
1

Paper 143-2009

Don't Be a SAS
®
 Dinosaur:

Modernizing Programs with Base SAS 9.2 Enhancements

Warren Repole Jr., SAS Institute Inc.

ABSTRACT

New features of the SAS® programming language often permit the replacement of complex algorithms and clunky
workarounds with more elegant code. Some enhancements support the creation of more efficient solutions. Whether
you are a SAS programmer with many years of experience or a novice user who is responsible for maintaining
legacy programs, implementing updated approaches can allow you to streamline your SAS applications, expedite
the development and debugging process, and minimize future maintenance of the code.

INTRODUCTION

This paper covers a selection of enhancements implemented in SAS 9.2, including new features of Base SAS
procedures, the DATA step, functions, formats, and the macro language. Each enhancement is paired with an
alternative technique available prior to SAS 9.2. This allows for comparison of older and newer approaches.

The primary motivation for exploiting SAS 9.2 enhancements is the ability to create robust yet easy-to-maintain SAS
programs with less programmer effort. Efficiency gains in terms of machine resources might be achieved, but they
are of secondary importance in most examples.

BASE SAS PROCEDURES

PROC PRINT: BLANKLINE= OPTION

Inserting a blank line into PROC PRINT output after every n observations could enhance readability, but this was
difficult to accomplish prior to SAS 9.2. Observations with missing values were inserted, the MISSING= system
option was switched to a blank (then reset to its default value afterward), and the NOOBS option was required.

In SAS 9.2 producing this type of report is simple using the BLANKLINE= option in the PROC PRINT statement.

data class_blanks(drop=i);

 set sashelp.class;

 output;

 if mod(_n_,5)=0;

 array alln {*} _numeric_ ;

 array allc {*} _character_ ;

 do i=1 to dim(alln); alln{i}=.; end;

 do i=1 to dim(allc); allc{i}=" "; end;

 output;

run;

options missing=" ";

proc print data=class_blanks noobs ;

run;

options missing=".";

proc print data=sashelp.class

 blankline=5 ;

run;

Figure 1a.

PROC PRINT code before SAS 9.2

Figure 1b.

PROC PRINT code with BLANKLINE= option

Foundations and FundamentalsSAS Global Forum 2009

2

 Obs Name Sex Age Height Weight

 1 Alfred M 14 69.0 112.5

 2 Alice F 13 56.5 84.0

 3 Barbara F 13 65.3 98.0

 4 Carol F 14 62.8 102.5

 5 Henry M 14 63.5 102.5

 6 James M 12 57.3 83.0

 7 Jane F 12 59.8 84.5

 8 Janet F 15 62.5 112.5

 9 Jeffrey M 13 62.5 84.0

 10 John M 12 59.0 99.5

 11 Joyce F 11 51.3 50.5

 12 Judy F 14 64.3 90.0

 13 Louise F 12 56.3 77.0

 14 Mary F 15 66.5 112.0

 15 Philip M 16 72.0 150.0

 16 Robert M 12 64.8 128.0

 17 Ronald M 15 67.0 133.0

 18 Thomas M 11 57.5 85.0

 19 William M 15 66.5 112.0

Figure 1c. Output from Figure 1b program including the Obs column suppressed in Figure 1a program

PROC SORT: SORTSEQ= OPTION

Sorting character data that is stored inconsistently in terms of case has been a challenge for many years. Typical
solutions involved converting the data to uppercase using the UPCASE function before sorting.

In SAS 9.2 the SORTSEQ= value of LINGUISTIC with the collating rule STRENGTH=PRIMARY supports sorting that
is not case sensitive. Diacritical differences and punctuation are handled through other STRENGTH= settings.

data french;

 set maps.names;

 where Territory contains "France";

 Territory_Upper=upcase(Territory);

run;

proc sort data=french;

 by Territory_Upper Name ;

run;

proc sort data=maps.names out=french

 sortseq=linguistic

 (strength=primary) ;

 where Territory contains "France";

 by Territory Name ;

run;

Figure 2a.

PROC SORT using uppercase values

Figure 2b.

PROC SORT using SORTSEQ=LINGUISTIC option

Collating rules associated with the sorted data are exploited in subsequent BY statements.

proc print data=french;

 by Territory;

 id Territory;

 var Territory Name;

run;

 TERRITORY TERRITORY NAME

Overseas Department of France Overseas Department of France FRENCH GUIANA

 Overseas Department of France GUADELOUPE

 Overseas Department of France MARTINIQUE

Overseas territory of France Overseas territory of France FRENCH POLYNESIA

 overseas territory of France MAYOTTE

 Overseas territory of France NEW CALEDONIA

 Overseas territory of France ST. PIERRE/MIQUELON

 Overseas territory of France TOGO

 Overseas territory of France WALLIS/FUTUNA ISLANDS

Figure 2c. Program and output illustrating the inconsistent case of Territory in the MAYOTTE observation

Foundations and FundamentalsSAS Global Forum 2009

3

The collating rule ALTERNATE_HANDLING=SHIFTED treats spaces and punctuation as minimally important.

City

New Castle

New Market

Newington

Newport News

Newsoms

City

New Castle

Newington

New Market

Newport News

Newsoms

Figure 3a.

Data order from PROC SORT

without ALTERNATE_HANDLING=SHIFTED

Figure 3b.

Data order from PROC SORT

with ALTERNATE_HANDLING=SHIFTED

The collating rule NUMERIC_COLLATION=ON handles integer values within a string as their numeric equivalent for
sorting purposes.

Address

10274 Dinwiddie Ct

133 Dinwiddie Ct

9658 Dinwiddie Ct

Address

133 Dinwiddie Ct

9658 Dinwiddie Ct

10274 Dinwiddie Ct

Figure 4a.

Data order from PROC SORT

without NUMERIC_COLLATION=ON

Figure 4b.

Data order from PROC SORT

with NUMERIC_COLLATION=ON

DATA STEP TECHNIQUES

SET STATEMENT: DATA SET LISTS AND INDSNAME= OPTION

Providing a list of commonly named data sets in the SET (or MERGE) statement involved either hardcoding the data
set names or implementing a macro-based solution. Identifying the source data set for each observation required the
use of the IN= data set option and significant conditional logic.

In SAS 9.2 data set lists using the dash or colon are supported. Data set options to be applied to all input data sets
can be specified just once. The INDSNAME= option in the SET statement, also new in SAS 9.2, provides a
temporary variable that contains the fully qualified name of the contributing data set.

data combined;

 set sashelp.prdsale(in=in_prdsale

 keep=country product year actual)

 sashelp.prdsal2(in=in_prdsal2

 keep=country product year actual)

 sashelp.prdsal3(in=in_prdsal3

 keep=country product year actual)

 ;

 length Source $ 32;

 if in_prdsale then Source="PRDSALE";

 else

 if in_prdsal2 then Source="PRDSAL2";

 else

 if in_prdsal3 then Source="PRDSAL3";

run;

data combined;

 set sashelp.prdsal:

 (keep=country product year actual)

 indsname=inputdsn

 ;

 length Source $ 32;

 Source=scan(inputdsn,2);

run;

Figure 5a.

DATA step with hardcoded data set names,

repeated data set options, and conditional logic

Figure 5b.

DATA step with data set name list, single data set

option specification, and INDSNAME= option

Foundations and FundamentalsSAS Global Forum 2009

4

proc freq data=combined;

 tables Source;

run;

 Cumulative Cumulative

Source Frequency Percent Frequency Percent

ƒƒ

PRDSAL2 23040 64.00 23040 64.00

PRDSAL3 11520 32.00 34560 96.00

PRDSALE 1440 4.00 36000 100.00

Figure 5c. Program and output illustrating the distribution of input observations

INFILE AND FILE STATEMENTS: DLMSTR= AND DLMSOPT= OPTIONS

Parsing text input lines using the DLM= option in the INFILE statement is limited to using one or more single
characters as field delimiters. To treat a character string as a delimiter, additional DATA step logic was required.

In SAS 9.2 the DLMSTR= option provides a mechanism to use a string as a delimiter. The case of the delimiter
string can be ignored by adding the DLMSOPT="I" option.

data stringdelim;

 infile datalines;

 input;

 infile=tranwrd(_infile_,"{sep}","/");

 N1=input(scan(_infile_,1,"/"),32.);

 Length N2 $ 8;

 N2=scan(_infile_,2,"/");

 N3=input(scan(_infile_,3,"/"),32.);

datalines;

123{sep}sep{sep}789

0{sep}ABCXYZ{sep}456

run;

data stringdelim;

 infile datalines dlmstr="{sep}"

 dlmsopt="I";

 input N1 N2 $ N3;

datalines;

123{sep}sep{sep}789

0{Sep}ABCXYZ{SEP}456

run;

Figure 6a.

Parsing multiple character delimiters

using DATA step functions

Figure 6b.

Parsing multiple character delimiters

using the DLMSTR= option

proc print data=stringdelim;

run;

Obs N1 N2 N3

 1 123 sep 789

 2 0 ABCXYZ 456

Figure 6c. Program and output illustrating the success of the delimiter identification

DATA STATEMENT: NOLIST OPTION

When data errors are encountered in a DATA step, such as invalid raw data values for numeric variables and
unsuccessful observation retrieval using the KEY= option in the SET statement, the automatic _ERROR_ variable is
set to 1, triggering a "dump" of the Program Data Vector (PDV) that lists all variables available in the DATA step.

Setting the system option ERRORS=0 (changing from its typical default value of 20) eliminates the PDV dump but
also suppresses potentially valuable associated messages.

The PDV dump can also be suppressed by resetting _ERROR_ to 0 prior to the end of the DATA step iteration. The
associated messages still appear but are no longer restricted by the ERRORS= system option value, introducing the
possibility for a massive volume of messages.

In SAS 9.2 the NOLIST option at the end of the DATA statement suppresses the PDV dump while generating
associated messages consistent with the current ERRORS= system option setting. A single-line note appears in the
SAS log in place of the complete PDV dump, a reasonable compromise outcome.

Foundations and FundamentalsSAS Global Forum 2009

5

data nopdvdump ;

 input N1 N2;

 error=0;

datalines;

123 234

234 xyz

abc 345

run;

data nopdvdump92 / nolist ;

 input N1 N2;

datalines;

123 234

234 xyz

abc 345

run;

Figure 7a.

Suppressing a PDV dump by setting _ERROR_ to 0

Figure 7b.

Suppressing a PDV dump by using the NOLIST option

17 data nopdvdump92 / nolist ;

18 input N1 N2;

19 datalines;

NOTE: Invalid data for N2 in line 21 5-7.

NOTE: NOLIST option on the DATA statement suppressed output of variable listing.

NOTE: Invalid data for N1 in line 22 1-3.

NOTE: NOLIST option on the DATA statement suppressed output of variable listing.

NOTE: The data set WORK.NOPDVDUMP92 has 3 observations and 2 variables.

Figure 7c. SAS log excerpt illustrating the suppression of the PDV dump when invalid data is encountered

SAS FUNCTIONS

COUNTW AND FINDW FUNCTIONS

Parsing a character string often involves a conditional loop that detects the end of the string. Locating a substring is
challenging when inadvertent matches must be avoided and substrings could appear at the start, the end, or both.

In SAS 9.2 the COUNTW function determines how many words are contained in a string, using a similar algorithm to
the SCAN function.

data words;

 set sashelp.zipcode;

 Words=0;

 do while(scan(City,Words+1) ne " ");

 Words+1;

 end;

run;

data words;

 set sashelp.zipcode;

 Words=countw(city);

run;

Figure 8a.

DO WHILE to count words in a string

Figure 8b.

COUNTW function to count words in a string

proc freq data=words;

 tables Words;

run;

 Cumulative Cumulative

Words Frequency Percent Frequency Percent

ƒƒ

 1 31700 74.92 31700 74.92

 2 9522 22.50 41222 97.42

 3 470 1.11 41692 98.53

 4 258 0.61 41950 99.14

 5 361 0.85 42311 100.00

 6 1 0.00 42312 100.00

Figure 8c. Program and output illustrating the distribution of the Words variable

Foundations and FundamentalsSAS Global Forum 2009

6

In SAS 9.2 the FINDW function locates a substring that exists as a separate word within a longer string. The FINDW
function can return either the character position at which the substring was found, or the word number corresponding
to the substring match (using the E modifier). The I modifier requests that the search process should ignore case.

data lake;

 set sashelp.zipcode;

 LakePos=index(" "||upcase(City)||" ",

 " LAKE ");

 if LakePos > 0

 then do LakeWord=1 to 99999

 while(scan(City,LakeWord," ")

 not in ("Lake" " "));

 end;

run;

data lake;

 set sashelp.zipcode;

 LakePos=findw(City,"lake"," ","i");

 if LakePos > 0

 then LakeWord=findw(City,"lake"," ",

 "ie");

run;

Figure 9a.

INDEX and UPCASE functions to locate word

Conditional iterative DO loop to locate word number

Figure 9b.

FINDW function to locate word and word number

proc freq data=lake;

 tables LakePos LakeWord;

run;

 Cumulative Cumulative

LakePos Frequency Percent Frequency Percent

ƒƒ

 0 41880 98.98 41880 98.98

 1 150 0.35 42030 99.33

 5 7 0.02 42037 99.35

 6 97 0.23 42134 99.58

 7 57 0.13 42191 99.71

 8 60 0.14 42251 99.86

 9 30 0.07 42281 99.93

 10 19 0.04 42300 99.97

 11 7 0.02 42307 99.99

 12 1 0.00 42308 99.99

 14 1 0.00 42309 99.99

 15 2 0.00 42311 100.00

 16 1 0.00 42312 100.00

 Cumulative Cumulative

LakeWord Frequency Percent Frequency Percent

ƒƒƒ

 1 150 34.72 150 34.72

 2 275 63.66 425 98.38

 3 7 1.62 432 100.00

Frequency Missing = 41880

Figure 9c. Program and output illustrating the distribution of the LakePos and LakeWord variables

CHAR AND FIRST FUNCTIONS

The SUBSTR function is commonly used to extract text from a string. Using the value 1 for the third argument
extracts a single character. Using the value 1 for both the second and third arguments extracts the first character
only. If the SUBSTR function result is stored in a new variable, the length of that variable defaults to the length of
the original string.

In SAS 9.2 the CHAR function extracts a single character, assigning a length of 1 to any resulting new variable. The
FIRST function performs a similar action, extracting only the first character from the original string.

Foundations and FundamentalsSAS Global Forum 2009

7

data CityPunct;

 set maps.uscity;

 where substr(City,1,1)="O";

 PunctPosition=anypunct(City);

 if PunctPosition > 0;

 PunctChar=substr(City,PunctPosition,1);

run;

data CityPunct;

 set maps.uscity;

 where first(City)="O";

 PunctPosition=anypunct(City);

 if PunctPosition > 0;

 PunctChar=char(City,PunctPosition);

run;

Figure 10a.

LENGTH statement with SUBSTR function

Figure 10b.

FIRST and CHAR functions

proc freq data=CityPunct;

 tables PunctChar;

run;

Punct Cumulative Cumulative

Char Frequency Percent Frequency Percent

ƒƒ

' 7 36.84 7 36.84

- 12 63.16 19 100.00

Figure 10c. Program and output illustrating the distribution of the PunctChar variable

proc contents data=CityPunct varnum;

run;

Output from Figure 10a program

 Variables in Creation Order

Variable Type Len Label

1 CITY Char 80 City Name

2 PunctPosition Num 8

3 PunctChar Char 80

Output from Figure 10b program

 Variables in Creation Order

Variable Type Len Label

1 CITY Char 80 City Name

2 PunctPosition Num 8

3 PunctChar Char 1

Figure 10d. Program and output illustrating the length of the PunctChar variable using each technique

NWKDOM AND HOLIDAY FUNCTIONS

Deriving the nth occurrence of a given weekday within a month has been solved through algorithms involving
functions such as INTNX. Occasionally, the desired date is a holiday or observance such as Thanksgiving or Easter.

In SAS 9.2 dates for common holidays in the United States and Canada can be determined using the HOLIDAY
function. The NWKDOM function is more general in nature, returning the date corresponding to the nth occurrence
of a given weekday within a month. To obtain the final occurrence, you can use 5; if there are only 4 occurrences,
then the 4

th
 occurrence is returned.

Foundations and FundamentalsSAS Global Forum 2009

8

data SpecialDates;

 Election2008=intnx("week.2",

 "31oct2008"d,1)+1;

 Memorial2009=intnx("week.2",

 "31may2009"d,0);

 if weekday("01jul2012"d)=1

 then Canada2012="02jul2012"d;

 else Canada2012="01jul2012"d;

run;

data SpecialDates;

 Election2008=nwkdom(1,2,11,2008)+1;

 Memorial2009=nwkdom(5,2,5,2009);

 Canada2012=holiday("CANADAOBSERVED",2012);

 Easter2014=holiday("EASTER",2014);

run;

Figure 11a.

Date manipulation using INTNX and WEEKDAY

functions

Figure 11b.

HOLIDAY and NWKDOM functions

proc print data=SpecialDates;

 format _all_ weekdate20.;

run;

 Election2008 Memorial2009

 Tue, Nov 4, 2008 Mon, May 25, 2009

 Canada2012 Easter2014

 Mon, Jul 2, 2012 Sun, Apr 20, 2014

Figure 11c. Program and output illustrating the derived dates for the selected observances

SAS FORMATS

DATEw. FORMAT: WIDTH OF 11

The DATEw. format displays the day number, month abbreviation, and year for a SAS date. To produce the same
display with dashes between the components, a custom date format can be created through PROC FORMAT.

In SAS 9.2 the DATEw. format allows a width of 11, automatically inserting dashes between the date components.

proc format;

 picture mydate (default=11)

 .="Missing date"

 other='%0d-%b-%Y' (datatype=date);

run;

proc print data=sashelp.prdsal3;

 format Date mydate.;

run;

proc print data=sashelp.prdsal3;

 format Date date11.;

run;

Figure 12a.

Defining a custom date format with PROC FORMAT

Figure 12b.

Using the DATE11. format

 Obs DATE

 1 01-JAN-1997

 2 01-FEB-1997

 3 01-MAR-1997

 4 01-APR-1997

 5 01-MAY-1997

Figure 12c. Output illustrating the first few formatted values of the DATE variable

Foundations and FundamentalsSAS Global Forum 2009

9

PERCENTNw. FORMAT

The PERCENTw. format displays a numeric value as a percentage with the percent sign (%) at the end of the value.
Negative values are displayed surrounded by parentheses. To display a leading minus sign instead of parentheses,
a custom format can be created through PROC FORMAT.

In SAS 9.2 a negative percentage can be displayed with a leading minus sign using the PERCENTNw. format.
When using the PERCENTNw. format, add 1 to the anticipated maximum width to account for a trailing blank.

data Differences;

 set sashelp.prdsal3;

 DiffPct=(Actual-Predict)/Predict;

run;

proc format;

 picture pcntneg

 low-<0="009.9%"

 (mult=1000 prefix="-")

 0-high="009.9%" (mult=1000);

run;

proc print data=Differences;

 var Actual Predict DiffPct;

 format DiffPct pcntneg7.;

run;

data Differences;

 set sashelp.prdsal3;

 DiffPct=(Actual-Predict)/Predict;

run;

proc print data=Differences;

 var Actual Predict DiffPct;

 format DiffPct percentn8.1;

run;

Figure 13a.

Defining a picture format with PROC FORMAT

Figure 13b.

Using the PERCENTNw. format

Due to the truncation that can occur with a picture format, the results are slightly different. The PERCENTNw. format
applies the same type of rounding algorithm as other SAS formats when displaying a limited number of digits.

 ACTUAL PREDICT DiffPct

 $726.00 $509.00 42.6%

 $1,311.00 $418.00 213.6%

 $24.00 $12.00 100.0%

 $1,342.00 $556.00 141.3%

 $552.00 $532.00 3.7%

 $1,784.00 $1,786.00 -0.1%

 $1,317.00 $1,655.00 -20.4%

 $1,678.00 $258.00 550.3%

 $1,852.00 $1,277.00 45.0%

 $1,056.00 $1,594.00 -33.7%

Figure 13c.

Output from Figure 13a program

 ACTUAL PREDICT DiffPct

 $726.00 $509.00 42.6%

 $1,311.00 $418.00 213.6%

 $24.00 $12.00 100.0%

 $1,342.00 $556.00 141.4%

 $552.00 $532.00 3.8%

 $1,784.00 $1,786.00 -0.1%

 $1,317.00 $1,655.00 -20.4%

 $1,678.00 $258.00 550.4%

 $1,852.00 $1,277.00 45.0%

 $1,056.00 $1,594.00 -33.8%

Figure 13d.

Output from Figure 13b program

SAS MACRO LANGUAGE

IN OPERATOR: MINOPERATOR AND MINDELIMITER= OPTIONS

Expressions evaluated by the %IF statement have been limited to pairwise comparisons. To check one value
against a list of values, a compound expression or a function-based solution was required.

In SAS 9.2 the IN operator is supported with %IF statements when the MINOPERATOR option is added to the
%MACRO statement or set as a SAS system option. The macro version of the IN operator uses spaces as default
delimiters, so the MINDELIMITER= option is available to change the delimiter to another character.

Foundations and FundamentalsSAS Global Forum 2009

10

%macro Filter(ageparm);

 %if &ageparm=11 or &ageparm=12 or

 &ageparm=13 or &ageparm=14 or

 &ageparm=15 or &ageparm=16

 %then %do;

 proc print data=sashelp.class;

 where age = &ageparm;

 title1 "Students of Age &ageparm";

 run;

 %end;

 %else %do;

 %put ERROR: No matching students.;

 %put ERROR- Valid ages are;

 %put ERROR- 11 12 13 14 15 16;

 %end;

%mend Filter;

%macro Filter(ageparm) / minoperator;

 %if &ageparm in 11 12 13 14 15 16

 %then %do;

 proc print data=sashelp.class;

 where age = &ageparm;

 title1 "Students of Age &ageparm";

 run;

 %end;

 %else %do;

 %put ERROR: No matching students.;

 %put ERROR- Valid ages are;

 %put ERROR- 11 12 13 14 15 16;

 %end;

%mend Filter;

Figure 14a.

Defining a compound %IF expression

Figure 14b.

Using the IN operator in the %IF expression

1115 %Filter(13)

MPRINT(FILTER): proc print data=sashelp.class;

MPRINT(FILTER): where age = 13;

MPRINT(FILTER): title1 "Students of Age 13";

MPRINT(FILTER): run;

NOTE: There were 3 observations read from the data set SASHELP.CLASS.

 WHERE age=13;

1116 %Filter(17)

ERROR: No matching students.

 Valid ages are

 11 12 13 14 15 16

Figure 14c. SAS log excerpt illustrating the conditional logic results of the %IF expressions

CONCLUSION

Each release of SAS software contains valuable new features that can enhance the programming experience. Some
changes permit more reliable implementation of common tasks while others can make difficult tasks considerably
easier, more efficient, or both.

A brief glance at the "What's New" documentation is a worthwhile investment for any SAS programmer, regardless of
their level of experience.

REFERENCES

 Olson, Diane. 2008. "New in SAS
®
 9.2: It’s the Little Things That Count." Proceedings of the SAS Global Forum

2008 Conference. Cary, NC: SAS Institute Inc. Available at www2.sas.com/proceedings/forum2008/176-
2008.pdf

 SAS Institute Inc. 2008a. Base SAS
®
 9.2 Procedures Guide. Cary, NC: SAS Institute Inc.

 SAS Institute Inc. 2008b. SAS
®
 9.2 Language Reference: Dictionary. Cary, NC: SAS Institute Inc.

 SAS Institute Inc. 2008c. SAS
®
 9.2 Macro Language: Reference. Cary, NC: SAS Institute Inc.

 SAS Institute Inc. 2008d. What’s New in SAS
®
 9.2. Cary, NC: SAS Institute Inc.

Foundations and FundamentalsSAS Global Forum 2009

http://www2.sas.com/proceedings/forum2008/176-2008.pdf
http://www2.sas.com/proceedings/forum2008/176-2008.pdf

11

 Secosky, Jason. 2008. SAS Institute Inc., Cary, NC. "A Sampler of What's New in Base SAS
®
 9.2".

Available at support.sas.com/rnd/base/datastep/whats-new-base-sas92.pdf

ACKNOWLEDGMENTS

The author acknowledges his fellow instructors in the SAS Education Division, especially Jim Simon, for reviewing
this paper and providing helpful feedback.

The concept for this paper was initially presented during the seminar "Modernizing Your SAS® Code, or How to
Avoid Becoming a SAS Dinosaur" at SAS Global Forum 2007 in Orlando FL, adapted from the author's publication
Don't Be a SAS® Dinosaur: Modernize Your SAS Code.

RECOMMENDED READING

 The author has contributed several SAS Notes related to topics discussed in this paper.

SAS Institute Inc. 2008. SAS Note 31366, “Inserting a Blank Line After Every N Observations in PROC PRINT
Output Using SAS 9.2.” Available at support.sas.com/kb/31/366.html

SAS Institute Inc. 2008. SAS Note 31369, “Sorting Text Without Regard to Case in SAS 9.2.”
Available at support.sas.com/kb/31/369.html

 Visit www.repole.com/dinosaur for additional examples related to the "SAS Dinosaur" concept.

 The author also maintains a presence on the sasCommunity.org Web site.
Visit www.sascommunity.org/wiki/User:Sasdinosaur for more information.

CONTACT INFORMATION

Your comments and questions are valued and encouraged. Contact the author:

Warren Repole Jr.
SAS Institute Inc.
1705 Palm Springs Dr.
Vienna VA 22182
703-255-5476
Warren.Repole@sas.com
sasdinosaur@repole.com

SAS and all other SAS Institute Inc. product or service names are registered trademarks or trademarks of SAS
Institute Inc. in the USA and other countries. ® indicates USA registration.

Other brand and product names are trademarks of their respective companies.

Foundations and FundamentalsSAS Global Forum 2009

http://support.sas.com/rnd/base/datastep/whats-new-base-sas92.pdf
http://support.sas.com/kb/31/366.html
http://support.sas.com/kb/31/369.html
http://www.repole.com/dinosaur
http://www.sascommunity.org/wiki/User:Sasdinosaur
mailto:Warren.Repole@sas.com
mailto:sasdinosaur@repole.com

	2009 Table of Contents

