
1 

Paper 012-2009 
 

Maximum SAS®: Analyzing and Increasing Performance  
Myron A. Chandler, SAS Institute Inc., Cary, NC 

 

ABSTRACT 
Application performance is a topic that concerns every developer at one time or another as it is arguably the second 
most important measurement of any software system’s success directly behind correctness. When attempting to 
improve the performance of an application, the first and often most difficult task is to identify the elements that are 
most responsible for the delays in time. 

This paper profiles how a real-world, poorly performing software testing system was analyzed using SAS® and the 
performance gains that were achieved by rewriting data queries, by restructuring code blocks and removing 
unnecessary code, and by altering SAS® configuration options. 

INTRODUCTION 
This paper describes a process that was used to analyze and improve the testing portion of a mission-critical 
application in an effort to make the production application more efficient and more reliable.  

What should be taken away from this paper is an understanding that there are many areas to explore when you 
attempt to improve application performance and that nothing should be overlooked.  Complex code is usually 
assumed to be the culprit. As detailed later, even the most uncomplicated code can be a large contributor to an 
application’s less-than-desirable performance. 

At the time of this writing, the profiled application existed as a SAS Release 8.2 software system. The discussion of its 
enhancements will apply to multiple versions.  Although some portions of this paper are generally applicable  
to all software developers, the content is best consumed by SAS programmers who have a knowledge of  
SAS/AF® software, the SQL procedure, Base SAS® software, and general SAS system options.  A working knowledge 
of the SAS/AF SCL Performance Analyzer is helpful but not required. 

 

PROBLEM 
The Testing Harness is a collection of Perl and SAS scripts that are used within the MIS department of  
SAS headquarters to automate the creation of setinit and SAS installation data files by mimicking existing  
SAS customer installation data and running the data through a license-creation facility.  After each program executes, 
a set of hundreds or thousands of text files are created that can be manually inspected for correctness and 
programmatically compared to a pre-existing set of benchmark files to detect changes.  Generally, after developing 
code in a playpen area, a developer measures the impact of the changes by running the Testing Harness and 
comparing the playpen code output with production environment code output.  

The best case scenario is that for every change a developer makes, the Testing Harness is run for every  
SAS installation, for every current SAS customer.  Because there are thousands of SAS installation sites, the amount 
of time required to use the Testing Harness with the complete set of data is formidable.  That delay is extremely 
prohibitive when trying to react to customers in a fast-moving, production environment. 

Currently, developers define a subset of data to use in each of a suite of test cases, and then they run the test case 
that covers the type of changes that were made.  These smaller test cases can usually be run in less than one hour 
and provide a sufficient level of confidence before moving code into production.  While not common, there have been 
issues that went undetected by the smaller test cases and have reached the production environment.  To discover 
these types of issues before reaching production, I was assigned the task of speeding up the Testing Harness so that 
significantly larger amounts of data could be processed in the same amount of time. 

 

STRATEGY 
I immediately came up with three options to accomplish my goal: upgrade the hardware, upgrade the software, and 
rewrite the slow parts of the application.  At that time I had the least amount of experience with the application of 
anyone on the development team, so the first two options were the most appealing. 

Applications DevelopmentSAS Global Forum 2009

 



2 

The hardware upgrade took some time to get into place (make a request, get it approved, and so on). After getting 
that process started, I began looking at upgrading SAS.  Unfortunately, upgrading the application to run on SAS 9 
would require many more developer resources than were available due to other significant efforts already underway 
and the large number of application dependencies in the production environment. 

My last option was to rewrite the slow parts of the application.  To do this, I first needed to profile the application and 
identify the sections of the code that were the slowest, but also the least risky sections to change.  I integrated the 
SAS/AF SCL Performance Analyzer into the application startup sequence to profile the entire application on a 
medium-sized program run.  I then saved the performance data, analyzed the results, rewrote slow sections of code, 
and repeated the process. 

 

METHOD 
These are the specific steps that I followed: 

1. Modify the startup sequence of the Testing Harness to include the SAS/AF SCL Performance Analyzer.  
Each test had its own autoexec.sas file that used the AF command to call the initial SAS program; since I 
wanted the entire application profiled, I modified this AF command to include the profiler option.  Specifically, 
I changed the command from  
 
af c=library.catalog.startup.scl  
 
to: 
 
af c=library.catalog.startup.scl SCLPROF=YES 
 
(It is also possible to profile only specific sections of code if you are running the program interactively -- see 
the SAS documentation for more details.) 

2. After the test finished running, the interface to the SAS/AF SCL Performance Analyzer displayed.  I then 
clicked through the individual sections and saved the resulting data sets to a pre-defined SAS library. 

3. I then did a Windows copy of the data from the library on the test machine to a library on my local machine. I 
created folders for each major set of code revisions. I ended up with eight folders, each with the data sets 
from that particular run.  It's also good idea to save a copy of the SAS/AF catalog that goes with each run 
because you can click from the analyzer's interface directly into the code and see the line-by-line statistics. 

4. I stepped through the analyzer results and kept track of the SCL programs and line numbers that took the 
most time to execute. 

5. Based on the notes made in the previous step, I searched through SAS documentation, white papers, the 
SAS Companion for Windows, and anything else I could find on the SAS intranet about performance relating 
to the statements in question. 

6. I made code modifications based on my research and reran the test. 

 

RESULTS 
The first test that I ran using unmodified code on a subset of the data completed in about 40 minutes.  After I followed 
the process above and modified the application code, I reduced the execution time by almost 50 percent; the modified 
code completed the same test with the same data in just under 22 minutes. 

These are the changes I made: 

• USE I/O EFFICIENTLY 
In the original code, there was essentially a one-to-one correspondence between the number of FPUT and 
FWRITE functions used.  The FPUT function was called 742,648 times and took a total of 2.19 seconds to 
execute. The FWRITE function was called 748,912 times and took a total of 139.50 seconds to execute. 
That is an expected outcome since FPUT is a memory-based function and the FWRITE function is a much 
slower I/O-based function.  
 

Applications DevelopmentSAS Global Forum 2009

 



3 

To reduce the I/O, I increased size of the output buffer from the default 256 bytes to 64K (using the BLKSIZE 
and LRECL options for the FILENAME statement), increased the consecutive calls to the FPUT statement, 
and then decreased the number of calls to the FWRITE function (this required adding a newline character to 
the end of each FPUT statement).  The actual program code is too extensive to list here. As an example, 
this arbitrary block of code could be rewritten: 
 
f1 = ‘ ‘; 
rc = filename(f1,’c:\temp\file1.txt’); 
fid = fopen(f1,’o’); 
do i = 1 to 100; 
  rc = fput(fid, ‘some text’); 
  rc = fwrite(fid); 
end; 
 
The following code block executes faster as long as the amount of text in the loop does not exceed the 
number of bytes defined in the FILENAME function. Notice that the newline character is appended to the end 
of the text in the FPUT function: 
 
f1 = ‘ ‘; 
rc = filename(f1,’c:\temp\file1.txt’, 'DISK', 'BLKSIZE=65536 LRECL=65536'); 
fid = fopen(f1, ‘o’); 
do i = 1 to 100; 
  rc = fput(fid, ‘some text’||byte(13)); 
end; 
rc = fwrite(fid); 
 
 
The result was that the FPUT function was called 1,134,090 times but still only took a total 2.52 seconds to 
execute. (See Figure 1.) The FWRITE function was called 354,386 times and took 67.30 seconds to 
execute. The total time to execute that set of output statements was reduced from about 141 seconds to 
about 70 seconds. 
 

 
 
 
 

Figure 1. Sample Output from the SAS Dynamic Performance Analyzer – Examining FPUT Usage 

Applications DevelopmentSAS Global Forum 2009

 



4 

 

• REWRITE SQL INTO SIMPLE BLOCKS WHEN POSSIBLE 
The lesson here is that it is good to know more than one way to write the same query.  I confess to not 
knowing all the details of PROC SQL execution algorithms, but I do know SQL and can usually find several 
ways to write the same query.  Sometimes longer, simpler blocks of SQL execute faster than shorter, indirect 
SQL blocks. For example, this correlated query took 23.32 seconds to execute: 
 
delete * from work.release wr 
   where prodid||release in (select prodid||release from product.release pr 
                     where wr.prodid = pr.prodid and pr.relstat = 'X'); 
 
I rewrote the query, and the new version executed in 2.28 seconds: 
 
create table work.toRemove as 
  select pr.prodid||pr.release as prodrel 
   from product.release pr, work.release wr 
   where wr.prodid = pr.prodid and pr.relstat = 'X'; 
 
  delete from work.release 
   where prodid||release in (select prodrel from work.toRemove); 
 

• MINIMIZE FUNCTION USAGE INSIDE LOOPS 
Whenever function or method calls inside a loop can be replaced by a constant or eliminated altogether, the 
resulting code will be faster. This code executed 1900 times for a total of 50 seconds: 
 
   submit continue; 
   data _null_; 
   infile "&tmp_mediajob" length=linelen; 
   file "&mediajob"; 
   input @1 string $varying80. linelen; 
   if index(upcase(string),'="";') > 0 then do; 
     i = index(upcase(string),'="";'); 
     string = substr(string,1,i-1)||'=" ";'; 
   end; 
     put string $char80.; 
   run; 
   endsubmit; 
 
The rewritten code runs the same number of times but is just over ten seconds faster.  Instead of using the 
INDEX function multiple times to locate a substring and the SUBSTR function to replace it with another 
substring, the new code uses a single call to the TRANWRD function to achieve the same results. 
 
   submit continue; 
   data _null_; 
   length outString $80; 
   infile "&tmp_mediajob" length=linelen; 
   file "&mediajob"; 
   input @1 string $varying80. linelen; 
   outString = tranwrd(string, '="";', '=" ";'); 
   put outString $char80.; 
   run; 
   endsubmit; 
 

• ANALYZE FILENAME STATEMENTS 
It was surprising to me to see the amount of time the FILENAME statement takes to execute, both to initially 
assign a file reference and then to subsequently deassign it. This statement to assign a file reference ran 
1900 times and took over 11 seconds to execute while other memory-based functions in the same sequence 
took less than one half of one second (the BLKSIZE and LRECL options increase the default output buffer 
size from 256 bytes to 64K): 
 
rc=filename('FS',’c:\temp\file1.txt’, 'DISK', 'BLKSIZE=65536 LRECL=65536'); 
 
 

Applications DevelopmentSAS Global Forum 2009

 



5 

Even more surprising is that de-assigning the same file reference 1900 times took 41 seconds: 
 
rc=filename('FS', ''); 
 
There is no way around assigning the file reference (which is subsequently used in the FDELETE statement 
or other statements), but I commented out the code that deassigns the file reference.  Why?  In my case, 
this is a program that is used for testing on a non-production server, and I was willing to take the risk of not 
clearing the file reference to save the 41 seconds.  Obviously, I would not recommend doing this in a 
production application. 
 

• REDUCE METHOD/FUNCTION CALLS 
This code enhancement was basically recognizing one set of statements as being equivalent to a hopefully 
faster set of statements. This block of statements executed 3000 times, and each line took 47 seconds for a 
total of 282 seconds: 
 
  _self_.delete_File(infile1); 
  _self_.delete_File(infile2); 
  _self_.delete_File(outfile1); 
  _self_.delete_File(outfile2); 
  _self_.delete_File(aliasin); 
  _self_.delete_File(aliasout); 
 
I wrote a new DELETE_FILESET method for this object that uses the SYSTASK statement to execute a 
DOS-based deletion of multiple files instead of using the FDELETE statement to delete one file at a time. 
The line below called the new method 3000 times and took just under 47 seconds to delete the same 
number of files. 
 
Instead of making six individual method calls with one filename each, the new code made one call with a 
string of concatenated filenames.  Internally the new DELETE_FILESET method passed those filenames 
directly to the operating system to perform one delete operation: 
 
  _self_.delete_fileset('"'||infile1||'" "'|| 
                             infile2||'" "'|| 
                             outfile1||'" "'|| 
                             outfile2||'" "'|| 
                             aliasin||'" "'|| 
                             aliasout||'"'); 
 
 
Now look at the bulk of the code for the original DELETE_FILE method that appears below.  It was originally 
called 24,578 times and took 271 seconds to execute: 
 
   if fileexist(delfile) then do; 
      fname = ' '; 
      rc=filename(fname,delfile); 
      if (rc=0) then 
         rc=fdelete(fname); 
      rc=filename(fname,''); 
   end; 
 
After rewriting the code, it executed 6432 times in 25 seconds.  It was called significantly fewer times 
because many of the original method calls were redirected to use the new DELETE_FILESET method.  
Even if that output is multiplied by a factor of four to make it comparable to the original method usage, it 
would have conceivably executed over 25,000 times in 100 seconds, which is over 60 percent faster. 
 
Notice that I removed the FILEEXIST function. It takes a long time to execute and the original function does 
no significant processing based on the function return code, the return code was always true and the code 
 
 
 
 
 
 

Applications DevelopmentSAS Global Forum 2009

 



6 

block always executed. Although good programming practice might say check first and clean up afterwards, 
practically speaking, there is no reason not to remove those statements in this case: 
 
    fname = ' '; 
    rc=filename(fname,delfile); 
    if (rc=0) then rc=fdelete(fname); 
 

• EXPERIMENT WITH SAS CONFIGURATION OPTIONS 
I reviewed the system options in the SAS Companion for Windows to get a list of potentially performance 
enhancing options. These are the ones that I updated or added: 
 
  SORTSIZE (limits memory available to SORT procedure; default is 2M) 
  MVARSIZE (maximum size for macro variables; default is 4K) 
  MSYMTABMAX (maximum size for macro symbol table; default is 4M) 
  BUFNO (number of buffers used for SAS I/O files; default is 1) 
  BUFSIZE (permanent buffer size for a SAS file; default is system) 
 
There are also a few Extended Server Memory Architecture options that were unavailable on the Windows 
server being used at the time because it did not have enough physical memory. These options could have 
had a dramatic effect on performance by caching entire data sets in memory: 
 
  MEMLIB (process work library in ESMA memory) 
  MEMCACHE 4 (use ESMA as file cache; default is 0-do not use) 
 

CONCLUSION 
This paper has presented a process that can be used with multiple versions of SAS to profile and improve application 
performance by using the SAS/AF SCL Performance Analyzer.  The specific code modifications are representative of 
a small set of changes that could be applied to similar SAS programs.  
 
In general, no area of an application should be overlooked during the analysis process.  In this particular application, 
execution time was reduced by the following methods: 

• using I/O statements more efficiently (using memory-based functions, larger memory buffers, and so on) 

• rewriting SQL into simple (sometimes longer) blocks of code 

• reducing function usage inside iterative loops 

• analyze the FILENAME function usage 

• reducing repetitive method calls (by increasing method parameters) 

• experimenting with SAS configuration options 

 

It is also worth noting that with every new release of SAS, one should always inspect the documentation for 
performance improvements; some are transparent (for example, underlying changes to existing procedures), and 
some require code modification. 

 

RECOMMENDED READING 
Please see the online SAS product documentation for all general questions: 
http://support.sas.com/documentation/index.html 

 

For the specific topics covered in this paper, see these topics for your version of SAS: 

• SAS/AF SCL Performance Analyzer—see the SAS/AF Reference Development Tools in Help 
http://support.sas.com/documentation/onlinedoc/af/index.html 

• SAS System Options, Operating Environment Specific Information 
http://support.sas.com/documentation/onlinedoc/base/index.html#companion 

Applications DevelopmentSAS Global Forum 2009

 



7 

• SAS Procedures, SAS/SQL 
http://support.sas.com/documentation/cdl/en/allprodsproc/61869/HTML/default/a003229772.htm 

CONTACT INFORMATION 
Your comments and questions are valued and encouraged. Contact the author at: 

Name: Myron A. Chandler 
Enterprise: SAS Institute, Inc. 
Address: SAS Campus Drive, Rm E378 
City, State ZIP: Cary, NC 27513 
Work Phone: 919-531-5482 
E-mail: myron.chandler@sas.com 
 

SAS and all other SAS Institute Inc. product or service names are registered trademarks or trademarks of SAS 
Institute Inc. in the USA and other countries. ® indicates USA registration.  

Other brand and product names are trademarks of their respective companies.  

 

Applications DevelopmentSAS Global Forum 2009

 


	2009 Table of Contents



