale, such as temperature, and thus can have fractional values, such as 
23.45.  Categorical variables, in contrast, are discrete units, such as instrument, or building, or test site.  (You would 
have a difficult time executing an experiment with 2.5 instruments!)  Categorical variables increase the size and 
complexity of the design and analysis and this should be kept in mind when planning, especially if resources are 
limited.  These first two categories are the ones most frequently encountered. 
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Mixture factors are a special class of continuous factors measured in proportions which must all add up to 100%.  
They can appear in processes in which there are fixed manufacturing capacities of, for example, volume.  The 
reaction vessel can hold 100 liters of fluid and there are three fluids to be combined to make your product.  The 
optimum mixture of these three components would be a mixture design with mixture variables.  This particular design 
and analysis is outside the scope of this paper, but JMP can handle it and so I mention it here for completeness. 
 
Lastly, blocking variables are a special type of categorical variable used to account for known sources of variation 
that are not really part of the experiment but are caused by changes in personnel, materials, or machinery, or by the 
fact that you can’t complete all your runs on one day.  The specifics of dealing with blocking variables are left to the 
reader to determine and again, JMP can handle these types of variables. 
 
Here is one of the places that “the art” of DOE enters 
the picture:  the accurate selection of the factors to 
be included as input and output for the study.  The 
reason is simple:  most processes have many potential input factors influencing the output.  Prior knowledge of the 
process or of similar processes must be applied where available to weed out the factors to a reasonable number 
even for a screening design.  If it is possible to avoid categorical variables, do so. 

“You know my method.  It is founded upon the observation of trifles.” 
  ·Sherlock Holmes, The Boscombe Valley Mystery 

 
MODELS 
 
The model is a mathematical construct, i.e., formula, inferred from the collected data using statistical methods.  It ties 
together the response and control factors and defines the possible shape of the response surface.  The more 
complex the model, the more data will be required to define the model.  Thus, it is better to create a design based on 
a more complex model, but then analyze with a simpler model.  You cannot, however, run a design of a simpler 
model and analyze the results with a more complex model.  There will be insufficient data to do so.  This will be 
discussed in greater detail in the next section on Designs.  Here, you must be careful not to adopt a model that 
describes the noise of a process.  This situation is usually found when the correlation coefficient is at or very near 
perfect (1.000).  Measurement error, indeed, human error, should lower this metric away from perfection.  Thus, if a 
complex model results in correlation coefficients of approximately one, you should suspect you are modeling the 
noise along with the data. 
 
By way of illustration, I will now illustrate the way models define certain shapes. 
 

• Figure 1:  Line: Linear model in 1 variable 
o y = a + bx 
o slope in x direction 
o no slope in z direction 
o line for z = 0 

 3

SAS Presents... JMPSAS Global Forum 2009

 



• Figure 2:  Plane:  Linear Model in 2 Variables 
o y = a + bx + cz 
o Used to analyze screening designs 
o No curvature 
o No interactions 
o x and z are “Main Effects” 

 
 
 
 
 
 
 
 
 
 
 
 

• Figure 3:  Interaction Twists Plane 
o y = a + bx + cz + dxz 
o Still no curvature 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

• Figure 4:  Interaction & Curvature in x Variable Only 
o y = a + bx + cz + dxz + ex2 
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• Figure 5:  Quadratic Allows Curves In All 
Variables 

o y = a + bx + cz + dxz + ex2 + fz2 
o Used to analyze standard response 

surface designs 
o Constitutes the overwhelming majority of 

cases in “Nature” 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

• Figure 6:  Partial Cubic Allows Curves Both Up 
and Down in All Variables 

o y = a + bx + cz + dxz + ex2 + fz2 + gx2z + 
hxz2 

o Presents greatest danger of “overfitting” 
 
 
 
 
 
 
 
 
 
 
 
 
 
DESIGN 
 
The experimental design is the specific set of trials or experiments run to support a proposed model for your process.  
This is the systematic way you collect data to construct a model that allows you to achieve the goals previously 
mentioned.  As discussed above, data collected to support a complex model will also support less complex models if 
the reality of the process is simpler than initially thought.  Therefore, particularly in the case of response surface 
models, a rule of thumb would be to create the most complex design you can, given all the resources available to you 
and constraints upon your situation. 
 
The first step is carefully choosing your factors and their levels.  In addition to the choice of factors, the range to be 
investigated must also be selected with care.  It must be remembered that there will be some error in your 
measurement of the response, and if the range is set too timidly, i.e., not far enough apart, it is possible to come to 
incorrect conclusions regarding the direction of a response.  Figure 7 illustrates this, while Figure 8 shows how a 
larger range avoids this. 
 
The JMP Custom Design platform gives the most flexibility of all design choices and makes most of the decisions for 
you once you set up the inputs.  It can deal with: 
 

• continuous factors, including interaction terms and polynomial terms 
o polynomial terms in this context are factors raised to some power, such as x2 or z3 

• categorical factors with arbitrary numbers of levels 
• mixture ingredients 
• covariates (factors that already have unchangeable values and must be designed around) 
• blocking factors with arbitrary numbers of runs per block 

 5

SAS Presents... JMPSAS Global Forum 2009

 



• unequal constraints on the factors 
 
After specifying the parameters and requirements, Custom Design generates an appropriate optimal design (letting 
you know the design chosen), and if a classical (e.g., factorial) is optimal, will find and use it. 
 
Figure 7:  “Timid” Range Setting    Figure 8:  “Bold” Range Setting 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

PROCESS ERROR VS. MEASUREMENT ERROR:  REPLICATION 
 
In considering designs, replication comes up as a question you are asked by JMP:  how many replicates do you 
want?  For the Custom Design platform, each replicate is a complete new set of runs based on the initial design.  This 
is true replication and is used to determine process error as long as the operator uses it correctly.  To do so, each set 
of conditions must be executed as a unique run, starting from the beginning.  If, instead, the operator takes a 
preparation and measures the response from the same preparation multiple times, what is being determined is the 
measurement error, not the process error.  Repeating response measurement many times for each run to account for 
measurement error is not a bad thing, but you must understand that you are not measuring process error thereby, 
and you are not fulfilling the design parameters by doing so.  When executing replicates from the design, you must 
repeat all the steps of the process under investigation. 
 
Some miscellaneous principles and rules of thumb for designs include: 
 

• Multifactor designs yield information faster and better than single factor (OFAT) designs 
• Do as many runs as you can afford (adding runs never subtracts information) even if it results in an 

unbalanced and non-orthogonal design 
• Orthogonality is “highly overrated”…which is NOT to say “undesirable” 
• Take values at extremes of the factor range 
• Randomize the assignment of runs 
• Categorical factors are “not fun” (because they increase the number of trials and make the analysis more 

problematic) 
• Computers are wonderful when it comes to DOE design and analysis!  (And if you don’t understand this, try 

doing it by hand sometime) 
 
Another design issue is that of confounding or aliasing.  This situation occurs when two different alterations are 
applied to the same process at the same time so that if the process response changes, you don’t know which 
alteration caused the change.  For example, consider treating a bee sting with ice in cold water to relieve the pain.  
Which relieves the pain, the wet of the water, or the cold of the ice?  “Wet” and “cold” are confounded or aliased.  
Resolution is the metric used to define the degree of confounding: 
 

• Resolution-3:  main effects are not confounded with other main effects but are confounded with 2-factor 
interactions; only main effects are included in the model 

• Resolution-4:  main effects are not confounded with other main effects or 2-factor interactions, but some 2-
factor interactions are confounded with each other 

• Resolution-5:  no confounding between main effects, between 2-factor interactions, or between main effects 
and 2-factor interactions 
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Finally, the DOE literature is replete with design names, a detailed description of each being beyond the scope of this 
paper.  Classical designs available in JMP include factorial, fractional factorial, Plackett-Burman, and Taguchi 
designs.  Two newer designs that the Custom Design platform may select for you are the D-optimal and the I-optimal.  
The D-optimal design maximizes a criterion so that you learn the most about the parameters and is particularly useful 
for screening designs.  In contrast, the I-optimal design maximizes a criterion so that the model predicts best over the 
region of interest, rendering this design particularly useful for response surface optimization. 
 
DATA COLLECTION 
 
There are a few rules of thumb regarding the collection of the data once the 
design has been determined.  First, get involved in the data collection if you aren’t doing it yourself.  Communicate 
the why and how you are doing things and engage all your people skills to create an atmosphere of teamwork.  Share 
the ownership of the design, the experiment, and the entire problem solving or characterization endeavor.  Your 
output will only be as good as your input, and you want people filling in the results based on actual observations, not 
what they “know” the result will be based on their experience or how it’s always been done.  As someone has aptly 
said, don’t risk your career on “delivered” data. 

“There is nothing like first-hand evidence.” 
   ·Sherlock Holmes, A Study in Scarlet  

 
Secondly, to reinforce a previously mentioned point, 
randomize the order in which the trials are run whenever 
possible to break correlations between the studied control 
variables and the unknown variables. 

“Get your facts first, and then you can distort them as much as 
you please.  (Facts are stubborn, but statistics are more pliable.)” 
   ·Mark Twain 

 
ANALYSIS 
 
This step is simply the creation from your data of a specific mathematical model defining the behavior of your specific 
process.  Keeping in mind that the ultimate goal is to predict the response for any given settings of the input control 
variables, the analysis must answer two initial questions: 
 

1. Does the model fit the data?  (If the model does not fit the data, its utility is limited at best.) 
2. What are the important factors/variables? 

 
If the experiment follows a screening design, then the important factors should be carried over to a response surface 
experiment.  If it is already a response surface experiment, the important factors should be used as axes for contour 
plots and provide the focus of attention in the JMP Profiler tools. 
 
Analysis of DOE data in JMP is done in the Analyze > Fit Model submenu.  JMP tutorials provide the necessary 
instructions for the actual execution and I will not duplicate that material here.  Tools and metrics to consider include 
(but are not limited to): 
 

• p-values for the ANOVA and for individual factors, a metric for identifying important factors 
• R square:  rule of thumb ≈ % of the data accounted for by the factors in the model, in addition to being a 

metric for how well the model fits the data 
• R square adjusted:  adjusts the R square value to make it more comparable over models with different 

numbers of parameters by using the degrees of freedom in its computation 
• Normal Plot:  significant (important) factors appear as outliers that lie away from the line that represents 

Normal noise and helpfully labeled for you by JMP 
• Profiler tools:  see JMP documentation for details (we will look at the Prediction Profiler later) 

o Prediction Profiler 
o Interaction Profiler 
o Contour Profiler 

 
MODEL VERIFICATION 
 
It is critical to always, always, ALWAYS check the model’s ability to predict before implementing those predictions in 
mass production of final product.  Such verification runs are sometimes called check points, trials run after the 
analysis at settings not used to create the model to verify said model’s accuracy and proximity to reality.  Check 
points should be done at certain input settings such as: 
 

• near the process optimum 
• near suspicious behavior 
• at low cost settings 
• inside versus outside the range of experiments 
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It is good to remember at this point that famous quote by George E. P. Box:  “No model is correct.  Some are useful.” 
 
REPORT/DOCUMENTATION 
 
Information is useless unless shared within the appropriate sphere.  JMP output can be transferred by various means 
to other software packages for presentation purposes.  Learn them…use them! 
 
As you document your experiment in your laboratory notebook, include a description of the logic of all your steps as 
well as your data and analysis and how you came to your conclusions, even if it seems obvious to you at the time and 
you believe such to be seared into your consciousness.  Three years later, when you are called upon to defend your 
work to your friendly neighborhood regulatory agency (e.g., the FDA), you will bless yourself for having the wisdom 
and foresight to have included in the text itself those details that you have long since forgotten.  Remember, 
Confucius say, “The weakest ink is mightier than the strongest memory.” 
 
A DOE “REAL LIFE” EXAMPLE – SOLID PHASE OPTIMIZATION 
 
THE CAST OF CHARACTERS 
 
This author makes his living developing in vitro diagnostic immunoassays and this example comes from his history of 
doing so.  Figure 9 below gives us a simplified introduction to such immunoassays in general and our problem child in 
particular. 
 
Figure 9:  The Process 
 

 
 
In the first step, the solid phase, a polystyrene microparticle coated with antibody (Ab) directed against the analyte, or 
marker, is incubated with the sample containing said marker.  After some time for interaction, the solid phase is 
washed to remove other sample components, and then incubated with a conjugate, that is, another antibody tagged 
with an enzyme or some other chemical moiety used to generate a signal (e.g., light) that can be detected and 
quantified.  In this case, an additional member of the cast is a serum protein that can bind our marker of interest, 
masking part of the surface of the marker that would otherwise be available to interact with a solid phase.  For this 
particular marker, there is some clinical significance to quantitating both the amount of “free” marker, and the amount 
of “complexed” plus “free” marker (i.e., the “total” quantity of the analyte).  The key to making this distinction is in the 
selection of monoclonal antibodies (MAb; a homogeneous preparation of antibody molecules, produced by a 
hybridoma, all of which exhibit the same antigenic specificity) for the solid phase and the conjugate.  To measure all 
of the marker present, the two antibodies must be directed against different sites on the surface of the marker, neither 
of which are masked by the serum protein when it binds.  To measure the quantity of the “free” marker only, the 
capture antibody on the solid phase must recognize a site on the marker molecule to which the serum protein binds, 
thus preventing recognition of the complexed form of the marker. 
 
THE PLOT 
 
Preliminary protocols for making the reagents necessary for the immunoassay have been completed, and the initial 
performance evaluated.  Three performance parameters were of particular importance: 
 

1. Equimolarity = the ability to see complexed and free analyte equivalently, operationally defined as a signal 
ratio of 1.0 ± 0.1 for complex/free 
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2. Microparticle stability, defined as 100 ± 10% of 2-8ºC signal after 3 days storage at 45ºC  
3. Panel values = within 5% of target values across the dynamic range of the assay 

 
The performance in the initial evaluate showed that panel values were within the specified goal, but the microparticles 
were not stable (signal loss greater than 10%) and the equimolarity performance was marginal.  Thus, the 
experimental objective is to determine a manufacturing formula to meet all three of the above goals. 
 
Additional investigations had shown that the loss in stability was related to free antibody coming off of the solid phase 
during storage as a function of time, suggesting a lack of covalent coupling of the antibody to the microparticles.  
Dropping the antibody concentration for coating improved the stability, but then the panel values read lower than 
acceptable, and equimolarity, already marginal, departed further from the target. 
 
THE FACTORS 
 
Four input factors to the microparticle manufacturing process were evaluated.  The first three are the obvious “active 
ingredients” for the coupling process:  the concentration of the coating antibody (in mg/mL), the concentration of the 
microparticles (in % solids), and the concentration of the coupling reagent, affectionately known as EDAC (a 
carbodiimide, for those chemically curious, in mg/mL).  The fourth factor is the concentration of sodium chloride in 
mM.  Ionic strength is known to impact the interaction of proteins with surfaces, and the concentration of NaCl is one 
easy way of manipulating this characteristic of the coupling reaction. 
 
We already know the three critical output factors in which we have interest.  Equimolarity is a simple ratio with a 
target of one.  Panel values were evaluated with a high and a low panel, so this output consists of two ratios (panel 
value - target value/target value) with a target of zero (zero difference from standards).  Stability is evaluated by 
averaging across calibrators (Cal B-F) and calculating the ratio of (heat stressed – cold storage)/cold storage with the 
target again zero difference from cold stored calibrators. 
 
THE DESIGN 
 
A screening design was chosen first to minimize the number of runs and determine the most important factors.  Table 
1 shows the inputs, and Table 2 shows the design that was run (a screening design: 4 factors, 2 levels with midpoint:  
11 unique preps including 5 duplicate preps for a total of 16): 
 
TABLE 1:  Design Inputs 
 

Factor Low Level High Level Midpoint Current
[Ab], mg/mL 0.02 1.0 0.51 2.0
[EDAC], mg/mL 0.1 5.0 2.55 1.0
[NaCl], mM 0.0 500 250 0.0
% solids 0.5 2.0 1.25 1.0  

 
TABLE 2:  Design 
 

Pattern Trial # Ab mg/mL EDAC mg/mL NaCl mM % Solids
+−++ 1 1 0.1 500 2
−+−− 2 0.02 5 0 0.5
−+++ 3 0.02 5 500 2
+−−− 4 1 0.1 0 0.5
+++− 5 1 5 500 0.5
−−−+ 6 0.02 0.1 0 2
++−+ 7 1 5 0 2
−−+− 8 0.02 0.1 500 0.5
++++ 9 1 5 500 2
−−−− 10 0.02 0.1 0 0.5
0000 11 0.51 2.55 250 1.25

+−++ 1 1 0.1 500 2
−+−− 2 0.02 5 0 0.5
−+++ 3 0.02 5 500 2
+−−− 4 1 0.1 0 0.5
+++− 5 1 5 500 0.5  

 
Note:  For the “Pattern” in the above table, low, midpoint, and high settings are shown as minus, zero, and plus signs. 
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THE RESULTS WITH CHECKPOINTS 
 
One of the first diagnostics of fit is the plot of predicted versus actual values.  The R squared values give an objective 
measure of that fit, while the plots give a good visual indication of outliers and the overall fit.  R square values do not 
have to be close to one for the model to have predictive power, which is why looking at the plot is helpful in making 
the decision whether or not to use the model predictions for next steps.  Figures 10 and 11 show these results for the 
two panels.  Figures 12 shows the measure of stability used, and figure 13, the equimolarity results. 
 
Figure 10:  Panel C Predicted vs. Actual   Figure 11:  Panel I Predicted vs. Actual 

 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
Figure 12:  Cal B-F Stability Predicted vs. Actual  Figure 13:  Equimolarity Predicted vs. Actual 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

These plots show a reasonable ability to predict these responses of interest, with most R Square values above 0.80.  
Thus, it was decided to attempt optimization using these results first for stability.  To do this, we turn to the Prediction 
Profiler tool (Figure 14).  With this tool, the inputs are plotted separately along the x-axes with the range of values 
used in the design.  On the far right is the Desirability function used to optimize the responses (see the JMP tutorial 
materials for instructions on how to use this plot).  The y-axes are the outputs.  Plotted this way, you can immediately 
see visually the impact of each input on each output and verify with your eyes what the p-values and other statistics 
have told you about your process.  For example, we see immediately that the % solids have little influence in any of 
the responses here. 
 
Of particular relevance here is the flat line for the Desirability function for the panels and the equimolarity responses.  
This is because the target is not on the y-axes for these responses, indicating that the input factors cannot be 
adjusted to any setting within these ranges that will yield the desired response. 
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Figure 14:  Prediction Profiler optimized for stability 
 

 
 
Optimizing the responses for the best stability yielded the following inputs: 
 

• [Ab] = 0.35 mg/mL 
• [EDAC] = 0.9 mg/mL 
• [NaCl] = 198 mM 
• % solids = 0.92% 

 
Since these were not conditions used to create the model, a checkpoint preparation was made and tested.  It was 
found that, consistent with predictions (the model was good enough to act as a response surface even though the 
design was a simpler screening design), the stability was 100%.  Unfortunately, panel values were now 40% below 
target (-0.4) and equimolarity was 1.57 (target is 0.9 – 1.1). 
 
These observations were further enhanced with a second checkpoint using the model to predict responses based on 
the current values for the input.  That is, input: 
 

• [Ab] = 2.0 mg/mL  (Note:  this [Ab] is outside the limits of the data used to construct the model, yet the 
predictions still conform to the current data, demonstrating the validity of the model even when extrapolated 
to this extent) 

• [EDAC] = 1.0 mg/mL 
• [NaCl] = 0.0 mM 
• % solids = 1.0% 

 
The model created by the analysis of the data of this first DOE predicts the following responses: 
 

• Stability = 85% (NOT acceptable) 
• Panel values = 1-3% below target (acceptable; within range) 
• Equimolarity = 1.09 (barely acceptable) 

 
This was the current performance of the assay (see above under “THE PLOT”). 
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The conclusion of this first DOE analysis provides an important lesson on the utility of DOE.   The four inputs studied 
here do not provide a means to simultaneously optimize stability, equimolarity, and panel values.  To do so, you must 
either a.) accept a tradeoff in response outputs, i.e., change the design goals (which is not a good idea if those 
design goals have been properly formulated from customer requirements), or b.) entertain a new 
perturbation/parameter in the assay system, i.e., look at something new, a different parameter not yet evaluated, or 
something radically new to the entire system. 
 
A CRITICAL ADVANTAGE OF USING DOE 
 
“Lack of Success” is not the same as “Failure.”  One of the greatest benefits of DOE is the ability to terminate 
unfruitful lines of investigation using the objective evidence of the validated models generated to scientifically justify 
this decision.  This occurs when the model predictions have been verified (validating the model) and when those 
predictions show the impossibility of meeting all necessary goals simultaneously. 

“Eliminate all other factors, and the one which remains must be the truth.” 
   ·Sherlock Holmes, The Sign of the Four 

 
WHAT TO DO? 
 
At this point, a preliminary experiment done months earlier surfaced again, suggesting a new direction to evaluate in 
earnest.  At the time, it was set aside as “interesting results” having no practical utility.  At that time it was observed 
that if you added the monoclonal Ab (MAb) against the free marker to the solid phase diluent to create a pseudo-
complexed marker from the free marker, all forms of the marker appeared to look alike in the “total” assay.  This 
addresses the panel values and the equimolarity issue.  The new hypothesis, therefore, was, can we optimize the 
solid phase coating for stability and then adjust the panel values and equimolarity results with this MAb in the diluent? 
 
THE FACTORS & DESIGN, PART 2 
 
Based on the first DOE the % solids and NaCl concentrations were fixed and dropped from this study, leaving only 
three factors: 
 
TABLE 3:  Design Inputs 
 

Factor Low Level High Level Midpoint Current
[Ab], mg/mL 0.05 1.0 0.525 1.0
[EDAC], mg/mL 0.5 10.0 5.25 2.5
[Mab in diluent], mg/mL 0.10 2.0 1.05 0.0  

 
With fewer factors to evaluate, and a stronger need to create a model that would be predictive, a D-optimal RSM with 
3 factors, 3 levels, and 5 duplicate reps was designed and executed. 
 
TABLE 4:  Design 
 

Pattern Trial # Ab mg/mL EDAC mg/mL [MAb] mg/mL in diluent

-++ 1 0.05 10 2.0
+0- 2 1.0 5.25 0.1
-+- 3 0.05 10 0.1
--+ 4 0.05 0.5 2.0

+++ 5 1.0 10 2.0
0+0 6 0.525 10 1.05
-00 7 0.05 5.25 1.05
00+ 8 0.525 5.25 2.0
--- 9 0.05 0.5 0.1
+-0 10 1.0 0.5 1.05
++0 11 1.0 10 1.05
0+- 12 0.525 10 0.1
0-- 13 0.525 0.5 0.1

+0+ 14 1.0 5.25 2.0
-0- 15 0.05 5.25 0.1
-++ 1 0.05 10 2.0
+0- 2 1.0 5.25 0.1
-+- 3 0.05 10 0.1
--+ 4 0.05 0.5 2.0

+++ 5 1.0 10 2.0  
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THE RESULTS, PART 2 
 
In this instance, in order to capture more than just two panels, the metric used to determine the panel performance 
was the slope of the plot of observed values versus the target values, making the goal a slope of one.  Equimolarity 
and stability were measured as before. 
 
Figures 15-17 show considerably better R square values for this data: 
 
Figure 15:  Panel Slope Predicted vs. Actual   Figure 16:  Equimolarity Predicted vs. Actual 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 17:  Cal B-F Stability Predicted vs. Actual 
Another JMP output that is informative is the sorted 
parameter estimates.  When sorted, the factor having the 
greatest influence on the response is on the top.  Table 5 
shows the results for the Panel Slope, and as expected from 
our hypothesis, the most important factor is the 
concentration of the MAb in the microparticle diluent. 
 
Similarly, Table 6 shows that the same input factor is the 
primary driver of the equimolarity response. 
 
Table 7, however, shows a different story, but one expected 
based on the theory of our process.  The concentration of 
the coupling reagent plays the most important role in the 
generation of that response. 
 

Seeing such results that agree with the known the chemistry of the process enhances the confidence that the models 
created are describing reality. 
 
TABLE 5:  Panel Slope 
Sorted Parameter Estimates 
Term Estimate Std Error t Ratio t Ratio Prob>|t| 
[MAb] ug/mL in diluent 0.1764243 0.008012 22.02  <.0001 
(EDAC mg/mL-6)*([MAb] ug/mL in diluent-1) 0.0118634 0.002058 5.76  0.0003 
Ab mg/mL 0.0876801 0.016448 5.33  0.0005 
(Ab mg/mL-0.5)*(EDAC mg/mL-6) -0.021259 0.004288 -4.96  0.0008 
(Ab mg/mL-0.5)*([MAb] ug/mL in diluent-1) -0.057951 0.019001 -3.05  0.0138 
([MAb] ug/mL in diluent-1)*([MAb] ug/mL in diluent-1) -0.050856 0.017105 -2.97  0.0156 
EDAC mg/mL -0.004822 0.001845 -2.61  0.0281 
(EDAC mg/mL-6)*(EDAC mg/mL-6) -0.000842 0.000616 -1.37  0.2048 
(Ab mg/mL-0.5)*(Ab mg/mL-0.5) 0.0592606 0.067526 0.88  0.4030 
  
 
TABLE 6:  Equimolarity 
Sorted Parameter Estimates 
Term Estimate Std Error t Ratio t Ratio Prob>|t| 
[MAb] ug/mL in diluent -0.250386 0.023948 -10.46  <.0001 
([MAb] ug/mL in diluent-1)*([MAb] ug/mL in diluent-1) 0.1138585 0.051129 2.23  0.0530 
Ab mg/mL 0.1009066 0.049166 2.05  0.0703 
(EDAC mg/mL-6)*([MAb] ug/mL in diluent-1) -0.011816 0.006152 -1.92  0.0870 
(EDAC mg/mL-6)*(EDAC mg/mL-6) 0.0022738 0.00184 1.24  0.2479 
(Ab mg/mL-0.5)*(Ab mg/mL-0.5) -0.071951 0.201843 -0.36  0.7297 
EDAC mg/mL 0.0019068 0.005514 0.35  0.7374 
(Ab mg/mL-0.5)*(EDAC mg/mL-6) 0.0026686 0.012818 0.21  0.8397 
(Ab mg/mL-0.5)*([MAb] ug/mL in diluent-1) 0.0070362 0.056798 0.12  0.9041 
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TABLE 7:  Cal B-F Stability 
Sorted Parameter Estimates 
Term Estimate Std Error t Ratio t Ratio Prob>|t| 
EDAC mg/mL 0.0634739 0.006657 9.54  <.0001 
Ab mg/mL -0.236815 0.05936 -3.99  0.0032 
(Ab mg/mL-0.5)*(EDAC mg/mL-6) -0.03898 0.015475 -2.52  0.0328 
(Ab mg/mL-0.5)*(Ab mg/mL-0.5) 0.5580778 0.243692 2.29  0.0478 
[MAb] ug/mL in diluent 0.0488119 0.028913 1.69  0.1256 
([MAb] ug/mL in diluent-1)*([MAb] ug/mL in diluent-1) 0.0978185 0.06173 1.58  0.1475 
(EDAC mg/mL-6)*([MAb] ug/mL in diluent-1) 0.0112314 0.007428 1.51  0.1648 
(Ab mg/mL-0.5)*([MAb] ug/mL in diluent-1) 0.1006162 0.068574 1.47  0.1764 
(EDAC mg/mL-6)*(EDAC mg/mL-6) 0.0004016 0.002222 0.18  0.8606 
  
 
Turning then to the simultaneous optimization of all three responses: 
 

• Optimum conditions predicted from the model analysis: 
o [Ab] = 0.75 mg/mL 
o [EDAC] = 2.5 mg/mL 
o [MAb in diluent] = 2.0 μg/mL 

 
• Observed responses in confirmation runs at these levels (checkpoints): 

o Stability = 94-96% (acceptable) 
o Panels = within 3% of target (acceptable) 
o Equimolarity = 0.94 – 0.97 (acceptable) 

 
Conclusion:  dancing in the halls might commence! 
 
UNEXPECTED CHECKPOINT ACCURACY 
 
Remember that I mentioned preliminary experiments that suggested the viability of this strategy as the basis for trying 
the approach.  The scary part is how accurately the RSM model generated months later predicts the results of that 
preliminary experiment.  In this case, panel values were monitored by the slope of the regression line between 
observed panel values versus known panel values (target therefore is one, with a permissible range of 0.95-1.05). 
 

[MAb in diluent] OBSERVED
Output mg/mL Predicted Target Predicted 95% CI Previously
Panel Slope 0.10 0.71 0.64 - 0.79 0.71

0.50 0.80 0.72 - 0.87 0.78
1.00 0.88 0.81 - 0.96 0.93

Equimolarity 0.10 1.25 1.04 - 1.45 1.23
0.50 1.10 0.89 - 1.31 1.08
1.00 0.97 0.76 - 1.18 0.99

PREDICTIONS FROM THIS MODEL
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