
 1

Paper 266-2009

Retirement of Legacy Clinical Systems and moving to SAS Drug Development, Much
More than Just Moving the Data

Fred R. Forst, Eli Lilly and Company

John Standefer, SAS Institute

Abstract

Retirement of legacy applications on z/OS and Windows and subsequent migration of data to

SDD (SAS Drug Development) is accomplished with a 100% SAS solution, SAS/CONNECT.

Data spanning 20+ years, created under three operating systems (z/OS, Windows, and Unix),

from 4 versions of SAS (V5, V6, V8, V9) resulting in many permutations of data formats to be

migrated to SDD. Traditional SAS data, text files, CGM graphs, SAS transport files, Microsoft

Office files were just a few of the numerous data types migrated. This paper describes the

innovative, flexible, and automated approach to moving and reformatting all these data types

with one SAS application. At its core is SAS/CONNECT, using the WebDAV (Web-Based

Distributed Authoring and Versioning) protocol available with the libname and filename

statements. A robust SAS/CONNECT application resulted, moving data directly from any source

to SDD, regardless of the file type, version of SAS it was created with, or originating OS. Finally,

a PROC COMPARE is used to automatically verify the source and SDD data are identical for

SAS data members.

Systems ArchitectureSAS Global Forum 2009

 2

Background

Life will be so much easier now after retiring the mainframe and moving the data to SAS Drug

Development (SDD), the SAS hosted ASP model for clinical research systems. From now on, it

will be SAS’s responsibility to provide and maintain the validated environment that is 21 CFR

Part 11 Regulatory compliant.

There is only one catch: moving over three terabytes of clinical data from 25 years of clinical

studies to the new SDD environment hosted in the data center on the SAS Campus in Cary, NC.

But it is not simply ‘moving data’ because of the wide variety of source file types and the need to

convert most of these to a Unix based SAS environment. The HTTPS:// SSL WebDAV protocol

was the chosen method of moving data into SDD as it is a secure and supported method.

It is a known fact and a painful standard to bear for IT departments of life science companies to

provide and maintain validated systems that are 21 CFR Part 11 Regulatory compliant. SAS

Drug Development (SDD), is the only validated SAS solution for storing and managing clinical,

scientific or any kind of research data. SDD provides an integrated system for managing,

analyzing, reporting and reviewing clinical research information. All research content is

versioned and audit trailed, sustaining a high level of confidence regarding the accuracy and

integrity of research content. http://www.sas.com/industry/pharma/develop/fact.pdf

Lilly has relied on SAS for 30 years to bring new medications to patients more quickly, to

provide evidence of drug safety and efficacy to regulatory bodies, to provide answers about the

use of its products, to increase understanding of disease states and to improve its manufacturing

processes as well as sales and marketing efforts.

At Lilly, more than 300 employees work in the statistics group in 10 cities across four continents.

They rely on SAS in drug discovery, toxicology studies, drug formulation development, clinical

trials, sales and marketing, and manufacturing. SAS complements their individual talents and

skills for delivering fast, innovative results by providing them a comprehensive suite of tools to

meet their needs. http://www.sas.com/success/elililly.html

Introduction

Over a time span of 25 years, a major SAS shop can accumulate a large volume of data as well

as many different data types and formats. One thing that has probably always been true, due to

human nature, when data is accumulated over time there is not much thought put into the

possibility that one day you may have to move it to a different environment. As such, we were

faced with moving over five terabytes consisting of several data types to SDD. The following

list details all the different file types:

 32-bit z/OS based data:

o V5,V6,V8,V9 SAS data members

o V5,V6,V8,V9 SAS catalogs

Systems ArchitectureSAS Global Forum 2009

http://www.sas.com/industry/pharma/develop/fact.pdf
http://www.sas.com/success/elililly.html

 3

o PDS text

o PDS CGM graphics

o PDS SAS V5 formats

o ‘Flat’ text files

o ‘Flat’ CGM files

o Transport files created with PROC CPORT

o Transport files created with the xport engine (e.g. via PROC COPY)

 Windows based data:

o V6,V8,V9 SAS data members

o V6,V8,V9 SAS catalogs

o Text files (e.g. .sas, .html files)

o SAS Transport files

o Microsoft Office files (xls, ppt, doc etc)

o Pictures (.jpeg, .gif etc)

 32-bit Unix based data:

o V6 and V8 SAS data members

o V6 and V8 SAS catalogs

In case you’re counting, that is 35 different permutations of data platforms/data formats. The

challenge was to move the data to SDD (64-bit Solaris environment) with the following

requirements:

1. A secure, encrypted protocol must be used.

2. Data should be moved only once. Avoid ‘staging areas’.

3. SAS data should be verified that the source and destination files are

identical.

Since data was being migrated to a different data representation (from 32-bit z/OS, 32-bit Solaris,

or 32-bit Windows to 64-bit Solaris) and different encodings (from wlatin1 or EBCDIC to latin1),

it was clearly not a case of ‘just moving data’. Furthermore, creation of the source SAS data and

SAS catalogs spanned 4 versions of SAS. A solid understanding of data encoding/transcoding,

compatibility issues between different versions of SAS (especially cross-platform),

SAS/CONNECT, and WebDAV capabilities and limitations were crucial.

In addition to legacy data being migrated to SDD, our migration application also needed the

flexibility to migrate data to an archive storage system (EMC Centera®) within the company.

SAS/CONNECT offers the ability to move all types of data, not just SAS data, using PROC

DOWNLOAD. Even PROC COPY in a single SAS session can only move/copy SAS data. The

flexibility of PROC DOWNLOAD and the ‘move-once’ advantage is the reason

SAS/CONNECT was chosen as the basis for the data migration project.

Where to Start?

Systems ArchitectureSAS Global Forum 2009

http://www.emc.com/partners/velocity/isv/isv-cas-specialty/centera-proven-program-for-isvs.htm

 4

The first step in the migration project was to create an inventory of all data to be migrated, the

destination path/folder for each dataset, and the destination (SDD or local LAN). This

information was kept in an Excel spreadsheet and a ‘migration team’, knowledgeable about the

data, maintained it. This spreadsheet became the input source, metadata, of our migration

application. Therefore, the spreadsheet had all the metadata needed:

Source Dest Source DSN Dest DSN

MVS SDD prod.clinical.drug1.trial1 https://sdd.sas.com/webdav/clinical/drug1/trial1

MVS SDD prod.clinical.drug1.trial2 https://sdd.sas.com/webdav/clinical/drug1/trial2

MVS LAN prod.clinical.drug2.trial3 \\lilly.com\prod\clinical\drug2\trial3

MVS LAN prod.clinical.saspgms \\lilly.com\prod\clinical\saspgms

Win SDD \\lilly.com\group2\documents https://sdd.sas.com/webdav/group2/documents

Figure 1 - High Level Schematic of SDD

SDD Configuration Overview

Systems ArchitectureSAS Global Forum 2009

https://sdd.sas.com/webdav/clinical/drug1/trial1
https://sdd.sas.com/webdav/clinical/drug1/trial2
file:\\lilly.com\prod\clinical\drug2\trial3
file:\\lilly.com\prod\clinical\saspgms
file:\\lilly.com\group2\documents
https://sdd.sas.com/webdav/group2/documents

 5

SDD is designed to meet the advanced information management requirements of life science

research and to this end provides an integrated system for managing analyzing, reporting and

reviewing clinical research information.

SDD provides access to content through three main interfaces:

1. The WebDAV client interface provides access to SDD by using the webdav

libname/filename engine. This is the focus of our paper (see Figure2 below –

SAS/Connect with WebDAV).

2. The embedded interface, designed to follow the Windows Explorer metaphor, provides

access through a web browser using Web Folders.

3. The published APIs support linking SDD to other applications and systems. External

applications can be built that provide customized management of SDD content.

Copyright © 2006, SAS Institute Inc. All rights reserved. Company confidential - for internal use only

High Level Technical Architecture for

Data Migration to SDD
z/OS Mainframe

PC Client/LAN

UNIX/LAN

SAS/Connect with

WebDAV

Figure 2

Generated documents and information are stored in Oracle using Xythos WebDAV to manage

the content. SAS analytics are used on the data managed by the system.

The SDD architecture is complex. For the purpose of time we will focus our discussion on

getting data into SDD from external sources.

The only external pathway into SDD is via an https connection using the WebDAV protocol.

This isn’t limited to SAS’ libname/filename statements. Other applications that can use

Systems ArchitectureSAS Global Forum 2009

 6

WebDAV, can access data in SDD. For example, a Windows Network Place could be

established, defining SDD as a Network Place using WebDAV, and Windows Explorer ala web

folders could be used to access data in SDD, just like you would use Windows Explorer to access

any other folder.

Figure 3 below is a simplified diagram of an SDD configuration. Major components are

1. SAS server(s)

2. Web server(s)

3. Database/Oracle server(s)

4. A data repository

Figure 3

Systems ArchitectureSAS Global Forum 2009

 7

Migration Architecture

Figure 4 below shows the overall architecture of the data migration from our Legacy Systems

(left hand side) to SDD on the right.

Figure 4

In the above diagram, the left hand side represents the source systems and data and the right hand

side denotes SDD. A solaris SAS session spawns either a SAS/CONNECT session on MVS or a

Windows SAS/CONNECT session, depending on the location of the source data. The Solaris

SAS session is the session that is actually writing to SDD, via WebDAV, for a couple of reasons:

 MVS couldn’t write directly to SDD since WebDAV isn’t supported in SAS V9.1.3 on

MVS.

 The resulting data being written to SDD will be in 64-bit Solaris data representation and

latin1 encoding, which matches the SAS servers in SDD.

SAS/CONNECT handles all the transcoding issues when moving data cross-platform.

Systems ArchitectureSAS Global Forum 2009

 8

SAS libname/filename Support of WebDAV

With SAS V9, the webdav protocol is now supported with the libname and filename

statements. In order to enable ssl, one must first do a few things:

 Be at SAS V9 SP4

 Install a SAS/SECURE module from SAS’ website

 Install an ssl certificate. In Windows, this is done thru IE, and on Unix the ssl location is

specified in a Unix SAS options statement.

Figure 5 below shows examples of the libname and filename statement syntax.

 Figure 5

Note that the folder name syntax includes what looks like a sub-folder called /webdav/. This is

not a folder name, but rather follows the same syntax as if you were creating a network place for

the SDD site. In that case, you would create the network place

https://xyz.com/webdav

and, after that, you could access SDD the same way you access other folders, shares, or network

places with Windows explorer.

Systems ArchitectureSAS Global Forum 2009

https://xyz.com/webdav

 9

PROC DOWNLOAD 101: Non-WebDAV

A typical usage of SAS/CONNECT might be to download SAS data from a mainframe to

Windows using PC/SAS. Figure 6 below shows all the major players:

Figure 6

A PC/SAS session issues a SIGNON command, which uses the TCP/IP access method on both

Windows (the local machine) and the mainframe (the remote machine). The SAS/CONNECT

spawner on MVS is listening on a specific TCP/IP port for incoming requests. The spawner then

spawns a SAS session on MVS and the connection is established. Subsequent SAS code is

RSUBMITed from PC/SAS to MVS. For example, our simple download example code may look

this way:

libname pc ‘c:\sasdata\’;

signon mvs.__port uid=my_mvs_id pw=my_pswd;

rsubmit;

 libname mvs ‘….mvs…SAS…lib…’;

 proc download inlib=mvs outlib=pc;

 run;

endrsubmit;

signoff;

Systems ArchitectureSAS Global Forum 2009

 10

Everything between the rsubmit and endrsubmit block runs on the remote machine, MVS

in this example. Since this example uses the inlib= and outlib= parameters, it is

DOWNLOADing strictly SAS data. The infile= and outfile= parameters can be used for

non-SAS data. Below is a pseudo example of DOWNLOADing files between 2 Windows

machines. Note the use of wildcard specifications and the use of filename statements instead

of libname statements:

filename pc 'C:\' ;

signon win.__5000 uid=_prompt_ pw=_prompt_;

rsubmit ;

 filename in '...LAN folder...';

 proc download infile=in('*.txt') outfile=pc;

 proc download infile=in('*.xls') outfile=pc binary;

 proc download infile=in('*.ppt') outfile=pc binary;

 proc download infile=in('*.doc') outfile=pc binary;

 run;

endrsubmit;

signoff;

The binary option is used to move an exact copy of the data. That is, no transcoding. The

previous two examples brings out another key selling point for the usage of SAS/CONNECT via

PROC DOWNLOAD to move all of our data: only 3 permutations of the PROC DOWNLOAD

statement is needed to move any type of data:

proc download inlib=… outlib=…;

This will move all SAS data (data members, catalogs, etc) and transcode to the proper (i.e.

target) encoding and create data compatible with the target operating system.

proc download infile=… outfile=…;

This will move non-SAS data (text files, .sas files etc) and transcode to the proper (i.e. target)

encoding.

proc download infile=… outfile=… binary;

This will move non-SAS data (MS Office files, pictures etc) in binary format and not transcode.

Data Encoding

Data encoding refers to the internal (i.e. binary) value used to store character data. The major

categories are EBCDIC, ASCII, UTF8, and DBCS. There are many different encoding schemes,

or code pages. For example, the value ‘Hello’ is stored as follows:

On MVS (EBCDIC-1047 encoding)
 H e l l o

hex=C8 85 93 93 96

binary=11001000 10000101 10010011 10010011 10010110

Systems ArchitectureSAS Global Forum 2009

 11

On Windows (wlatin1 encoding)
 H e l l o

hex=48 65 6C 6C 6F

binary=01001000 01100101 01101100 01101100 01101111

PROC DOWNLOAD automatically changes the encoding (i.e. transcodes) from the source

encoding to the destination encoding.

PROC DOWNLOAD 201 – The Complexity Increases with WebDAV

As previously stated, there are only three variations of PROC DOWNLOAD syntax to move

three types of data:

1. SAS data (data members and catalogs)

2. Text files

3. Files to be moved in binary (e.g. MS docs, jpeg files)

The destination, SDD, is a 64-bit unix based SAS V9 environment. For this reason, we initiate

the download from a local 64-bit unix SAS V9 session. When DOWNLOADing the first data

type (SAS data), the only difference in the code, compared with the MVS-to-Windows example

above, is the syntax of the SDD/webdav libname statement. Note the addition of the PROC

COMPARE as the last step:

Figure 7 below shows this process graphically.

Systems ArchitectureSAS Global Forum 2009

 12

Figure 7

Things get more complicated with the other two data types due to the fact there is no directory

support or wildcard syntax when DOWNLOADing to a SDD folder. For example, if

DOWNLOADing from a Windows folder to a SDD folder, the following code will fail:

filename sdd sasxbamw "https://xyz.com/webdav/folderabc"

 USER='your_id' Pass='your_pswd’;

signon win.__5000 uid=_prompt_ pw=_prompt_;

rsubmit ;

 filename in '...LAN folder...';

 proc download infile=in('*.txt') outfile=sdd;

 proc download infile=in('*.xls') outfile=sdd binary;

 proc download infile=in('*.ppt') outfile=sdd binary;

 proc download infile=in('*.doc') outfile=sdd binary;

 run;

endrsubmit;

signoff;

ERROR: Bad outfile specification, outfile=SDD(total.xpt).

ERROR: Requested function is not supported.

ERROR: Download function terminated. The file created may be unusable.

Systems ArchitectureSAS Global Forum 2009

 13

The solution is to generate an individual filename for each file being moved. For example, if the

input folder contained 4 files,

 my_stuff.txt

 costs.xls

 sugi28.ppt

 mypaper.doc

we would generate four filename statements. The code is shown below:

filename sdd1 sasxbamw "https://xyz.com/webdav/folderabc/my_stuff.txt"

 USER='your_id' Pass='your_pswd’;

filename sdd2 sasxbamw "https://xyz.com/webdav/folderabc/costs.xls"

 USER='your_id' Pass='your_pswd’;

filename sdd3 sasxbamw "https://xyz.com/webdav/folderabc/sugi28.ppt"

 USER='your_id' Pass='your_pswd’;

filename sdd4 sasxbamw "https://xyz.com/webdav/folderabc/mypaper.doc"

 USER='your_id' Pass='your_pswd’;

signon win.__5000 uid=abc pw=xyz;

rsubmit ;

 filename in '\\lan\folder1';

 proc download infile=in(my_stuff.txt) outfile=sdd1;

 proc download infile=in(costs.xls) outfile=sdd2 binary;

 proc download infile=in(sugi28.ppt) outfile=sdd3 binary;

 proc download infile=in(mypaper.doc) outfile=sdd4 binary;

 run;

endrsubmit;

signoff;

The difficulty here is the fact that there could be thousands of files in a folder to move (and there

were), making hard coding of the individual filename statements impossible. They must be

dynamically generated with macro code as well as all the PROC DOWNLOAD statements.

Another problem, since the above code is initiated in a unix SAS session, the names of the

individual files to be moved are not initially known in the unix session. As such, code was

needed to perform three tasks:

1. RSUBMIT to the remote session (MVS or Windows) and obtain file names and

file count of the folder being moved.

2. Send, via %sysrput, these values back to the local session (unix) and issue a

filename statement for each file.

3. RSUBMIT again to the remote session and generate the PROC DOWNLOAD

statements to copy the data to SDD.

A dos dir command was piped in the Windows session to find all the file names and the

number of files from folder x. These values were put into macro variables in the Windows

session. Then, still in the Windows SAS session, the macro function %sysrput was used to

‘send’ or remote put the macro variables back to the Unix SAS session:

Systems ArchitectureSAS Global Forum 2009

 14

%do i=1 %to &files;

 %sysrput file&i=&&file&i;

%end;

 %sysrput files=&files;

At this point, the file count and file names are available in the Unix session and the filename

statements are dynamically generated and executed. Figure 8 below shows this graphically:

Figure 8

Systems ArchitectureSAS Global Forum 2009

 15

The pseudo code would look like this:

signon win.__5000 uid=abc pw=xyz

rsubmit ;

 /* Step 1. Count files and obtain names in \\lan\folder1\ */

 %find_files(\\lan\folder1\);

 /* Step 2. Use sysrput to send file names back to Unix session */

 %sysrput…;

 %sysrput files=&files;

endrsubmit;

 /* Step 3. Do-loop to generate all filename stmnts in Unix session */

 %do i=1 %to &files;
 filename sdd&i sasxbamw

 "https://xyz.com/webdav/folderabc/&&file&i"

 USER='your_id' Pass='your_pswd’;

 %end;

/* Step 4. RSUBMIT(again) to remote system to download all files*/

rsubmit ;

 filename in '\\lan\folder1';

 /* Do-loop to generate all PROC DOWNLOAD statements */

 %do i=1 %to &files;
 PROC DOWNLOAD infile=in(&&file&i) outfile=sdd

 %if &type=binary %then %do;

 binary;

 %end;

 run;

 %end;

endrsubmit;

signoff;

The pseudo code above would generate the same code as the hard-coded example.

Business Requirements

To make things even more complex, business requirements were:

 SDD file names must not contain blanks and be lowercase. For example, if the

source file name was My Resume.doc, the SDD file name would be

my_resume.doc.

 A PROC COMPARE was needed to verify that the source & destination SAS data

are identical.

 A ‘history log’ must be dynamically updated as data is being moved. This

contains source & destination folder names of all folders moved, along with

return codes of tasks (DOWNLOAD & COMPARE RCs).

Systems ArchitectureSAS Global Forum 2009

file:\\lan\folder1\
file:\\lan\folder1\

 16

Diverse Data Sources

As mentioned, the source data existed on either MVS or Windows. Inherent differences in the

data include

 There are no file extensions with MVS data. The type of data to be moved (SAS

data, text, binary) must be derived from either dataset naming conventions, if they

exist, or by examining contents of the data itself. For example, non-SAS data had

to be opened to determine if it was a SAS transport file.

 MVS contains PDS’ (Partitioned DataSet) and a PROC SOURCE must be

executed to obtain the member names.

 Graphics, if stored in an MVS PDS or MVS ‘flat’ file, must be converted to a

SAS catalog prior to moving to SDD.

 Version 5 SAS catalogs are not readable in a V9 session. They must be converted

to a newer version of SAS using PROC V5TOV6 in a SAS V6 session.

 A windows folder can contain any type of data (SAS data, .txt, .doc, .sas files, etc).

The same logic cannot be applied to MVS. A SAS lib on MVS contains only SAS

data/catalogs.

The migration code had to dynamically handle these OS based differences.

Conclusions

Much more than ‘just moving data’, the final product performed many tasks, with the only input

being the source and destination folder names. In general terms, the sequence of events was (for

each folder being moved):

1. In a Unix SAS session (the local SAS session):

a. Spawn either a MVS SAS session or a Windows SAS session, depending on the

source folder location.

b. Find the file names and file count in the input folder.

c. Generate destination file names that are lowercase & contain no blanks.

d. Dynamically generate SDD filename/libname statements.

2. In the MVS or Windows SAS session (the remote SAS session):

a. Dynamically determine the type of data (SAS data, text data, binary data) and

generate the appropriate PROC DOWNLOAD statements.

b. Capture all return codes and pass back to the Unix session for a report.

c. Update the history log of the data just moved.

3. In the Unix SAS session:

a. PROC COMPARE the SAS data members, if any, just moved.

b. Create summary report of each folder moved and all RCs.

Contact Information:

 Fred Forst, Eli Lilly and Company – frf@lilly.com

 John Standefer, SAS Institute –JohnStandefer@sas.com

Systems ArchitectureSAS Global Forum 2009

mailto:frf@lilly.com
mailto:�JohnStandefer@sas.com

 17

SAS and all other SAS Institute Inc. product or service names are registered trademarks or trademarks of SAS
Institute Inc. in the USA and other countries. ® indicates USA registration.

Other brand and product names are trademarks of their respective companies.

Systems ArchitectureSAS Global Forum 2009

	2009 Table of Contents

