
Paper 015-2009

Geospatial Analysis Using SAS® and the Google Map API
Mai Nguyen, Shane Trahan, Patricia Nguyen, Wafa Handley

RTI International, RTP, NC

ABSTRACT
The Google Map API allows Web site developers to integrate mapping capabilities into their own Web sites. These
mash-ups combine data from more than one source into a single tool used by a broad range of people including real
estate professionals who map properties for potential clients to municipalities which relay traffic-related issues through
their Web sites. RTI International researchers have taken this a step further by integrating the Google API into a
library that can be used not only by Web developers but by SAS programmers and other developers as well. SAS
programmers can take advantage of the Google API to perform a variety of Geographic Information System (GIS)
calculations by using a set of easy to use function calls in the data step.

Our paper will provide two SAS programs showing (1) how to obtain Geocode information for specific addresses and
(2) how to compute the crow-fly and the traveling distance between any two locations. We will briefly discuss the
technical approach used allowing SAS programs to access these Web-based APIs.

INTRODUCTION
The Google Map Application Programming Interface (API) is a free service created by Google providing developers
with the capability to integrate Google Maps into their own websites. The maps are used in a myriad of applications
ranging from advanced real estate search applications to simply finding the location of your local Starbucks coffee
shop. Google Maps uses JavaScript extensively as the scripting language for client-side web based development.
Acquiring access to the maps is fairly uncomplicated, but does require a developer to obtain a free access key from
Google. Once this key has been obtained, using the Google Map API requires a simple HTML script tag as shown
below:

<script type=”text/javascript”
src=http://www.google.com/jsapi?key=ABCDEF></script>

With the loaded API, the client browser can access all of the functionality for Google Maps.

The Google Maps API allows developers to perform a variety of GIS calculations utilizing data points found in the map
images. Our paper will focus on two major concepts utilizing these capabilities, 1) geocode, which is the process of
converting geographic information into latitude and longitude coordinates and 2) using this geocode information to
acquire traveling distance between two points. Our SAS programs will demonstrate the use of the SAS® JavaObj as
an interface for SAS programs to obtain geocode information and calculate distances between these two locations.

INTEGRATING GOOGLE MAP API AND SAS
RTI has created the RTI Google Map Library using the Microsoft .NET framework enabling programs to use the
Google Map API as a service. Programs using the RTI Google Map Library can be written in .NET, Java or SAS. The
structure of the library is shown below in Figure 1

1

Applications DevelopmentSAS Global Forum 2009

http://www.google.com/jsapi?key=ABCDEFG

G
oogle M

ap A
P

I

Javascript H
andler

Java Interface
.N

E
T

 Interface

Figure 1 - RTI Google Map Library

The RTI Google Map Library consists of several layers built on top of the Microsoft .NET libraries. The Javascript
Handler layer is responsible for all communication with Google servers using the Google Map API. The .NET library
provides the abstraction and class library for .NET GIS applications. The Java Interface consists of proxy classes
bridging Java and SAS applications with the .NET Library.

The SAS JavaObj object provides a programmatic interface for SAS programs to interact with other systems or
programming libraries written in Java. Using the JavaObj, SAS programs can easily instantiate a Java object and
access its variables and methods. There have been a number of papers and resources available from SAS and
related conferences providing great detail about how to use JavaObj to extend capabilities of the SAS platform.
Included below are some simple SAS code snippets as an introduction to the JavaObj for those unfamiliar with this
SAS object.

The code snippet below declares a JavaObj object and then instantiates a Java String object with the value of ‘ABC’:

declare javaobj j;
j = _NEW_ javaobj('java/lang/String', 'ABC');

The same can be done in a more compact way:

declare JavaObj j('java/lang/String', 'ABC');

We can easily call the “concat” method on the Java String object and put the concatenated string in a SAS variable:

Length s_out $20;
j.callStringMethod('concat', '123', s_out);

The value of s_out is equal to ‘ABC123’.
The Delete method should be used to dispose the JavaObj once the task is done:

j.Delete();

JAVA CONFIGURATION WITH SAS
Although the JavaObj is still experimental the support for Java type API calls is starting to become more widely
adopted and the code required to access Java objects within the SAS data step is easy and straight forward. The
new component interface was added as a new feature in version 9. Our code examples and the work reflected in this
paper use SAS 9.2. It is recommended that the latest release of the Java Runtime Environment (JRE) is used which,

2

Applications DevelopmentSAS Global Forum 2009

as of the writing of this paper, is version 6. The JRE is freely available and can be downloaded from
http://www.java.com.

In order for SAS to correctly work with Java class libraries the SAS environment must be made aware of the location
of Java classes and/or Java Archive or JAR files to be used at runtime. This can be done by updating the
JREOPTIOPNS variable in the SASV9.CFG file located in the SAS root or in the corresponding language folder
(c:\program files\SAS\SAS 9.1\nls\en). In many instances the initial SAS installation will have the basic JREOPTIONS
settings in the configuration file but for reference it is included here.

 /* Options used when SAS is accessing a JVM for JNI processing */
 -JREOPTIONS=(
 -Dsas.jre.home=C:\PROGRA~1\SAS\SHARED~1\JRE\1499C1~1.2_0
 -Djava.security.policy=!SASROOT\core\sasmisc\sas.policy
 -Dsas.app.class.dirs=!SASROOT\core\sasmisc;
 C:\PROGRA~1\SAS\SHARED~1\applets\9.1
 -Dsas.jre=private -Dsas.ext.config=!SASROOT\core\sasmisc\sas.java.ext.config
 -DPFS_TEMPLATE=!SASROOT\core\sasmisc\qrpfstpt.xml
 -Djava.class.path=!SASROOT\core\sasmisc\sas.launcher.jar
 -Djava.system.class.loader=com.sas.app.AppClassLoader
)

The above syntax would all be on one line in the SASV9.CFG file but it is on multiple lines here for easier reading.
To add in your own class or JAR files a new path needs to be added to the JREOPTIONS environment control by
adding in a new option inside the parenthesis of the JREOPTIONS.

 -Dsas.app.class.path=[ClassPath value]

For example, if the class files are located at c:\projects\SASGIS then the new JREOPTIONS operation would include
the following

 -Dsas.app.class.path=C:\Projects\SasGis

RTI GOOGLE MAP LIBRARY JAVA INTERFACE
The Java Interface layer of the RTI Google Map library provides a simple interface allowing SAS programs to easily
use the Google Map API. Currently the Java API consists of 3 main Java classes: GeoCode, TravelDistance and
CrowFlyDistance. The complete class API reference is included at the end of this section.

As shown below, the GeoCode class is very simple. The actual complicated work is performed within the .NET
library

public class GeoCode {

 private String address ;
 private String status ;
 private double latitude ;
 private double longitude ;

 public GeoCode(){
 address = null ;
 status = "-1" ;
 latitude = 0.0 ;
 longitude = 0.0 ;
 }

 public GeoCode(String streetAddress){
 this.GetGeoCode(streetAddress) ;
 }

 public String GetGeoCode(String streetAddress)
 {

3

Applications DevelopmentSAS Global Forum 2009

http://www.java.com/

 address = streetAddress ;
 this.GetGeoCode() ;
 return this.status ;
 }

 private void GetGeoCode()
 {
 // Get lat and long coordinate
 String progName = "C:\\Projects\\SasGis\\GeoCode4SAS.exe " ;
 String param = "\"" + address + "\"" ;
 String coordinate = CmdExec.Run(progName + param);

 // parse result
 String[] s = coordinate.split(",") ;
 atus = s[0] ; st
 if (status.compareTo("200") == 0)
 {
 latitude = Double.parseDouble(s[1]) ;
 longitude = Double.parseDouble(s[2]) ;
 }
 }

 public double GetLat() {
 return latitude ;
 }

 public double GetLong() {
 return longitude ;
 }

 public String GetAddress() {
 return address ;
 }

 public String GetStatus() {
 return status ;
 }

 public String GetCoordinate() {

return String.valueOf(latitude) + "," + String.valueOf(longitude);
 }

}

The GeoCode class provides 2 constructors; the first one takes no parameters and is used to initialize the instance of
the Geocode object. The other constructor accepts an address as a parameter. This constructor will call the
GetGeoCode method to obtain the geocode immediately.

The GeoCode class provides a public GetGeoCode method to obtain geocodes for specified addresses passed in as
arguments. It also includes a small number of getter methods for getting status codes and coordinates.

This simple pattern is also used for the TravelDistance and CorwFlyDistance classes.

RTI GOOGLE MAP LIBRARY API REFERENCE
Listed below are the API references for the GeoCode, CrowFlyDistance, and TravelDistance classes.

Class GeoCode
The GeoCode class provides the geocode for a specified address.

Constructor

Constructor Description
GeoCode() Initializes an instance of the GeoCode object
GeoCode(string streetAddress) Instantiates an instance of the GeoCode object

4

Applications DevelopmentSAS Global Forum 2009

and obtains the geocode for the streetAddress
parameter

Public Methods

Method Return Value Description
GetGeoCode(string streetAddress) String Obtains the geocode for the

streetAddress. It returns a
status code indicating if the
geocode search was
successful. Refer to
GetStatus() method for status
codes.

GetLat() Double Returns the latitude
coordinate

GetLong() Double Returns the longitude
coordinate

GetAddress() String Returns the address for which
a GeoCode is being searched

GetStatus() String Returns the search status of
an address. 200 indicate an
address was successfully
parsed and a geocode value
returned. Status codes
include
• 200 Success
• 400 Bad Request
• 500 Server Error
• 601 Missing Address
• 602 Unknown Address
• 603 Unavailable Address
• 604 Unknown Directions
• 610 Bad Key
• 620 Too Many Queries

GetCoordinate() String Returns the coordinate value.
Combined latitude and
longitude values.

Class CrowFlyDistance
The CrowFlyDistance class will return the distance in double format in unit miles given two valid parsable addresses.
The CrowFlyDistance is a straight line reference from the GetFromAddres to the GetToAddress address values.

Constructor

Constructor Description
CrowFlyDistance() Initializes an instance of the CrowFlyDistance object
CrowFlyDistance(string
fromAddr, string toAddr)

Instantiates an instance of the CrowFlyDistance object
and obtains the crowflydistance between the fromaddress
and toaddress parameters

Public Methods

Method Return Value Description
GetDistance(string fromAddr, string toAddr) String Obtains the

CrowFlyDistance
between two
addresses. This will
return a status code
indicating if a distance

5

Applications DevelopmentSAS Global Forum 2009

value was found.
Refer to GeoCode
Class GetStatus()
method for status
codes.

GetMiles () Double Returns the distance
in miles.

GetFromAddress() String Returns the from
address value being
used to calculate the
distance.

GetToAddress() String Returns the to
address value being
used to calculate
distance.

GetStatus() String Returns the result of
the distance
calculation. A value of
200 indicates address
information was
successfully parsed
and a distance value
returned. Refer to
GeoCode Class
GetStatus() method
for status codes.

Class TravelDistance
The TravelDistance class will return the distance in double format in unit miles given two valid parsable addresses.
The TravelDistance is the distance of travel required from the GetFromAddres to the GetToAddress address values
via known roads to the Google Maps API.

Constructor

Constructor Description
TravelDistance () Initializes an instance of the TravelDistance object
TravelDistance(string
fromAddr, string toAddr)

Instantiates an instance of the TravelDistance object
and obtains the travel distance between the
fromaddress and toaddress parameters

Public Methods

Method Return
Value

Description

GetDistance(string fromAddr, string toAddr) String Obtains the travel
distance between two
addresses. This will
return a status code
indicating if a distance
value was found.
Refer to GeoCode
Class GetStatus()
method for status
codes.

GetMiles() Double Returns the distance
in miles

GetFromAddress() String Returns the from
address being used to
calculate the distance

6

Applications DevelopmentSAS Global Forum 2009

GetToAddress() String Returns the to address
being used to
calculate the distance

GetStatus() String Returns the result of
the distance
calculation. A value of
200 indicates address
information was
successfully parsed
and a distance value
returned. Refer to
GeoCode Class
GetStatus() method
for status codes.

EXAMPLES
Our first example is a SAS program that obtains the geocode information (longitude and latitude coordinate). Our
second example will demonstrate distance calculations between 2 locations.

EXAMPLE 1 – OBTAINING GEOCODE INFORMATION
In this example, we demonstrate how to use the RTI Google Map Library to obtain geocode data for an address. This
is a simple 3-step process:

1. Create a JavaObj and instantiate the GeoCode Java object from the RTI Google Map Library. The address
is passed to the Java object constructor as a string parameter.

2. Call the GetStatus method on the Java GeoCode object to get the status of the operation
3. If the status indicates that a geocode was successfully returned, call the GetLat or GetLong method to get

the latitude or longitude value respectively. Alternatively, we can also call the GetCoordinate method to get
both the latitude and longitude in the coordinate format.

l

ibname out 'c:\projects\SasGis';

data temp;
 input street1 $ 1-20 city1 $ 21-30 state1 $ 31-33 zip1 $ 34-38
 street2 $ 41-70 city2 $ 71-80 state2 $ 81-84 zip2 $ 84-88 ;
 datalines;

303 gingergate dr cary nc 27519 11 W. Jones Street raleigh nc 27601
108 ashley glen dr cary nc 27513 8611 Brier Creek Parkway raleigh nc 27617;
run ;

data out.Geocode;
 set temp;

 length status1 $3 lat1 8 long1 8 coordinate1 $25
 status2 $3 lat2 8 long2 8 coordinate2 $25;

 /* Declare java object */
 declare javaobj j1;

 /* Create GeoCode java object */
 j1 = _NEW_ JavaObj('GeoCode', street1||city1||state1||zip1);

 /* Get status */
 j1.callStringMethod('GetStatus', status1) ;
 if (status1 = '200') then
 do ;
 /* Found geocode */
 j1.callDoubleMethod('GetLat', lat1) ;
 j1.callDoubleMethod('GetLong', long1) ;
 j1.callStringMethod('GetCoordinate', coordinate1);

7

Applications DevelopmentSAS Global Forum 2009

 end;

 /* Geocode the second address */
 j1.callStringMethod('GetGeoCode',

 street2||city2||state2||zip2, status2);
 if (status2 = '200') then
 do ;
 /* Found geocode */
 j1.callDoubleMethod('GetLat', lat2) ;
 j1.callDoubleMethod('GetLong', long2) ;
 j1.callStringMethod('GetCoordinate', coordinate2);
 end;

 j1.Delete();
run ;

proc print data=out.GeoCode;
 Title 'Dataset OUT.GEOCODE';
run;

Note that once the GeoCode object has been instantiated, its API includes the GetGeoCode method that can be used
for geocoding new address without having to instantiate a new GeoCode object. This is used to obtain the geocode
for the second address in our example.

EXAMPLE 2 – GETTING THE DISTANCES
In this section, we demonstrate how to obtain either the crow-fly or the traveling distance between 2 locations by using
the RTI Google Map Library.

The RTI Google Map API provides a similar pattern for calculating the distance between 2 locations:

1. Create a JavaObj and instantiate the TravelDistance or CrowFlyDistance Java object from the RTI Google
Map Library. The “from address” and “to address” are passed to the Java object constructor as parameters.

2. Call the GetStatus method on the Java object to get the status of the operation.
3. If the status indicates that the distance was successfully calculated, call the GetMiles method to get the

distance value. Both TravelDistance and CrowFlyDistance objects expose the exact same interface, but
internal implementations of each object are specific to its task.

data out.Distance(drop = address1 address2);
 set out.GeoCode;

 length DistStat $3 TravelDist 8 CrowFlyDist 8;

 if (Status1 = '200' and Status2 = '200') then
 do;
 declare javaobj j1;

 address1 = street1 || city1 || state1 || zip1;
 address2 = street2 || city2 || state2 || zip2;

 /* Get traveling distance */
 j1 = _NEW_ JavaObj('TravelDistance', address1,

 address2);
 j1.callStringMethod('GetStatus', DistStat) ;
 if (DistStat = '200') then
 do ;
 /* Get travel distance */
 j1.callDoubleMethod('GetMiles', TravelDist) ;

 end;

 j1.Delete();

 /* Get crow-fly distance */
 j1 = _NEW_ JavaObj('CrowFlyDistance', address1,

 address2);
 j1.callDoubleMethod('GetMiles', CrowFlyDist) ;

8

Applications DevelopmentSAS Global Forum 2009

 j1.Delete();

 end;

run;

EXAMPLE OUTPUT
Figure 2 below displays the final dataset of the SAS output from a PROC PRINT. The output shown here is divided
into three parts. The first top most part of the output is the address information that was used. The second set of
information is the latitude and longitudinal coordinates that were used to calculate distances. The third and final set of
information shown lists coordinates used and results of the crow-fly and travel distance calculations.

Crow-fly calculations are defined as the shortest distance between any two points where the travel distance is
considered to be the travel distance using known roads including interstates highways and other surface
transportation.

Figure 2 – Example of Output from PROC PRINT

It should be remembered that although output in figure 2 is shown from a PROC PRINT, this information can be used
in a number of ways including incorporating results into databases, spreadsheets or any other type of application. The
RTI Google Map Library is meant to be a feature rich robust library used across a myriad of languages and
applications.

CONCLUSION
Our examples demonstrate how the Java API from our RTI Google Map Library is used to perform geospatial
calculations in a SAS program. The RTI Google Map API is intuitive and easy-to-use. All programming complexities
and network handling are transparent to the SAS programmers, allowing a variety of users the ability to exploit the
powerful GIS capabilities of the Google Map API.

Integrating SAS capabilities with java and Google Map API opens up new venues for SAS users, in fields such as
epidemiology, demography and market research among other types of geospatial analysis fields.
The creation of datapoints and waypoints from a variety of devices could be combined with address specific data to
assist businesses and policy makers in decision making. The majority of GIS mapping systems have the capability to
import and export mapping data such as GeoCode information. The tools that have been highlighted here allow for
closer collaboration between GIS analysts and SAS developers.

True applications of Geospatial analysis are still in their infancy. Yet, with increased geographical data becoming
available, there is a crucial need in both the public and private sectors to make efficient use of this information.
Incorporating the statistical power of SAS to this type of data will no doubt open many more doors in a variety of
research areas many of which currently use limited geospatial data. Our aim is to allow SAS developers to further
enrich research by broadening data availability. This paper highlights a data acquisition model that is inclusive of
SAS, .NET or Java developers. As more data becomes available from web based services, this type of model will be
beneficial to these development communities.

9

Applications DevelopmentSAS Global Forum 2009

RECOMMENDED READING
Google Inc. 2008. “Google Maps API.” http://code.google.com/apis/maps/.

SAS Institute Inc. “SAS 9.2 Companion for Windows”
http://support.sas.com/documentation/cdl/en/hostwin/59544/HTML/default/win-sysop-jreoptions.htm

SAS Institute Inc “SAS 9.2 Language Reference: Dictionary”
http://support.sas.com/documentation/cdl/en/lrdict/59540/HTML/default/a002587970.htm

DeVenezia, Richard A, “Java in SAS JavaObj, A DATA Step Component Object”
http://www2.sas.com/proceedings/sugi30/241-30.pdf

CONTACT INFORMATION
Your comments and questions are valued and encouraged. Contact the author at:

Name: Mai Nguyen
Enterprise: RTI International
Address: 3040 Cornwallis Rd
City, State ZIP: Durham NC 27709
Work Phone: 919-541-8757
Fax: 919-541-6178
E-mail: mnguyen@rti.org
Web: http://www.rti.org

Name: Shane Trahan
Enterprise: RTI International
Address: 3040 Cornwallis Rd
City, State ZIP: Durham NC 27709
Work Phone: 919-541-5848
Fax: 919-541-6178
E-mail: srt@rti.org
Web: http://www.rti.org

Name: Patricia Nguyen
Enterprise: RTI International
Address: 3040 Cornwallis Rd
City, State ZIP: Durham NC 27709
Work Phone: 919-541-5713
Fax: 919-541-6178
E-mail: pnguyen@rti.org
Web: http://www.rti.org

Name: Wafa Handley
Enterprise: RTI International
Address: 3040 Cornwallis Rd
City, State ZIP: Durham NC 27709
Work Phone: 919-541-6066
Fax: 919-541-6178
E-mail: handley@rti.org
Web: http://www.rti.org

SAS and all other SAS Institute Inc. product or service names are registered trademarks or trademarks of SAS
Institute Inc. in the USA and other countries. ® indicates USA registration.

Other brand and product names are trademarks of their respective companies.

10

Applications DevelopmentSAS Global Forum 2009

http://code.google.com/apis/maps/
http://support.sas.com/documentation/cdl/en/hostwin/59544/HTML/default/win-sysop-jreoptions.htm

	2009 Table of Contents

