
Paper 033-2009

A Row is a Row is a Row, or is it?
Get Comfortable with Transposing your Data

Christianna S. Williams, Abt Associates Inc, Durham, NC

ABSTRACT
Sometimes life would be easier for the busy SAS programmer if information stored in multiple rows
(observations) were all accessible in one observation, using additional columns (variables) to hold that
data. Sometimes it makes more sense to turn a short, wide data set into a long, skinny one (i.e. convert
columns into rows). Base SAS® provides us with two primary methods for converting rows (observations)
into columns (variables) or vice versa – PROC TRANSPOSE and our trusty old friend the DATA step.
How do these two methods work? Which is best suited to different transposition problems, such as
situations requiring multi-row arithmetic or transposing multiple variables? The purpose of this example-
packed tutorial is to demonstrate various types of transpositions using the DATA step and to demystify
the TRANSPOSE procedure (e.g. nail the BY statement and the NAME= option once and for all).
Afterwards, you should be the office go-to gal/guy for reshaping data. Sweet!

INTRODUCTION
I probably shouldn’t admit this, but for me, the best way to really learn something in SAS is trial and error,
or, perhaps more accurately, to see what happens when I try different things…and to gradually narrow
down to what I’m trying to accomplish. The hope is that next time around, I’ll get there a little more
quickly. I’ll also confess that PROC TRANSPOSE sort of confused me for a long time (die-hard DATA
Step-per that I am), until I played with all the different features in TRANSPOSE enough to really (almost)
commit them to memory. My intention in this paper is to have you climb that learning curve with me,
through a series of examples showing what TRANSPOSE can do. For many of the examples, I also
provide DATA step code that will accomplish the same thing, and muse a bit, about the pros and cons of
each.

THE DATA
All the examples in this paper are based on some made-up data for 30 participants in a longitudinal study
of blood pressure. These patients may have had up to 3 visits over the course of the study. At each visit,
their blood pressure (systolic and diastolic, both in mm/Hg – SBP and DBP, respectively), and their waist-
hip ratio (WHR) were recorded. A listing of the entire data set is at the end of this paper, in case you want
to try out some of the examples – or make up your own! – with a few more observations.

EXAMPLE 1 – PLAIN VANILLA PROC TRANSPOSE
For this first example, I’m starting with a small subset
of the larger data set, just the first 8 observations and
a subset of three variables – patient ID, visit number,
and systolic blood pressure (SBP). What it looks like
to start is shown in Exhibit 1.1.

Currently this data set is normalized – there is a
separate row in the data set for each visit for a given
patient. A few features to note as we proceed
through the examples: First, for PTID=02, VISIT=2,
there is a missing value for SBP. Also, PTID 03 has
no observation at all for VISIT=2.

Let’s see what happens if we use PROC
TRANSPOSE without any additional statements or
options. This is the code:

What it looks like after this transposition is
shown in Exhibit 1.2.

Exhibit 1.1. Plain vanilla TRANSPOSE
Before Transposition (Data set = LONG1)

Obs ptid visit sbp
1 01 1 142
2 01 2 141
3 01 3 131
4 02 1 107
5 02 2 .
6 02 3 111
7 03 1 135
8 03 3 128

PROC TRANSPOSE DATA=long1 OUT=wide1;
RUN;

Beyond the BasicsSAS Global Forum 2009

2

NOTE: Numeric variables in the input data set will be converted to character in the
output data set.

So what happened? The three columns in the input data set (PTID, VISIT and SBP) became three rows
in the output. And the data values that were in the eight rows are now held in eight columns (variables),
and these variables were given the names COL1 – COL8. Additionally, there are two more columns,
containing the name (_NAME_) and label (_LABEL_) of the transposed variables. Incidentally, if none of
the transposed variables had labels on the input data set (LONG1), the transposed (wide) data set would
not have the _LABEL_ variable. While I can imagine some scenarios where this wide data set might be
the desired result (e.g. in preparations for some type of reporting), it does strike me as a rather odd
because each COL variable contains three different kinds of information, which is unusual for a SAS data
set…and, fiddler that I am, made me want to know what would happen if one of the variables in the
original (long) data set was a character variable.

A note about Character Variables and PROC TRANSPOSE
So, let’s make a slight tweak to the input data set, by including SEX, which is a character variable. This
data set, LONG2 is shown in exhibit 1.3. We run the same code, just changing the data set names:

Somewhat surprisingly, the resulting data set,
WIDE2, is identical to WIDE1. SAS ignored the
character variable. By default, only numeric
variables are transposed by PROC TRANS-
POSE. If we want to have a character variable
transposed, then we must include a VAR
statement as follows:

The resulting data set is shown in Exhibit 1.4.

So...now COL1-COL8 are storing numeric and character data…how is this possible?? It’s not…check the
log, and the following message is there:

PROC TRANSPOSE DATA=long2 OUT=wide2;
RUN;

PROC TRANSPOSE DATA=long2 OUT=wide3;
VAR ptid sex visit sbp;
RUN;

Exhibit 1.2. Plain vanilla TRANSPOSE
After Transposition (Data set = WIDE1)

Obs _NAME_ _LABEL_ COL1 COL2 COL3 COL4 COL5 COL6 COL7 COL8
1 ptid Patient ID 1 1 1 2 2 2 3 3
2 visit Visit # 1 2 3 1 2 3 1 3
3 sbp Systolic BP 142 141 131 107 . 111 135 128

Exhibit 1.3. Plain vanilla TRANSPOSE with a character
variable

Before Transposition (Data set = LONG2)

Obs ptid sex visit sbp
1 01 F 1 142
2 01 F 2 141
3 01 F 3 131
4 02 F 1 107
5 02 F 2 .
6 02 F 3 111
7 03 M 1 135
8 03 M 3 128

Exhibit 1.4. TRANSPOSE with VAR statement to include a character variable
After Transposition (Data set = WIDE3)

Obs _NAME_ _LABEL_ COL1 COL2 COL3 COL4 COL5 COL6 COL7 COL8
1 ptid Patient ID 01 01 01 02 02 02 03 03
2 sbp Systolic BP 142 141 131 107 . 111 135 128
3 sex Gender (M/F) F F F F F F M M
4 visit Visit # 1 2 3 1 2 3 1 3

Beyond the BasicsSAS Global Forum 2009

3

So, even my data that is truly quantitative (e.g. the systolic blood pressure) has gotten converted to
character values. This is a little deceptive, since SAS even goes so far as to show a period (.) for the
missing blood pressure value, which might even fool you into thinking it was a numeric variable. I’ll note
also that funky things can happen even for numeric variables, because SAS has to figure out what to do
about different formats. We actually see this above a bit. The PTID variable has a Z2. format on the
LONG data set, and this was lost in the first transposition (Exhibit 1.2). Also, if one of the variables
contained non-integer values, all the variables would show the number of decimal points being displayed
for the non-integer, and all are given a numeric length corresponding to the longest length of any of the
variables being transposed. …So, at least for this data set, this kind of TRANSPOSE is probably not very
useful, but we’ve learned something about the PROC.

The NAME= and LABEL= Options in PROC TRANSPOSE

Before moving onto the next main example, I’ll
demonstrate the use of two options in PROC
TRANSPOSE that are very useful if you are
transposing multiple variables in one step. Instead
of the default variable names of _NAME_ and
LABEL, we can use the NAME= and
LABEL=options to give our choice of names to those variables in the output data set. The code is shown
at right and the result below (Exhibit 1.5). Good to keep in mind if you wanted to use a TRANSPOSEd
data set as a basis for some type of report.

EXAMPLE 2 – PROC TRANSPOSE WITH BY STATEMENT
It is more likely, given the structure of our long data set (i.e. multiple rows per person), that we would want
to re-shape it so that it has one observation for each person (PTID) and variables corresponding to the
different measurements on each person at each time point. In terms of PROC TRANSPOSE that means
using a BY statement – that is, TRANSPOSing BY PTID. Again, we start with the LONG1 data set from
Exhibit 1.1, and use this code:

And the output is shown below in Exhibit
2.1.

PROC TRANSPOSE DATA=long1 OUT=wide4;
BY ptid ;
RUN;

Exhibit 2.1. TRANSPOSE with BY statement
After Transposition (Data set = WIDE4)

Obs ptid _NAME_ _LABEL_ COL1 COL2 COL3

1 01 visit Visit # 1 2 3
2 01 sbp Systolic BP (mm/Hg) 142 141 131
3 02 visit Visit # 1 2 3
4 02 sbp Systolic BP (mm/Hg) 107 . 111
5 03 visit Visit # 1 3 .
6 03 sbp Systolic BP (mm/Hg) 135 128 .

PROC TRANSPOSE DATA=long2 OUT=wide3a
NAME=varname LABEL=varlabel;

VAR ptid sex visit sbp;
RUN;

Exhibit 1.5. TRANSPOSE with VAR statement to include a character variable and Using NAME= and LABEL=
Options

After Transposition (Data set = WIDE3a)

Obs varname varlabel COL1 COL2 COL3 COL4 COL5 COL6 COL7 COL8
1 ptid Patient ID 01 01 01 02 02 02 03 03
2 sbp Systolic BP 142 141 131 107 . 111 135 128
3 sex Gender (M/F) F F F F F F M M
4 visit Visit # 1 2 3 1 2 3 1 3

Beyond the BasicsSAS Global Forum 2009

4

So, in comparing this to the output without the BY statement (Exhibit 1.1), we see that instead of one
observation per variable (or one row in the output for each column of the input) we now have one set of
rows for each value of the BY variable, and each set contains a row for each of the variables (other than
the BY variable).

Let’s make a few enhancements. First, so that our variables are not storing different kinds of information,
let’s just TRANSPOSE the SBP variable; we do this by using the VAR statement. (We’ll deal with the
VISIT number in the next example). Second, it
would sure be nice for the columns in the output
data set to have meaningful names; for that we
use the PREFIX option on the PROC
statement, so that the output variables will be
SYSTOLIC1 – SYSTOLICn where N is the
largest number of observations for any BY
group in the input data set (here, 3). And, third,
since we won’t really need the _NAME_ and _LABEL_ variables anymore (it is redundant with the info in
the new variable/column names), we’ll drop those. So, the new code is shown here, followed by the
output in Exhibit 2.2 below:

Now, this is all great EXCEPT we have lost some critical information. In the input data set (Exhbit 1.1),
PTID 2 has an observation for VISIT=2 but the SBP value is missing. This is reflected in the output data
set shown in Exhibit 2.2 (i.e. SYSTOLIC2 is missing). In contrast, in the input data, PTID 3 has no
observation for VISIT 2, but because we are not using the VISIT information in this transposition, SAS
doesn’t “know” that the second observation for PTID 3 corresponds to VISIT 3. Hence, the SBP value for
the second observation is stored in SYSTOLIC2, resulting in the situation where the variable SYSTOLIC2
is storing data that we may not consider to be comparable across observations (i.e. for different visits).
There might be some applications where that is ok – but for this data, we have lost an important feature of
the study design. Read on…

EXAMPLE 3 – PROC TRANSPOSE WITH BY STATEMENT AND ID STATEMENT

Fortunately, If we want the suffixes for the
systolic variables to correspond to the visit
number, we can use the ID statement in
PROC TRANSPOSE to achieve just that.
That is all that has changed in the code
between the last example and this one.

The new and improved output data set is
shown below (Exhibit 3.1).

PROC TRANSPOSE DATA=long1
OUT=wide5 (DROP=_NAME_ _LABEL_)
PREFIX=systolic;

BY ptid;
VAR sbp;
RUN;

Exhibit 2.2. TRANSPOSE with BY statement and PREFIX option
After Transposition (Data set = WIDE5)

Obs ptid systolic1 systolic2 systolic3

1 01 142 141 131
2 02 107 . 111
3 03 135 128 .

PROC TRANSPOSE DATA=long1
OUT=wide6 (DROP=_NAME_ _LABEL_)

PREFIX=systolic;
BY ptid;
VAR sbp;
ID visit;
RUN;

Exhibit 3.1 TRANSPOSE with BY statement, ID statement and PREFIX option
After Transposition (Data set = WIDE6)

Obs ptid systolic1 systolic2 systolic3

1 01 142 141 131
2 02 107 . 104
3 03 135 . 128

Beyond the BasicsSAS Global Forum 2009

5

This is more like it! Consistently, across PTID’s, SYSTOLIC1 holds the SBP value for VISIT = 1,
SYSTOLIC2 corresponds to VISIT=2, and SYSTOLIC3 corresponds to VISIT=3. What we can’t tell from
the above is that PTID 2 was just missing the systolic value for VISIT 2, while PTID 3 was missing the
entire visit; that may or may not be important. If it is important, we would need to also transpose the
VISIT variable, but as we’ve seen above, when multiple variables are included in the VAR statement for
PROC TRANSPOSE, multiple rows (per BY value) are generated, rather than additional columns for each
additional transposed variable. Examples showing how to get around that are included later in this paper.
BUT I want to drive home a point here about TRANSPOSE syntax (that [despite reading the
documentation] took me a lot of trial and error to commit to memory!), and that is…

Variables in the BY statement affect the structure of the output data set; that is, what
generates a new observation (or set of observations). In contrast,

Values of variables in the ID statement affect the names of the variables in the output data
set, and can provide additional information about the data structure.

Another note here – if there are other variables
that are at the level of the BY group that you
want to keep associated with each BY group
value, you can add them into the BY statement
and they will be carried along. More concretely,
in this example data set, the variable SEX is
constant within each PTID, and I would like to
keep it on my transposed data set…basically it
needs to come along for the ride in the TRANSPOSE. Simply add SEX to the BY statement, as shown
here. The output is shown in Exhibit 3.2.

Using the IDLABEL statement in PROC TRANSPOSE
There’s one other statement in PROC TRANSPOSE that I’ve found to be handy – especially when there
are LOTS of observations per BY group in the “long” data set and thus, lots of new variables in the

transposed “wide” data set. And that
is the IDLABEL statement. The
variable that is named on the
IDLABEL statement provides LABELS
to the transposed variables. In my
experience, it often requires some
pre-processing so that an appropriate
IDLABEL variable exists on the long
(pre-transposition) data set. As
shown at left, let’s add a variable to
the LONG1 data set that will work in
this way…and then do the PROC
TRANSPOSE. The variable
SBPLABEL concatenates some
informative text with the value of visit

for the current observation. The resulting LONG1a data set is shown in Exhibit 3.3 (though it’s looking a
little wide) . This new variable is specified in the IDLABEL statement in our TRANSPOSE. If we use

PROC TRANSPOSE DATA=long2
OUT=wide6a (DROP=_NAME_ _LABEL_)
PREFIX=systolic;

BY ptid sex;
VAR sbp;
ID visit;
RUN;

Exhibit 3.2 TRANSPOSE with BY statement, ID statement and PREFIX option
After Transposition (Data set = WIDE6A)

Obs ptid sex systolic1 systolic2 systolic3

1 01 F 142 141 131
2 02 F 107 . 111
3 03 M 135 . 128

DATA long1a ;
SET long1 ;
sbplabel = 'Systolic BP visit '||PUT(visit,1.);
RUN;

PROC TRANSPOSE DATA=long2a
OUT=wide6b (DROP=_NAME_ _LABEL_)

PREFIX=systolic;
BY ptid;
VAR sbp;
ID visit;
IDLABEL sbplabel ;
RUN;

Beyond the BasicsSAS Global Forum 2009

6

the LABEL option in PROC PRINT of dataset WIDE6B, we see the effects of the IDLABEL statement
(Exhibit 3.4). We’ll use this statement again when we are transposing multiple variables…

EXAMPLE 4 – USING THE DATA STEP TO TRANSPOSE A SINGLE VARIABLE

If you need to transpose a single variable –
as we’ve been doing in most of the above
examples, then PROC TRANSPOSE may be
the way to go. However, when you need to
transpose (or as we sometimes say at work,
“horizontalize”) multiple variables, DATA step
methods may be preferable. To build up to
that, I first show DATA step code for
transposing a single variable. One method is
shown to the right.

The result, shown in Exhibit 4.1, is identical
to what we saw in the last example (Exhibit
3.1). A few notes about this strategy:

1) VISIT is used as an index in the array,
to place the SBP values in the right places, which is handy.

2) We needed to know what the max value of the VISIT variable is in order to set this up, which might
require some pre-processing.

3) The RETAIN is needed so that values assigned to each element of the SYSTOLIC array are
maintained across observations for a given BY value.

4) It is necessary to initialize the array elements to missing values at the beginning of each BY group so
that values are not carried over from previous PTID by the RETAIN statement. This would not be
necessary if there were no missing data and all PTID’s had the same number of visits.

DATA wide7 (KEEP = ptid systolic1-systolic3);
SET long1 ;

BY PTID ;

ARRAY sys{3} systolic1 - systolic3;
RETAIN systolic1 - systolic3;
IF FIRST.ptid THEN DO i = 1 TO 3;

sys{i} = . ;
END;
sys{visit} = sbp ;

IF LAST.ptid;

RUN;

Exhibit 4.1 Using the DATA step to transpose a single variable
After Transposition (Data set = WIDE7)

Obs ptid systolic1 systolic2 systolic3

1 01 142 141 131
2 02 107 . 104
3 03 135 . 128

Exhibit 3.3. Adding a variable that will work as
IDLABEL

Before Transposition (Data set = LONG1a)

Obs ptid visit sbp sbplabel

1 01 1 142 Systolic BP visit 1
2 01 2 141 Systolic BP visit 2
3 01 3 131 Systolic BP visit 3
4 02 1 107 Systolic BP visit 1
5 02 2 . Systolic BP visit 2
6 02 3 111 Systolic BP visit 3
7 03 1 135 Systolic BP visit 1
8 03 3 128 Systolic BP visit 3

Exhibit 3.4. Transposition using the IDLABEL
statement

Systolic Systolic Systolic
Patient BP BP BP

Obs ID visit 1 visit 2 visit 3

1 01 142 141 131
2 02 107 . 111
3 03 135 . 128

Beyond the BasicsSAS Global Forum 2009

7

EXAMPLE 5 – AN ALTERNATIVE DATA STEP METHOD
A slight twist on the above is to put the SET statement within the DO loop. This may be somewhat
unconventional, but it eliminates the need for RETAIN, because the DATA step doesn’t reinitialize

SYSTOLIC1-SYSTOLIC3 to missing
until it returns to the DATA statement,
which will be the last observation for
the BY group.
The resulting data set, not repeated
again, is identical to that shown in
Exhibit 3.1 (& 4.1).
In summary, for transposing a single
variable, the advantages of the
TRANSPOSE method are that the

code is a little shorter and that there is no requirement to know the maximum number of observations in a
BY group. Of course, one could use a little bit of additional code to determine that maximum number and
store it in a macro variable so that it wouldn’t have to be hard-coded (e.g. Virgile, 1998 or Williams, 2005).
On the other hand, the DATA step has some additional flexibility, if, for example we wanted to do some
cross-row arithmetic, as in the next example.
Also, if we want to keep other variables at the level of the BY variable – that is, are constant across
observations for a PTID – such as SEX, all that is required in either DATA step method is to KEEP those
variables.

EXAMPLE 6 – TRANSPOSING WITH CROSS-ROW ARITHMETIC
Let’s say that we want to compute the average of the systolic BP values for each PTID, and determine at
which visit, the value was the lowest. If we wanted to use PROC TRANSPOSE, we’d also have to add a

DATA step. In my mind, it’s simpler to
just use the DATA step. The code
shown here will work. It starts with the
same program as Example 4, and
elaborates on it a bit. When the DATA
step is at the first observation within a BY
group (i.e. FIRST.ptid is true), we
initialize not only the elments of the
systolic array, but also our summary
variables, setting these (MIN_SYS,
which will store the lowest systolic value
for each patient, and MIN_SYS_VIS,
which will store the VISIT at which that
minimum value was recorded) to
missing, so that the RETAIN statement
only maintains these values within
records for a given PTID, not across
different patients.
As in Example 4, we assign the current
SBP value to its correct spot in the array.
We then check to see which value is
lower – the current SBP value or the
minimum (so far) SBP value for the

patient, and assign that to MIN_SYS. If the current value is the lowest value (so far), then the current visit
number is assigned to the variable MIN_SYS_VIS.
Finally, when the DATA step gets to the last observation for the BY group (i.e. LAST.ptid is true), we
obtain the average value of the array elements and assign it to AVG_SYS, and OUTPUT an observation.
The resulting data set is shown in Exhibit 6.1.

DATA wide8 (KEEP = ptid systolic1-systolic3);

ARRAY sys{3} systolic1 - systolic3;
DO i = 1 TO 3 UNTIL (LAST.ptid);

SET long1;
BY ptid ;

sys{visit} = sbp ;
END;

RUN;

DATA wide9 (KEEP = ptid systolic1-systolic3
min_sys avg_sys min_sys_vis);

SET long1 ;
BY PTID ;

ARRAY sys{3} systolic1 - systolic3;
RETAIN systolic1-systolic3 min_sys min_sys_vis;
IF FIRST.ptid THEN DO ;

DO i = 1 TO 3;
sys{i} = . ;

END;
min_sys = . ;
min_sys_vis = . ;

END;

sys{visit} = sbp ;
min_sys = MIN(min_sys,sbp) ;
IF min_sys = sbp THEN min_sys_vis = visit ;

IF LAST.ptid THEN DO;
avg_sys = MEAN(OF systolic1-systolic3) ;
OUTPUT ;

END;
RUN;

Beyond the BasicsSAS Global Forum 2009

8

DATA wide10 (KEEP = ptid sex
sbp1-sbp3 dbp1-dbp3 whr1-whr3);

SET long3 ;
BY PTID ;

ARRAY sys{3} sbp1 - sbp3;
ARRAY dia{3} dbp1-dbp3;
ARRAY wst{3} whr1-whr3;
RETAIN sbp1-sbp3 dbp1-dbp3

waisthip1-waisthip3;

IF FIRST.ptid THEN DO i = 1 TO 3;
sys{i} = . ;
dia{i} = . ;
wst{i} = . ;

END;

sys{visit} = sbp ;
dia{visit} = dbp ;
wst{visit} = whr ;

IF LAST.ptid;
RUN;

TIP!! Don’t forget that ‘OF” in the argument to the MEAN function; without it the value
assigned to AVG_SYS will be the value of SYSTOLIC1 minus the value of SYSTOLIC3 –
likely to be a negative value – a lesson I’ve learned the hard way!

EXAMPLE 7 – TRANSPOSING MULTIPLE VARIABLES FOR A BY GROUP – DATA STEP
As we saw in Example 2 (Exhibit 2.1), if multple variables are in the VAR statement for PROC
TRANSPOSE, then the resulting data set has multiple rows per BY group – one per transposed variables.
So, if what we need to do is string all the
variables out within one row for each BY group,
we need a different strategy. Using the DATA
step, we can very simply modify either
technique – from Example 4 or 5 – to
accommodate multiple variables.
First, I create another subset of the full data set
(LONG3; Exhibit 7.1), including the variables
PTID, SEX, VISIT, SBP, DBP, and WHR, and
all observations for the first 5 PTID’s. Below I
show the two different DATA step methods,
which are obvious extensions of the one-
variable methods, and the results – identical for
both methods – are shown in Exhibit 7.2. The
program on the right that has the SET and BY

Exhibit 6.1 Transposing with Cross-Row Arithmetic (Data set = WIDE9)

min_sys_
Obs ptid systolic1 systolic2 systolic3 min_sys vis avg_sys

1 01 142 141 131 131 3 138.0
2 02 107 . 104 104 3 105.5
3 03 135 . 128 128 3 131.5

DATA wide10a (KEEP = ptid sex
sbp1-sbp3 dbp1-dbp3 whr1-whr3);

ARRAY sys{3} sbp1 - sbp3;
ARRAY dia{3} dbp1-dbp3;
ARRAY wst{3} whr1-whr3;

DO i = 1 TO 3 UNTIL (LAST.ptid);
SET long3;

BY ptid ;
sys{visit} = sbp ;
dia{visit} = dbp ;
wst{visit} = whr ;

END;

RUN;

Exhibit 7.1. Transposing multiple variables for a BY
Groups

Before Transposition (Data set = LONG3)

Obs ptid sex visit sbp dbp whr

1 01 F 1 142 92 0.88
2 01 F 2 141 91 0.87
3 01 F 3 131 83 0.83
4 02 F 1 107 58 0.75
5 02 F 2 . 58 0.75
6 02 F 3 111 55 0.71
7 03 M 1 135 80 0.97
8 03 M 3 128 74 0.94
9 04 F 1 145 84 .

10 04 F 2 145 84 0.71
11 04 F 3 139 79 0.68
12 05 M 1 136 86 1.00
13 05 M 2 132 83 0.99
14 05 M 3 126 . 0.96

Beyond the BasicsSAS Global Forum 2009

9

%MACRO x1var(inds=long3a,byvar=ptid sex,
idvar=visit,xvar=);

PROC TRANSPOSE DATA=&inds
OUT=wide_&xvar (DROP= _NAME_ _LABEL_) PREFIX=&xvar;

BY ptid sex;
VAR &xvar;
ID &idvar ;
IDLABEL &xvar.label ;
RUN;
%MEND x1var ;

%x1var(xvar=sbp); %x1var(xvar=dbp); %x1var(xvar=whr);

DATA wide11x ;
MERGE wide_sbp wide_dbp wide_whr ;
BY ptid ;

RUN;

statements inside the DO loop is notably shorter, as it doesn’t require the “intialization” step or the
RETAIN, but the two accomplish exactly the same result.

EXAMPLE 8 – TRANSPOSING MULTIPLE VARIABLES FOR A BY GROUP – PROC TRANSPOSE
To accomplish the same task with PROC TRANSPOSE requires a separate step for each variable. The
three data sets can then be combined with a MERGE step. I’m also assuming that I have a data set
LONG3a, which contains variables SBPLABEL, DBPLABEL and WHRLABEL that are analogous to the
SBPLABEL variable from Exhibit 3.3. Aside from that enhancement (i.e. the transposed variables have
labels), the result is identical to the data set shown in Exhibit 7.1.

PROC TRANSPOSE DATA=long3a OUT=wide11a (DROP= _NAME_ _LABEL_) PREFIX=sbp;
BY ptid sex;
VAR sbp;
ID visit ;
IDLABEL sbplabel ;
RUN;

PROC TRANSPOSE DATA=long3a OUT=wide11b (DROP= _NAME_ _LABEL_) PREFIX=dbp;
BY ptid sex;
VAR dbp;
ID visit ;
IDLABEL dbplabel ;
RUN;

PROC TRANSPOSE DATA=long3a OUT=wide11c (DROP= _NAME_ _LABEL_) PREFIX=whr;
BY ptid sex;
VAR whr;
ID visit ;
IDLABEL whrlabel ;
RUN;

DATA wide11 ;
MERGE wide11a wide11b wide11c ;
BY ptid ;
RUN;

Of course, we can write a
simple MACRO for the TRANS-
POSE step, setting the variable
to be transposed as a macro
parameter, and calling the
macro once for each variable to
TRANSPOSE; it might look
something like the code to the
right, which will again reproduce
the data set shown in Exhibit
7.1. This might well be the way
to go if your application requires
some flexibility with regard to
what variables needed to be
transposed.

Exhibit 7.1 Transposing Multiple Variables for a BY Group (Data set = WIDE10 & 10a)

ptid sex sbp1 sbp2 sbp3 dbp1 dbp2 dbp3 whr1 whr2 whr3

01 F 142 141 131 92 91 83 0.88 0.87 0.83
02 F 107 . 111 58 58 55 0.75 0.75 0.71
03 M 135 . 128 80 . 74 0.97 . 0.94
04 F 145 145 139 84 84 79 . 0.71 0.68
05 M 136 132 126 86 83 . 1.00 0.99 0.96

Beyond the BasicsSAS Global Forum 2009

10

DATA long3b (KEEP = ptid visit systolic diastolic
waisthip);

SET wide10 ;
BY ptid ;

ARRAY sys{3} sbp1-sbp3 ;
ARRAY dia{3} dbp1-dbp3;
ARRAY wst{3} whr1-whr3;

DO visit = 1 TO 3;
systolic = sys{visit} ;
diastolic = dia{visit} ;
waisthip = wst{visit} ;
OUTPUT ;

END;
RUN;

Further, as noted before, the TRANSPOSE method does not require that you “know” what the maximum
number of observations per BY group. Otherwise, whether you choose TRANSPOSE or the DATA step
might be just a matter of personal preference.

EXAMPLE 9 – GOING FROM WIDE TO LONG…
So far all the examples have been different variations on going from a long, skinny (normalized) data set
to a shorter, wider one. What if you need to go in the other direction – if for example you are starting with

the data set shown in Exhibit 7.1, and
need to get to a data set that has one
observation per visit? This might be the
case if you are doing some type of
repeated measures or other longitudinal
analyses.

For this task, I’d go straight to the
DATA step toolbox. Instead of taking 3
observations per PTID and putting out
just one, we are putting out one
observation for each VISIT, and
assigning the values from the correct
positions in the ARRAYS to the
measurement variables. The resulting
data set is shown in Exhibit 9.1.

If you look carefully, you’ll see that
this data set is not identical to
LONG3, shown in Exhibit 7.1. For
one thing, it has 15 observations,
rather than 14. This is because we
put out an observation for each visit
for each PTID even if they had no
data from that VISIT. Now, we
might want to do this, or we might
only want to put out an observation
if there was data for at least one of
the measurements – or some other
decision rule. Probably in a real
study, you’d have some variable
telling you whether the individual
had a visit or not. A simple way to
generate the data set identical to
LONG3 is to make the OUTPUT
statement in the code above
conditional. For example, it could say…

The problem with using PROC TRANSPOSE for this task of wide to long transposition is that
TRANSPOSE doesn’t know anything about the structure of your data set…it can’t reverse the ID
statement so to speak, and create a VISIT variable from the suffixes (1, 2, 3) of the measurement
variables. This is not to say that you might not want to TRANSPOSE to go wide to long, but the result will
be different. You can experiment…see what happens if you use PTID as an ID variable, or as the BY
variable…You might see results that could be useful in some contexts.

IF N(systolic, diastolic, waisthip) > 0 THEN OUTPUT;

Exhibit 9.1 Going from Wide to Long (Data set = LONG3b)

Obs ptid visit systolic diastolic waisthip
1 01 1 142 92 0.88
2 01 2 141 91 0.87
3 01 3 131 83 0.83
4 02 1 107 58 0.75
5 02 2 . 58 0.75
6 02 3 111 55 0.71
7 03 1 135 80 0.97
8 03 2 . . .
9 03 3 128 74 0.94

10 04 1 145 84 .
11 04 2 145 84 0.71
12 04 3 139 79 0.68
13 05 1 136 86 1.00
14 05 2 132 83 0.99
15 05 3 126 . 0.96

Beyond the BasicsSAS Global Forum 2009

11

CONCLUSIONS
My intention in this paper has been to take some of the guesswork out of using PROC TRANSPOSE,
demonstrating some of its different features, as well as providing DATA step syntax that, sometimes,
accomplishes the same tasks as TRANSPOSE more simply. As with most data manipulation jobs in
SAS, when it comes to reshaping your data from long to wide or vice versa, there are multiple means to
the same end. Each may have its advantages or disadvantages in terms of clarity, efficiency (processing
or programming), flexibility – or programmer preference, but it’s good to be aware of different paths –
some may be more adaptable to particular variations than others. And, while I am a firm believer in
reading the manual – and reading papers written by other users – sometimes there is no substitute for
experimentation. Take a small data set, such as the one at the end of this paper – and PLAY…Not only
are you likely to really get how TRANSPOSE works after doing this, you are likely to see a way that it
might generate something that could be useful to you in the future!

Speaking of reading papers by other users, there have been MANY papers written on the subject of data
transposition, both with and without PROC TRANSPOSE. A selection of these that I have found useful
and ones that I’ve referenced in this paper are listed below. Enjoy!

REFERENCES
1. Leighton, Ralph W. Some Uses (and Handy Abuses) of PROC TRANSPOSE. SUGI 29.
2. Virgile, Bob. Changing the Shape of Your Data – PROC TRANSPOSE vs. ARRAYS. NESUG 1998.
3. Williams, Christianna. SYMPLIFY your Data Set Transposition with SYMPUT, and Make it Data-

Driven Too!. NESUG 2005.

ACKNOWLEDGMENTS
SAS and all other SAS Institute Inc. product or service names are registered trademarks or trademarks of
SAS Institute Inc. in the USA and other countries. ® indicates USA registration. Other brand and product
names are trademarks of their respective companies.

CONTACT INFORMATION
I welcome comments, suggestions and questions at:

Christianna S. Williams, PhD
Christianna_Williams@abtassoc.com

Beyond the BasicsSAS Global Forum 2009

12

Appendix – Complete listing of data set … in case you want to play!!

ptid group sex visit sbp dbp whr
01 3 F 1 142 92 0.88
01 3 F 2 141 91 0.87
01 3 F 3 131 83 0.83
02 1 F 1 107 58 0.75
02 1 F 2 . 58 0.75
02 1 F 3 111 55 0.71
03 2 M 1 135 80 0.97
03 2 M 3 128 74 0.94
04 2 F 1 145 84 .
04 2 F 2 145 84 0.71
04 2 F 3 139 79 0.68
05 3 M 1 136 86 1.00
05 3 M 2 132 83 0.99
05 3 M 3 126 . 0.96
06 2 M 1 178 83 1.05
06 2 M 2 176 81 1.02
06 2 M 3 176 81 1.02
07 1 M 1 113 74 0.82
07 1 M 2 113 74 0.82
07 1 M 3 114 75 .
08 2 M 1 169 74 0.96
08 2 M 2 168 74 0.96
08 2 M 3 161 68 0.93
09 1 M 1 120 77 1.04
09 1 M 2 119 77 1.04
09 1 M 3 103 63 0.97
10 1 M 1 125 50 0.87
10 1 M 2 118 45 0.84
10 1 M 3 120 46 0.85
11 3 F 1 150 74 0.91
11 3 F 2 149 73 0.90
11 3 F 3 149 73 0.89
12 2 F 1 119 66 0.83
12 2 F 2 117 64 0.83
12 2 F 3 101 51 0.76
13 3 F 1 . . 0.78
13 3 F 2 138 82 0.80
13 3 F 3 136 80 0.76
14 2 M 1 130 80 0.88
14 2 M 2 129 79 0.88
14 2 M 3 122 73 0.85
15 3 M 1 169 93 1.12
15 3 M 2 160 86 1.08
15 3 M 3 156 83 1.07
16 3 M 2 194 98 1.19
16 3 M 3 194 98 1.19
17 2 F 1 125 81 0.81
17 2 F 2 116 74 0.77
18 3 F 1 148 86 1.03
18 3 F 2 140 79 1.00

ptid group sex visit sbp dbp whr
18 3 F 3 145 83 1.02
19 1 F 1 110 78 0.56
19 1 F 2 113 81 0.58
19 1 F 3 114 81 0.58
20 3 F 1 141 100 0.84
20 3 F 2 142 101 0.85
20 3 F 3 147 105 0.87
21 1 F 1 . 61 0.66
21 1 F 2 113 61 0.66
21 1 F 3 120 66 0.69
22 1 F 1 99 58 0.56
22 1 F 2 98 57 0.55
22 1 F 3 100 59 0.59
23 1 F 1 98 63 0.68
23 1 F 2 91 57 0.65
23 1 F 3 90 56 0.65
24 2 M 1 146 101 0.92
24 2 M 2 140 96 0.90
24 2 M 3 144 99 0.91
25 3 M 1 164 . 1.17
25 3 M 2 168 117 1.19
25 3 M 3 166 115 1.18
26 3 M 1 173 80 1.26
26 3 M 2 174 81 1.29
27 1 M 1 106 48 1.00
27 1 M 2 104 46 0.99
27 1 M 3 93 38 0.95
28 2 M 1 157 87 1.07
28 2 M 2 157 87 1.06
29 2 F 1 139 77 0.79
29 2 F 2 139 77 0.79
29 2 F 3 143 80 0.81
30 1 M 1 134 45 1.10
30 1 M 2 139 49 1.12
30 1 M 3 147 55 1.16

Beyond the BasicsSAS Global Forum 2009

	2009 Table of Contents

