
1

Paper 103-2009

Using SAS® OLAP Server for a ROLAP Scenario
Michelle Wilkie, Mary Simmons , Tatyana Petrova, SAS Institute Inc., Cary, NC

John Graas, Teradata, San Diego, CA
Brian Mitchell, Teradata, Miamisburg, OH

ABSTRACT
SAS® offers a flexible online analytical processing (OLAP) solution, not only allowing users to choose a multi-
dimensional OLAP (MOLAP) approach, but also a relational OLAP (ROLAP) solution. With the latter approach, the
SAS® OLAP Server accesses data stored within relational database management systems directly. A ROLAP
approach reduces cube build times and decreases maintenance activities as the data remains in relational database
management systems (RDBMS). Using the SAS OLAP Server in tandem with Teradata delivers an ideal OLAP
solution for the expanding needs of your organization.

This paper is targeted to advanced SAS users and discusses the following topics:

Relational OLAP (ROLAP) using SAS OLAP Server and Teradata;

Design aspects for a ROLAP implementation;

Teradata performance features and enhancements.

SAS OLAP
Online analytical processing (OLAP) is a technology that is used to create decision support software. OLAP enables
application users to quickly analyze information that has been summarized into multidimensional views and
hierarchies. By summarizing predicted queries into multidimensional views prior to run time, OLAP tools provide the
benefit of increased performance over traditional database access tools. Most of the resource-intensive calculation
that is required to summarize the data is done before a query is submitted.

OLAP technology can be further defined by the methods for storing and accessing data. SAS OLAP supports three
different variations of OLAP technology:

• MOLAP
• ROLAP
• HOLAP

A SAS cube is comprised of three parts: metadata, navigation files and the physical data or aggregation tables. (See
figure 1.) The first two components do not differ with the different OLAP techniques.

The metadata for a cube (created in the SAS Enterprise Intelligence Platform) defines information such as the
location of data, the cube structure, cube-based security permissions and calculated measure definitions. The
navigation files are used to help understand how the input data information translates to the structure of the cube. For
example, how cube members relate to each other, their formats, member properties, and captions for each member.

Data IntegrationSAS Global Forum 2009

2

Figure 1. OLAP Cube Structure. The metadata and navigation files components do not differ regardless of OLAP
techniques. However, aggregations define the physical data structure, which is unique to each technique.

The physical data is dependent on which OLAP technique the cube designer specifies when building the cube
structure. (See figure 2.)

Figure 2. OLAP Techniques. The Teradata system can optimize OLAP implementations regardless of which technique is
used.

• MOLAP

With a MOLAP approach, relevant SAS proprietary highly indexed aggregation tables are created and stored within
the physical cube. Since the data is pre-aggregated, the response is quickly returned to the end users. While being a
popular technique that provides quick access to detail data, MOLAP introduces a set of challenges.

The cost challenge relates to the overhead of the tasks the BI administrators must perform. In a MOLAP structure,
the data resides in both the data warehouse and the cube. This means that the data must be updated and maintained
in two locations.

When building a MOLAP cube, the majority of time is spent in transferring data and processing aggregations. As
businesses expand their analysis to include more dimensions or deeper levels of analytics, the cost and overhead of
moving and replicating data into an external cube becomes a challenge for the BI administrator and IT departments.

Data IntegrationSAS Global Forum 2009

3

The common workaround is to reduce the cube size (amount of data to be transferred). However, this results in less
data for analysis, fewer dimensions and details, and reduced value for business analysis. Reduction in cube update
frequency is also a feasible option but leads to OLAP cubes periodically becoming out of synch with the data
warehouse. This can result in less accurate analytics.

• ROLAP
To meet the challenges introduced by MOLAP, another technique can be utilized by customers. With a ROLAP
approach, all data resides in the relational database management system, where relational tables are optimized for
low-level dimensional requests, and aggregate indexes are created for higher-level OLAP requests. A ROLAP-based
cube lets the RDBMS handle the SQL and optimization, which may be dependent on implementing an Aggregate
Join Indexes (AJI) feature.

 The advantages of a ROLAP solution include:

• Only metadata and navigation files are created, resulting in fast build times. ROLAP aggregations build in a
fraction of a time it takes to build a MOLAP cube. Data expansion results in minimal impact on cube build
time.

• The warehouse updates are immediately available for users querying the cube.

• Data management remains within the RDBMS, not within the cube.

The physical database design of any data warehouse should reflect the customer’s business, independent of any tool
or application requirements. A normalized data model, snowflake schema, and star schema are all widely used as
data models within the enterprises.

SAS OLAP cubes support three types of input data: star schema, detail data, or summarized tables.

Teradata star schema performance has always been sound, and its database has optimizations to support star
schema performance. In the case when SAS ROLAP should be implemented on a normalized data model or
snowflake schema, an additional semantic layer must be built on top of the table to represent a star schema.
Aggregations in the form of Teradata AJIs can then be built on top of the schema to increase OLAP performance.

It is crucial that the normalized model or snowflake schema be “cleansed,” meaning there are no NULLs, data
transformations are complete, and data is ready for reporting. If not, it may be necessary to build a physical semantic
layer, as the Teradata aggregate approach described above will not work on “uncleansed” normalized data. This is
also relevant for a star schema design if AJI support is desired.

If a physical semantic layer is required, it is recommended to implement a snowflake schema that is populated by
INSERT/SELECTs from the normalized model in the Teradata Database. The INSERT/SELECTs would be defined
so that they perform the data-cleansing tasks to result in a snowflake schema that is ready for reporting. A snowflake
schema is preferred for Teradata as it yields smaller AJIs (referential Integrity will provide roll-up for higher level
columns) versus building an AJI against a star schema, which would require adding the higher levels into the AJI
definition.

A SAS cube that feeds from a star schema representation of DBMS data should be defined with the 'Do not create an
NWAY' option. This fully summarized table, composed of all crossing of the levels defined in the cube, is equivalent to
the PROC OLAP option NO_NWAY.

• HOLAP

The HOLAP technique addresses some of the challenges of the MOLAP implementation. With a HOLAP approach, a
mix of the SAS proprietary aggregation tables and relational tables is used. This provides the business intelligence
administrator the flexibility to establish the location of the multi-dimensional data. The location choice depends on the
access frequency, administration, and processing overhead of the data.

The comparative performance and scalability benefits or penalties between the ROLAP, MOLAP, or HOLAP
approaches would have to be determined for any given application. A ROLAP solution that uses a star schema or a
view built over a snowflake schema, optimized with AJIs, might be the a preferable approach for users who store their
data sources on Teradata and utilize SAS OLAP for multidimensional analysis.

 DEMONSTRATION DATA
To demonstrate the implementation of ROLAP using SAS OLAP Server and Teradata optimization techniques, we
will be using an experimental data sources on Teradata and provide step-by-step guidelines on how to set up your

Data IntegrationSAS Global Forum 2009

4

SAS metadata environment, design cube, and optimize the querying process. For our example, we chose Orion data
represented in two scenarios: a star schema and a snowflake schema, as two layouts of data that allow for most
beneficial use of Teradata optimization techniques.

Star Schema

Our Star schema consists of a fact table (ORDER_FACT) and four dimension tables (CUSTOMER_DIM,
GEOGRAPHY_DIM, TIME_DIM, AND PRODUCT_DIM). (See figure 3.)

Figure 3. Orion Star Schema.

The physical tables that will not be used for our OLAP cube build are taken out of the picture for simplicity reasons.
This is a typical scenario, demonstrating when not all data available would be valuable for the particular cube users
and thus are not included into the cube design process. Employee_ID and Order_ID columns from ORDER_FACT
table are not referenced from any shown tables. However, they still can be used with corresponding tables in another
model if designed for a different business purpose.

Snowflake Schema

Our snowflake model is actually a combination of star and snowflake schemas. We snowflaked data minimally just to
demonstrate what considerations should be made when working with a snowflake model rather than a star model
(such as adding a semantic layer and other considerations for AJIs set up). For our example, we normalized
PRODUCT_DIM table into several tables (productline_dim, productcategory_dim, productgroup_dim,
productname_dim, productsnow_dim). To be accessible from SAS OLAP, we added a second semantic layer which
consists of a view (productview_dim) on top of normalized tables. (See figure 4.)

Data IntegrationSAS Global Forum 2009

5

Figure 4. Orion Snowflake Schema.

ROLAP IMPLEMENTATION IN SAS

SAS OLAP SERVER

SAS OLAP uses a combination of SAS servers to store cube metadata, to store the physical cube structure, and to
query cubes after they are created. Several types of SAS servers are available to handle different workload types and
processing intensities. The SAS OLAP Server is a scalable server that provides multi-user access to data that is
stored in SAS OLAP cubes or populated in real-time from relational databases. This server is designed to reduce the
load on traditional back-end storage systems by quickly delivering summarized views, irrespective of the amount of
data that underlies the summaries. OLAP queries are performed by using the Multidimensional Expressions (MDX)
query language in client applications that are connected to the SAS OLAP server.

The SAS OLAP Server has a dual role:

• security validation

o authentication of the user against the SAS Metadata Server

o authorization and validation of what the user is allowed to see

• query engine

Which OLAP technique the cube is based on will determine how the MDX query is handled and translated into the
appropriate query that will be passed either to an underlying database or internally. In the MOLAP-based cube, the
SAS OLAP Server spawns multiple threads internally to retrieve the queries from the relevant cube aggregation
tables. For a ROLAP-based cube, MDX is translated into SQL queries, which are passed down to the RDBMS to
handle and optimize.

Data IntegrationSAS Global Forum 2009

6

For the most optimized performance at query time, a SAS cube requires aggregation tables that best meet the query
result set. SAS provides Application Response Measurement (ARM) logs that help cube designers or administrators
tune a cube based on end-user interactions or queries that have been submitted against that cube.

METADATA SET UP FOR A ROLAP CUBE BUILD

A cube designer can define a cube using SAS OLAP Cube Studio or using procedure code (PROC OLAP). To build a
cube by using either of those methods, you must complete several preliminary tasks:

• Define a SAS OLAP Server and OLAP schema

• Define a DBMS server

• Define a SAS library

• Register source data tables

There are different tools available to complete the above steps. For our example we will be using SAS Management
Console and Orion data sources on Teradata.

I. Define a SAS OLAP Server and OLAP schema in the metadata.

The server does not need to be running to create cubes, but it must be defined in the metadata. A SAS OLAP
Schema is an organization container for SAS OLAP cubes. It communicates with a SAS OLAP Server about which
cubes can be accessed by the server and then queried. A SAS OLAP server can be associated with only one OLAP
schema. To be able to register data tables later on, you also need to have a SAS Workspace Server registered in the
metadata and running while registration takes place.

For our exercise we defined the following servers’ structure:

To associate the SAS OLAP Server with the OLAP schema, select the properties of “TeraPerf –logical” server. Select
the OLAP schema tab and choose the schema suggested by default or create a new one.

Data IntegrationSAS Global Forum 2009

7

II. Define a DBMS server (in our case Teradata) where the data is stored.

Your library will need to know which data sources to take data from. Defining a DBMS server and assigning it to the
library will serve this purpose. To define a DBMS server in SAS Management Console, right click on Server Manager
in the Folders Tree and select “New server”. This invokes the New Server Wizard. Specify Teradata Server as the
type of your server:

Data IntegrationSAS Global Forum 2009

8

In the next window, specify the name of your server:

Data IntegrationSAS Global Forum 2009

9

For server properties, specify the machine where your Teradata database is located:

In the Connection properties window, specify your server name and what type of authentication you need for your
OLAP Cube user, as well as which authentication domain will be responsible for passing users’ credentials to
Teradata.

Data IntegrationSAS Global Forum 2009

10

Confirm your choices.

Data IntegrationSAS Global Forum 2009

11

III. Define a new library for source data tables

For SAS OLAP, libraries serve as organization containers for the data tables that you use to create SAS OLAP
Cubes.

In SAS Management Console, select the Libraries folder under the Data Library Manager in the Folders tree. Right
Click on the Libraries folder and select the New Library Wizard. Complete the steps provided by the Wizard as
following.

Choose “Teradata Library” as a type of the library:

Name your library and provide the location of the library in the metadata:

Data IntegrationSAS Global Forum 2009

12

On the “Select SAS Servers” window, specify which SAS OLAP server and Workspace server are assigned to the
library (picture not shown):

• TeraPerf – logical

• Workspace server

In the next window, specify the database server information:

Data IntegrationSAS Global Forum 2009

13

Confirm your choices:

IV. Register the source data tables that will be used to create the cube.

For this task we need to register the physical tables from Teradata to the TeraLib library we created above. To do
that, Right Click on TeraLib library and select “Register tables”. This invokes the Register Tables Wizard. In the
Teradata data sources window, the Teradata information is inherited from the Library definition. You have an option
here to specify whether to treat your DBMS objects as case-sensitive and whether any of those have special
characters in the names.

To be able to succeed with this step, you must have your specified SAS Workspace Server running in the
background.

Data IntegrationSAS Global Forum 2009

14

Select any needed tables from the list of physical tables from the specified database on the specified Teradata
server.

Data IntegrationSAS Global Forum 2009

15

Confirm your choices:

After this task is complete, you can see your registered tables list on the right panel of SAS Management Console
when selecting your library:

From this list you can access details of your tables by right clicking on the table and selecting Properties. From there
you can view and update details on columns, indexes, keys and authorization information from the SAS OLAP
perspective.

Note: Proper authorization permissions should be assigned to the users in order for them to be able to complete the
metadata set up and other tasks. This includes the following requirements:

• The user who sets up metadata needs ReadMetadata and WriteMetadata permissions to be assigned.

• The users who will be querying ROLAP cube need to have the set of security permissions assigned based on
what data from the cube they are allowed to access. Same users should be defined as members of the
Authentication Domain that was specified for your DBMS server.

• Users who will be querying the ROLAP cube should be also defined on DBMS side and have select privileges
granted on objects of the physical schema that cube is built upon.

TERADATA GUIDELINES

DESIGN RULES

To provide an optimal ROLAP solution, Teradata recommends the physical database schema to follow a set of
design rules which assists proper Aggregate Join Index (AJI) utilization. Follow these design rules:

• All primary and foreign keys are defined as not nullable.

• All primary and foreign keys are not compressible.

Data IntegrationSAS Global Forum 2009

16

• All dimension table primary keys are defined as unique utilizing the UNIQUE constraint, or the primary key is
defined as an UNIQUE PRIMARY INDEX.

• Ensure all primary and foreign keys are on ID, not Name or Description columns. This will result in a smaller AJI
which means faster access.

• Collect Statistics on all PKs, FKs, PIs, keyword “partition” for all tables with a PPI, and all individual columns
included in multi-column indexes for tables and AJIs. This includes Collect Statistics on keyword “partition” for
AJIs with a PPI. Also Collect Statistics for all the individual hierarchy columns in denormalized star dimension
tables and AJIs.

• Implement referential integrity on the primary key/ foreign key columns. The referential integrity can be defined
with the check (hard RI) or no check option (soft RI). The No check option is recommended.

DETAILS OF IMPLEMENTING "DESIGN RULES" ON EXAMPLE

• All primary and foreign keys are defined as not nullable.

Example: "Street_ID DECIMAL (13,0) NOT NULL,"

• All dimension table primary keys are defined as unique utilizing the UNIQUE constraint, or the primary key is
defined as an UNIQUE PRIMARY INDEX.

Example: "UNIQUE PRIMARY INDEX (Street_ID);"

• Implement referential integrity on the primary key/ foreign key columns. The referential integrity can be defined
with the check (hard RI) or no check option (soft RI).

The soft RI option is recommended. There is no maintenance processing cost (think of it as the honor system). Here
is an example for the Geography Dimension:

ALTER TABLE order_fact ADD FOREIGN KEY (street_id) REFERENCES WITH NO CHECK OPTION
geography_dim (street_id);

These rules allow the Teradata optimizer to depend on the data relationships defined and then use the defined AJI for
the appropriate access paths. NOT NULL and UNIQUE constraints define the one-to-many relationship versus a
possible many-to-many relationship. Referential Integrity constraints allow the elimination of table joins to tables
unneeded to resolve the report request. Referential Integrity also enables the optimizer to bring into the query plan
(higher level) dimension columns/tables/joins for roll-ups (example: AJI might represent aggregation at the Area level,
but with RI in place the Division and Region requests will benefit with the Area level AJI). In addition, statistics allow
the Teradata optimizer to aggressively choose the least cost access path to the underlying data.

RECOMMENDATIONS FOR CHOOSING DIMENSION LEVELS FOR AJI

We will demonstrate the example of AJI that was set up for our Orion Star schema. First, we build the dimensional
model for all the dimensions that will be used in the cube. (See figure 5.)

Dimension Geography Products Time Customers:
Hierarchy 1

Customers:
Hierarchy 2

 Country Product Line Year ID

 State Product Category Quarter

 Region Product Group Month Name Customer_Type Customer_Gender

Lowest Aggr City Product Name Week Name Customer_Group Customer_Age_Group

Key Street_ID Product_ID Date_ID Customer_ID Customer_ID

Figure 5. Dimensional Model.

Data IntegrationSAS Global Forum 2009

17

To support these four dimensions, you can start with creating an AJI at the City/Product Name/Week
Name/Customer_Group level. This would be at the lowest level of the hierarchy for each dimension. However, the
resulting AJI may be too large, and thus cost more than direct access to the underlying tables for the Teradata
database to use for data access. Whether or not an AJI will be used by the SAS report request can be determined by
both Explains of the SQL submitted or by DBQL object access counts.

It may be preferable to have an AJI with fewer dimensions included and/or aggregated at a higher level of the
dimension hierarchies. Determining the best lowest level AJI will depend on the data demographics and the most
common report aggregation levels. For example, an AJI that has a roll-up (group by) at the Region level will support
faster queries than one with a group by down at the Street_ID level. The recommendation is to build an initial AJI at
the first level up from the fact rows. You can then perform query analysis to confirm that this AJI will be used.

In addition, when a lowest level broad AJI is too large to be used by the Teradata database optimizer, you can use
global join indexes for a star schema at the lowest level of the individual dimension hierarchies. An example for
Geography dimension is:

CREATE JOIN INDEX order_fact_geo1 AS SELECTt street_id, rowid FROM order_fact
PRIMARY INDEX (street_id);

When multiple hierarchies are built from the same dimension, and AJI support is required for each of them, (for
example Customer dimension) then multiple AJIs should be built. This will depend on the frequency of report
requests for each of the hierarchies and whether or not the hierarchies follow the rules of valid primary key/ foreign
key relationships.

EXAMPLE OF AJIS SET UP ON DEMONSTRATION DATA

Lowest level broad AJI

CREATE JOIN INDEX olaptst1.os_pgc_AJI ,NO FALLBACK AS
SELECT COUNT(*)(FLOAT, NAMED CountStar),
g.Country ,
g.State,
g.Continent ,
g.City ,
p.Product_Line ,
p.Product_Category ,
p.Product_Group ,
p.Product_Name ,
c.Customer_Group ,
c.Customer_Type ,
c.Customer_Age_Group ,
c.Customer_Gender ,
sum(o.Quantity) (float, named Quantity),
sum(o.Total_Retail_Price) (float, named Total_Retail_Price),
count(o.Quantity) (float, named count_Quantity),
count(o.Total_Retail_Price) (float, named count_Total_Retail_Price)
FROM olaptst1.order_fact o
,olaptst1.geography_dim g
,olaptst1.product_dim p
,olaptst1.customer_dim c
WHERE o.Street_ID = g.Street_ID
and o.product_id = p.product_id
and o.Customer_ID = c.Customer_ID
GROUP BY
g.Country ,
g.State,
g.Continent ,
g.City ,
p.Product_Line ,
p.Product_Category ,
p.Product_Group ,
p.Product_Name ,
c.Customer_Group ,
c.Customer_Type ,
c.Customer_Age_Group ,

Data IntegrationSAS Global Forum 2009

18

c.Customer_Gender
PRIMARY INDEX (Product_Name, City, Customer_Group);

COLLECT STATISTICS ON olaptst1.os_pgc_AJI COLUMN (City);
COLLECT STATISTICS ON olaptst1.os_pgc_AJI COLUMN (Customer_Group);
COLLECT STATISTICS ON olaptst1.os_pgc_AJI COLUMN (Product_Name);
COLLECT STATISTICS ON olaptst1.os_pgc_AJI INDEX (City,Customer_Group,Product_Name);
COLLECT STATISTICS ON olaptst1.os_pgc_AJI COLUMN (Product_Line);
COLLECT STATISTICS ON olaptst1.os_pgc_AJI COLUMN (Customer_Group);
COLLECT STATISTICS ON olaptst1.os_pgc_AJI COLUMN (Customer_Type);
COLLECT STATISTICS ON olaptst1.os_pgc_AJI COLUMN (Product_Category);
COLLECT STATISTICS ON olaptst1.os_pgc_AJI COLUMN (Product_Group);
COLLECT STATISTICS ON olaptst1.os_pgc_AJI COLUMN (Customer_Age_Group);
COLLECT STATISTICS ON olaptst1.os_pgc_AJI COLUMN (Customer_Gender);
COLLECT STATISTICS ON olaptst1.os_pgc_AJI COLUMN (Continent);
COLLECT STATISTICS ON olaptst1.os_pgc_AJI COLUMN (Country);

Lowest level Product Dimension AJI

CREATE JOIN INDEX olaptst1.os_p_AJI ,NO FALLBACK AS
SELECT COUNT(*)(FLOAT, NAMED CountStar),
p.Product_Line ,
p.Product_Category ,
p.Product_Group ,
p.Product_Name ,
sum(o.Quantity) (float, named Quantity),
sum(o.Total_Retail_Price) (float, named Total_Retail_Price),
count(o.Quantity) (float, named count_Quantity),
count(o.Total_Retail_Price) (float, named count_Total_Retail_Price)
FROM olaptst1.order_fact o
,olaptst1.product_dim p
WHERE o.product_id = p.product_id
GROUP BY
p.Product_Line ,
p.Product_Category ,
p.Product_Group ,
p.Product_Name
PRIMARY INDEX (Product_Name);

COLLECT STATISTICS ON olaptst1.os_p_AJI INDEX (Product_Name);
COLLECT STATISTICS ON olaptst1.os_p_AJI COLUMN (Product_Line);
COLLECT STATISTICS ON olaptst1.os_p_AJI COLUMN (Product_Category);
COLLECT STATISTICS ON olaptst1.os_p_AJI COLUMN (Product_Group);

Here are some additional design rules and observations for the AJI design:

• All queries can use one AJI that joins all the dimensions, even though not all the dimensions were included in the
query. That is, the query uses a subset of the AJI dimensions.

• As long as all the columns in the hierarchy (at the level queried or above) are included in the AJI, then the AJI can
be used. For example, a query at the region level will use an AJI that has street, city, region, and country columns
included.

• Secondary indexes or global join indexes on columns that correspond to low level members in the dimensional
model can provide fast access to rows in the FACT table. This will enable the elimination of these columns/values
from the AJI, thus making the AJI smaller while still providing access to this level. An example of this might be
PRODUCT_ID.

If the PRODUCT_ID column is normally used in filtering and slicing cubes, and if it is a high cardinality column,
then it is a good candidate for a secondary index or global join index.

• The large SQL in-lists being generated by the SAS 9.1.3 can sometimes preclude use of the Primary Index (PI) of
the AJI. As of result, the access in these examples might be through a full-AJI scan. This is less prevalent in
SAS 9.2.

Data IntegrationSAS Global Forum 2009

19

• To support COUNT, you must have a COUNT summary column in the AJI.

• Ensure all measures in the fact table are set with integer or float data type. Otherwise, overflow may occur on
some large calculated measures

• The recommended fact table design is a 'wide' design (columns for each dimension and measure).

• Single level dimensions need supporting reference/lookup/dimension table for optimal performance.

• PPIs allow a table to be partitioned on columns of interest while retaining the traditional use of the PI for data
distribution and efficient access when PI values are specified in the query. A typical example for a PPI candidate
is the Time dimension, if it is often qualified. PPIs can be used both with the underlying tables and with an AJI.

After AJIs are set up and ready, their usage is automatic by Teradata and transparent for the OLAP users querying
the cube. As data grows and evolves over time, and as business analytics requests change, the BI administrator
should periodically check whether AJIs in their former set up still provide the optimal optimization.

OTHER HELPFUL TUNING STEPS

Capturing SQL in SAS.

To see the SQL that is passed through, add the following to your autoexec file:

options sastrace=',,,d' sastraceloc=saslog nostsuffix;

These captured SQL can then be pasted into the Teradata SQL Assistant tool and then Explained or executed.

DBQL

The Teradata Database Query Log (DBQL) was used to analyze the in-database performance of ROLAP using
SAS OLAP server and Teradata optimization techniques. DBQL is the primary data source for query monitoring and
evaluation of tuning techniques in the Teradata database. Teradata DBQL provides a series of predefined tables that
can store, based on rules you specify, historical records of queries and their duration, performance, and target
activity. The DBQL data is accessed with SQL queries written against the DBQL tables or views. DBQL is
documented in the Database Administration manual for each release of the Teradata database.

CONCLUSION
SAS and Teradata naturally complement each other with a powerful and flexible solution for BI administrators. Using
ROLAP storage in Teradata with SAS OLAP Cubes allows you to reduce data duplication, decrease SAS OLAP cube
build times, and keep performance monitoring and optimization tasks within the RDBMS, leveraging already existing
knowledge and expertise.

REFERENCES
SAS OLAP Server: Users' Guide

Cube design, by Michelle Wilkie and Arlene Zaima (Teradata Magazine, September 2008)

Implementing AJIs for ROLAP, by Carlos Bouloy (Teradata.com)

An added dimension, by Carlos Bouloy and Rupal Shah (Teradata.com)

RECOMMENDED READING
SAS OLAP Server: Users' Guide

Implementing AJIs for ROLAP, by Carlos Bouloy (Teradata.com)

Teradata Database manuals:

SQL Reference: Statement and Transaction Processing, Chapter 2 "Query Rewrite and Optimization"

Database Management: Database Administration, Chapter 2 "Collecting Optimizer Statistics on Indexes"

Database Management: Database Design, Chapters 9-12

Database Management: Performance Management, Chapter 8 "Collecting Statistics"

Data IntegrationSAS Global Forum 2009

20

CONTACT INFORMATION
Your comments and questions are valued and encouraged. Contact the author at:

Michelle Wilkie
SAS Institute
SAS Campus Drive
Cary, NC 27513
E-mail: michelle.wilkie@sas.com
Web: www.sas.com

Mary Simmons
SAS Institute
SAS Campus Drive
Cary, NC 27513
E-mail: mary.simmons@sas.com
Web: www.sas.com

Tatyana Petrova
SAS Institute
SAS Campus Drive
Cary, NC 27513
E-mail: tatyana.petrova@sas.com
Web: www.sas.com

John Graas
Teradata Corporation
17095 Via Del Campo
San Diego, CA 92127
E-mail: john.graas@teradata.com
Web: www.teradata.com

Brian Mitchell
Teradata Corporation
2835 Miami Village Drive
Miamisburg, OH 45342
E-mail: brian.mitchell@teradata.com
Web: www.teradata.com

SAS and all other SAS Institute Inc. product or service names are registered trademarks or trademarks of
SAS Institute Inc. in the USA and other countries. ® indicates USA registration.

Other brand and product names are trademarks of their respective companies.

Data IntegrationSAS Global Forum 2009

	2009 Table of Contents

