
2/9/2009 11:00:00 PM 1 \\tsclient\U_sas_gf2009\024-2009 Ver 04.doc

Paper 024-2009

A Faster Index for Sorted SAS® Datasets

Mark Keintz

Wharton Research Data Services, University of Pennsylvania

Philadelphia PA

ABSTRACT

In a NESUG 2007 paper with Shuguang Zhang, I demonstrated a compressed index (termed “condensed index” in
that paper) which provided significant performance gains (about 33% elapsed time and cpu time) in retrieving
subsets from sorted datasets in which each level of the sort variables(s) has many observations, and the sort
variable was used as the selection criterion. This paper extends the compressed index in two ways: (1) replication of
a SAS composite index, and (2) further performance gains (up to 50%) by selectively replacing direct access (i.e.
POINT=) techniques with sequential access (FIRSTOBS and LASTOBS).

This paper demonstrates, with sample DATA steps, how to create and use a compressed index, and compares its
performance to SAS indices, and to our previous results. Other advantages such as precise prediction of the
number of retrieved records will be discussed.

This paper assumes the reader has an intermediate level of familiarity with the SAS DATA step. The use of the
“point=” operand of the SET statement will be briefly introduced and will be central to the paper. Some macro coding
will be used as well.

INTRODUCTION

The idea for a compressed index came from our need to speed up data retrieval from large files of trades and quotes
we get monthly from the New York Stock Exchange (NYSE®). What do we mean by large? For example, the April
2007 NYSE quotes file contains 2.9 billion observations covering about 8,500 stock symbols over 19 trading days. It
produced a SAS data set requiring 165 gigabytes of disk storage. These data sets are rapidly getting bigger,
doubling in size every 15 to 18 months. Users extracting relatively small subsets of data were having long waits,
even with the benefit of SAS® indexes.

We also noticed that even our SAS® index files were large (71 gigabytes to record two indexes for the dataset
above), so we developed a smaller index file which we hoped would also speed up data retrieval... This paper
describes a “compressed index” design that takes only a fraction of the disk space of a normal SAS index file, and
yields significant savings in elapsed time and CPU time. It even noticeably reduces I/O.

This technique is not as general as the normal SAS index. Our data sets benefit from the compressed index,
because they have the following characteristics:

 The data sets are static. Once indexes are created, no further change will be made.

 Extractions are most frequently based on variables for which a single value defines large subsets of the
data (i.e. the value is not highly “discriminant”). In our case, users most commonly specify a relatively small
number of stock symbols and/or dates. Even selecting just a single symbol (or date) would yield large
numbers of records (e.g. over 100,000).

 Our data sets are sorted by the subsetting variables: stock symbol and date.

1. SHORT REVIEW OF THE SAS® INDEX

As mentioned above, we encountered SAS index files that were very large. Why does the SAS index take so much
space? The primary reason is that the index file tracks each observation in the data file. According to SAS® online
documentation (see http://support.sas.com/onlinedoc/913/getDoc/en/lrcon.hlp/a000440261.htm):

The index file consists of entries that are organized hierarchically and connected by pointers, all of
which are maintained by SAS. The lowest level in the index file hierarchy consists of entries that
represent each distinct value for an indexed variable, in ascending value order. Each entry
contains this information:

 a distinct value

Applications DevelopmentSAS Global Forum 2009

http://support.sas.com/onlinedoc/913/getDoc/en/lrcon.hlp/a000440261.htm

2/9/2009 11:00:00 PM 2 \\tsclient\U_sas_gf2009\024-2009 Ver 04.doc

 One or more unique record identifiers (referred to as an RID) that identifies each observation
containing the value. (Think of the RID as an internal observation number.)

In other words, at the lowest level, index entries have a scheme like this:

Figure 1. Index Entries (lowest level) for variable SYMBOL (in unsorted data set)

SYMBOL RID

AA 1,456; 2,234; 4,567; 6,789; … 121,989

… …

IBM 2,001; 9,945; 13,232; 14,544; … 998,567

… …

ZZ 557; 12,891; 34,565; 44,650 … 989,456

You can see that there is one RID for each observation in the data set, and there is one entry for each value of the
index variable. In the case of the April 2007 quotes file mentioned above, there would be about 8,500 entries
(unique values of SYMBOL) at the lowest level of the index file, and 2.9 billion RID‟s. That‟s about 340,000 RID‟s per
value of SYMBOL.

If the original data set is sorted by SYMBOL, then the index entries would look like Figure 2, in which RID‟s for each
value of SYMBOL form consecutive lists.

Figure 2. Index Entries (lowest level) for variable SYMBOL (in sorted data set)

SYMBOL RID LAST RID

AA 1; 2; 3; 4; 5; … 210,000

… …

IBM 1,221,222,101; 1,221,222,102 … 1,222,220,668

… …

ZZ 2,899,300,001; 2,899,300,002 … 2,900,000,000

2. A COMPRESSED SIMPLE INDEX FOR SORTED FILES

2.1 Saving storage space with a compressed index

Both of the index files above take up the same amount of storage, but in the second case most of it is superfluous –
namely all the RID‟s between the first and last RID for each entry. An index containing only the first and last RID‟s
would save a lot of space, with no loss of information. Such a compressed index could look like the following:

Figure 3. Compressed Index Entries for variable SYMBOL (in sorted data set)

SYMBOL FRID LRID

AA 1 210,000

… …

IBM 1,221,222,101 1,222,220,668

… …

ZZ 2,899,300,001 2,900,000,000

Clearly this saves space. The standard SAS index file has NO (number of observations in the data set) RID‟s, but

the compressed index has 2*Ni (number of index values) RID‟s. So the design will save space only if the

observations are grouped (i.e. multiple consecutive observations per each value of the index variable). At the
lower limit (one observation for each indexed value, i.e. Ni=NO), the compressed design would actually use more
storage. In the case of the April 2007 data set (NO=2,900,000,000 and NI=8,500) the ratio Ni/No of RID‟s per index
value will be about 340,000 to 1 (yielding 170,000 FRID/LRID pairs per index value).

Given this design for a compressed index, the primary questions are (1) how can it be used?, and (2) how well does
it perform?

2.2 How to use a compressed index

As an example, let‟s say you want to extract all the observations in data set QUOTES which have SYMBOL=”IBM”.
In the absence of a compressed index, you might submit a program like this:

Example 1: Subset extraction without compressed index

data ibm_quotes

 set quotes;

 where symbol=’IBM’;

run;

Applications DevelopmentSAS Global Forum 2009

2/9/2009 11:00:00 PM 3 \\tsclient\U_sas_gf2009\024-2009 Ver 04.doc

If a SAS index exists for variable SYMBOL in data set QUOTES, this data step would use it to directly read only the
observations with SYMBOL=”IBM”. To do the equivalent using a compressed index, there are two requirements: (1)
an index accessible in a DATA step, and (2) a way to read only the requested observations from QUOTES. To
satisfy the first requirement, assume we have another SAS data set, call it IX_SYM, containing three variables,
SYMBOL, FRID, and LRID, as in figure 3 We‟ll demonstrate later how to create IX_SYM.

To satisfy the second requirement, we can use the POINT= option of the SET statement. According to SAS online
documentation the “POINT=variable” option:

Specifies a temporary variable whose numeric value determines which observation is read.
POINT- causes the SET statement to use random (direct) access to read a SAS data set.

In other words, if you want to read observation 2007 from data set QUOTES, you could simply enter

p=2007;

set quotes point=p;

within a data step. Note, you can NOT enter the actual numeric value, as in

set quotes point=2007;**This will fail with an error message **;

We now have the pieces. Here‟s how to put them together:

Example 2: Subset extraction with compressed index

data ibm_quotes (drop=frid lrid);

 set ix_sym; ** Read the IX_SYM ¨driver¨ file **;

 where symbol=’IBM’; ** Applies to IX_SYM only **;

 do p=frid to lrid; ** For each IBM obs**;

 set quotes point=p; **directly read the record **;

 output; **and output it**;

 end;

run;

So what‟s going on here? The essence of this example is that there are two nested SET statements. The outer SET
reads from the compressed index data set IX_SYM. The following WHERE statement keeps only the entry for „IBM‟
(note it does NOT apply to the subsequent SET QUOTES statement). We now have FRID and LRID, specifying the
range of IBM observations in QUOTES.

Then, the DO statement sets up a loop from FRID to LRID. Using the “POINT=” option, the inner SET statement
reads each corresponding observation from QUOTES, and the subsequent OUTPUT statement writes it. The
resulting data set, IBM_QUOTES, has the same observations as example 1. Also, it adds no variables to those
already in QUOTES: FRID and LRID (from IX_SYM) are eliminated by the “DROP=” parameter, and P is not kept
because it is classified as a temporary variable due to its use in the “POINT=” option.

2.3 How well does the compressed index perform?

To evaluate the compressed index we used a data set from the NYSE, representing all quotes for the month of
January, 2006. The data set profile is as follows:

- NO=1,542,953,506 (about 1.5 billion)

- Sorted by SYMBOL

- Ni = 8,371

We then ran retrievals of 10, 100, and 1,000 symbols, using the SAS index and the compressed index. Each
retrieval was repeated 5 times, and the averages are shown in Table 1.

Table 1

Resource Use, by Number of Symbols and Index Type

Averages over five runs

 Number of Symbols Requested

 10 100 1,000

Elapsed Time (mm:ss)
 SAS Simple Index
 Compressed Index
 Percent Change

0:58
0:40

-33%

1:52
1:16

-32%

13:32

9:05
-33%

Applications DevelopmentSAS Global Forum 2009

2/9/2009 11:00:00 PM 4 \\tsclient\U_sas_gf2009\024-2009 Ver 04.doc

Table 1

Resource Use, by Number of Symbols and Index Type

Averages over five runs

 Number of Symbols Requested

 10 100 1,000

CPU Time (in seconds)
 SAS Simple Index
 Compressed Index
 Percent Change

0:56
0:37

-35%%

1:48
1:08

-37%

12:31

8:12
-35%

Memory Use (Kbytes)
 SAS Simple Index
 Compressed Index
 Percent Change

363
430

+18%

429
503

+17%

1,119
1,205
+8%

These tests were run on the following platform:
 System: SUN V440, 4 Processors, 8GB ram
 Operating System: Solaris 9

You can see that elapsed time is reduced on the order of 33%. Most of this seems to be due to savings in CPU time

(average about 36%). But there is a price to pay - memory use increases, although proportionately less (average
around 13%) than the decrease in CPU and elapsed time. This makes sense, since there is probably more
overhead in compiling and executing program statements to read the compressed index, than in the SAS binary
routines used to process the normal SAS index. We also saw minor savings in input/output counts when using the
compressed index. Those results are not shown here because we were not able to eliminate the effects of file
caching, resulting in wide variations from run to run. Some runs even reported zero block input operations,
demonstrating excellent file caching by our computing platform, but rendering input/output counts useless for index
comparison.

2.4 How to create the compressed index

Creating the compressed index is a simple, though time consuming, process of reading through the sorted data set,
and saving the beginning and ending observation numbers for each value of the index variable. The following
program (Example 3) creates the compressed index data set from the original QUOTES data set.

Example 3: Creating the compressed index data set

 data ix_sym;

 frid=1; **Initialize FRID for 1
st
 symbol**;

 do until (lastcase); **Stop after entire dataset is read in **;

 do lrid=frid by 1 until (last.symbol);

 set quotes (keep=symbol) end=lastcase;

 by symbol; **The data set MUST be sorted by SYMBOL**;

 end;

 output; **At end of each SYMBOL, output FRID & LRID**;

 frid=lrid+1; ** Update FRID for the next SYMBOL **;

 end;

 run;

3. COMPRESSED COMPOSITE INDEX FOR SORTED FILES

To support subset selection such as

 where symbol=‘IBM’ and date between ‘10jan06’d and ‘13jan06’d

a SAS composite index based on combinations of SYMBOL and DATE is typically used.

Given that the compressed index provided significant improvement over the simple SAS index on SYMBOL, we
created and tested compressed index files meant to substitute for a composite index. Using the same data set
QUOTES as above, but specifying that it is sorted by SYMBOL and DATE, we created a compressed index data set
named IX_SYMDAT, shown in Figure 4.

Applications DevelopmentSAS Global Forum 2009

2/9/2009 11:00:00 PM 5 \\tsclient\U_sas_gf2009\024-2009 Ver 04.doc

Figure 4. Compressed Index File IX_SYMDAT, based on SYMBOL and DATE

SYMBOL DATE FRID LRID

AA 03JAN06 1 11,789

AA 04JAN06 11,790 21,843

… … … …

AA 31JAN06 191,001 210,000

… … … …

IBM 03JAN06 1,221,222,101 1,221,274,657

IBM 04JAN06 1,221,274,658 1,221,339,558

… … … …

IBM 31JAN06 1,222,004,101 1,222,220,668

… …

ZZ 31JAN06 2,898,300,001 2,900,000,000

IX_SYMDAT has the same structure as IX_SYM, with one exception: it has two index variables (SYMBOL and
DATE) instead of one. For each SYMBOL/DATE combination, FRID and LRID indicate the first and last
corresponding observations in the QUOTES data set.

We also created a second higher-level index file, IX2_SYM. But instead of containing first and last RID‟s for the
QUOTES data set, IX2_SYM contains pointers to the IX_SYMDAT data set, as in Figure 5.

Figure 5. Compressed Index File IX2_SYM

SYMBOL FRID1 LRID1

AA 1 20

… … …

IBM 112,001 112,020

… … …

… … …

ZZ 169,981 170,000

3.1 How to use the hierarchical composite index

Taken together, IX2_SYM and IX_SYMDAT form a hierarchical index of QUOTES. IX2_SYM is a compressed index
of IX2_SYMDAT, and IX2_SYMDAT is a compressed index of QUOTES. We can use the upper-level index
(IX2_SYM) to directly read only the subset in the bottom level index (IX_SYMDAT) that contains the desired
SYMBOL value. From those IX_SYMDAT records we can keep only the ones which fall in the desired date range
(e.g. 10jan06 through 13jan06). In turn we read only the QUOTES records that satisfy both the SYMBOL and DATE
constraints, as in Example 4: Note that the example uses an IF statement, because a WHERE statement cannot be
used in combination with the “POINT=” option of the SET statement.

Example 4: Using hierarchical compressed index data sets

 data ibm_quotes (drop=frid: lrid:);

 set ix2_sym;

 where symbol=’IBM’;

 do p1=frid1 to lrid1;

 set ix_symdat point=p1;

 if ‘10Jan 06’d <= date<=’13Jan 06’d then do p=frid to lrid;

 set quotes point=p;

 output;

 end;

 end;

 run;

3.2 Performance results for the hierarchical composite index

To see how well the hierarchical index works, we reran the tests above twice, once selecting quotes from a single
day, and once from a 10-day period. The results are in Table 2:

Applications DevelopmentSAS Global Forum 2009

2/9/2009 11:00:00 PM 6 \\tsclient\U_sas_gf2009\024-2009 Ver 04.doc

Table 2

Resource Use, by Number of Symbols, Date Range, and Index Type

Averages over five runs

 Date Range
 1 Day 10 Consecutive Days

 Number of Symbols Number of Symbols

 10 100 1,000 10 100 1,000

Elapsed Time (mm:ss)
 SAS Composite Index
 Compressed Index
 Percent Change

0:02.6
0:01.7
-33%

0:05.1
0:03.3
-37%

0:39
0:28

-28%

0:33
0:22

-33%

0:56
0:40

-29%

7:09
5:18

-26%

CPU Time (in seconds)
 SAS Composite Index
 Compressed Index
 Percent Change

0:02.4
0:01.6
-35%

0:04.7
0:03.0
-37%

0:35
0:24

-30%

0:32
0:20

-36%

0:54
0:35

-35%

6:28
4:45

-27%

Memory Use (KBytes)
 SAS Composite Index
 Compressed Index
 Percent Change

364
521

+43%

433
594

+37%

1,166
1,296
+11%

364
521

+43%

439
594

+35%

1,166
1,296
+11%

Savings in CPU time and elapsed time for the composite index are about the same as for the simple index,
averaging around 33% for elapsed time and CPU time. Again there is a trade-off with memory use, although its
relative increase goes down as the number of SYMBOL values increase (from 43% for 10 symbols to 11% for 1,000
symbols). But the date range used for the extraction has no influence on memory use.

4. DIRECT ACCESS OF SUBSETS OFTEN CAN BE BEATEN BY SEQUENTIAL ACCESS

Although using the POINT= technique in a loop driven by the compressed index is faster than the SAS index, it „s
really benefitting only from reduced processing of the index values. It‟s still not taking full advantage of the fact that
large blocks of consecutive records are being read with each disk input operation. That is, if you are reading records
12,000,001 through 13,000,000, the program, at its core is doing this:

Example 5a: Basic structure for retrieving a range of records using a DO loop.

 data ibm_quotes;

 frid=12000001; lrid=13000000;

 do p=frid to lrid;

 set quotes point=p;

 output;

 end;

 drop frid lrid;

 run;

But SAS can probably do this faster, if instead, you used this:

Example 5b: Basic structure for retrieving a range of records using FIRSTOBS and OBS
 data ibm_quotes;

 set quotes (firstobs=12000001 obs=13000000);

 run;

The difference here is that in Example 5b SAS sets the reading limits at the compile phase – i.e. SAS “knows” that
one million consecutive records will be read. In Example 5a, there is repeated implementation of the POINT=
overhead. SAS only “knows” to read a particular record when the pointer identifies it. For each record, SAS must
calculate the value of P and identify the corresponding record in the dataset before retrieving the data. In
Example 5b, SAS simply reads the “next” record.

Of course, in our case, there are a couple of problems: (1) we typically have multiple ranges; and (2) because the
FIRSTOBS and OBS values are required in the compile phase, the range of needed records must be determined
before the data retrieval step begins. This means some macro programming will be needed to generate the needed
DATA step.

The first problem is trivial –simply include multiple references to the data set in the SET statement, as here:

Applications DevelopmentSAS Global Forum 2009

2/9/2009 11:00:00 PM 7 \\tsclient\U_sas_gf2009\024-2009 Ver 04.doc

Example 6. Multiple object of the SET statement, with OPEN=DEFER.

 set quotes (firstobs=12000001 obs=13000000)

 quotes (firstobs=22000001 obs=23000000)

 open=defer;

Note the “open=defer” tells SAS not to waste memory by building a buffer for every data set listed in the SET
statement. Instead, when the first data set is complete processed, the released memory buffer space is reused for
the next object. Without this capability, the program could easily exhaust memory and fail.

To deal with the second problem, we essentially have to run a preliminary DATA step to read the index file prepare
the arguments of the SET statement. In a modification of Example 2, we generate a collection of sequential
accesses, for IBM and DELL, in Exemple 7a:

Example 7a: Using Compressed index to generate sequential access parameters

 data _null_;

 retain r_list $32700;

 set ix_sym end=lastix; ** Read the IX_SYM ¨driver¨ file **;

 where symbol=’IBM’ or symbol=’DELL’;

 range= catx(‘ ‘,cats(‘(firstobs=’,frid),cats(‘obs=’,lrid,’)’));

 r_list=catx(‘ ‘,r_list,’quotes’,range);

 if lastix then call symput(‘set_list’,trim(range_list));

 run;

 data ibm_dell_quotes;

 set &set_list open=defer;

 run;

This technique transforms the single data step in example 2 to a pair of data steps. The first reads the compressed
index with the purpose of building a list of dataset ranges. The list is put into a macro variable (SET_LIST) which is
then used in the second data step. The second data step, after the macrovar SET_LIST is resolved, looks like this:

Example 7b: Resolved SAS Script Resulting from Example 7a
 data ibm_dell_quotes;

 set quotes (firstobs=1001578298 obs=1001729694)

 quotes (firstobs=1290224462 obs=1290246907)

 open=defer;

 run;

4.1 Performance results of sequential access controlled by compressed index

And it works. Table 3 shows further gains by moving from direct access to sequential access, in both cases using
the compressed index. Like the initial comparison to the SAS index, both clock time (10% to 21%) and especially
CPU time (about 19% to 38%) are saved, at the expense of memory. When compared to the ordinary SAS index, of
course, results will be are even greater (approaching 50%).

Table 3

Resource Use, by Number of Symbols, Date Range

SET with POINT= vs. (FIRSTOBS ... OBS)

Averages over five runs

 Date Range
 10 Consecutive Days Entire Month

 Number of Symbols Number of Symbols

 10 100 1,000 10 100 1,000

Elapsed Time (mm:ss)
 SET + POINT=
 SET + FIRSTOBS/OBS
 Percent Change

0:21.1
0:17.9
-15%

0:40.0
0:36.0
-10%

5:03
4:10

-18%

0:43.3
0:35.7
-18%

1:23
1:05

-21%

9:45
7:50

-20%

CPU Time (in seconds)
 SET + POINT=
 SET + FIRSTOBS/OBS
 Percent Change

0:18.9
0:15.3
-19%

0:35.6
0:29.7
-17%

4:45
2:56

-38%

0:39.4
0:29.2
-26%

1:14
0:54

-27%

8:36
6:22

-26%

Memory Use (KBytes)
 SET + . POINT=
 SET + FIRSTOBS/OBS
 Percent Change

2,828
4,208
+49%

2,901
4,282
+48%

3,609
5,374
+49%

2,697
4,199
+56%

2,771
4,274
+54%

3,479
5,425
+56%

Applications DevelopmentSAS Global Forum 2009

2/9/2009 11:00:00 PM 8 \\tsclient\U_sas_gf2009\024-2009 Ver 04.doc

4.2 Accommodating very long range lists

The program in examples 7a and 7b are a simplified version of what was used to produce Table 3. In particular,
the program would fail in retrieving data for 1,000 symbols, since generating the corresponding ranges would result
in a SET statement far longer than its maximum permissible length (32,767). But this can be addressed by
generating multiple SET statements, ending up with a program such as below:

Example 8: Using multiple SET statements, each with multiple ranges.

 DATA MY_QUOTES;

 do until (last1);

 set quotes (firstobs=... obs=...) quotes (firstobs=... obs=...)

 quotes (firstobs=... obs=...) quotes (firstobs=... obs=...)

 ...

 open=defer end=last1;

 output;

 end;

 do until (last2);

 set quotes (firstobs=... obs=...) quotes (firstobs=... obs=...)

 quotes (firstobs=... obs=...) quotes (firstobs=... obs=...)

 ...

 open=defer end=last2;

 output;

 end;

 run;

The major new detail in example 8 is that it incorporates the SET QUOTES statements in explicit loops, each with a
corresponding OUTPUT statement. If these loops were not used the data set would retrieve data out of order, and
prematurely stop when the set statement with the shorter range reached its end.

The program that generates the code in Example 8 is below. It uses the CALL EXECUTE statement to generate the
data set above, which SAS executes immediately upon completing the DATA _NULL_ step.

Example 9: Generate sequential access parameters for multiple SET statements.

data _null_;

 array r_list {10} $32767 _temporary_;

 retain R 1;

 set ix_sym end=lastix; ** Read the IX_SYM ¨driver¨ file **;

 where symbol in (LIST OF 1,000 SYMBOLS HERE);

 range = catx(‘ ‘,cats(‘(firstobs=’,frid),cats(‘obs=’,lrid,’)’));

 r_list{r}=catx(‘ ‘,r_list{r},’quotes’,range);

 if length(r_list{r}) > 32500 then r=r+1;

 if lastix then do:

 call execute (‘DATA MY_QUOTES;’);

 do S = 1 to R;

 l_text=cats(‘last’s);

 call execute (cat(‘ do until(‘, l_text, ‘);’));

 call execute (cat(‘set ‘,trim(r_list{s}),’open=defer end=’,l_text,’;’);

 call execute (‘output;’);

 call execute (‘end;’);

 end;

 call execute (‘run;’);

 end;

run;

5. WEAKNESSES AND NOTES ON THE COMPRESSED INDEX

The fact that the compressed index is faster in these tests does not indicate any deficiencies in the normal SAS
index, which was designed to work in far more general environments. There are several conditions supported by the
SAS index that would make the compressed index impossible or useless. Some of the more important ones are
below:

1. The data set is dynamic. The SAS index is automatically updated when observations are added or
removed from an indexed dataset.

Applications DevelopmentSAS Global Forum 2009

2/9/2009 11:00:00 PM 9 \\tsclient\U_sas_gf2009\024-2009 Ver 04.doc

2. SAS procedures use SAS indexes. Just putting a WHERE statement in any procedure will potentially
use a SAS index, often eliminating the need for a separate subset extraction.

3. The number of values of the index (NI) approaches the number of observations in the data set (NO). As
the ratio of NI/NO grows, at some point the size of the compressed index will no longer provide any
significant advantages over the SAS index.

However, there are some potential benefits to the compressed index that we have not explored in this paper, such
as:

1. Given the small amount of space taken by the compressed index, it would be “cheap” (in terms of disk
space) to add compressed indexes sorted by the DATE variable. Even though the original data set is
sorted by SYMBOL/DATE, these indexes could be used to create an extract sorted by DATE/SYMBOL
in a single DATA step, without calling a SORT procedure.

2. Use of the compressed index would support removal of the sort variable(s) from the data set, providing
further disk space storage with no impact on performance.

3. Because the compressed index essentially contains a frequency table of the index variables, precise
estimation of extract size is easy. This can help when deciding whether an extract is so large that
sequential access is more efficient than utilizing an index.

4. Unlike the SAS index, a variant of the compressed index could be formed that does not have an entry
for every value of the index variable. Instead an entry could represent a range of values. For instance,
in the case of our NYSE data sets, the observations are actually sorted by SYMBOL, DATE, and TIME
(recorded to the nearest second). Making a compressed index of all the TIME values would yield an
index file with too few records per SYMBOL/DATE/TIME combination to provide any performance
benefits. But by making index entries that cover time ranges (e.g. containing the first and last RID of
each hour), retrievals that have a time constraint could be supported. But unlike a compress index, this
“condensed index” cannot recreate all the information in an ordinary SAS index.

CONCLUSIONS

If you have a large, static, sorted (on the index variables) data set that has few index values relative to the number of
observations, you should consider using a compressed index for extracting subsets. The programming is relatively
simple, the savings in disk space can be striking, and elapsed time and CPU time can drop significantly. The price
for this is increased memory use, which appears to be relatively small for larger extracts.

ACKNOWLEDGMENTS

Thanks are due to my former colleague Shuguang Zhang, with whom I coauthored the initial paper, of which this is
an extension.

CONTACT INFORMATION

This is a work in progress. Your comments and questions are valued and encouraged. Please contact the author
at:
 Author: Mark Keintz
 Address: Wharton Research Data Services
 216 Vance Hall
 3733 Spruce St
 Philadelphia, PA 19104-6301
 Work Phone: 215.898.2160
 Fax 215.573.6073
 Email mkeintz@wharton.upenn.edu

SAS and all other SAS Institute Inc. product or service names are registered trademarks or trademarks of SAS
Institute Inc. in the USA and other countries. ® indicates USA registration.

NYSE is a trademark of the New Your Stock Exchange, Inc. in the USA and other countries. ® indicates USA
registration.

Applications DevelopmentSAS Global Forum 2009

mailto:mkeintz@wharton.upenn.edu

	2009 Table of Contents

