SAS Global Forum 2009 Beyond the Basics

042-2009

Manipulating OLAP Cubes: Advanced Techniques for SAS® Programmers
Rupinder Dhillon, Dhillon Consulting Inc.
Harry Droogendyk, Stratia Consulting Inc.

As the amount of data that is captured electronically increases exponentially, more and more organizations
are turning to OLAP Cubes as a way to surface data in a meaningful way. OLAP, or Online Analytical
Processing, provides a multi-dimensional view of aggregated data. It provides quick and easy access to
facts, figures and statistics and gives the user the flexibility to change the view of the data to hone in on the
aspects that are most pertinent to them.

This paper will focus on how SAS Programmers can also take advantage of the benefits of storing data in
OLAP cubes.

This paper will discuss:

Getting familiar with the MDX viewer in SAS EG

Creating measures on the fly with SAS EG

Creating permanent calculated members using MDX and SAS EG
Using PROC SQL and MDX to query cubes

Some handy MDX functions

Using SAS functions with MDX

With some basic knowledge of MDX, along with an understanding of querying OLAP cubes, we’ll show how
SAS Programmers can leverage OLAP Cubes in their everyday work.

INTRODUCTION

The focus of this paper is the utilization of advanced methods of exploring and surfacing OLAP cube data
using Multidimensional Expression Language (MDX), both in the Enterprise Guide viewer and via the
PROC SQL interface to OLAP. Before moving to the advanced content, a brief review of OLAP principles
and terminology is necessary to provide some context. Since cube navigation within the Enterprise Guide
viewer plays an integral part in gaining the MDX knowledge necessary for advance OLAP cube data
manipulation, it too will be reviewed.

Once the groundwork has been laid, MDX queries and the use of several MDX and SAS functions within
those queries will be demonstrated. The examples provided will allow you to customize the OLAP cube
report data and leverage the potential analytical insights made available through this medium.

A QUICK REFRESHER: WHAT IS OLAP?

“A PIVOT TABLE ON STEROIDS”

Most Excel users are familiar with and have used Pivot tables. In a simplified explanation, a pivot table
takes a worksheet of listed data and puts it into a summary table view. You can add and remove the
different columns from the data worksheet or use them to filter the summary totals that you're interested in.

Now imagine that the underlying data worksheet is actually several Oracle tables with tens of millions of
rows and you still want to be able to explore the data through a pivot table format. Let's suppose for a
second that Excel could handle that much data (®), chances are you’d bring your desktop to a standstill
trying to churn through and produce all of those summarized calculations.

Enter, OLAP. An OLAP cube lets you surface data the same way you would in a pivot table but now you
can access a lot more data; aggregations and calculations can be stored as part of the cube definition of the
cube so you can get to the data faster; and you can further group the data in the form of hierarchies within
dimensions. All of this is built into the Cube structure beforehand so that the end user can get to the data
quickly and easily.

SAS Global Forum 2009 Beyond the Basics

First, let's cover some basic OLAP terminology that we should all be familiar with... Dimensions are
groupings of data into logical categories and might include Product, Geography, Job Roles, Time etc. The
order in which information may be retrieved, from the highest summary level down to the detailed data, is
specified by a hierarchy, which in turn is made up of levels. For example, the Geography dimension might
have a hierarchy made up of continent, country, state and city levels; continent being the highest level of
aggregation and city being the most detailed.

The data values that are summarized and used for analysis are measures. The different groups of data that
are summarized for easy and fast access are referred to as aggregations. Finally, a slice is a subset of
the data that is available in the cube.

A member is a component of a level and the smallest level of data in an OLAP cube. It is analogous to the
value of a variable on an individual record in a data set. In addition to creating dimension members, a user
can create calculated members and named sets.

There is more than one way to create a SAS cube. If you prefer to use a GUI based tool, you can use the
OLAP Cube Wizard (available in SAS OLAP Cube Studio and Data Integration Studio). If you are a coder at
heart, you can create, delete and update a SAS cube using PROC OLAP code. For those of you who are
somewhere in between, you can use the OLAP Cube Wizard to generate the PROC OLAP code and then
tweak and customize it yourself. The cube that is used in this paper is based on the SASHELP.PRDSALE
dataset available in every SAS installation. The PROC OLAP code is included in the appendix (Cube Build
Code).

The cube used in this paper has the following characteristics:

Dimensions: Geography, Reporting Period, Product Type

Hierarchies: Geography Country, Region
Reporting Period Year, Qtr, Month
Product Type Product_type, Product
Measures: Actual Sales, Predicted Sales

EXPLORING THE CUBE IN ENTERPRISE GUIDE
OLAP CUBE VIEWER

Once the cube has been built and the appropriate access has been granted, the cube can be explored using
the OLAP Cube Viewer in Enterprise Guide. There are other tools that are available to explore SAS Cubes
(Web Report Studio, Add-In for Microsoft Office) but this paper will focus on Enterprise Guide.

e To open the OLAP Cube in Enterprise Guide , click File = Open = OLAP Cube
e Dependent upon your setup, enter the following into the Open OLAP Window (enter information
specific to your installation’s configuration where the *** appear) :
o OLAP Server Name kkkkkkkkkkkkkkkk
o Provider: SAS OLAP Data Provider 9.1 (from drop down list)
o User Name: ******
o Password: ******
e Click Connect
e Check the box next to your newly created Cube — click Open.

Let’s take a look at the cube viewer panels:

SAS Global Forum 2009 Beyond the Basics

& SAS Enterprise Guide - prdsale_cube

File Edit Vew Code Data Descrbe Graph Analyze Add-In ©OLAP Tools Window Help

B8 2 By @ | L Bog Project Designer Maximize Workspace 257 Task Status
=~ 3 ¥ Ea g A | B o - o =(-
PrdSaleCube(FOUMDATION) (Process = - .
b ok —~ Cube Viewer Menu Bar
| Project Designer | (@) PrdSaleCube(FOUNDATION) |
b pac 3 {7 view Designer [MDREditor | 5 Pivet [Measure - P Fiker - | More - K
I
T2 Cube Yiew Manager x | | Division = &ll Division | | Product = &ll Product | 2
o
T2 cube Dimensions Tree A Faporing Farod] [5T5] Al Repoting Peicd_| 2
Afe f evaf Sum of Actual Sales i
Show Levels . | / Ta ble VIeW
s w 20,
Addte: | Row v A $453,2407)
| = ‘E& Division A
% Fiegion
) Measures Sum of Actual Sales
. Pradct _S
| Mame W alug 500000~
| . 4000005 - P .
| Cube View 0000 < Graph View
I 200000+
| Manager 100000-
< 5| 0
= A All Region
e) B
[[@ Preferences for this cube 3 Region
El-ﬂ Shortcuts for this cube §" |Rep|:||'1ing Period, Measures []al Fleporting_F'er\od|
Task Status]
== — =]
IF\eady ¥ sasdemo as SA5 Dema User, connected to delk 8557 /Foundation

Cube View Manager: Allows you to display various dimensions and hierarchies in the table and graph
view, customize preferences for the current cube and create shortcuts and filtered views of the data.

Table View: Shows cube data in a table format and allows you to expand levels and drill down on the data.

Graph View: Automatically updates to reflect the data shown in the table view. You can customize the
graph layouts and export to other Windows tools.

Cube Viewer Menu Bar: Shortcut buttons to toggle between views (back, forward), customize view (View
designer), view the MDX behind the current view, add new measures, filter the data and turn graph and tree
views on and off.

NAVIGATING WITHIN THE CUBE

In the initial view of the cube (see figure below), we’ve expanded the Region dimension to the very first
level of hierarchy, Country. We've also expanded the first level of the Reporting Period dimension, Year.
The measure that we'’re looking at is the Sum of Actual Sales. In this view, we’re looking at the Sum of
Sales by Region and Reporting Period, aggregated to the Country and Year levels respectively. We can get
to more granular levels by drilling down or expanding subsequent levels of the dimension hierarchies. For
example, in the case of the Reporting Period we could further breakdown Actual Sales by Quarter or Month.

To drill down within a dimension, click the plus sign on that dimension, eg. beside “All Region”. The
dimension aggregate (parent) and the distinct values of the next level (child) in that dimension’s hierarchy
will be displayed, and the measures applicable to each of those levels. Clicking the plus sign beside “All
Reporting Period” will have a similar effect on the time dimension. The cube view and graph view
immediately reflect the result.

Alternatively, if the downward facing arrow was clicked, only the values of the child level would be displayed
with their measures, the parent totals would not be displayed.

SAS Global Forum 2009

Beyond the Basics

(=31 All Reporting_Period
[+][2] 2008
Sum of Actual Sales | Sum of Actual Sales |

£369,477)
$121,020]
$127.404
$121,053]

[+][2] 2009

529,767
$31,300)
$30,190]
s28.273)

{7 View Designer [fiy MDXEditor | g3 Pivot [Mcasure = 5P Filter = | J& Sort 5 Bookmark =] Highlight = ‘E View Manager | il Graph || 2 Cube Bxplorer -

GERMANY

Reéion

1= s

L

USA

& Bak
e View Vetiates x | [pivision = 21 Division] [Product = All Product|
b TP All Reporting Period
¥ezr All Reporting_Period
Show Levels
B - MezsuresLevel | Sum of Actual Sales
Addto: |Row > A | arRegion Country
Py ; £459,240
& F3= Division All Regon i
[+]3] CANADA §152,320
&z Regon [=)[3] A1l Region - =
Measures [*][1] GERMANY 5157.594
3 T3z Product I3 USA s149,226)
[(&) Reporting Period —
(=] Named sets
Sum of Actual Sales
500000
400000 i
300000~
Mame Valug 200000—:
100000~
| D;
£ Z All Region
[[§} Preferences for this cube %
E:,'ﬂ Shortcuts for this cube

Reporting Period, Measures[[] All Reporting_Period [[]2008

2009

Try it: By adding other dimensions to the view, the cube data reveals a clearer picture of

company performance and sectors where improvements might be necessary. For example, if we
were to add the Product Dimension to the rows of the cube view, we could see how performance
across product lines differs in each of the regions.

For a fuller treatment of cube navigation, please see the SAS Global Forum 2008 paper:
http://www2.sas.com/proceedings/forum2008/044-2008.pdf.

MANIPULATING OLAP CUBE DATA

CREATING A TEMPORARY MEASURE ON THE FLY

When the cube was initially created, two measures were built in; Actual Sales and Predicted Sales totals.
As business users of this data, we may be interested in knowing how Actual Sales compare to Predicted
Sales in order to get a better understanding of performance. Although the new Actual vs. Predicted Ratio
does not exist in the cube, the Cube Viewer can be utilized to build this measure directly in the cube view in
Enterprise Guide.

To do this, select Add Measure from the Cube Viewer Menu Bar:

<@ Back

|7 view Designer [MDX Editor | g5 Bivot | [Measure ~ §P Filter ~ | J& Sott (% Bookmark ~ Highlight = |3 View]

(=] Cube View Manager

8= Cube Dimensions Tree

Addto: [Row
[H 'E& [Sivwswon
T2= Region

Measures

* 'Et Product

(@) Reporting Period

Show Levels

x | Civision = All Division| | P

A Rer

~| A | iR

[=1&] All Region

AllR

i.T;‘; Add Measure...

Ly Edit Measures...

1 Average Actual Sales

2 sum of Actual Sales

3 Average Predicted Sales
4 sum of Predicted Sales

0]

5 Variance

#a]
e}

GERMANY
USA

$157,594]
$149,326)

-AJ“I hepurl‘u;g;F‘e‘nod
[+]3] 2008
Sum of Actual Sales | Sum of Actual Sales

[+IR] 2009

£369.477 £89.763)
$121,020] $31.300)
5127.404) 530,130
$121.053] $28.273)

SAS Global Forum 2009 Beyond the Basics

This will launch a wizard that will guide you through the rest of the steps needed to create this measure.

Step 1: Name the measure

@
Create New Calculated Member

Step 1: Name of the Calculated Member

Specify 3 name for the calculated member.

Name

Name of the calculsted member [Actuel/Predicted Fatio

More (F1).

Step 3: Build the calculation by selecting ‘Ratio’
as the Calculation and the Sum of Actual Sales
and the Sum of Predicted Sales as the formula
elements.

Create New Calculated Member
Step 3: Select a Simple Calculation

Select the type of calculation for the new calculated member. Then select the two
measures to include in the calculation

Simple Calculation Formula
New Measure =
O sum
O Difference | 5um of Actual Sales ~|
) Product 7
@ras ETTE— |

() Percert increase

() Percert decrease

More (F1)

< Back H ot H s H Cancel

Step 2: Specify the type of measure you'’re
creating. In this case we’re doing a simple
calculation

@

Create New Calculated Member
Step 2: Select the Type of Analysis
Select the type of analysis that you want to perform with the new calculated
member,

Type of analysis
(%) Simple calculations
O Time Series analysis
() Trends and Forecasting analysis
© Count analysie
O Relative Contribution analysis

O Custom caleulation

Mers [F1)

Cancel

Step 4: Add the Percent format.

&
Create New Calculated Member
Step 4: Specify Other Parameters

Specify the parent, dimension, level, format, and solve order for the new calculsted
member.

Parentdimension; Measues %

Insertatlevel: |Measures

|

Use format | ~ |
Solve arder: [=

I3

More (F1).

<Back H MNext > H Erish H Cancel

SAS Global Forum 2009 Beyond the Basics

Step 5: Specify the scope of the new Measure. We only want this measure to persist while the current
Enterprise Guide session is open so we’'ll select “Temporary”. Click FINISH.

@
Create New Calculated Member
Step 5: Select the Scope

Specify how long you would like to keep the new calculated member,

Type of scope:
@® Temporary
© Avaiable during this ssssion arly

O Global, always available

Add to cument query

More (F1)... ||

The new calculated Measure is added to the cube viewer.

<A Back {7 view Designer [jy MDXEditor | g5 Pivot [Measure » NP Filter ~ | [8 Sort 3 Bookmark - [} Highlight - |:ﬂ View Manager i fil Graph | §% cube Explorer ~
[T= Cube View Manager x | |I3|-.-|s|or =Al Bmsmr‘ |Frcc'uct =All F'rc-d\.ctl
% Cube Dimensions Tree A Asporing Ferod E| Al Repurllﬁgj'e;lod
Year| All Reporting Period _ =] 2008 _ I 2008
MeasuresLevel | Sum of Actual Sales | Actual/Predicted Ratio | Sum of Actual Sales | Actual/Predicted Ratio | Sum of Actual Sales | Actual/Predicted Ratio
Addto. [Row ~ & A4l Region Countyy | ' ' ' ' '

" T2 Divsion 4 All Region | 545924ﬂ: 101 3?1;: 5355,477: 102 5.7',;: 539,753: %6 59:-;:
2= Region [SIIE] Al Region [#]3] CANADA 51 SZ‘ZZD‘ 102 DU';‘ 5121,020‘ 10 12‘.;‘ 531,300‘ 104, 331:‘
& (5] Measures =] GERMANY 5157 504 106.41% §127.404 108.78% 530,190 97 46%
- Tgs Product #3] USA $149,32€) 95 967 £121,053) 97 81%) 528,273 82.75%)

%) (8] Reporting Period
[{@m]] Named sets

Now that we’ve seen how to display OLAP cubes, navigate through the dimensions and create temporary
measures using Enterprise Guide, let's demonstrate how it's possible to query cube data and create new
measures on the fly using PROC SQL and OLAP Cube Studio.

QUERYING AN OLAP CUBE FROM SAS CODE

We've heard that taking advantage of organized dimensions, hierarchies and pre-aggregated data makes
querying an OLAP cube much more efficient than querying raw data tables but how do we actually query a
cube using SAS code?

Using PROC SQL (specifically the SQL pass-through facility for OLAP), you can connect to the cube data
and query the data like you would any SAS dataset or RDBMS table. Rather than using SQL syntax, we'll
use MDX code similar to that seen in the MDX viewer in Enterprise Guide. First, let’s look at the familiar
syntax (see Query Shell Code in the Appendix)

Connect to OLAP (<options>)

Create table MYDATA as select * from connection to OLAP
(select <MDX query here>)

Disconnect from OLAP;

Quit;

The options required to connect to the cube will be provided by your Bl administrator.
Connect to OLAP (host = Server Name

Port = OLAP Server Port Number
Protocol =Protocol used to connect to OLAP cube (Bridge or COM)

SAS Global Forum 2009 Beyond the Basics

User=User ID

Pass = User Password

Repository =Metadata Repository

OLAP_schema =The schema in which the cube is defined);

Since Enterprise Guide has a built-in cheat sheet within its OLAP Cube Viewer, you can get away with not
knowing much (if any) MDX syntax. You can use the MDX Editor in the Cube Viewer to build and tweak the
query code. Using Enterprise Guide, navigate to the desired Cube view and copy the MDX query code that
is built for you. You can then paste this into the PROC SQL code and create a SAS dataset with the same
data that you see in the Cube Viewer. The benefit of having this data available as a SAS dataset is that you
can then further manipulate this data using Data or PROC steps (and SAS functions) as you would with
any other SAS dataset.

Let’s look at the Cube view in Enterprise Guide again. If we take a look at the corresponding view in the
MDX viewer, we’ll notice that the MDX used to calculate the temporary Actual/Predicted Ratio is now part of
the MDX query code.

I Edit MDX Statement

L] MO [Multi-Dimensional Expression] iz the syntas uzed to guemn cubes. Use the "erify' button to validate the
f{ zyntax of wour guen: uze the "Reset” button to reset the MDX to the original statement; uze the "Clear Al
button ta clear the query. |n zome caszes, the MDX suntax may be caze-sensitive.

WITH

MEMEEE. [Measur
[Measures].[Predi
SELECT

{ Crozsdoin |
{ [Reporting Period].[&11 Reporting Period].Children } ,
{ [Measuresz].[ActualiUM], [Measuresz].[Actual/Predicted Ratio] }) } 0N COLUMNS

Hierarchize({ [Geography].[&ll Region], [Geographyv].[4ll Region].Children 1) ON ROWS
FROM

[PrdialeCube]

]- [&ctual /Predi
TM]' , FORMAT

ed Fatio] As '[N
ING = 'PERCENTL0.Z2

sures]. [Actual 3UM] /

[erify H e][Clear Al][i

ok, J ’ Cancel]

We’ve highlighted the MDX code that created the custom measure:

WITH MEMBER [Measures].[Actual/Predicted Ratio] As
'[Measures].[ActualSUM] / [Measures].[PredictSUM]' , FORMAT_STRING ='PERCENT10.2'

SAS Global Forum 2009 Beyond the Basics

Now let’s add this measure to the Query code:

PROC SQL;
Connect to OLAP (host="&server" port=&0OLAP_port protocol=&protocol
user="&user" pass="&password" repository="&repository"
OLAP_schema="&schema");
Create table mdx_test as

Select * from connection to OLAP (

WITH

MEMBER [Measures].[Actual/Predicted Ratio] As

'[Measures].[ActualSUM] / [Measures].[PredictSUM]', FORMAT_STRING = 'PERCENT10.2'

SELECT

{ CrossJoin (

Hierarchize({ [Reporting_Period].[All Reporting_Period],
[Reporting_Period].[All Reporting_Period].Children }) ,
{ [Measures].[ActualSUM],

[Measures].[Actual/Predicted Ratio] })} ON COLUMNS ,
Hierarchize({ [Geography].[All Region],
[Geography].[All Region].Children }) ON ROWS

FROM &cube.);

Disconnect from OLAP;
Quit;

The CrossJoin must be specified in the MDX code when multiple entities are being specified for the
column/row. In this case, the Reporting_Period dimension and the measures we’ve specified both occur in the
columns. Specifying Children on the dimension specification ensures that the Parent and Child levels are
captured. The resulting SAS Dataset is illustrated below. Unfortunately, though the percent10.2 format is
specified in the MDX code, the format is not passed into the SAS Dataset.

Al Al 2008 ActualPredicied
s Country |3 Reporing Peiod 3 Reposting Period. () 2008 ActualSUM |3 i @ 2009 ActualsuM i3 2003ActalP
1 453240 10136713009 369477 10257238119 85763 09663050322
2 |CANADE, 152320 10200158377 121020 10141709086 31300 10432637824
3 | GERMANY 157594 10641340752 127404 10878166651 30150 09745040837
2 [UsA 143328 0.9595614831 121053 09781033104 28973 0887525113

USING THE MDX VIEWER TO CREATE CUSTOM MEASURES AS PART OF THE CUBE

We've looked at creating a Custom measure through the Cube Viewer in Enterprise Guide as well as in the
PROC SQL MDX query, but what if this new measure is to be a permanent measure in the cube structure?
We can do this in a couple of ways. If familiar with MDX and PROC OLAP, we can define the new member
directly in the PROC OLAP code. Since many of us are still getting familiar with working with OLAP, an
easier approach is to use the MDX code that Enterprise Guide has generated for us along with the
Calculated Members shortcut in OLAP Cube Studio.

The Calculated Members button can be found in the Shortcuts bar along the left hand side
of the OLAP Cube Studio interface. Once you click this button, a list of cubes that are
Calculated available in the Foundation repository will be displayed. Select the cube that you want to
Members tie the Custom Measure to.

The next screen will list all of the Calculated Members associated with the cube; click ‘ADD’ to create a new
calculated member. This will launch a Wizard that step you through the calculation specification.

@
Calculation Type

Selectthe type of calculation. The Time Analysis calculations
will only be available ifthe cube has a dimension of type TIME.

o

" Time analysis calculations

" Custom calculations

Help | Mext = |

Cancel

In the Custom Calculation details screen, the MDX
formula syntax for the new measure must be
entered. Previously, we used the MDX code
generated by Enterprise Guide in the PROC SQL
MDX query. The same code can be used here to
define the measure by simply pasting the MDX
formula code into the formula box.

Note that since we are not creating a temporary
calculated member, but rather a Custom Calculated
member to be included in the cube definition, only
the actual formula code snippet is required:

'[Measures].[ActualSUM] / [Measures].[PredictSUM]' ,
FORMAT_STRING ='PERCENT10.2'

ie. “WITH MEMBER [Measures].[Actual/Predicted Ratio]
As” may be omitted.

-

Here, we could click ‘Simple Calculations’ and build
the Actual vs. Predicted Ratio calculation the same
way we did in Enterprise Guide.

This time however, we’re going to use the ‘Custom
Calculations’ option instead. This option allows you
to create more complex custom calculations using
MDX code, beyond those available within Simple
Calculations.

Custom Calculation

SAS Global Forum 2009 Beyond the Basics

Help

Enter a custom calculation. |n addition to entering a formula for
the custam calculation, you may select the parent dimension
and parent member. Do not specify a FORMAT_STRING ar
SOLVEORDER as they are entered on the General panel.

Parent dimension: |Measures

|

Parent member. |

oo |

Matne: [#ctualpredicted Ratio

Formula:

‘Measures].[ActualSUNM] ! [Measures] [PredictSUM]",
FORMAT_STRING = 'PERCENT1 0.21

Generated MDX

CREATE MEMBER [TESTCLEBE] [Measures] [ActualiPredicted
Ratio] as TMeasures]. [ActualSUM] ! [Measures] [PradictSUM],

FORMAT_STRING = PERCENT10.2*
Wetify Clear
= Back | Iest = | |

Cancel |

Once you paste this into the formula box, the preview screen showing the generated MDX will show the rest

of the syntax needed to define a new measure.

Of course once you are more familiar with MDX, you won’t have to borrow MDX code from Enterprise Guide
and you can create your own formula code. Whether you borrow from Enterprise Guide or create your own,
you have the ability to check your MDX syntax before you proceed by clicking the ‘Verify’ button on this

screen.

When you click ‘Verify’, you’ll be prompted for your log-in credentials. Behind the scenes, SAS is actually
validating not only the MDX syntax but also the elements of the new formula against the structure of the

cube. In order to do so, you must log in to access the underlying cube.

OLAP Cube studio will let you know if there are any issues with the new Calculated Member.

SAS Global Forum 2009 Beyond the Basics

Warning

Formula errar - Aninvalid member name was encountered The f Sheeh Fied ful
in the MOX statemant e formula has been verified successfully,

Once the Measure has been verified and created, OLAP Cube studio will remind you that you'll need to
refresh the cube before you'll be able to see the new Measure.

The changes to the calculated members have heen saved to
the metadata server. You may need to refresh the cube

& definition on your OLAF Serverta see the changes. You can
use the Refresh Cubes action ofthe SAS OLAP Server
Monitor Plugin for 3AS Management Console to refresh the
cube definitions on the server,

You can refresh the cube in OLAP Cube Studio by right clicking on the Cube name in the main window and
selecting ‘Refresh’.

FH] Properties
Being SAS programmers, it would be hard to move onto the next topic

Create without taking a look at what's happening to the PROC OLAP code now
Edit cube struckure that we have a new Calculated Measure defined within the cube. After

. we’ve refreshed the cube, we can regenerate the OLAP Code and take a
Manual tuning look at how this new measure is defined in the code. Right click on the

Save PROC OLAR code cube again, and this time select ‘Save PROC OLAP Code’. Specify a
location where you want to save the code to.

Synchronize levels
Note: For change management purposes, you'll want to make sure that
you don’t overwrite the original code but rather create a new version in
case you need to revert back.

Export Cube

If we take a look and scroll to the bottom of the generated code, you can
see the DEFINE statement that adds this new measure to the cube.

DEFINE

MEMBER '[PRDSALECUBE].[Measures].[Actual/Predicted Ratio]' AS
' [Measures].[ActualSUM] / [Measures].[PredictSUM], FORMAT _STRING="PERCENT10.2";

As the value of OLAP reporting is increasingly appreciated within your organization, you'll find that you’ll be
asked to build more sophisticated and complicated measures. It is good practice to start with the simpler
measures and then build the cube incrementally to ensure that the more involved calculations are made
correctly and results are as expected. The MDX generator in Enterprise Guide is a useful tool when building
these calculations since you can build the measure temporarily on the actual data and check to see if the
results are what you expect before you make the measure part of the cube definition. Now let’s take a look
at some more complex things you can do within MDX queries.

10

SAS Global Forum 2009 Beyond the Basics

SOME HANDY MDX FUNCTIONS FOR YOUR QUERIES

PERIODSTODATE()

You'll often be asked to report data based on some sort of time series analysis such as month over month
performance or time based trending. To support this type of analysis, MDX has a group of built in time
series functions that allow you to extract data or define groups based on time and date characteristics. One
of the most useful functions in this group is the PeriodsToDate() function.

Syntax: PeriodsToDate([<Level>[,<member>]])

This function returns the number of periods (years/quarters/months/days, ie. level) up to a specified date
(member). It's evident how it can be utilized to easily calculate year or month to date totals. In the cube
example, the PeriodsToDate() function will be used to calculate running Year to Date and Quarter to Date
sales totals.

* running totals for the Qtr and year using PeriodsToDate;

proc sql;
Connect to OLAP (host="&server" port=&OLAP_port protocol=&protocol
user="&user" pass="&password" repository="&repository"
OLAP_schema="&schema");

Create table mdx_test1 as
Select * from connection to OLAP (

WITH
MEMBER [Measures].[YTD Sum] AS
'Sum(PeriodsToDate([Reporting_Period].[Year]),[Measures].[ActualSum])'

MEMBER [Measures].[Qtr Sum] AS
'Sum(PeriodsToDate([Reporting_Period].[Quarter]),[Measures].[ActualSum])'

SELECT
{ [Measures].[ActualSum],
[Measures].[YTD Sum],
[Measures].[Qtr Sum] } ON COLUMNS,
[Reporting_Period].[Month].Members ~ ON ROWS

FROM &CUBE.

disconnect’from OLAP;
quit;

The results follow. Note that the Qtr Sum column accumulates the running monthly ActualSUM values
within the quarter and YTD Sum for the calendar year.

L Year |/ Quarter |@ Month @ Actual SUM @ YTD Sum @ Qtr Sum
1 |2008 1 1 29813 29813 29813
2 |[2008 1 2 29584 59397 59397
'3 |2008 1 3 29873 29270 89270
|4 |2002 > 4 30581 119851 30581
5 |2008 2 5 31617 151468 62198
6 |2008 2 6 33605 185073 55803
7 |2008 3 7 33578 218651 33578
'8 |2002 3 2 31160 249811 64738
9 |2008 3 9 28696 278507 93434
10 |2008 4 10 313855 309862 31355
11 | 2002 4 11 27659 337521 59014
112 |2008 4 12 31956 369477 50570
113 | 2009 1 1 33704 33704 33704
114 | 2009 1 i2 27713 61417 61417
115 | 2009 1 3 28346 89763 89763

11

SAS Global Forum 2009 Beyond the Basics

Try it: Another time series function worth exploring is the ParallelPeriod() function. This allows
you to compare the current period to the previous relative period. For example, you could
compare February 2008 to February 2007 or Quarter 1 2008 and Quarter 1 2007.

BOTTOMCOUNT()

The BottomCount() function allows us to query through any number of specified members in a cube and pull
out the lowest ranking members for a given numeric value expression. This is a very useful function since it
allows us to quickly identify members that may be under-performing in terms of having the lowest sales or
over-performing in terms of lowest returns.

Syntax: BottomCount(<Set>, <Count> [,<Numeric Expression/Measure>])

BottomCount() essentially sorts a set based on the measure or expression provided and then returns the
bottom <count> number of items.

Building on the previous example, we're now interested in identifying the three regions with the lowest Year
to Date sales as of the 3" quarter in 2008. Note the inclusion of the WHERE clause to specify the date
criteria. The Hierarchize function organizes the members of specified set into hierarchical order. The
Descendants function returns the set of descendants within the Geography hierarchy, not just the lowest
level, Region, that would otherwise result.

* bottom 3 regions for total sales in 2008 using BottomCount();

proc sql;
Connect to OLAP (host="&server" port=&OLAP_port protocol=&protocol
user="&user" pass="&password" repository="&repository"
OLAP_schema="&schema");
Create table mdx_test2 as
Select * from connection to OLAP (

WITH

MEMBER [Measures].[YTD Sum] AS

'Sum(PeriodsToDate([Reporting_Period].[Year]),[Measures].[ActualSum])'
SELECT

{[Measures].[YTD Sum]} ON columns,

{BOTTOMCOUNT(

Hierarchize({ Descendants([Geography]) }),

3, [Measures].[YTD Sum])} ON rows

FROM &CUBE.

Where [Reporting_Period].[All Reporting_Period].[2008].[3].[9]

)
disconnect from OLAP;
quit;

As expected, the dataset contains three rows of data corresponding to the <count> parameter specified in
the BottomCount function:

/% Country |/ Region @ ¥TD Sum
1 [CANADA WEST 43063
2 [US5A WEST 43322
3 |USA EAST 45839

12

SAS Global Forum 2009 Beyond the Basics

Try it: A variation of this function is the TopCount() function which as you may have guessed,
allows you to select the top ranking members of a set based on a numeric expression or
measure.

IIF()

The IIF() function allows you to return one of two possible values based on the results of the specified logical
test. This can come in handy when querying a cube and when creating a custom measure or member.

Syntax: IIF(<logical expression>, <Numeric or String Expression 1>, <Numeric of String Expression2>)

If the logical expression is true, the function will return the value of the Numeric or String Expression 1.
Otherwise it returns the value of the second Numeric or String expression.

Let’s use this function to create a performance flag based on the cube data. If the Actual Sales for the
period exceed or are within 2% of Predicted Sales for a given region, the performance flag will be set to
‘Acceptable’. Otherwise the performance flag is set to “Unacceptable.”

/* |IF actual within 2% of predicted */

PROC SQL;

Connect to OLAP (host="&server" port=&0OLAP_port protocol=&protocol

user="&user" pass="&password" repository="&repository"
OLAP_schema="&schema");

Create table mdx_test2 as

Select * from connection to OLAP (
with

member [Measures].[Performance] as

'lIF([Measures].[ActualSUM] > [Measures].[PredictSUM] * .98, "Acceptable","Unacceptable")'
SELECT

{ CrossJoin (
Hierarchize({ [Reporting_Period].[All Reporting_Period].Children }) ,
{ [Measures].[ActualSUM],
[Measures].[PredictSUM],
[Measures].[Performance]}) } ON COLUMNS ,
Hierarchize({ Descendants([Geography]) }) ON ROWS

FROM &Cube.
)
Disconnect from OLAP;
Quit;

The resulting SAS dataset, suitable for further manipulation or report creation:

/i) Country|/ Region |Z) 2008 ActusiSUM () 2008 PredictSUM|/ 2008 Perf {2 2009 ActualSUM |3 2009.PredictSUM |/ 2009.Perf
1 369477 360211 Acceptable 89763 52835 Unacceptable
2 |CANADA 121020 119329 Acceptable 31300 30002 Acceptable
3 |camsDa EasT 54130 62426 Acceptable 16317 14926 Acceptable
4 [CANADA WEST 56250 56303 Acceptable 14383 15076 Acceptable
[5 | GERMANY 127404 117118 Acceptable 30150 30877 Unacceptable
6 |GERMANY EAST 63172 59923 Acceptable 18821 15981 Acceptable
7 | GERMANY WEST B2232 57196 Acceptable 14363 14386 Unscceptable
8 |UsA 121053 123763 Unacceptable 28973 31856 Unscceptable
@ [USA EAST 60227 63279 Unacceptable 15310 16099 Unscceptable
10 [USA WEST 60826 60484 Acceptable 12963 15757 Unacceptable

Again, this function can be used to create members when querying the cube as well as to create permanent
custom members when building the cube.

13

SAS Global Forum 2009 Beyond the Basics

USING SAS FUNCTIONS WITHIN MDX

While MDX supports a wide range of useful functions, there may be times where you need to call a SAS
function to fulfill reporting requirements. For example, you may want to run a report that looks at Sales
totals for a given month.

In a previous MDX example, we looked at the three worst performing regions in 2008 by Sales to Date.
What if we wanted to automatically create a report each month that looked at the three worst performing
regions for that month? There are a few ways that we can do this. We could pull all the data from the cube
and then use a subsequent step to filter based on the date that we're interested in. However, this wouldn’t
be optimal since unnecessary data would be pulled and multiple passes through the data would be
inefficient. We could also hard-code the dates in the MDX query code so that we’re only pulling data for the
dates that we’re interested in. While this is a better option than the first, since this report will run every
month, we have to think about program maintenance and an automated solution. The solution is to embed
the appropriate SAS date functions in the MDX query so that the three worst performing regions are pulled
for the current month.

* Bottom 3 regions this month, determine this month using SAS today();
proc sql;
Connect to OLAP (host="&server" port=&0OLAP_port protocol=&protocol
user="&user" pass="&password" repository="&repository" OLAP_schema="&schema");
Create table mdx_test as
Select * from connection to OLAP (
SELECT
{[Measures].[ActualSum], [Measures].[PredictSum]} ON columns,
{BOTTOMCOUNT(
Hierarchize({ Descendants([Geography]) }), 3, [Measures].[ActualSum])} ON rows
FROM &Cube.

Where
StrToMember("[Reporting Period].[All
Reporting_Period].["|[trim(left(year(today())))||"].["|[trim(left(gtr(today())))||"].["[|trim(left(month(today())))||"]")

disconnect’from OLAP;
quit;

The today() function is being used along with the SAS YEAR, QTR and MONTH functions to determine the
set corresponding to today’s date. If TRIM and LEFT were not specified, leading spaces from the implicit
numeric to character conversion prevent the WHERE clause from finding any data.

Here is the resulting dataset:

/. Countty |/y Region (i) ActualSUM |2} PredictSUM
1 [GERMANY EAST 3133 4716
2 [GERMANY WEST 4153 4850
3 |CANADA WEST 4458 1854

While there are a number of SAS functions that are available when running MDX, not all Base SAS functions
are available. However, if you need to use other common SAS functions, you may be able to capture the
results of these functions in SAS Macro Variables which can then be passed to the MDX query.

In the previous example, we used the today() function to get the current date to pass to the query. What if
we wanted to compare the results from the current month to the results from the previous month? In this
case we can employ the INTNX function outside the MDX query to get the Year, Quarter and Month values
for the previous month. The values will be stored in SAS Macro variables and referenced in the MDX query
WHERE clause.

%let months_back =1;

%let Prev_year = %sysfunc(intnx(month,%sysfunc(today()),-&months_back,b),year.);

%let Prev_qtr = %sysfunc(intnx(month,%sysfunc(today()),-&months_back,b),qtr.);

%let Prev_month = %sysfunc(intnx(month,%sysfunc(today()),-&months_back,b),month.);

where [Reporting_Period].[All Reporting_Period].[&prev_year].[&prev_qtr].[&Prev_month]

14

SAS Global Forum 2009 Beyond the Basics

The results for the previous month will be returned which enables comparison to the current month’s figures.
Since the SAS Macro variables are simply substituted into the query as text, the StrToMember function used
in the previous “today()” example is unnecessary.

It should be noted that as of version 9.2, all Base SAS functions will be available for use in MDX queries, as
well as a select number from SAS/STAT, SAS/ETS and SAS/OR.

Try it: Another interesting and helpful use of embedding SAS in MDX is that you can use the
PUT function to apply standard SAS formats as well as user-defined formats to the cube data.

CREATING MULTIPLE DEPENDENT MEASURES IN A SINGLE QUERY

So far we've looked at using MDX to:
e create running YTD and QTD sales totals using PeriodsToDate
e identify the weakest regions using BottomCount
e identify performing and non-performing regions using IIF and simple calculated ratios.

In this last example, we’re going to tie some of these concepts together within a single query. As in the
previous examples, we want to get a running YTD and QTD total but this time we want to look at how Actual
Sales compare to Predicted Sales as the year progressed. To readily highlight ongoing performance for
folks who don’t care to look too closely at the numbers, we also want to generate Acceptable and
Unacceptable performance flags (based on the YTD and QTD running totals) on a monthly basis. Finally,
we want to break down performance by Product and the Time dimension periods.

In order to meet these requirements, we’ll need to create the calculated measures in several steps:

Step 1 - calculate the QTD and LTD running totals for Actual and Predicted Sales;
Step 2 - calculate the Actual/Predicted Ratio based on the QTD and YTD running totals from Step 1;
Step 3 - set the Performance Flags based on the Actual/Predicted ratios from Step 2.

To ensure the measures are calculated in the correct sequence, we must specify the computation order via
the ‘solve_order’ option in the MDX query.

OLAP cube measures are calculated via a number of stages or ‘Calculation Passes’. Within the context of
calculated measures, ‘Solve_Order’ determines the order in which calculated measures will be evaluated for
each ‘calculation pass’.

In the example, the running totals have a solve order of 1 so they will be computed first. The
Actual/Predicted ratios will have a solve order of 2, so these will be computed once the running totals have
been calculated. Finally, since the Performance Flag depends on the other two calculations, it has a solve
order of 3 making it the last calculated measure to be processed.

Here is the query needed to obtain the results. Note that the Product Dimension has been CrossJoined to
the Reporting Period dimension since the additional breakdown is required for the analysis. AllMembers
has been specified on the Product Type dimension to ensure all levels were provided.

* Tying it all together, running totals for the Qtr and Yr, Actual/Predicted Ratio, introducing Solve Order;

proc sql;
Connect to OLAP <snip>

Create table mdx_test as
Select * from connection to OLAP (
WITH
MEMBER [Measures].[Qtr Actual Sum] AS
'Sum(PeriodsToDate([Reporting_Period].[Quarter]),[Measures].[ActualSum]), solve_order=1"

MEMBER [Measures].[YTD Actual Sum] AS
'Sum(PeriodsToDate([Reporting_Period].[Year]),[Measures].[ActualSum]), solve_order=1'

15

SAS Global Forum 2009 Beyond the Basics

MEMBER [Measures].[Qtr Pred Sum] AS
'Sum(PeriodsToDate([Reporting_Period].[Quarter]),[Measures].[PredictSum]), solve_order=1'

MEMBER [Measures].[YTD Pred Sum] AS
'Sum(PeriodsToDate([Reporting_Period].[Year]),[Measures].[PredictSum]), solve_order=1'

MEMBER [Measures].[QTR Actual/Predicted Ratio] as
'[Measures].[Qtr Actual Sum] / [Measures].[Qtr Pred Sum], format_string="Percent", solve_order=2'

MEMBER [Measures].[YTD Actual/Predicted Ratio] as
'[Measures].[YTD Actual Sum] / [Measures].[YTD Pred Sum], format_string="Percent", solve_order=2'

MEMBER [Measures].[YTD Performance] as
'llIF([Measures].[YTD Actual/Predicted Ratio] > .98, "Acceptable","Unacceptable"), solve_order=3'

MEMBER [Measures].[QTD Performance] as
'lIF([Measures].[QTR Actual/Predicted Ratio] > .98, "Acceptable","Unacceptable"), solve_order=3'

SELECT
{[Measures].[ActualSum],
[Measures].[Qtr Actual Sum],
[Measures].[YTD Actual Sum],
[Measures].[QTR Actual/Predicted Ratio],
[Measures].[YTD Actual/Predicted Ratio],
[Measures].[QTD Performance],
[Measures].[YTD Performance]
ON COLUMNS,
{ CrossJoin (
Hierarchize({ [Product_type].Allmembers }) ,

{ [Reporting_Period].[Month].Members
}) ON rows
FROM &CUBE.)
quit;
A portion of the resulting SAS dataset:
| ProdType |/ Product |/, Year|/, Quarterl/l, Month () AStualicy qull:al @ Actoal @ Amﬂ?llgﬁ:lnd K m;Trp,D._,[., A pedT 1A peTD
um Sum Ratio ted Ratio
19 |FURNITURE 2008 2 4 13018 13018 43455 1.1368439438 0.9452236506 bl u bl
20 |FURNITURE 2008 2 5 12064 25082 60519 1.0512154233 0.950480588 bl u bl
|21 |FURNITURE 2008 2 & 14196 35278 74715 1.1528355942 1.0112884233 : Acceptable Acceptable
|22 |FURNITURE 2008 3 7 15576 15576 90251 1.2155454571 1.0414787473 : Acceptable Acceptable
|23 |FURNITURE 2008 3 8 12295 27871 102586 1.0152260227 1.0123551819 : Acceptable Acceptsble
|24 |FURNITURE 2008 3 9 10737 38608 113323 1.0082523765 1.0102520214 ; Acceptable Acceptable
|25 |FURNITURE 2008 4 10 11694 11684 125017 1.007582285 1.0700016966 : Acceptable Acceptable
|26 |FURNITURE 2008 4 1 10191 21885 135208 0.8693147964 0.5844191397 : Unacceptable Acceptable
|27 |FURNITURE 2008 4 12 13687 35572 148835 1.0057645657 1.0101356164 : Acceptable Acceptable
|28 |FURNITURE 2009 1 1 12956 123956 12956 09109189341 0.9109185341 : U bl u bl
|23 |FURNITURE 2009 1 11033 23989 23989 09371801383 09371801383 Ui ptabl u ptabl
130 |FURNITURE 2009 1 3 10350 34339 34333 0.9384804591 0.9384804597: U bl u bl
131 |FURNITURE BED 2008 1 1 4085 4085 4085 07279044304 0.7279044304 Ui bl u bl
|32 |FURNITURE BED 2008 1 2 5025 110 9110 0.7515261508 0.7515261508: U bl u bl
|33 |FURNITURE BED 2008 1 3 4318 14028 14028 0.8128875239 0.8128875239 : U bl u bl
|34 |FURNITURE BED 2008 2 4 6339 6999 21027 1.2409574468 0.9183299122 bl u bl
|35 |FURNITURE BED 2008 2 5 5727 12726 26754 1.0819588505 0.9219476854 tabl u tabl
|36 |FURNITURE BED 2008 2 6 7615 20341 34369 11841988021 0.9981123208 : Acceptable Acceptable
137 |FURNITURE BED 2008 3 7 81as a1es 42858 1.2039106145 1.0320593656 : Acceptable Acceptable
|38 |FURNITURE BED 2008 3 8 5754 13343 43312 0.9627813238 0.9876523019 : Unacceptable Acceptable
|33 |FURNITURE BED 2008 3 9 4038 17981 52380 09217244308 0.9704868152 : U bl u bl
la0 |FURNITURE BED 2008 4 10 5284 5284 57634 1.1925073347 0.9873400373 | Acceptable Acceptable
|41 |FURNITURE BED 2008 4 1 4830 10174 62524 0.8594357155 0.9505016722 : U bl u bl
|42 |FURNITURE BED 2008 4 12 6939 1713 69462 1.0077733938 09794142544 bl u bl
|43 |FURNITURE BED 2008 1 1 5820 5820 5820 0.8017633283 0.8017633283: U bl u bl
|44 |FURNITURE BED 2009 1 6100 11320 11820 0.8730681301 0.8730681301 : U bl u bl
|as |FURNITURE BED 2009 1 3 5601 17521 17521 09414324862 0.9414324862 Ui bl u bl
|46 |FURNITURE SOFA 2008 1 1 6802 6802 6802 0.7900116744 0.7900116744 : Ui tabl u tabl
|47 |FURNITURE SOFA 2008 1 2 7230 14082 14032 0.931825696 0.931825696: U bl u bl
|48 |FURNITURE SOFA 2008 1 3 317 21408 21408 0.9451308668 0.9451308668: U bl u bl
|43 |FURNITURE SOFA 2008 2 4 6019 6019 27428 1.0357341834 0.9669322428 bl u bl
|50 |FURNITURE SOFA 2008 2 5 6337 12356 33765 1.021325833 0.974374513 bl u bl
E FURNITURE SOFA 2008 2 6 6581 18937 40246 1.1210622252 1.0227300728 ° Acceptable Acceptable

The resulting data can be provided to the end users as is or, using additional SAS code, the dataset can be
used to generate a comprehensive Product by Product traffic lighting report that tracks product based
performance over the entire year.

16

SAS Global Forum 2009 Beyond the Basics

CONCLUSION

OLAP cubes are quickly becoming indispensable in dealing with the burgeoning quantity of corporate data.
The multidimensional view of aggregated data that OLAP provides affords quick and easy access to the
analysis data required to make sound business decisions.

It's evident how useful Multidimensional Expression Language (MDX) can be for manipulating and
surfacing OLAP cube data. While the MDX syntax certainly appears complex initially, Enterprise Guide’s
MDX editor display is helpful in reducing the learning curve. The examples provided will allow you to
customize your OLAP cube report data and leverage the potential analytical insights for your business
needs.

REFERENCES

e http://msdn.microsoft.com/en-us/library/ - MDX Reference

e http://mdxpert.com/ - MDX-pert

e http://support.sas.com/documentation/onlinedoc/91pdf/sasdoc 913/OLAP mdx 9317.pdf - SAS 9.1.3 OLAP
Server: MDX Guide

ACKNOWLEDGMENTS
e Adam Budlong — SAS Technical Support

RECOMMENDED READING

e http://www2.sas.com/proceedings/sugi31/219-31.pdf - Beyond the Basics: Advanced OLAP Techniques, Ben
Zenick and Brian Miles

e http://www?2.sas.com/proceedings/forum2008/182-2008.pdf - Building OLAP Cubes with SAS 9, Gregory Nelson

e http://www2.sas.com/proceedings/forum2008/044-2008.pdf - Exploring OLAP Cubes with Enterprise Guide,
Rupinder Dhillon

CONTACT INFORMATION

Your comments and questions are valued and encouraged. Contact the authors at:

Rupinder Dhillon Harry Droogendyk
Dhillon Consulting Inc. Stratia Consulting Inc.
12 Givins St. Toronto, ON PO Box 145

M6J 2X6 Lynden, ON

(416) 220 9191 LOR 1TO
Rupinder@DhillonConsulting.com conf@stratia.ca
www.dhillonconsulting.com www.stratia.ca

SAS and all other SAS Institute Inc. product or service names are registered trademarks or trademarks of SAS Institute
Inc. in the USA and other countries. ® indicates USA registration.
Other brand and product names are trademarks of their respective companies.

17

SAS Global Forum 2009 Beyond the Basics

APPENDIX

CUBE BUILD CODE

/* Macro Variables for use in Samples code */

%let SERVER = dell; /* Metadata Server Name or IP Address */

%let PORT = 8561; /* Metadata Port Number */

%$let PROTOCOL = Bridge; /* Metadata connection protocol */

%let USER = sasdemo; /* User ID with Read/WriteMetadata permissions */

%let PASSWORD = sasdemo; /* Password for the User Id */

%$let REPOSITORY = Foundation; /* Repository in which to build data and cube */

%$let LIBNAME = confolap; /* Libref which references permanent data location */
/* Directory in which to store data */

%$let LIBPATH = E:\ Stratia\Conferences\Presentations\2009 sgfl\olap mdx\data;

%let SCHEMA = SASMain - OLAP Schema; /* OLAP Schema in which to store cube */

%$let CUBEPATH = &libpath\cube; /* Physical location for OLAP Cube files */

%let CUBE = PrdSaleCube ; /* Cube name */

/* Massage the SASHELP data */
libname &libname "&libpath";

data &libname..prdsale;
set sashelp.prdsale;

month = intnx ('year',month,15, 'sameday"');
if month > '0lmar2009'd then actual = .;

date = month;
year = month;
quarter = month;

format year yeard.
quarter gtr2.
month month2.
date yymmdddlO0.

’

run;
proc freq data = &libname..prdsale ;
tables year quarter ;

run;

/* Metadata options */

option metaserver = "&SERVER"
metaport = &PORT
metaprotocol = "&PROTOCOL"
metarepository = &REPOSITORY
metauser = "&USER"
metapass = "&PASSWORD";

/* Register tables using PROC METALIB */

proc metalib;
omr (library="&libname" metarepository="&repository");

update rule (delete); * Overwrite dups regardless;
select (prdsale);
report;

run;

/* Create the OLAP cube */

PROC OLAP
Data = &libname..prdsale
DrillThrough Table &libname. .prdsale

18

SAS Global Forum 2009 Beyond the Basics

cube = &cube
Path = "gcubepath"
Description = "PrdSale Cube for Conf Examples"
METASVR repository = "&repository"
olap_schema = "&schema"
host = "&server"
port = &port
DIMENSION
Geography hierarchies = (Geography)
CAPTION = 'Region'
SORT_ORDER = ASCENDING
HIERARCHY
Geography ALL MEMBER='All Region'
levels = (Country Region)
CAPTION = 'Region'
DEFAULT

LEVEL Region
CAPTION = 'Region'
SORT_ORDER = ASCENDING

LEVEL Country

CAPTION = '"Country'

SORT_ORDER = ASCENDING
DIMENSION

Div hierarchies=(Div)

CAPTION = 'Division'

SORT_ORDER = ASCENDING
HIERARCHY

Div ALL MEMBER='All Division'

levels = (Division)

CAPTION = 'Division'

DEFAULT

LEVEL Division

CAPTION = 'Division'

SORT_ORDER = ASCENDING
DIMENSION

Product type hierarchies=(Product type)

CAPTION = 'Product'

SORT_ORDER = ASCENDING
HIERARCHY

Product type ALL MEMBER='All Product'

levels = (ProdType Product)

CAPTION = 'Product'

DEFAULT

LEVEL ProdType
CAPTION = 'Product Type'
SORT_ORDER = ASCENDING

LEVEL Product

CAPTION = 'Product'
SORT_ORDER = ASCENDING

DIMENSION
Reporting Period hierarchies=(Reporting Period)
type = TIME
CAPTION = 'Reporting Period'
SORT_ORDER = ASCENDING

19

SAS Global Forum 2009 Beyond the Basics

HIERARCHY
Reporting Period ALL MEMBER='All Reporting Period'
levels = (Year Quarter Month)
CAPTION = 'Reporting Period'
DEFAULT

LEVEL Year
CAPTION = 'Year'
SORT_ORDER = ASCENDING

LEVEL Quarter
CAPTION = 'Qtr'
SORT_ORDER = ASCENDING

LEVEL Month
CAPTION = 'Month'
SORT_ORDER = ASCENDING

MEASURE ActualSUM

STAT = SUM

COLUMN = Actual

CAPTION = 'Sum of Actual Sales'
FORMAT = DOLLAR12.

DEFAULT

MEASURE PredictSUM

STAT = SUM

COLUMN = Predict

CAPTION = 'Sum of Predicted Sales'
FORMAT = DOLLAR12.

MEASURE ActualAVG

STAT = AVG

COLUMN = Actual

CAPTION = 'Average Actual Sales'
FORMAT = DOLLAR12.

MEASURE PredictAVG

STAT = AVG
COLUMN = Predict
CAPTION = 'Average Predicted Sales'
FORMAT = DOLLARI1Z2.
AGGREGATION Country

Region

Division

ProdType

Product

Year

Quarter

Month

/ NAME='DEFAULT'

DEFINE
MEMBER ' [PrdSaleCube]. [Measures].[Variance]' AS
' ([Measures] . [ActualSUM] - [Measures].|[PredictSUM]) ,
FORMAT STRING = "dollar30."';

RUN;

20

SAS Global Forum 2009 Beyond the Basics

QUERY SHELL CODE

* Query Shell;

PROC SQL;
Connect to OLAP (host="&server" port=&0OLAP_port protocol=&protocol
user="&user" pass="&password" repository="&repository"
OLAP_schema="&schema");
Create table <Table Name> as

Select * from connection to OLAP (

SELECT
FROM <Cube Name>
WHERE ...);

Disconnect from OLAP;
Quit;

CREATE THE ACTUAL/PREDICTED RATIO IN QUERY

* Calculate new Actual/Predicted Ratio measure;

PROC SQL;
Connect to OLAP (host="&server" port=&0OLAP_port protocol=&protocol
user="&user" pass="&password" repository="&repository"
OLAP_schema="&schema");
Create table mdx_test as

Select * from connection to OLAP (

WITH
MEMBER [Measures].[Actual/Predicted Ratio] As
'[Measures].[ActualSUM] / [Measures].[PredictSUM]', FORMAT_STRING = 'PERCENT10.2'
SELECT
{ CrossJoin (
Hierarchize({ [Reporting_Period].[All Reporting_Period],
[Reporting_Period].[All Reporting_Period].Children }) ,
{ [Measures].[ActualSUM],
[Measures].[Actual/Predicted Ratio] })} ON COLUMNS ,
Hierarchize({ [Geography].[All Region],
[Geography].[All Region].Children }) ON ROWS

FROM &cube.);

Disconnect from OLAP;
Quit;

PERIODS TO DATE EXAMPLE

* running totals for the Qtr and year using PeriodsToDate;

proc sql;
Connect to OLAP (host="&server" port=&OLAP_port protocol=&protocol
user="&user" pass="&password" repository="&repository"
OLAP_schema="&schema");

Create table mdx_test1 as
Select * from connection to OLAP (

WITH
MEMBER [Measures].[YTD Sum] AS
'Sum(PeriodsToDate([Reporting_Period].[Year]),[Measures].[ActualSum])'

MEMBER [Measures].[Qtr Sum] AS

21

SAS Global Forum 2009 Beyond the Basics

'Sum(PeriodsToDate([Reporting_Period].[Quarter]),[Measures].[ActualSum])'

SELECT
{ [Measures].[ActualSum],
[Measures].[YTD Sum],
[Measures].[Qtr Sum]} ON COLUMNS,
[Reporting_Period].[Month].Members ON ROWS

FROM &CUBE.

)
disconnect from OLAP;
quit;

BOTTOMCOUNT EXAMPLE

* bottom 3 regions for total sales in 2008 using BottomCount();

proc sql;
Connect to OLAP (host="&server" port=&0OLAP_port protocol=&protocol
user="&user" pass="&password" repository="&repository"
OLAP_schema="&schema");
Create table mdx_test2 as
Select * from connection to OLAP (

WITH

MEMBER [Measures].[YTD Sum] AS

'Sum(PeriodsToDate([Reporting_Period].[Year]),[Measures].[ActualSum])'
SELECT

{[Measures].[YTD Sum]} ON columns,

{BOTTOMCOUNT(

Hierarchize({ Descendants([Geography]) }),

3, [Measures].[YTD Sum])} ON rows

FROM &CUBE.

Where [Reporting_Period].[All Reporting_Period].[2008].[3].[9]);

disconnect from OLAP;
quit;

IIF EXAMPLE

/* |IF actual within 2% of predicted */
PROC SQL;

Connect to OLAP (host="&server" port=&OLAP_port protocol=&protocol

user="&user" pass="&password" repository="&repository"
OLAP_schema="&schema");

Create table mdx_test2 as

Select * from connection to OLAP (
with

member [Measures].[Performance] as

'llIF([Measures].[ActualSUM] > [Measures].[PredictSUM] * .98, "Acceptable","Unacceptable")'
SELECT

{ CrossJoin (
Hierarchize({ [Reporting_Period].[All Reporting_Period].Children }) ,
{ [Measures].[ActualSUM],
[Measures].[PredictSUM],
[Measures].[Performance]}) } ON COLUMNS ,
Hierarchize({ Descendants([Geography]) }) ON ROWS

FROM &Cube.
)
Disconnect from OLAP;
Quit;

22

SAS Global Forum 2009 Beyond the Basics

USING SAS TODAY() FUNCTION EXAMPLE

* Bottom 3 regions this month, determine this month using SAS today();

proc sql;
Connect to OLAP (host="&server" port=&OLAP_port protocol=&protocol
user="&user" pass="&password" repository="&repository" OLAP_schema="&schema");
Create table mdx_test as
Select * from connection to OLAP (
SELECT
{[Measures].[ActualSum], [Measures].[PredictSum]} ON columns,
{BOTTOMCOUNT(
Hierarchize({ Descendants([Geography]) }), 3, [Measures].[ActualSum])} ON rows
FROM &Cube.

Where
StrToMember("[Reporting Period].[All
Reporting_Period].["||trim(left(year(today())))||"].["||trim(left(gtr(today())))||"].["[|trim(left(month(today())))]|"]")

disconnect’from OLAP;
quit;

MULTIPLE MEASURES IN SINGLE QUERY EXAMPLE

* Tying it all together;
* running totals for the Quarter and year, with running look at actual/Predicted Ratio;
* Also introducing Solve Order;

proc sql;
Connect to OLAP (host="&server" port=&0OLAP_port protocol=&protocol
user="&user" pass="&password" repository="&repository"
OLAP_schema="&schema");

Create table mdx_test as
Select * from connection to OLAP (
WITH
MEMBER [Measures].[Qtr Actual Sum] AS
'Sum(PeriodsToDate([Reporting_Period].[Quarter]),[Measures].[ActualSum]), solve_order=1"

MEMBER [Measures].[YTD Actual Sum] AS
'Sum(PeriodsToDate([Reporting_Period].[Year]),[Measures].[ActualSum]), solve_order=1"

MEMBER [Measures].[Qtr Pred Sum] AS
'Sum(PeriodsToDate([Reporting_Period].[Quarter]),[Measures].[PredictSum]), solve_order=1'

MEMBER [Measures].[YTD Pred Sum] AS
'Sum(PeriodsToDate([Reporting_Period].[Year]),[Measures].[PredictSum]), solve_order=1"

MEMBER [Measures].[QTR Actual/Predicted Ratio] as
'[Measures].[Qtr Actual Sum] / [Measures].[Qtr Pred Sum], format_string="Percent", solve_order=2'

MEMBER [Measures].[YTD Actual/Predicted Ratio] as
'[Measures].[YTD Actual Sum] / [Measures].[YTD Pred Sum], format_string="Percent", solve_order=2'

MEMBER [Measures].[YTD Performance] as
'lIF([Measures].[YTD Actual/Predicted Ratio] > .98, "Acceptable”,"Unacceptable"), solve_order=3'

MEMBER [Measures].[QTD Performance] as
'lIF([Measures].[QTR Actual/Predicted Ratio] > .98, "Acceptable","Unacceptable"), solve_order=3'

SELECT
{[Measures].[ActualSum],
[Measures].[Qtr Actual Sum],
[Measures].[YTD Actual Sum],

23

SAS Global Forum 2009 Beyond the Basics

[Measures].[QTR Actual/Predicted Ratio],
[Measures].[YTD Actual/Predicted Ratio],
[Measures].[QTD Performance],
[Measures].[YTD Performance]
} ON COLUMNS,
{ CrossJoin (

Hierarchize({ [Product_type].Allmembers }) ,
{ [Reporting_Period].[Month].Members

}) 3} ON rows

FROM &CUBE.);

disconnect from OLAP;
quit;

24

	2009 Table of Contents

