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Abstract 
 
Many SAS® users pursue recreational interests that can be investigated with SAS® 
software.   A popular mathematical recreation that has intrigued enthusiasts for 
centuries is the magic square.  A normal numeric magic square is an n by n matrix with 
cells filled with all positive integers from 1 to n2 inclusive.  The integers are arranged in 
such a way that every row, column and the main and secondary diagonals sum to the 
‘magic’ number.    
 
The primary goal of this project is to find an efficient method to generate all 4 by 4 
magic squares using SAS® software.  A secondary goal is to investigate the properties 
of these magic squares and to classify them into sub-types where possible.   
 
   
Introduction 
 
Mathematical recreationists typically attempt to create or solve numeric or logic puzzles.  
One type of puzzle that has become extremely popular in recent years is Sudoku.   
Creating and solving Sudoku puzzles can be very challenging, but these challenges 
have been met with the help of the powerful programming capabilities of SAS® software 
(Karwe, Seunarine & Razafindrakoto, 2006; First, 2007; First, 2008).     
 
Long before Sudoku became popular the magic square was a source of entertainment 
and intrigue.  Magic squares have appeared in jewelry, paintings, and carvings and 
have been the topic of many papers, books and more recently, web sites (see Wolfram).   
Magic squares have been studied in an attempt to create them and better understand 
their properties.  A brief history of the magic square, which includes the earliest known 
example dating back to 650 BC in China, can be found at 
http://en.wikipedia.org/wiki/Magic_square.   
 
There are many orders and types of normal magic squares, with each having its own 
properties.  Odd order magic squares, for example, are formed by an n x n matrix where 
n is an odd number.  Singly even order magic squares consist of a matrix where n is an 
even number which when divided by 2 results in an odd number (e.g., 6, 10, and 14).  
Doubly even order magic squares are defined by when n/2 results in another even 
number, such as when n equals 4, 8, or 12.   Within an order there may be sub-types of 
squares for which an additional property is present such as when groupings of cells 
(other than rows, columns and diagonals) also sum to the magic number.   
 
Regardless of a square’s type or order, the magic number for a normal magic square of 
order n can be derived from the following formula:  (n3 + n)/2.  For magic squares of 
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order 4 the magic number is 34.  The main goal of this paper is to generate all possible 
4 by 4 magic squares using SAS® software.  A secondary goal is to identify several sub-
types of squares and reveal the relationships among them.   
 
Algorithm to generate all 4 by 4 magic squares 
 
There are 16! ways, which is nearly 2.1 x 1013, to arrange the first 16 digits into the 16 
cells of a 4 by 4 magic square.   We know that a vast majority of these arrangements 
will not form magic squares so we must find a more efficient algorithm to generate the 
squares.  To narrow the search strategy we first generate all blocks of 4 unique 
numbers, from the set of the first 16 positive integers, which sum to 34.  This takes just 
a fraction of a second using the SAS® code below.   
 
Code 1:  Generate all blocks of 4 unique numbers that sum to 34 from the set of the 
first 16 positive integers 
 
data temp; 
  array ijkl (4) i j k l; 
  do i = 1 to 16; 
   do j = 1 to 16; 
    do k = 1 to 16; 
     do l = 1 to 16; 
      if i ne j and i ne k and i ne l and  
         j ne k and j ne l and k ne l and sum(i,j,k,l) = 34 then do; 
         block = compress(i||','||j||','||k||','||l); 
  output; 
  end; 
  end;end;end;end; 
run; 
 
In total there are 2064 blocks, the first and last 5 of which are shown in Table 1. 
 

Table 1: A subset of 10 blocks 
                    Obs       block   Obs   block 
 
                      1     1,2,15,16   2060 9,8,3,14 
                      2     1,2,16,15   2061 9,8,4,13 
                      3     1,3,14,16   2062 9,8,5,12 
                      4     1,3,16,14   2063 9,8,6,11 
                      5     1,4,13,16    . . . 2064 9,8,7,10 
 

The next step is to select four of these 2064 blocks to construct a magic square, and to 
continue this process until all possible magic squares have been generated.  This is an 
iterative process that would involve evaluating 20643 variations (almost 8.8 billion) if all 
combinations of blocks were evaluated.  This approach vastly reduces the number of 
iterations compared to 16!, but it still is not practical.  
 
To further reduce the number of iterations the following approach was adopted.  First, 
one block from the master set of 2064 blocks is selected.  Then, from the master set of 
blocks, a subset of blocks is created by removing all blocks that contained any of the 
four numbers present in the selected block.  From this subset a second block is 
selected and paired with the block selected in the first step.  After selecting two blocks, 
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a second subset of blocks is created from the first subset by removing all blocks that 
contained any of the numbers in the second block.  This second subset includes all 
blocks that contain none of the numbers present in the two blocks selected thus far.  
Finally, a third block is selected from the second subset and combined with the two 
blocks already selected.  At this point three blocks have been selected and there are no 
duplicate numbers among them.  Four of the sixteen integers remain and if they can be 
arranged to generate a magic square we will have succeeded.  Otherwise we know that 
this set of three blocks will not produce a magic square and we select the next block 
from the second subset.  For each originally selected block we repeat this process for 
every block in the first subset, and for each of those blocks, repeat it for every block in 
the second subset.   
 
After all the iterations for the originally selected block are complete, a second block is 
selected from the master set and the entire process is repeated.  This process is 
repeated for every block in the master set of 2064 blocks.  At the completion of these 
steps all 7040 magic squares will have been generated.     
 
Fundamental magic squares 
 
Every magic square can be rotated or reflected to generate 8 squares that look unique 
but are simply different views of the same fundamental square.  Thus, within the 7040 
squares there are only 880 (7040/8) fundamental magic squares.  To illustrate this 
consider the hypothetical magic square shown in diagram 1 of Table 2, where each 
letter from A to P represents an integer from 1 through 16.  This magic square can be 
represented by the seven other diagrams by simply rotating or reflecting the square.   
 
Table 2: Rotations and reflections of a fundamental magic square 
 
1. Magic square          2. Vertical reflection   3. Horizontal reflection 
A  B  C  D               D  C  B  A               M  N  O  P 
E  F  G  H               H  G  F  E               I  J  K  L 
I  J  K  L               L  K  J  I               E  F  G  H 
M  N  O  P               P  O  N  M               A  B  C  D 
 
4. Rotate left           5. Rotate right          6. Rotate 1800 
D  H  L  P               M  I  E  A               P  O  N  M 
C  G  K  O               N  J  F  B               L  K  J  I 
B  F  J  N               O  K  G  C               H  G  F  E 
A  E  I  M               P  L  H  D               D  C  B  A 
 
7. Secondary diagonal    8. Main diagonal reflection 
   reflection  
P  L  H  D               A  E  I  M 
O  K  G  C               B  F  J  N 
N  J  F  B               C  G  K  O 
M  I  E  A               D  H  L  P
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Blocks that are used and not used  
 
Not all of the 2064 blocks are used in the full set of 7040 magic squares.   It turns out 
that 1096 (about 53%) of them are used and that 968 (about 47%) of them are not.  
With so many unused blocks it would have been more efficient if we could have 
identified them prior to the search for all magic squares and eliminate them from the 
process.  In that way we could have reduced the master set of blocks from 2064 to 1096 
and sped up the search dramatically.  The number of blocks in the first and second 
subset of blocks, for each number in the master set, would also have been reduced 
significantly, making the process that much more efficient.  Unfortunately, these unused 
blocks could not be identified in advance.   
 
Since almost half of the blocks were unused, we investigated further to find out more 
about the relationship between integer value and the number of blocks used.  Table 3 
shows the total number of blocks that each integer was found in and the number of 
those blocks that are used in the construction of magic squares.  The first column 
contains a list of integers and the second shows the total number of blocks in which 
each integer appears.  The third column contains the number of used blocks and the 
fourth the number of used blocks as a proportion of the total number of blocks.  By way 
of an example, the integers 1 and 16 each appear in 632 blocks, but only 456 of them 
can be found in the complete set of magic squares.   
 
Table 3: Number of blocks by integer 
 

Integer Total number 
of blocks  

Number of 
used blocks  

Used blocks as 
a proportion of 
total number 

1 632 456 0.722 
2 680 480  0.706 
3 728 504  0.692 
4 776 528  0.680 
5 784 528  0.674 
6 832 552  0.664 
7 840 552  0.657 
8 792 528 0.667 
9 792 528 0.667 
10 840 552  0.657 
11 832 552  0.664 
12 784 528  0.674  
13 776 528 0.680 
14 728 504 0.692 
15 680 480 0.706 
16 632 456  0.722 
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Figure 1 shows the three columns of numbers in Table 3 as separate functions of 
integer.  The line labeled ‘Total’ shows the relationship between the total number of 
blocks and integer, and the line labeled ‘Used’ shows the relationship between the 
number of used blocks and integer.  The appropriate y-axis for these two lines is found 
at the left side of the graph and is labeled ‘# of Blocks’.  The bottom line labeled 
‘Proportion’ plots the relationship between the proportion of used blocks and integer.  
The appropriate y-axis for this line is found at the right side of the graph.   
 
The ‘Total’ function shows that integers are not equally represented within the complete 
set of 2064 blocks.   Generally speaking the total number of blocks increases as 
integers increase from 1 to 7 or decrease from 16 to 10.  The integers 8 and 9 are 
anomalies in that they deviate slightly from this pattern.  This anomaly is probably due 
to the magic square being an even ordered square in which no single integer forms the 
unique mid point between 1 and n2.  The ‘Used’ function follows a similar pattern as 
‘Total’ but it is somewhat attenuated.  Interestingly, when the proportion of used blocks 
is plotted as a function of integer the function is u-shaped – that is, it decreases as 
integers increase from 1 to 7 or decrease from 16 to 10.   Again, the middle two 
numbers, 8 and 9, depart slightly from this trend.   
 
 
Figure 1: Number and proportion of blocks as a function of integer 
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Combinations that are used and not used 
 
Many blocks contain the same set of four integers but the integers appear in different 
orders.  These blocks can be considered to be combinations of a set of 24 
permutations.  Of all 86 combinations, the integers in 51 (59.3%) of them do and 35 
(40.7%) do not appear in the full set of magic squares.  All completely unused 
combinations are shown in Table 4.  The number in the first column identifies the 
combination and the remaining four numbers constitute the unused combination.     
 
Table 4:  Completely unused combinations 
 
  number          combination       
    1         1,5,13,15 
    2         1,6,13,14 
    3         1,7,11,15 
    4         1,9,10,14 
    5         1,9,11,13 
    6         1,10,11,12 
    7         2,4,12,16 
    8         2,5,13,14 
    9         2,6,10,16 
   10         2,6,12,14 
   11         2,8,10,14 
   12         2,9,10,13 
   13         2,9,11,12 
   14         3,4,11,16 
   15         3,4,12,15 
   16         3,5,11,15 
   17         3,7,8,16 
   18         3,7,9,15 
   19         3,7,11,13 
   20         3,8,11,12 
   21         3,9,10,12 
   22         4,6,8,16 
   23         4,6,10,14 
   24         4,7,8,15 
   25         4,7,11,12 
   26         4,8,10,12 
   27         4,9,10,11 
   28         5,6,7,16 
   29         5,6,8,15 
   30         5,6,9,14 
   31         5,6,10,13 
   32         5,7,8,14 
   33         5,7,9,13 
   34         6,7,8,13 
   35         7,8,9,10 
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Because each of these combinations represents 4! or 24 blocks, together they  account 
for 35 x 24 = 840 of the 968 unused blocks.  This leaves 128 unused blocks (968-840) 
unaccounted for.  These 128 blocks can be found in the 15 combinations shown below, 
where some but not all 24 blocks are used.  The last column shows the number of 
blocks (from a maximum of 24) that are used to form magic squares.   
 
Table 5: Partially unused combinations 
 
combination  combination      number of  
 number                                 used blocks 
   1    1,2,15,16      16 
   2    1,3,14,16      16 
   3   1,5,12,16      16 
   4     1,8,9,16       16   
   5    2,4,13,15      16  
   6    2,6,11,15      16 
   7    2,7,10,15      16 
   8    3,4,13,14      16 
   9    3,6,11,14      16 
  10    3,7,10,14      16 
  11    4,5,12,13      16 
  12    4,8,9,13       16 
  13    5,6,11,12       8 
  14    5,7,10,12      16 
  15    6,8,9,11       16 
 
For one combination [5, 6, 11, 12], 24-8=16 blocks are unused in the complete set of 
magic squares.   For each of the remaining 14 combinations, 24-16=8 blocks are not 
used.  In total then, these partially unused combinations account for an additional 128 
unused blocks.   We have now accounted for all 968 unused blocks.   
 
Sub-types of 4 by 4 magic squares 
 
Normal 
Normal magic squares are defined as having the properties that every row, column, and 
the main and secondary diagonals sum to the ‘magic’ number.  In addition to these 
properties it turns out that the groups of cells identified in Table 6 also sum to 34 for 
every 4 by 4 magic square.  
 
Table 6:  Additional properties of all normal 4 by 4 magic squares 
 
1. * B C *   2. * * * *   3. * * * *   4. A * * D 
   * * * *      E * * H      * F G *      * * * * 
   * * * *      I * * L      * J K *      * * * * 
   * N O *      * * * *      * * * *      M * * P 
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Pan-magic  
Pan-magic squares have the additional property that the so-called broken diagonals 
also sum to the magic number.  The full set of 6 broken diagonals is shown in Table 7.  
In each of these hypothetical squares, the numbers in the cells represented by the 
letters must sum to 34 for the square to qualify as pan-magic.   
 
Table 7:  Broken diagonals 
 
1.  * B * *   2. * * * D   3. * * C *   4. A * * *    5. * * C *   6. * B * *   
    * * G *      E * * *      * F * *      * * * H       * * * H      E * * *  
    * * * L      * J * *      I * * *      * * K *       I * * *      * * * L  
    M * * *      * * O *      * * * P      * N * *       * N * *      * * O * 
 
There are 384 pan-magic squares, or 48 (384/8) fundamental pan-magic squares.  One 
surprising feature of these squares is that the following 4-cell units also sum to 34.  An 
example of a pan-magic square is shown in Table 9: 
 
Table 8: Additional properties of pan-magic squares 
 
1.  A B * *    2. * * C D    3. A * * D    4. * * * * 
    * * * *       * * * *       E * * H       * * * * 
    * * * *       * * * *       * * * *       I * * L 
    M N * *       * * O P       * * * *       M * * P 
 
5.  A B * *    6. * B C *    7. * * C D    8. * * * *    9. * * * * 
    E F * *       * F G *       * * G H       E F * *       * * G H 
    * * * *       * * * *       * * * *       I J * *       * * K L 
    * * * *       * * * *       * * * *       * * * *       * * * * 
 
10. * * * *   11. * * * *   12. * * * *    
    * * * *       * * * *       * * * *    
    I J * *       * J K *       * * K L    
    M N * *       * N O *       * * O P    
   

 
Table 9:  A pan-magic square 
 
             Row      Column 
                      ‚       1‚       2‚       3‚       4‚  Total 
             ƒƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒˆ 
                    1 ‚      8 ‚     11 ‚      5 ‚     10 ‚     34 
             ƒƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒˆ 
                    2 ‚     13 ‚      2 ‚     16 ‚      3 ‚     34 
             ƒƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒˆ 
                    3 ‚     12 ‚      7 ‚      9 ‚      6 ‚     34 
             ƒƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒˆ 
                    4 ‚      1 ‚     14 ‚      4 ‚     15 ‚     34 
             ƒƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒˆ 
             Total          34       34       34       34        

 
Associative 
An associative magic square is a normal magic square with the additional property that 
the eight pairs of numbers that are symmetrically opposite the center of the square sum 
to n2 + 1, or 17 in the case of a 4 by 4 magic square.  There are 384 associative magic 
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squares, or 48 (384/8) fundamental associative magic squares.  Using the notation 
shown in Table 2.1, the eight symmetrically opposite pairs of numbers are AP, BO, CN, 
DM, EL, FK, GJ, and HI. An example of an associative magic square is shown in Table 
10. 
 
Table 10: An associative magic square 
 
                     Row      Column 
                              ‚       1‚       2‚       3‚       4‚  Total 
                     ƒƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒˆ 
                            1 ‚      9 ‚     16 ‚      7 ‚      2 ‚     34 
                     ƒƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒˆ 
                            2 ‚      4 ‚      5 ‚     14 ‚     11 ‚     34 
                     ƒƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒˆ 
                            3 ‚      6 ‚      3 ‚     12 ‚     13 ‚     34 
                     ƒƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒˆ 
                            4 ‚     15 ‚     10 ‚      1 ‚      8 ‚     34 
                     ƒƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒˆ 
                     Total          34       34       34       34        
 
Quadrant associative 
A second type of associative magic square, which we call quadrant associative, has the 
property that all diagonally opposite pairs of numbers within the four main quadrants 
sum to n2 + 1, or 17.  The four main quadrants of a 4 by 4 matrix are shown in Table 11 
with the numerals 1, 2, 3, and 4 identifying the quadrants.   
 
Table 11: Four main quadrants of a magic square 
  
            1  1  2  2 
            1  1  2  2 
            3  3  4  4 
            3  3  4  4 
 
Using the notation shown in Table 2.1, the diagonally opposite pairs of numbers within 
the four quadrants are: AF, BE, CH, DG, IN, JM, KP, and LO.   In total, there are 384 
quadrant associative magic squares, or 48 (384/8) fundamental quadrant associative 
magic squares.  Table 12 shows an example of a quadrant associative magic square. 
 
Table 12:  A quadrant associative magic square 
 
                     Row      Column 
                              ‚       1‚       2‚       3‚       4‚  Total 
                     ƒƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒˆ 
                            1 ‚      9 ‚      5 ‚     16 ‚      4 ‚     34 
                     ƒƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒˆ 
                            2 ‚     12 ‚      8 ‚     13 ‚      1 ‚     34 
                     ƒƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒˆ 
                            3 ‚      7 ‚     11 ‚      2 ‚     14 ‚     34 
                     ƒƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒˆ 
                            4 ‚      6 ‚     10 ‚      3 ‚     15 ‚     34 
                     ƒƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒˆ 
                     Total          34       34       34       34        
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Distributive 
 
Distributive magic squares have the property that each of the four integers in the 
following sets of numbers (1,2,3,4) and (5,6,7,8) and (9,10,11,12) and (13,14,15,16) are 
located in a  row and column where none of the other three numbers in the set are 
located.   There are 2432 distributive magic squares or 304 (2432/8) fundamental 
distributive magic squares.  An example of a distributive magic square (which is also 
pan-magic) is shown in Table 13. 
 
Table 13:  An example of a distributive magic square  
 
             Row      Column 
                      ‚       1‚       2‚       3‚       4‚  Total 
             ƒƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒˆ 
                    1 ‚      8 ‚     10 ‚      3 ‚     13 ‚     34 
             ƒƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒˆ 
                    2 ‚      1 ‚     15 ‚      6 ‚     12 ‚     34 
             ƒƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒˆ 
                    3 ‚     14 ‚      4 ‚      9 ‚      7 ‚     34 
             ƒƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒˆ 
                    4 ‚     11 ‚      5 ‚     16 ‚      2 ‚     34 
             ƒƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒˆ 
             Total          34       34       34       34        

 
 
Summary of sub-types  
 
Table 14 summarizes the total number of squares of each sub-type for all 4 by 4 magic 
squares.   In summary, there are 4224 normal magic squares that do not have the 
property of any of the other sub-types.  There are 2432 distributive magic squares and 
384 of each of the other sub-types.   
 
Table 14:  Summary of magic square sub-types 
 

Sub-type of 
magic square 

Total number of 
squares 

Number of 
fundamental 
squares 

Pan-magic 384 48 

Associative 384 48 

Quadrant 384 48 

Distributive 2432 304 

None of the 
above types 

4224 528 

All types 7040 880 
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Some magic squares have properties of one sub-type only while others have properties 
of two sub-types.   However, no magic square has properties of three or more sub-
types.  Table 15 shows the relationships among sub-types of 4 by 4 magic squares.   
This table has been organized into five columns, where the first four represent the four 
sub-types of magic squares and the rightmost column the total number of squares.  
Each of the first four columns contains either a 1 or a 0 in every row.  If n1 squares were 
common to all four types of magic squares then there would be a 1 under each type of 
square (first four columns) and n1 in the rightmost column.  Similarly, if n2 squares had 
properties of both associative and distributive magic squares then n2 would be in the 
last column on the row where there is a 1 under associative and distributive and a 0 
under pan-magic and quadrant associative.   
 
The total number of magic squares of each sub-type can be determined from this table 
by summing the number of squares from the relevant rows.  For example, the total 
number of pan-magic squares is determined by summing the numbers in the rightmost 
column wherever there is a 1 in the pan-magic column.   
 
Table 15:  Relationships among magic square types 
     
   pan-    associative    quadrant    distributive #squares   
   magic          associative 
    0           0            0        0 4224 (normal, without any other properties) 
    0           0         0        1 1664 
    0           0        1        0  128 
    0           0         1        1  256 
    0           1         0        0  128 
    0           1        0        1  256 
    0           1         1        1    0 
    1           0        0        0  128 
    1           0         0        1  256 
    1           0        1        0    0 
    1           0        1        1    0 
    1           1        0        0    0 
    1           1        0        1    0 
    1           1         1        0    0 
    1           1         1        1    0 
  Total       7040 
     

This table informs us that there are 1664 distributive magic squares that do not have the 
defining properties of pan, associative, or quadrant associative magic squares.   One 
example of these squares is shown in Table 16. 
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Table 16: A distributive magic square 
 
           Row       Column 
 
                      ‚       1‚       2‚       3‚       4‚  Total 
             ƒƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒˆ 
                    1 ‚      7 ‚      4 ‚     14 ‚      9 ‚     34 
             ƒƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒˆ 
                    2 ‚     10 ‚     13 ‚      3 ‚      8 ‚     34 
             ƒƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒˆ 
                    3 ‚      1 ‚      6 ‚     12 ‚     15 ‚     34 
             ƒƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒˆ 
                    4 ‚     16 ‚     11 ‚      5 ‚      2 ‚     34 
             ƒƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒˆ 
             Total          34       34       34       34        

 
Similarly, there are 384 associative squares, 256 of which are also distributive.  An 
example of an associative distributive magic square is shown in Table 17.  The other 
128 associative squares do not share the properties of pan, distributive or quadrant 
associative magic squares.   
  
Table 17: An associative distributive magic square 
 
                   Row       Column 
 
                              ‚       1‚       2‚       3‚       4‚  Total 
                     ƒƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒˆ 
                            1 ‚      3 ‚     16 ‚     10 ‚      5 ‚     34 
                     ƒƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒˆ 
                            2 ‚      6 ‚      9 ‚     15 ‚      4 ‚     34 
                     ƒƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒˆ 
                            3 ‚     13 ‚      2 ‚      8 ‚     11 ‚     34 
                     ƒƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒˆ 
                            4 ‚     12 ‚      7 ‚      1 ‚     14 ‚     34 
                     ƒƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒˆƒƒƒƒƒƒƒƒˆ 
                     Total          34       34       34       34        
 

 
Discussion 
 
Using basic SAS® programming statements it was easy to generate all 7040 four by four 
magic squares.   Four sub-types of squares (i.e., distributive, pan, associative, quadrant 
associative) were identified and it was determined that 4224 of the 7040 squares cannot 
be classified into any of these four sub-types.  It was further determined that a square 
can be of one sub-type only with the exception that a small number of distributive 
squares also have the property of one other sub-type (i.e., pan, associative, or quadrant 
associative).    
 
There are 880 fundamental magic squares of order four.  According to Wolfram there 
are 275,305,224 fundamental magic squares of order five, and a very much larger but 
as yet undetermined number of order six.  Given these large numbers it is doubtful if the 
current algorithm would be of much practical use in enumerating magic squares of order 
5 or greater.  
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