
 - 1 -

Paper 195-2009

Mapping CDISC Metadata Attributes:
Using Data _Null_ and Proc Datasets in SAS®.

Rita Tsang, Averion International Corp., Southborough, Massachusetts

ABSTRACT
In the pharmaceutical environment, the CDISC Study Data Tabulation Model (SDTM) provides the framework for how
clinical data should be submitted to the regulatory authority, such as the US Food and Drug Administration (FDA).
Specific metadata attributes, such as variable type, length, control terminology, and variable label, are established to
standardize the data format in the industry. The process of mapping these attributes can be tedious and time-
consuming. This paper will walk you through how it can be made more automated by using Data _Null_ and Proc
Datasets in a step-by-step approach. This automated process can help save time in manual programming and to
ensure the accuracy of the updates.

INTRODUCTION
The task here is to map our case report form (CRF) data to CDISC-standard SAS data sets based on the mapping
specification in Microsoft Excel format. Individual domain programs will be set up for the mapping purpose. Derived
variables can be added in these individual domain programs. Data _Null_ will be used to create SAS programs for
applying the metadata attributes to the CDISC domains using Proc Datasets.

Step 1 – From the Mapping Specification to SAS data:
We can read in the Microsoft Excel mapping specification into a SAS data set (define.sas7bdat) using Proc Import or
DDE. Here is an example of the CDISC standard mapping specification for the DM domain from CDISC.ORG:

PostersSAS Global Forum 2009

 - 2 -

The template from CDISC.ORG may be adapted for your protocol and sponsor needs. The key is to see the flow of
data from the CRF source data to the final CDISC data. Here is an example of the DM domain in the mapping
specification.

The following SAS code reads in the Excel mapping specification into a SAS data set (DEFINE.SAS7BDAT) using
PROC IMPORT.

Proc SQL is used to create macro variables for the CDISC domains (&_dslist) and the number of domains (&_nds) in
the RAW library. There are two domains in the RAW library – DM and SUPPDM. The macro variable _DSLIST
resolves to DM SUPPDM, and the macro variable _NDS resolves to 2.
**;

%let _dslist =;

proc sql noprint;
 select trim(left(memname)) into :_dslist separated by ' '
 from dictionary.tables
 where libname = 'RAW'
 order by memname;
quit;

PostersSAS Global Forum 2009

 - 3 -

%let _nds = &sqlobs;
%let _dslist = %upcase(&_dslist);
%put &_dslist;

The following macro DEFINE uses a do-loop to read in the attributes of each CDISC domain from the individual Excel
worksheet in the Excel workbook (define.xls). The attributes that are kept in the SAS data DEFINE.SAS7BDAT are
domain name (DOMAIN), variable name (VNAME), variable label (VLABEL), variable type (VTYPE), and variable
format (VFORMAT).
**;

%macro define;

%do i = 1 %to &_nds;

 %let _cds = %scan(&_dslist,&i,%str());

proc import out= work.&_cds (keep=f3-f7 rename=(f3=domain f4=vname
f5=vlabel f6=vtype f7=vformat) where=(domain>' ' and upcase(domain) ne
'DOMAIN')) datafile= "C:\cdisc\define.xls" dbms=EXCEL replace;

 sheet="&_cds$";
 run;

%if &i=1 %then %do;
 data cdisc.define;
 set &_cds;
 run;

%end;
%else %do;

 data cdisc.define;
 set cdisc.define &_cds;
 run;

%end;

 %end;
%mend define;
%define;

PostersSAS Global Forum 2009

 - 4 -

This is an example of the contents of DEFINE.SAS7BDAT. This SAS data set will contain attributes of the metadata.

Obs domain vname vlabel vtype vformat

1 DM STUDYID Study Identifier Char $9.
2 DM DOMAIN Domain

Abbreviation
Char $2.

3 DM USUBJID Unique Subject
Identifier

Char $20.

4 DM SUBJID Subject Identifier for
the Study

Char $3.

5 DM RFSTDTC Subject Reference
Start Date/Time

Char $16.

6 DM RFENDTC Subject Reference
End Date/Time

Char $16.

7 DM SITEID Study Site Identifier Char $2.
8 DM BRTHDTC Date/Time of Birth Char $10.
9 DM AGE Age in AGEU at

RFSTDTC
Num 8.

10 DM AGEU Age Units Char $6.
11 DM SEX Sex Char $1.
12 DM RACE Race Char $20.
13 DM ARMCD Planned Arm Code Char $5.
14 DM ARM Description of

Planned Arm
Char $50.

15 DM COUNTRY Country Char $3.
16 DM DMDTC Date/Time of

Collection
Char $16.

17 SUPPDM STUDYID Study Identifier Char $9.
18 SUPPDM RDOMAIN Related Domain

Abbreviation
Char $2.

19 SUPPDM USUBJID Unique Subject
Identifier

Char $20.

20 SUPPDM IDVAR Identifying Variable Char $8.
21 SUPPDM IDVARVAL Identifying Variable

Value
Char $200.

22 SUPPDM QNAM Variable Name Char $8.

PostersSAS Global Forum 2009

 - 5 -

Obs domain vname vlabel vtype vformat

23 SUPPDM QLABEL Variable Label Char $40.
24 SUPPDM QVAL Data Value Char $200.
25 SUPPDM QORIGIN Origin char $40.
26 SUPPDM QEVAL Evaluator Char $40.

Step 2 – Using Data _Null and the PUT statement to create SAS code:

With the Define SAS data set now created, we can use Data _Null_ and the PUT statement to create SAS code to
apply the metadata attributes using Proc Datasets. The following code will create a program called LABEL.SAS for
labeling variables based on the information in the Define data set (DEFINE.SAS7BDAT):

proc sort data=cdisc.define out=label;
 by domain;

run;

Data _null_ is just a simple SAS statement that asks SAS not to create a data set when executing the DATA step,
since our main interest here is really to create a SAS program. The FILE statement when used in conjunction with
the PUT statement, tells SAS to write lines of text to an external location, a SAS program in this case.
 **;

 data _null_;
 set label end=eof;
 by domain;
 file "C:\cdisc\label.sas";

By using the PUT statement, we write the Proc Datasets syntax at the first few lines of the program. Note that there
are line pointer controls (/) in some of the PUT statements. Each line pointer control instructs SAS to advance the
pointer to column 1 of the next line. As a result, blank lines can be inserted into the program.
**;

 if (_n_ = 1) then do;

 put "proc datasets memtype=data;" ;
 put " copy in=raw out=cdisc;" ;
 put "run;" //;
 put "proc datasets library=cdisc memtype=data;" /;
 end;

PostersSAS Global Forum 2009

 - 6 -

In the following example, we are combining both the character constant (e.g. " modify ") and a variable (e.g.
DOMAIN), and followed by another character constant (";")in the PUT statement. When a variable (e.g. DOMAIN,
VNAME, VLABEL) is being used as an argument of the PUT statement, the value of the variable will be written in the
file.

Note that by using the format $8. after VNAME, the output style is formatted. The value of the variable VNAME will
have a width of 8 characters in the SAS program.

Also note that the +(-1) is a pointer control that moves the pointer backward to remove the unwanted blank space that
occurs between the value of VLABEL and the double-quotes ('"').
**;

 if (first.domain) then do;
 put " modify " domain ";" ;
 put " label " vname $8. ' = "' vlabel +(-1) '"';
 end;
 else put " " vname $8. ' = "' vlabel +(-1) '"';

 if (last.domain) then put " ;" /;

 if eof then do;
 put "run;";
 put "quit;";
 end;
 run;

Similarly, Data _Null_ and the PUT statement can also be used to generate program code to format variables in the
metadata.

Step 3 – Running Proc Datasets to apply the CDISC metadata attributes

The program LABEL.SAS generated by Data _Null_ and the PUT statement in Step 2 is shown below. Proc Datasets
is a versatile procedure in SAS. It can be used for copying datasets from library to library, renaming and deleting
data sets within a data library, as well as modifying the attributes (such as labels, formats, informats) in a data library.

PostersSAS Global Forum 2009

 - 7 -

proc datasets memtype=data;
 copy in=raw out=cdisc;
run;

proc datasets library=cdisc memtype=data;

 modify DM ;
 label STUDYID = "Study Identifier"
 DOMAIN = "Domain Abbreviation"
 USUBJID = "Unique Subject Identifier"
 SUBJID = "Subject Identifier for the Study"
 RFSTDTC = "Subject Reference Start Date/Time"
 RFENDTC = "Subject Reference End Date/Time"
 SITEID = "Study Site Identifier"
 BRTHDTC = "Date/Time of Birth"
 AGE = "Age in AGEU at RFSTDTC"
 AGEU = "Age Units"
 SEX = "Sex"
 RACE = "Race"
 ARMCD = "Planned Arm Code"
 ARM = "Description of Planned Arm"
 COUNTRY = "Country"
 DMDTC = "Date/Time of Collection"
 ;

 modify SUPPDM ;
 label STUDYID = "Study Identifier"
 RDOMAIN = "Related Domain Abbreviation"
 USUBJID = "Unique Subject Identifier"
 IDVAR = "Identifying Variable"
 IDVARVAL = "Identifying Variable Value"
 QNAM = "Variable Name"
 QLABEL = "Variable Label"
 QVAL = "Data Value"
 QORIGIN = "Origin"
 QEVAL = "Evaluator"
 ;

run;
quit;

CONCLUSION:
In the process of CDISC mapping, the CDISC mapping specification document is a living document that may be
updated based on project team discussion. This paper has shown you an example of the automated process that
can help save programming time and avoid manual errors. It can also help accommodate for numerous updates in
the mapping specification. More importantly, the consistency between the mapping specification and the final CDISC
domains can be more assured.

REFERENCES
Clinical Data Interchange Standards Consortium (CDISC) (2005), Study Data Tabulation Model Implementation
Guide: Human Clinical Trials, Austin, TX: CDISC Inc.

SAS Institute (2007), SAS Online Documentation for SAS 9.1.3 release, Cary, NC: SAS Institute Inc.

PostersSAS Global Forum 2009

 - 8 -

ACKNOWLEDGEMENT
The author would like to express her appreciation to the following individual for her invaluable comments and
suggestions in this paper:

Shannon Escalante, Ikaria

CONTACT INFORMATION
Your comments and questions are valued and encouraged. Contact the author at:

Rita Tsang
Averion International Corp.
225 Turnpike Road
Southborough, MA 01772
Rita.Tsang@averionintl.com

SAS and all other SAS Institute Inc. product or service names are registered trademarks or trademarks of SAS
Institute Inc. in the USA and other countries. ® indicates USA registration.
Other brand and product names are trademarks of their respective companies.

PostersSAS Global Forum 2009

	2009 Table of Contents

