
1

Paper 004-2009

Tips and Techniques for Analytic Web Services
Dan Jahn and Brad Klenz, SAS Institute Inc., Cary, NC

ABSTRACT
SAS® BI Web services enable SAS programmers to write analytical routines and make them available to other
applications through an open standard interface. When you create a SAS program to be used in a Web service, you
can use some techniques that make your SAS code easier to write and easier for client applications to use.
Techniques are also available for client applications when they call analytic Web services. These techniques address
issues in the following areas: working with missing values, accommodating long-running routines in a Web service,
customizing the contract that defines the service interface, dealing with large amounts of data, and working in a
stateless protocol. An examination of each potential issue, along with tips on overcoming these issues, is included.

INTRODUCTION
One of the fundamental goals of a Web service is to allow a wide variety of clients to call and use the service. An
easier-to-use service is a better service. Service providers can do a number of things to make using the service
easier for clients. A little bit of extra work when creating a service can save clients a great amount of effort, as well as
increase the number of clients that can call the service.

To understand the benefits of a well-described Web service interface, we must examine the interactions the client
application has with the service both at run time and development time. At run time, the client application must create
an XML document, send it to the service, and read the response XML document. The tricky part is creating a
properly formatted XML document for the request and reading the response. Most application development
environments provide two ways of calling a service: you can code the XML yourself; or you can generate a proxy that
will create the XML document from a more native representation. Then, you can send that document and transform
the response document back to a native representation. In Java, the tool that generates this native representation
proxy is called ‘wsdl2java’. In .Net, there is ‘wsdl.exe’ and ‘svcutil.exe’. In many applications, you can interactively
create a mapping (BizTalk, Sharepoint, InfoPath). In SAS, that tool is the SAS XML LIBNAME engine, which
provides a native representation in the form of a SAS library (PROC SOAP is the tool you use if you code the XML
yourself).

Regardless of the tool a client chooses to use, the developer of the service will simplify the development of the client
by following a few tips:

• Be aware of missing values.

• Configure options on servers to remove timeouts.

• Avoid the use of xs:any.

• Use input and output parameters to define the schema.

• Define a custom schema for output.

• Define a custom schema for input.

• Use paging for large amounts of data.

• Split the analytics from the data transfer.

• Test your service.

Applications DevelopmentSAS Global Forum 2009

2

TIP: READ MORE THAN JUST THIS PAPER

This paper is not intended as an introduction to SAS BI Web Services. There are several other sources for
introductory material:

• The SAS Global Forum paper “Creating Web Services Using SAS Analytics” (Klenz and Jahn 2008) takes
three real-world examples and shows how they can be used with Web services. Along the way, that paper
demonstrates how to deal with large amounts of data.

• The SAS Global Forum paper “Using SAS® Business Intelligence Web Services and PROC SOAP in a
Service-Oriented Architecture” (Jahn 2008) introduces both PROC SOAP and SAS BI Web Services along
with the big picture of how they can be monitored and managed.

• The online documentation for PROC SOAP and SAS BI Web Services provides detailed information about
how to configure and use Web services with SAS.

The following tips will be much more useful and make more sense once you are familiar with SAS and Web services.

TIP: BE AWARE OF MISSING VALUES
Missing values are a common occurrence in analytical processing. The SAS XML engine has default behavior to
write missing values to output XML data streams. This default behavior uses an attribute named MISSING= on the
output data elements.

To show how this default behavior works, first we will create a SAS data set with missing values and write them out
with the XML engine. Here is the SAS code to do that:

libname m xml "c:\public\pulse_missing.xml";

data m.pulse;
 age=43; runpulse=172; output;
 age=36; runpulse=.; output;
 age=45; runpulse=.n; output;
run;

The resulting XML file will look like this:

<?xml version="1.0" encoding="windows-1252" ?>
<TABLE>
 <PULSE>
 <age> 43 </age>
 <runpulse> 172 </runpulse>
 </PULSE>
 <PULSE>
 <age> 36 </age>
 <runpulse missing="." />
 </PULSE>
 <PULSE>
 <age> 45 </age>
 <runpulse missing="N" />
 </PULSE>
</TABLE>

Notice the use of the MISSING= attribute in the above XML. Although the MISSING= attribute allows for flexibility,
especially with SAS special missing values, some client applications will prefer an alternate representation.

In XML, an attribute on numeric values called “nil” is used to specify values that are similar to the concept of missing
values in SAS. The nil attribute can be specified as an alternative by using tagsets with the XML engine in your SAS
program.

Applications DevelopmentSAS Global Forum 2009

3

Before adding the tagset to your SAS program, you must change your XML schema to indicate that you will be using
the nil attribute. This is done by adding a nillable attribute to the elements that can contain missing values. These
will most likely be added to all numeric variables, although something like numeric ID variables may be an exception.
Here is what your schema element definitions will look like:

<xs:element name="age" type="xs:double" nillable="true" />
<xs:element name="runpulse" type="xs:double" nillable="true" />

Tagsets are defined with PROC TEMPLATE. When defining the tagset for XML output, there will be a section that
defines how missing values are written. In the existing XML LIBNAME generic tagset (tagsets.sasxmog), you will see
how the MISSING= attribute is defined. You can see the source for the tagset with this SAS code:

* Get the source for the generic XML tagset;
proc template;
 source tagsets.sasxmog;
run;

There are 2 changes we need in the tagset: we need to add a definition for the xsi namespace and we need to change
how missing values are handled. Here is the start of the template definition code:

libname templat 'c:\temp\templat';
proc template;
 path templat.sgf sashelp.tmplmst;

define tagset Tagsets.Sasxmog / store=templat.sgf;
 notes "SAS-XML generic XML-Data";

 define event SASTable;
 start:
 put '<TABLE xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance">' NL;
 break;

You can comment out this line, and add a new line to specify how the nil attribute will be used instead. Here is an
example of that code:

 define event MLEVDAT;
 do / if $is_MISSING ;
* putq " missing=" $value_MISSING;
 put ' xsi:nil="true"' ;
 put ' />' ;
 put CR ;
 break ;
 done ;

Now that the updated tagset is defined, you will need to explicitly name it on the XML LIBNAME statement. That is
done with the TAGSET= option as follows:

libname m xml "c:\public\pulse_missing_nil.xml"
tagset=templat.sgf;

You should also modify the tagset to add a definition for the xsi namespace
(xmlns:xsi="http://www.w3.org/2001/XMLSchema- instance"). The resulting XML will now look like this when missing
values are present:

<TABLE xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" >
 <PULSE>
 <age>43</age>
 <runpulse>172</runpulse>
 </PULSE>

Applications DevelopmentSAS Global Forum 2009

4

 <PULSE>
 <age>36</age>
 <runpulse xsi:nil="true" />
 </PULSE>
 <PULSE>
 <age>45</age>
 <runpulse xsi:nil="true" />
 </PULSE>
</TABLE>

Although the special missing values are not distinguishable from regular missing values, the client applications calling
your Web service may find this XML easier to consume.

TIP: CONFIGURE OPTIONS ON SERVERS TO REMOVE TIMEOUTS
SAS jobs frequently take a long time since SAS jobs are often used to analyze huge amounts of data. Sometimes it
is nice to have a timeout so a client is not waiting forever for a response. Sometimes you do not want the timeout.
There are several places where a timeout can be configured, so you may need to configure the timeout value in
several places:

• in the SAS BI Web Services for .Net server

• in the SAS BI Web Services for Java server

• in a .Net client

• in a Java client

Note that only the StoredProcessTimeout is specific to SAS. The others are part of .Net or Java.

In the .Net server, you can set the responseDeadlockInterval property of the processModel element in the
machine.config file. You can also set the executionTimeout attribute on the httpRuntime element in the web.config
file.

In a Java server, as well as in a Java client, there are two properties that can cause a timeout to occur: the
SO_TIMEOUT property and the CONNECTION_TIMEOUT property (both values are in milliseconds). These can be
programmatically set in your Java code, or you can set them in the axis2 config file. Here is an example of how they
might appear in an axis2 config file (other elements in the transportSender element may also be necessary):

<transportSender name="http"
class="org.apache.axis2.transport.http.CommonsHTTPTransportSender">

 <parameter name="SO_TIMEOUT" locked="false">60000</parameter>
 <parameter name="CONNECTION_TIMEOUT" locked="false">60000</parameter>
</transportSender>

SAS has added a property called StoredProcessTimeout. If you do want to specify a timeout, it is recommended that
you use the StoredProcessTimeout property since that has the best chance of actually stopping the SAS code from
running. (If your SAS code is in a tight loop that does no I/O, it might not stop before it gets out of that loop.)

In a .Net client, the generated proxy has a proxyClass.Timeout property, where proxyClass is the class created by
wsdl.exe.

TIP: AVOID THE USE OF XS:ANY
In the Web services world, a contract is defined using a Web Service Definition Language (WSDL) document. The
WSDL describes the operations supported by the service. Each operation can have a schema that describes what
the XML needs to look like when you call that service and what the XML that you get back from the service will look
like. Starting in SAS 9.2, SAS BI Web Services provides two ways that you can customize what the contract looks
like in services you create: prompts and data sources/data targets.

Within SAS BI Web Services, there are three things you can do to a Stored Process definition that will result in a
service that uses xs:any:

1) Use a custom schema that specifies xs:any in the schema. (See below for how to use a custom schema.)

Applications DevelopmentSAS Global Forum 2009

5

2) Define a Data Source or a Data Target whose type is XML Stream but does not provide a schema (by
checking the Specify schema check box).

3) In the Results field on the Execution tab of the Stored Process definition, check Stream, and also specify
the XMLA Web Service keyword on the same Stored Process definition. (If you do not specify the XMLA
Web Service keyword, the generated service will use an attachment instead of inline XML, so the type would
be a base64binary type.)

Using any of these options results in xs:any being present in your generated WSDL. That forces clients calling your
application to use some other mechanism besides the WSDL to figure out what that XML document needs to look
like. There are some client applications which simply will not work with a service that uses xs:any.

TIP: USE INPUT AND OUTPUT PARAMETERS TO DEFINE THE SCHEMA
In the Stored Process definition, the use of input and output parameters will result in XML schema getting defined in
your WSDL. For example, specifying a Prompt type (note that in Stored Processes, input parameters are also
referred to as ‘prompts’) of Numeric with Allow only integer values checked results in a schema getting generated
whose type is ‘xs:int’.

TIP: DEFINE A CUSTOM SCHEMA FOR OUTPUT
Another way you can avoid the use of xs:any and get a custom schema in your generated WSDL is to define a
custom schema for your Stored Process’ Data Targets. As an example, we will generate and specify a custom
schema for a SAS program that returns some records from sashelp.zipcode. To generate a schema for
sashelp.zipcode, follow these steps:

1. Start an interactive SAS session, and enter this code:

filename zipcode 'c:\temp\zipcode.xsd';

* Use the ‘xml’ (not XML92) engine to generate a schema;
libname zipcode xml xmlmeta=schema;

data zipcode.codes;
set sashelp.zipcode;
run;

2. Make sure your XML LIBNAMEoutput is directed to a file (the filename statement above). We did this step
in #1, but note that if this code were to be used in a Stored Process, that filename statement should not be
used, and instead we would define a Data Target whose name is zipcode.

3. Add the xmlmeta=schema option to the XML LIBNAME statement, as above.

Figure 1. This prompt type generates ‘xs:int’ in the WSDL.

Applications DevelopmentSAS Global Forum 2009

6

4. Run the program. This will generate an XML schema called zipcode.xsd that DOES NOT HAVE A
NAMESPACE attribute. But we need a namespace.

5. Edit the generated schema (in our case, c:\temp\zipcode.xsd), and add targetNamespace="
http://www.tempuri.org/xml/namespace/zipcode" and
xmlns="http://www.tempuri.org/xml/namespace/zipcode" and elementFormDefault="qualified" so the top
lines of zipcode.xsd looks like this:

<?xml version="1.0" encoding="utf-8" ?>
<xs:schema xmlns:xs="http://www.w3.org/2001/XMLSchema"
 xmlns:od="urn:schemas-microsoft-com:officedata"

targetNamespace="http://www.tempuri.org/xml/namespace/zipcode"
 xmlns="http://www.tempuri.org/xml/namespace/zipcode"
 elementFormDefault="qualified">
 <xs:element name="TABLE">
….

6. Load the schema in the SAS XML Mapper (file->Open XML Schema).
a) Generate an Automap (Tools->Automap using XSD).
b) Under XMLMap Settings, set the version to 1.9.
c) When you change the version to 1.9, a new table appears under the AUTO_GEN tree, called '[None]'.

Select that new table. This makes the Output tab available.
d) Under the Output tab, select the Output table (TABLE).
e) Add xmlns as the name, and http://www.sas.com/xml/namespace/sashelp/class (matching the

namespace we defined in step 5).
f) Save the XML Map.

7. Define a Data Target that uses this schema.
a) Use type = XML Steam, label=dt, fileref=dt.
b) Select the Specify schema check box.
c) Enter a URI to the schema, such as file://c:\sasrepository\SGF2009\zipcode.xsd.
d) Enter a reference namespace, such as

http://www.tempuri.org/xml/namespace/zipcode (this matches the targetNamespace
of our schema).

e) Set the reference name to TABLE.
f) Set the reference type to Schema element.

Figure 2. The SAS XML Mapper after step e.

Applications DevelopmentSAS Global Forum 2009

7

8. Test your service. See the last tip in this paper for how to test a service.

TIP: DEFINE A CUSTOM SCHEMA FOR INPUT
There are several techniques you can use to generate a schema. In this example, we create the schema by
hand-coding what we want the XML to look like, using a tool to generate the schema from that XML, and then using
SAS XML Mapper to map the XML into a SAS data set.

The default format for an input data stream is a rectangular table, which corresponds very well with a SAS data set.
This format may not be the best format for the consuming application. XML maps can be used to change the
structure of the input data stream.

One example of this is a need for varying number of input measures in a multiple regression Web service.
For one call to our regression Web service, we want to fit a model of expected oxygen intake derived from measures
taken during an exercise session. Our input data would look like this:

Figure 3. Define the Data Target using SAS Management Console.

Applications DevelopmentSAS Global Forum 2009

8

Oxygen intake
(dependent
variable)

Age
(independent
variable 1)

Weight
(independent
variable 2)

Run time
(independent
variable 3)

Run pulse
(independent
variable 4)

44.609 44 149.47 11.37 178
45.313 40 135.07 10.07 185
59.571 42 128.15 8.17 166
…

This data could be sent to the Web service in XML format like the following:

<TABLE>
 <FITNESS>
 <Oxygen> 44.609 </Oxygen>
 <Age> 44 </Age>
 <Weight> 149.47 </Weight>
 <RunTime> 11.37 </RunTime>
 <RunPulse> 178 </RunPulse>
 </FITNESS>
 <FITNESS>
 <Oxygen> 45.313 </Oxygen>
 <Age> 40 </Age>
 <Weight> 135.07 </Weight>
 <RunTime> 10.07 </RunTime>
 <RunPulse> 185 </RunPulse>
 </FITNESS>
 <FITNESS>
 <Oxygen> 59.571 </Oxygen>
 <Age> 42 </Age>
 <Weight> 128.15 </Weight>
 <RunTime> 8.17 </RunTime>
 <RunPulse> 166 </RunPulse>
 </FITNESS>
</TABLE>

We would also like for our regression Web service to be able to fit models on data with a different number of
independent variables. In a second call to our Web service, we want to fit a model of expected bank deposit volumes
derived from macroeconomic indicators. This input data might have only three independent variables and look like
the following:

Deposit volume
(dependent variable)

CPI
(independent variable 1)

Overnight rate
(independent variable 2)

Exchange rate
(independent variable 3)

360 115.2 5.5 0.66534
358 115.4 5.5 0.65703
357 115.5 5 0.64144
…

For this data, the XML format would typically look like the following:

<TABLE>
 <DEPOSITS>
 <Volume> 360 </Volume>
 <CPI> 115.2 </CPI>
 <Overnightrate> 5.5 </Overnightrate>
 <Exchangerate> 0.66534 </Exchangerate>

Applications DevelopmentSAS Global Forum 2009

9

 </DEPOSITS>
 <DEPOSITS>
 <Volume> 358 </Volume>
 <CPI> 115.4 </CPI>
 <Overnightrate> 5.5 </Overnightrate>
 <Exchangerate> 0.65703 </Exchangerate>
 </DEPOSITS>
 <DEPOSITS>
 <Volume> 357 </Volume>
 <CPI> 115.5 </CPI>
 <Overnightrate> 5 </Overnightrate>
 <Exchangerate> 0.64144 </Exchangerate>
 </DEPOSITS>
</TABLE>

The challenge with creating this Web service is that we need an XML schema that can describe the input data for
both of these examples, plus the other variations with different numbers of independent variables. Since the number
of measures can change from one call of the service to the next, an input data stream that has the measures as
optional rows would be best. In this case, the values for the independent variables would be repeated sub-elements
of the dependent value for each observation. Here is an example of this XML format using the fitness data:

<table>
 <regdata>
 <dependent name='oxygen'>44.609</dependent>
 <independent name='age'>44</independent>
 <independent name='weight'>149.47</independent>
 <independent name='runtime'>11.37</independent>
 <independent name='runpulse'>178</independent>
 </regdata>
 <regdata>
 <dependent name='oxygen'>45.313</dependent>
 <independent name='age'>40</independent>
 <independent name='weight'>135.07</independent>
 <independent name='runtime'>10.07</independent>
 <independent name='runpulse'>185</independent>
 </regdata>
 <regdata>
 <dependent name='oxygen'>59.571</dependent>
 <independent name='age'>42</independent>
 <independent name='weight'>128.15</independent>
 <independent name='runtime'>8.17</independent>
 <independent name='runpulse'>166</independent>
 </regdata>
</table>

This format results in a single XML schema that can be used for all the Web service calls that we want to support.
We can generate the schema using a variety of XML tools to infer the schema from a sample XML file. This schema
looks like the following:

<?xml version="1.0" encoding="utf-8"?>
<xs:schema attributeFormDefault="unqualified" elementFormDefault="qualified"
targetNamespace="http://www.sas.com/xml/schema/analytics/regression-1.0"
xmlns:xs="http://www.w3.org/2001/XMLSchema">
 <xs:element name="table">
 <xs:complexType>
 <xs:sequence>
 <xs:element maxOccurs="unbounded" name="regdata">

Applications DevelopmentSAS Global Forum 2009

10

 <xs:complexType>
 <xs:sequence>
 <xs:element name="dependent">
 <xs:complexType>
 <xs:simpleContent>
 <xs:extension base="xs:decimal">
 <xs:attribute name="name" type="xs:string"

 use="required" />
 </xs:extension>
 </xs:simpleContent>
 </xs:complexType>
 </xs:element>
 <xs:element maxOccurs="unbounded" name="independent">
 <xs:complexType>
 <xs:simpleContent>
 <xs:extension base="xs:decimal">
 <xs:attribute name="name" type="xs:string"
 use="required" />
 </xs:extension>
 </xs:simpleContent>
 </xs:complexType>
 </xs:element>
 </xs:sequence>
 </xs:complexType>
 </xs:element>
 </xs:sequence>
 </xs:complexType>
 </xs:element>
</xs:schema>

This is the schema we use when registering the Stored Process for the Web service. This schema will then be used
in the WSDL to describe our input data for the Web service.

By default, the SAS XML engine expects input data tables to be in a simple row and column format. To customize
the mapping of XML documents into SAS data sets, you can use the SAS XML Mapper. Using SAS XML Mapper and
the following three steps, we use an example of the input XML data and create a map file that describes the
transformations from the input format to the resulting SAS data set(s) that we need:

1. Load the schema in the SAS XML Mapper (file->Open XML Schema).
2. Generate an Automap (Tools->Automap using XSD).
3. Save the XML Map.

In the case of our regression Web service, we will be creating two SAS data sets from the input XML. The first
SAS data set will contain the values of the dependent variable. The second data set will contain all the values of the
independent variables.

Following the three steps above, the generated map looks like this:

<?xml version="1.0" encoding="UTF-8"?>

<!-- ## -->
<!-- SAS XML Libname Engine Map -->
<!-- Generated by XML Mapper, 902000.1.3.20080219191837_v920 -->
<!-- ## -->
<SXLEMAP name="AUTO_GEN" version="1.2">

 <!-- ## -->
 <TABLE name="dependent">

Applications DevelopmentSAS Global Forum 2009

11

 <TABLE-DESCRIPTION>dependent</TABLE-DESCRIPTION>
 <TABLE-PATH syntax="XPath">/table/regdata/dependent</TABLE-PATH>

 <COLUMN name="_dependent_ID" ordinal="YES">
 <INCREMENT-PATH beginend="BEGIN"
syntax="XPath">/table/regdata</INCREMENT-PATH>
 <TYPE>numeric</TYPE>
 <DATATYPE>integer</DATATYPE>
 </COLUMN>

 <COLUMN name="name">
 <PATH syntax="XPath">/table/regdata/dependent/@name</PATH>
 <TYPE>character</TYPE>
 <DATATYPE>string</DATATYPE>
 <LENGTH>32</LENGTH>
 </COLUMN>

 <COLUMN name="dependent">
 <PATH syntax="XPath">/table/regdata/dependent</PATH>
 <TYPE>numeric</TYPE>
 <DATATYPE>double</DATATYPE>
 </COLUMN>

 </TABLE>

 <!-- ## -->
 <TABLE name="independent">
 <TABLE-DESCRIPTION>independent</TABLE-DESCRIPTION>
 <TABLE-PATH syntax="XPath">/table/regdata/independent</TABLE-PATH>

 <COLUMN name="_independent_ID" ordinal="YES">
 <INCREMENT-PATH beginend="BEGIN"
syntax="XPath">/table/regdata</INCREMENT-PATH>
 <TYPE>numeric</TYPE>
 <DATATYPE>integer</DATATYPE>
 </COLUMN>

 <COLUMN name="name">
 <PATH syntax="XPath">/table/regdata/independent/@name</PATH>
 <TYPE>character</TYPE>
 <DATATYPE>string</DATATYPE>
 <LENGTH>32</LENGTH>
 </COLUMN>

 <COLUMN name="independent">
 <PATH syntax="XPath">/table/regdata/independent</PATH>
 <TYPE>numeric</TYPE>
 <DATATYPE>double</DATATYPE>
 </COLUMN>

 </TABLE>

</SXLEMAP>

Now that we have created the map, we need to use it in our Stored Process. The map must be stored in a location
accessible to the Stored Process when it is executing. The map is specified using the XMLMAP= option on the

Applications DevelopmentSAS Global Forum 2009

12

LIBNAME statement for the XML engine. Here is the SAS code for our Stored Process that specifies the map and
uses it to read in the two input data sets defined by the map:

filename SXLEMAP 'C:\Public\StoredProcess\regmap.map';
libname regin xml xmlmap=SXLEMAP;

data dependent;
 set regin.dependent;
run;

data independent;
 set regin.independent;
run;

This creates two input data sets, named “dependent” and “independent.” The data sets have one row for each
measurement value, with an ID variable to link dependent value with the corresponding independent values for the
same observation.

An example of the “dependent” data set using the fitness data would look like this:

_dependent_ID name dependent
1 oxygen 44.609
2 oxygen 45.313
3 oxygen 59.571

An example of the corresponding “independent” data set would look like this:

_independent_ID name independent
1 age 44
1 weight 149.47
1 runtime 11.37
1 runpulse 178
2 age 40
2 weight 135.07
2 runtime 10.07
2 runpulse 185
3 age 42
3 weight 128.15
3 runtime 8.17
3 runpulse 166

Note that within our data sets and SAS code we are using generic names for the dependent and independent values.
This is because our Web service does not rely on or need the names of the variables from the client application
calling the Web service.

The “tall and skinny” structure of the data sets provides maximum flexibility in the number of independent variables
and number of measurement observations. As we use the data for the analysis (regression) in our SAS code, we will
need the data transposed into the traditional row and column format used by PROC REG (and most other SAS
procedures). The following SAS code will transpose the independent values from separate rows into columns for
each observation.

proc transpose data=independent out=indeptrans(drop=_name_)
 prefix=independent;
 by _independent_ID;

Applications DevelopmentSAS Global Forum 2009

13

 var independent;
run;

Once the independent values are transposed, we can merge the independent values with the dependent values to
create our analysis data set. The merge is done with SAS code like this:

data regtrans;
 merge dependent(rename=(_dependent_ID=id))
 indeptrans(rename=(_independent_ID=id)) ;
 by id;
 drop id;
run;

The resulting analysis data set would be in the traditional format for PROC REG and look like this:

dependent independent1 independent2 independent3 independent 4
44.609 44 149.47 11.37 178
45.313 40 135.07 10.07 185
59.571 42 128.15 8.17 166

One additional, necessary item is a list of the independent variables passed in for this call of the Web service. Since
the number of independent variables can change with each call, we need the current list for the Model statement of
PROC REG. Since the names for the independent variables follow a reliable pattern, we can use SAS code like the
following to determine the current list of variables and save that list in a macro variable:

data _null_;
 length indeps $ 32000;
 if 0 then set regtrans;
 array x{*} _NUMERIC_;
 arrayvars=dim(x);
 do i = 1 to arrayvars;
 varname = vname(x{i});
 if upcase(varname) =: "INDEPENDENT" then
 indeps = trim(indeps) || " " || varname;
 end;
 call symput("indeps", indeps);
 stop;
run;

%put Indeps=&indeps;

We now have everything we need to do our regression using PROC REG. Here is the code that would do the
regression:

proc reg data=regtrans;
 model dependent = &indeps;
run;
quit;

This example describes a very robust technique for building a flexible regression Web service. The Web service can
fit models with any number of independent variables. The input XML data is also described with a single schema.
This single schema allows for a WSDL that is easily consumed by client applications.

TIP: USE PAGING FOR LARGE AMOUNTS OF DATA
When it comes to data, there is “large,” and then there is “LARGE.” The limit on the server side is about 40MB of
XML, but many clients may have smaller limits (such as Flash clients). There are several strategies for dealing with
really large amounts of data that have been previously covered (Klenz and Jahn 2008). For some clients, large may
be more data than can fit on a screen at a time. This is a good time to use paging. To implement paging in a Web

Applications DevelopmentSAS Global Forum 2009

14

service, we will create a Stored Process that takes two input parameters – the number of observations on a page and
the page number we want to retrieve.

/* Before this code is run in a Stored Process,
 the SAS code will assign the dt fileref
 and it will set the input parameters
 because they are defined in metadata. If we
 want to run this interactively, we can uncomment
 these lines.

INPUTS: pagesize (int)
 pagen (int)
OUTPUT: dt (dataTarget with zipcode.xsd schema)

filename dt 'c:\temp\a.xml';
%let pagesize=2;
%let pagen=25;
*/

libname dt xml xmlmeta=schema;

proc sql outobs=&pagesize;
 create table dt.zips as
 select ZIP,CITY,STATECODE
 from sashelp.zipcode
 where (&pagen-1)*&pagesize < monotonic()
;
quit;

TIP: SPLIT THE ANALYTICS FROM THE DATA TRANSFER
The above tip on using paging works really well when the data set has already been created. However, if you have to
create a new data set on every call, that paging strategy may perform poorly, because you recalculate the entire table
on every call. The technique here is to have one Stored Process that you can call to generate a new data set and a
second Stored Process that returns the data through paging. The first Stored Process will only be called once, while
the second Stored Process may be called hundreds of times. You do need to be aware of data lifetime issues and
multi-user issues. If you have multiple users calling your services at the same time, you MUST generate the data into
a unique table name.

TIP: TEST YOUR SERVICE
After following these tips, you will want to test your service. A nice tool for testing services is soapUI from eviware
(http://www.soapui.org/). There are several features of soapUI that are really useful:

1) When you load the WSDL in soapUI, it generates a sample request document and you can observe the
actual XML that clients will be sending to your service. Many of the Web service development tools try to
hide this from you.

2) After calling the service, you can use soapUI to validate the response against what the WSDL says the Web
service is supposed to return. In the Response tab, right-click in the message and click Validate. A popup
will confirm that the returned message conforms to the service’s WSDL, or a window at the bottom of the
Response tab will show you what parts of the returned message failed to validate. This is especially
important when you are defining your own schemas, since validation of the response against the WSDL may
not be done by the service.

In addition to the validation features, soapUI is also useful for determining what a SOAP request needs to look like. A
common development process for creating a Web service call from SAS is to use soapUI to call the service, copy the
request XML into your SAS code, and use that for the PROC SOAP request fileref.

Applications DevelopmentSAS Global Forum 2009

15

CONCLUSION
One of the key underlying themes here is that service providers need to adapt services for the callers. You can
expand the reach of the services you create by following the tips and techniques outlined here. Having more reach
means more clients can use your service. More clients using the same service means less redundancy, allowing
your organization to do more with less and enabling you to maintain one version of the truth.

REFERENCES
Jahn, D. 2008. “Using SAS® Business Intelligence Web Services and PROC SOAP in a Service-Oriented
Architecture.” Proceedings of the SAS Global Forum 2008 Conference. Cary, NC: SAS Institute Inc. Available at
http://support.sas.com/rnd/papers/sgf2008/soap.pdf.

Klenz, B., and Jahn, D. 2008. “Creating Web Services Using SAS Analytics.” Proceedings of the SAS Global
Forum 2008 Conference. Cary, NC: SAS Institute Inc. Available at
http://www2.sas.com/proceedings/forum2008/010-2008.pdf.

SAS Institute Inc. 2005. SAS Note 23726. “Why is my SAS BI Web Services for .NET application timing out?”
Available at http://support.sas.com/kb/23/726.html

ACKNOWLEDGMENTS
The authors would like to thank Zachary Marshall and Tony Dean for their help in reviewing this paper.

Figure 4. Using soapUI for validation.

Applications DevelopmentSAS Global Forum 2009

16

CONTACT INFORMATION
Your comments and questions are valued and encouraged. Contact the author:

Dan Jahn
SAS Institute Inc.
SAS Campus Dr.
Cary, NC 27513
Work Phone: 919-677-8000
E-mail: dan.jahn@sas.com

Brad Klenz
SAS Institute Inc.
SAS Campus Dr.
Cary, NC 27513
Work Phone: 919-677-8000
E-mail: brad.klenz@sas.com

SAS and all other SAS Institute Inc. product or service names are registered trademarks or trademarks of SAS
Institute Inc. in the USA and other countries. ® indicates USA registration.

Other brand and product names are trademarks of their respective companies.

Applications DevelopmentSAS Global Forum 2009

	2009 Table of Contents

