
Paper 062-2009

A Propaedeutics for PROC SQL Joins

Lisa Mendez , SRA International Inc. , San Antonio , Tx.
Toby Dunn , AMEDDC&S (CASS) , San Antonio , Tx.

ABSTRACT
Would you like to be able to join information from separate tables quickly and easily? Have you ever had two or more
tables that you want to join but just don’t know where to begin? If the answer is “yes” then “Join” us for a crash
course over Proc SQL joins. This paper will help get you started by introducing you to the four basic types of SQL
joins: inner, outer, natural, and Cartesian. Through the use of carefully crafted examples and detailed explanations
we will take you on a guided tour of the SQL joins in SAS®.

INTRODUCTION
The power of SQL joins can be seen when a user must join datasets from a relational database, when joining large
datasets, or when two or more datasets must be joined with some complex set of logic. One major advantage of
using Proc SQL comes from the fact that datasets do not need to be explicitly presorted as Proc SQL will implicitly do
the sorting for you.

The world has become a huge data hog, collecting, organizing, and storing huge amounts of data. Businesses aren’t
collecting all of this data just for the fun of it; they are at an ever increasing rate turning to this data to drive their
business decisions. One of the side effects of collecting all this data is the need to some how efficiently store and
organize it. Computer science came up with relational data bases. One of the central tenants of data base design is
normalizing the tables of a data base. This normalization insures efficient data storage and accuracy by minimizing
the storage of redundant data and ensuring data integrity. Explaining normalization is a subject worthy of its own
paper or book, suffice for our purposes is to know only that normalization improves overall efficiency and creates a
bunch of tables.

When normalization is achieved redundant data is minimized, storage is maximized and the need to access this
normalized data that has been stored in separate tables becomes important. By relating key variables between
tables, information can then be retrieved as if the data were stored in one large table. Relating these tables together
is where Proc SQL joins comes into play.

A join in its essence will return, delete, or update data from more than one data source as one set of data. Whether
the join is simple, extremely complex or even mimics a data step merge, all of them rely on a few basic types of joins.
This paper introduces you to the four basic types of SQL joins through examples and detailed explanations.

CARTESIAN OR CROSS JOIN
The Cartesian or Cross join is the simplest of all the possible joins to write and understand. It is simply a combination
of two tables with out a qualifying Where clause. The result of a Cartesian join is every row of the first table joined to
every row of the second table. Mathematically one can calculate the number of rows in the resulting table by
multiplying the number of rows in the first table by the number of rows in the second table. Let’s say you have two
tables with 10 rows each, the final table produced would be (10 * 10 = 100) rows.

To illustrate a Cartesian product, let us look at two example tables. One is named Course Table. It has six records
and lists CourseNo, CourseName, and DayOfWeek. The other is named Instructor Table. It has three records and
lists CourseNo and InstructorName. We can see that CourseNo is a common variable or in data base terms a
primary key between the two tables.

Course Table

 1

Coders' CornerSAS Global Forum 2009

Instructor Table

Using the sample code below, we can create a Cartesian product as a new table.
Proc SQL;
 Create Table CartesianJoin AS
 Select A.* , B.*
 From CourseTable As A ,
 InstructorTable As B ;

Quit;
The result of the sample code produces a table where each record in the Course Table is joined with each record in
the Instructor Table.

CartesianJoin Table

There are six records in the Course Table and three records in the Instructor Table; therefore, there are 18 records in
the new CartesianJoin table (6 X 3 = 18). Cartesian Joins usually generate large unwieldy data set, require a lot of
resources to build compared to other types of joins and usually are not intended as a final table. However, the syntax
is easy to write and remember which makes them popular, albeit they are usually accompanied by a Where clause.
As we will see next in the Inner Joins section, using a Where clause helps manage the data.

INNER JOINS
In the previous section we looked at Cartesian joins or the Cartesian/Cross product of joining two tables. While a
Cartesian product rarely, if ever, gives you the results you want it is a helpful stepping stone to other types of joins.
Inner joins are nothing more than a Cartesian product with the addition of a Where clause to specify what data is to
be kept in the final data set. We have already mentioned that a Cartesian product is a type of Inner Join however,
there are three other types of inner joins: Equijoin, Non-Equijoin, and Reflexive. Inner joins are the most common
type of join and unless some other type of join is specified it is the default and as such one does not have to explicitly
specify an Inner Join in the From Clause. Inner joins require at least two data sets and can join up too 32 data sets.

 2

Coders' CornerSAS Global Forum 2009

EQUIJOIN
An Equijoin is the most common type of inner join and can be distinguished by the equal sign predicate between two
linking variables in the Where clause. For example, let us say you want to find out who manufactures which
products within your company. Two example tables we will use are Product Table and Manufacturer Table. The
common column in each table is the ManufacturerNo.

Product Table

Manufacturer Table

Proc SQL ;
Create Table InnerJoin AS
 Select *
 From ProductTable , ManufacturerTable
 Where ProductTable.ManufacturerNo =ManufacturerTable.ManufacturerNo ;
Quit ;

InnerJoin Table

The resulting InnerJoin Table contains data that has only data where the values of ManufacturerNo match in both
tables. An Equi-Join will first build the Cartesian product table as a intermediate table and then discard any rows that
do not meet the equality condition(s) set in the Where clause. Note you can use as many equality conditions as you
desire in the Where clause statement.

Previously we mention that you can have up to 32 tables specified in an inner join. The difference to the code would
be to add the third table to the From clause and specify the variables to match upon in the Where clause. To
illustrate how we join three tables with an inner equijoin, let us suppose we want to find out the products, along with
their manufacturer information, that have been invoiced.

 3

Coders' CornerSAS Global Forum 2009

Proc SQL;
Create Table InnerJoinThree AS
 Select *
 From ProductTable, ManufacturerTable, InvoiceTable
 Where ProductTable.ManufacturerNo = ManufacturerTable.ManufacturerNo And
 ManufacturerTable.ManufacturerNo = InvoiceTable.ManufacturerNo ;
Quit ;

InnerJoinThree Table

As we can see from the table above we have all the information from the first join and the data from the Invoice
Table. It is important to note that if you have multiple rows in one table that can suffice the matching condition(s) the
resulting table will have all matching data and the table with one matching row will be duplicated for all matching data
from the second table. An example of such a case in this example is ProductNo 5001. While the match between the
ProductTable and ManufacturerTable result in one row the InvoiceTable has multiple matching rows and thus the
data from the ProductTable and ManufacturerTable is duplicated.

NON-EQUIJOIN
If Equi-Joins have only ‘=’ or EQ as predicates in the Where clause what about the case where at least one of the
predicates are not = or EQ? Well, these are called Non-EquiJoins. Non-EquiJoins have to have at least one
predicate that would create a condition that isn’t an equality. As with the other Inner joins, an intermediate Cartesian
product is created and the conditions specified in the Where clause weed out the unwanted observations from the
final table.

 Let us continue to use the Product and Manufacturer tables. Suppose we want to create a table to display products
manufactured by Global Software that cost more than $300.
Proc SQL ;
Create Table NonEquiJoin As
 Select B.Name , A.Cost
 From ProductTable As A ,
 ManufacturerTable As B
 Where A.ManufacturerNo = B.ManufacturerNo And
 UpCase(B.Name) = 'GLOBAL SOFTWARE' And
 A.Cost > 300 ;
Quit ;

NonEquiJoin Table

REFLEXIVE JOIN
A Reflexive Join, or Self Join as it is more commonly called, is an Inner join which references the same table.
Remember back at the begging we said that an Inner join must have at least two data sets but no more than 32.
There is nothing that says those two data sets can not be the same one. While this may seem a bit odd at first it is
quit handy. SQL simply creates two copies of the table in memory and treats them as two separate data sets. This
functionality is very useful, as seen in or example, where we want to see how the price for each customer compares
to every other costumer that has a larger dollar amount on their invoices.

 4

Coders' CornerSAS Global Forum 2009

Proc SQL ;
Create Table ReflexiveJoin As
 Select A.CustomerNo , A.Price ,
 B.CustomerNo As OtherCustNo , B.Price As OtherPrice
 From InvoiceTable As A ,
 InvoiceTable As B
 Where A.Price < B.Price ;
Quit ;

ReflexiveJoin Table

OUTER JOINS
As we have seen, Inner joins only keep rows that meet the condition(s) specified in the Where clause. While this is
very useful, there are many cases where you will want to keep all rows that match and rows from one or both tables
that do not meet the matching criteria. In cases such as these you need to switch join types and use what is known
as an Outer join. Outer joins are only able to process two tables at a time. Keywords are added to the syntax of the
From Clause between the dataset/table names: LEFT JOIN, RIGHT JOIN, FULL JOIN. As you may have guessed
by the keywords, there are three main types of outer joins: Left, Right, and Full. Since an Outer join can only join two
tables at a time think about the first table as the Left hand side table and the second table as the Right Hand side
table, thus giving us the Left Outer Join and the Right Outer Join. Think of it this way, the left table is always the table
that precedes the keyword Join and the right table is always the table name that follows the keyword Join. We will
discuss these further as we discuss each specific type of Outer Join. Outer joins can only process two
datasets/tables at a time regardless of how many Outer joins you specify in one SQL statement. Lastly the matching
criteria does not use a Where clause but rather the On Clause.

LEFT OUTER JOIN
Since outer joins are designed to keep rows that match the matching conditions as well as those that do not match
from one or both tables it stands to reason that one or both datasets needs to be considered a Master data set. In
the case of a Left Join the table that precedes the key word “Left Join” in the From clause is considered the Master
data set. That means all rows regardless of whether they have a matching row on the Right hand side table will be
kept in the final data set. In the case where there are multiple rows in the Right hand side table, the Left hand side
table’s data will be duplicated.

Suppose you want to see a list of all products and their corresponding manufacturer information. You will want to
also see all those products that do not have a manufacturer. In this example we will use the Product table and the
Manufacturer table.

Let us look at two of our example tables again.

 5

Coders' CornerSAS Global Forum 2009

Product Table

Manufacturer Table

The Product table will act as the Left (master) table and the Manufacturer table will act as the subordinate table.
Since we have such a small number of records, we can predict our results. Our new table should not have
manufacturer records for product numbers 1700 or 2200.
Proc SQL ;
Create Table LEFTJoin As
 Select *
 From ProductTable LEFT JOIN ManufacturerTable
 ON ProductTable.ManufacturerNo = ManufacturerTable.ManufacturerNo ;
Quit;

LeftJoin Table

RIGHT OUTER JOIN
Right Outer Joins, as you have probably guessed by now, use the Right hand side table as the master data set and
the left hand side as the look up table. Suppose we want to create a table to show all products along with the product
type, manufacturer number, and manufacturer name.
Proc SQL ;
Create Table RIGHTJoin As
 Select ProductName , Type , ProductTable.ManufacturerNo , Name
 From ProductTable RIGHT JOIN ManufacturerTable
 ON ProductTable.ManufacturerNo = ManufacturerTable.ManufacturerNo ;
Quit ;

 6

Coders' CornerSAS Global Forum 2009

RightJoin Table

FULL OUTER JOIN
The last Outer Join is the Full Outer Join or more commonly called Full Join. A Full join is the combination of the Left
and Right Joins. That is to say it will keep matching and non-matching rows from both tables. While this type of join
is less commonly used than Inner joins and the Left and Right Outer Joins there are real world applications where this
type of join is very useful.

Using the same Product and Manufacturer tables, we will use the FULL JOIN to create a table that will contain
manufacturers with no products and products without any known manufacturers. We already have this information
from the LEFT and RIGHT join examples, but this time we want to create a table with only those records. We will use
the same sample code as the Right Outer Join, but replace RIGHT keyword with the FULL keyword.
Proc SQL ;
Create Table FULLJoin As
 Select ProductName , Type , ProductTable.ManufacturerNo , Name
 From ProductTable FULL JOIN ManufacturerTable
 ON ProductTable.ManufacturerNo = ManufacturerTable.ManufacturerNo ;
Quit ;

FullJoin Table

By using the FULL JOIN we preserve all the rows from both the left and right tables even when there are no matching
rows.

To help you determine when to use a specific inner or outer join, I have augmented a table from Stuelpner and
Bahler’s poster paper.

 7

Coders' CornerSAS Global Forum 2009

Type of Join Informational Requirements

Inner Join

Only those data values from all data sets that contain
the same data values within the joining variables

Left or Right
Outer Join

All data values from a single data set (master) and all
data values from the other data set(s) that match the
data values of the joining variables within the master.

Full Outer Join All data values from all data sets

NATURAL JOINS
Natural joins are a special type of join that uses all variables that have matching name and types as the primary keys
to join the tables. Natural joins are by default a special type of Inner join but can also be specified as an Outer join. If
there are no variables that have a matching name and type a Cartesian product is performed. When performing a
Natural Left or Right Join do not use the On clause as it will cause the join to fail. Since there is no implementation
as of version 9.1.3 to specify which variables are to be considered for the match all variables matching name and
type are used; this severely limits the Natural joins usability.

Since the common column names are implied, we can take the code we used for the Inner Join and modify it to
illustrate the Natural Join. We modify the code by changing the name of the new table, insert the NATURAL JOIN
keywords between the two tables (do not forget to remove the comma), and remove the entire Where clause.
Proc SQL ;
Create Table NaturalJoin As
 Select *
 From ProductTable NATURAL JOIN ManufacturerTable ;
Quit ;
After running the code, our new table has the same variables and records as the table created using the Inner join
code. The only difference is the order of the variables.

NaturalJoin Table

A few things to think about regarding Natural joins:

• A natural join assumes that you want to base the join on equal values of all pairs of common columns, not just those
on which we want to base the join; therefore, you will need to drop any common columns that are not part of the join
before doing the join (Fleming, 2007).

• You cannot base a join on columns with different names.
• When you specify a natural join on tables that do not have at least one column in common, the result is a Cartesian

product. Use a Where clause to limit the output (Fleming, 2007).
For this purpose of this paper a simple example was used. To read more about Natural Joins and its additional
advantages, refer to John Fleming’s presentation Natural Joins in PROC SQL (2007).

CONCLUSION
Using the Proc SQL procedure provides you with many ways to join two or more tables. It is easy to learn the basics
and easy to begin to add flexibility. The information provided in this paper should give you a great starting point to
help you write the code you need, and to help you understand when you should use specific types of joins.
Remember that each type of join has caveats, and you should always clearly know what you want to do, choose the
join which meets your needs, and finally always QC your results.

 8

Coders' CornerSAS Global Forum 2009

 9

REFERENCES
Borowiak, Kenneth W. 2006. “Using Data Set Options in PROC SQL”, Proceedings of the 31st Annual SAS Users

Group International, San Francisco, CA, 131-31.

Fleming, John. 2007. “Natural Joins in PROC SQL”, Proceedings of the Edmonton SAS User Group, Edmonton, AB.

Lafler, Kirk Paul. 2004. PROC SQL: Beyond the Basics Using SAS®. Cary, NC: SAS Institute Inc.

Lafler, Kirk Paul and Shipp, Charles Edwin. 2002. “A Visual Introduction to PROC SQL Joins”, Proceedings of the

27th Annual SAS Users Group International, Orlando, FL, TU06.

Matthews, JoAnn. 2006. “Proc SQL versus The Data Step”, Hands on Workshop of the Northeast SAS User Group,

Philadelphia, PA.

Stueopner, Janet and Bahler, Caroline. 2002. “Putting It Together – The Poster A Data Set Joining Primer”, Poster of

the Southeast SAS User Group, PS04.

ACKNOWLEDGEMENTS
We would like to offer our sincere thanks to Kirk Lafler for the use of some of the datasets used in this paper.

CONTACT INFORMATION
Your comments and questions are valued and encouraged. Contact the authors at:

Lisa Mendez
SRA International
1777 NE Loop 410, Ste 510
San Antonio, TX 78217
Phone: 210-832-5213
Fax: 210-824-9578
E-mail: lisa_mendez@sra.com

Toby Dunn
AMEDDC&S
Fort Sam Houston. TX

 E-mail: Toby.Dunn@amedd.army.mil

SAS and all other SAS Institute Inc. product or service names are registered trademarks or trademarks of SAS
Institute Inc. in the USA and other countries. ® indicates USA registration.

Other brand and product names are registered trademarks or trademarks of their respective companies.

Coders' CornerSAS Global Forum 2009

mailto:lisa_mendez@sra.com
mailto:Toby.Dunn@amedd.army.mil

	2009 Table of Contents

