

Linguistic Collation: Everyone Can Get What
They Expect
 Sensible Sorting for Global Business Success

Technical Paper

Linguistic Collation

Content providers for Linguistic Collation: Everyone Can Get What They
Expect were Manfred Kiefer, Globalization Specialist, SAS Heidelberg,
Germany and Scott Mebust, Software Developer, SAS Cary, USA.

 Linguistic Collation

Table of Contents

Abstract... ..1
Linguistic Collation – What does it mean?.......... ..1
How is it used?.................................... ...1
Expectations fulfilled2
Examples of culturally expected sorting7
Linguistic collation for the global enterprise13
Conclusion... ...21
Acknowledgments21
References21
Appendix A: Things to be aware of22

Appendix A1: General Notes..22
Appendix A2: Platform Notes ...22
Appendix A3: BY Processing and Formatted Variables...22
Appendix A4: CLASS Processing versus BY Processing ..33

Appendix B: Where to Turn for More Information35

 Linguistic Collation 1

Abstract

In "Creating Order out of Character Chaos: Collation Capabilities of the SAS System" the authors describe the
collation capabilities offered by PROC SORT in SAS and explain their respective applicability, advantages,
and the processing implications of each approach. This paper concentrates on the true linguistic collation
capabilities that SAS offers, and shows how everyone gets their expected results when searching for data in
"sorted" order.

Global enterprises have information in many languages and from many different regions. Gathering the right
information is crucial to their success. Sorting is ubiquitous in data processing, be it when searching for
authors, titles, topics in on-line documentation, or when ordering a customer database by name or address,
and so on. However, the expected sort order for the same data can differ a lot across languages and cultures.
The SAS System makes sure that everyone can get what he or she expects by supporting sorts for data from
one or many languages as well as case-insensitive sorts.

The paper outlines how BY processing now supports linguistic collation in PROC and DATA steps and how a
new DATA step function called sortKey allows customers to create keys for sorting.

Linguistic Collation – What does it mean?

Although there are recognized standards for collationi, the way people look at data in "sorted" order differs a
lot. German collation is different from French, and a Danish one is again different from both—just to name a
few. Even within a language community, there can be subtle differences: a German phone book sort is
different from a dictionary sort, traditional Spanish sort order is different from the modern one, and so on.
Users of languages based on alphabetic writing systems that make a distinction between upper- and
lowercase letters, might want to sort uppercase before lowercase or vice versa or do a case insensitive sort.

Sorting is often called "alphabetization," though collation is not limited to ordering letters of an alphabet. For
non-alphabetic writing systems as used in Asian languages, collation can be either phonetic or based on the
number of pen strokes or simply on the position of the characters within an encoding (for example, Japanese
kanji are usually sorted in the order of their Shift-JIS codes).

To implement linguistic collation, SAS has adopted the International Components for Unicode (ICU). The ICU
and its implementation of the Unicode Collation Algorithm (UCA) have become a de facto standard.
Nevertheless, people are free to choose: For example, most Japanese customers expect the Shift-JIS order,
instead of the UCA.

Therefore, it is best to consider sorting as an ‘a la carte’ menu that you can make your choices from. People
finds an item in a sorted list easily only if it is sorted in the expected order of their particular culture.

How is it used?

Invocation of linguistic collation with PROC SORT is quite simple. The only requirement is the specification of
LINGUISTIC as the value to the SORTSEQ procedure option:

proc sort data=foo SORTSEQ=LINGUISTIC;
by x; run;

2 Linguistic Collation

Synonymously, one can specify SORTSEQ=UCA. This causes the SORT procedure to collate linguistically,
in accordance with the current system LOCALE setting. The collating sequence used is the default provided
by the ICU for the given locale. Options that modify the collating sequence can be specified in parentheses
following the LINGUISTIC or UCA keywords. Generally, it is not necessary to specify option settings because
the ICU associates option defaults with the various languages and locales. PROC SORT currently allows only
a subset of the ICU options to be specified. These options include STRENGTH, CASE_FIRST, COLLATION,
and NUMERIC_COLLATION. In addition, a LOCALE option is available to instruct SORT to use a collating
sequence that is associated with a locale other than the current locale.

The STRENGTH option specifies the collation strength and corresponds to the various levels in the multi-level
collating algorithm used by the ICU and UCA. STRENGTH can be set to a number between 1 and 5 or to the
corresponding values PRIMARY, SECONDARY, TERTIARY, QUATERNARY, or IDENTICAL. For most
languages based on the Latin alphabet, the PRIMARY level corresponds to alphabetic differences, the
SECONDARY level corresponds to diacriticii differences, and the TERTIARY level corresponds to differences
in character case. The default strength is locale dependent but is TERTIARY in most cases. Specification of a
particular STRENGTH includes all levels up to and including the one specified by the strength value. For
example, a TERTIARY strength setting includes levels one through three which, for languages with Latin-
based alphabets, includes differences in alphabet, differences in accents, and differences in case.

The CASE_FIRST option controls whether lowercase characters are collated before uppercase characters or
vice versa.

The COLLATION option allows selection of different collation types, such as TRADITIONAL Spanish collation
versus modern Spanish collation, or a PHONEBOOK style collation for the German language.

The NUMERIC_COLLATION option allows integers, expressed as text in a character string, to be ordered
numerically. Normally, numbers that are aligned toward their most significant digits (left aligned for languages
that are written from left to right) within a character string will not sort numerically. Instead, the numbers is
grouped according to the first digit encountered so that, for example, 1 and 10 appear before 2 and 20. One
way to obtain a numeric ordering of character strings is to ensure that the numbers are aligned toward their
least significant digits (right aligned for left-to-right languages). Using the NUMERIC_COLLATION option
allows a numeric ordering regardless of the alignment.

The Unicode Consortium's technical report on the Unicode Collation Algorithm and the ICU documentation
provide more details on the various option settings and their meanings.

Linguistic collation not only provides a sequence that is culturally correct and intuitive but also one that is
largely independent of the underlying encoding or platform on which the collation is being performed. While
the ordering of character strings has some dependence upon the code point values of the characters at the
highest level, level 5, the major ordering is established by the lower levels and this ordering is independent of
both the encoding of the strings and the system on which the code is executing. The collating sequences
obtained with the ICU are, therefore, consistent across systems.

Expectations fulfilled

The implementation of true linguistic sorting has fulfilled long-standing demands of many customers. Let us
have a closer look at these in detail.

In earlier versions of the SAS System, international customers had the possibility to use translation tables
(trantabs) for defining alternative collating sequences. Though this possibility still exists, it does have serious

 Linguistic Collation 3

restrictions. Translation tables are limited to remapping or reordering up to 256 characters from a single-byte
encoding. .A TRANTAB is limited in its ability to create a collating sequence that is intuitive or that meets
cultural expectations. For example, French compares accented characters from right to left, not from left to
right as other languagesiii. A sort using a translation table cannot make such a fine distinction, because a
translation table can assign only a single “weight” to a character but cannot distinguish between several
collation levels. For example: create a simple nameiv list with:

data list;
 input name $20.;
datalines;
Côté
Boucher
Fournier
Cotée
Legrand
Dubois
Thibeault
Martin
Vaudron
Girard
;
run;

Now we can sort it with the Institute-provided translation table FRSOLAT1 like this:

proc sort data=list sortseq=frsolat1;
 by name;
run;
proc print data=list; run;

to create the following output:

 1 Boucher
 2 CotéeCotéeCotéeCotée
 3 CôtéCôtéCôtéCôté
 4 Dubois
 5 Fournier
 6 Girard
 7 Legrand
 8 Martin
 9 Thibeault
 10 Vaudron

At first glance, names with accented characters seem to be sorted correctly; however, the French convention
requires “Côté” to be sorted before “Cotée”. This can be achieved only with:

proc sort data=list sortseq=linguistic (locale=fr_F R);
 by word;
run;
proc print data=list; run;

which yields:

1 Boucher
 2 CôtéCôtéCôtéCôté
 3 CotéeCotéeCotéeCotée

4 Linguistic Collation

 4 Dubois
 5 Fournier
 6 Girard
 7 Legrand
 8 Martin
 9 Thibeault
 10 Vaudron

Digraphs that are used in a number of languages cannot be handled with translation tables either. A digraph is
a pair of letters used to write a distinct sound. Spanish has “ch” and “ll”, Croatian has “lj”, “nj”, “dž”, and
Hungarian is particularly rich in these, with: “cs”, “dz”, “gy”, “ly”, “ny”, “sz”, “ty”, and “zs”. They ought to be
treated as a unit or as a single letter.. For example, in a traditional Spanish sort orderv the word “llama” should
follow the word “luz,” and “charla” should follow the word “curva”. For obvious reasons, this cannot be
achieved with a trantab approach.

The ASCII encoding sorts uppercase before lowercase letters; the EBCDIC encoding does just the opposite.
By specifying SORTSEQ=ASCII mainframe users could already do an “ASCII sort” before downloading their
data to an “ASCII machine”. This is of particular use for people using English or some other languages (there
are very few of them) that use only the upper and lowercase letters A-Z. However, it is not of much use for
people using languages (there are many) that use accented characters such as ä, é, or ø, not to speak of
those that use a very different script. An ASCII sort will place accented characters arbitrarily after the letters A-
Z. Using another encoding value lists characters only according to their position in this particular encoding.
So even a SORTSEQ=wlatin1 which order accented characters according to their position in the Windows
Latin1 encoding does not produce a correct sort order for a language like Swedish, even though all Swedish
characters are represented in Windows Latin1. Using SORTSEQ=LINGUISTIC in conjunction with
LOCALE=sv_SE, however, does the trick. That is, it will sort characters adequately, and it provides
transparent access after downloading the data from an EBCDIC to an “ASCII” host and or platform. In other
words, the sort indicator is maintained, and the collating sequence is recognized.

In SAS 9.2, BY processing has been modified to recognize that a data set has been linguistically sorted so
that NOTSORTED is no longer required. This means that a major restriction for international customers has
been removed.

Normally, the use of an alternating collating sequence requires either the NOTSORTED option to be used in
a BY statement or the system NOBYSORTED option to be specified in order to disable the observation
sequence check that is performed when BY processing. Neither option is necessary when BY processing a
data set that has been linguistically sorted. In addition to honoring the alternate collating sequence, BY
processing is also sensitive to linguistic collation options when determining BY group boundaries. With
linguistic collation, specification of a SECONDARY strength groups all character variable values that differ in
only character case. Specification of a PRIMARY strength groups values that differ only in case or accents.
And, use of the NUMERIC_COLLATION option groups values that are numerically equivalent. This effect on
BY processing can be helpful for example: BY processing data that has been entered inconsistently and it is
desired that such differences be ignored.

In the example below we are merging two data sets—one containing monthly revenue with another containing
a monthly count of customers, to calculate revenue per customer.

data clients;
 length mois $ 10;
 infile datalines delimiter=',';
 input mois compte;
 datalines;
 janvier, 370
 février, 400
 mars, 430
 avril, 415

 Linguistic Collation 5

 mai, 410
 juin, 450
 juillet, 449
 août, 403
 septembre, 339
 novembre, 375
 décembre, 370
;
run;

data revenu;
 length mois $ 10;
 infile datalines delimiter=',';
 input mois ventes;
 datalines;
 JANVIER, 376784
 FEVRIER, 396911
 MARS, 441327
 AVRIL, 419272
 MAI, 408291
 JUIN, 443791
 JUILLET, 442111
 AOUT, 402771
 SEPTEMBRE, 337727
 NOVEMBRE, 381929
 DECEMBRE, 376771
;
run;

proc sort data=clients sortseq=linguistic(strength= 1);
 by mois;
run;

proc sort data=revenu sortseq=linguistic(strength=1);
 by mois;
run;

data resultat;
 merge clients revenu;
 by mois;
 revenuparclient = ventes/compte;
run;

proc print;
run;

The following output displays the results:

 The SAS System

 Obs mois compte ventes revenuparclient

 1 AOUT 403 402771 999.43
 2 AVRIL 415 419272 1010.29
 3 DECEMBRE 370 376771 1018.30
 4 FEVRIER 400 396911 992.28
 5 JANVIER 370 376784 1018.34

6 Linguistic Collation

 6 JUILLET 449 442111 984.66
 7 JUIN 450 443791 986.20
 8 MAI 410 408291 995.83
 9 MARS 430 441327 1026.34
 10 NOVEMBRE 375 381929 1018.48
 11 SEPTEMBRE 339 337727 996.24

The next example demonstrates (a) how BY processing simply works with linguistically sorted data (without
the need for the NOTSORTED option) and (b) how linguistic collation options can be used to ignore
inconsistencies in data caused for example, mistakes in data entry for example, differences in capitalization
and or accenting).

data revenu;
 length mois $ 10;
 infile datalines delimiter=',';
 input mois année ventes;
 datalines;
 Janvier, 2007, 376784
 Février, 2007, 396911
 Mars, 2007, 441327
 Avril, 2007, 419272
 Mai, 2007, 408291
 Juin, 2007, 443791
 Juillet, 2007, 442111
 Août, 2007, 402771
 Septembre, 2007, 337727
 Novembre, 2007, 381929
 Décembre, 2007, 376771
 janvier, 2006, 376297
 février, 2006, 397221
 mars, 2006, 442176
 avril, 2006, 417171
 mai, 2006, 409912
 juin, 2006, 441376
 juillet, 2006, 440191
 août, 2006, 399713
 septembre, 2006, 335271
 novembre, 2006, 371292
 décembre, 2006, 377979
 JANVIER, 2005, 367487
 FEVRIER, 2005, 369119
 MARS, 2005, 434127
 AVRIL, 2005, 420299
 MAI, 2005, 409112
 JUIN, 2005, 434917
 JUILLET, 2005, 424119
 AOUT, 2005, 472117
 SEPTEMBRE, 2005, 373272
 NOVEMBRE, 2005, 382919
 DECEMBRE, 2005, 367171
;
run;

proc sort data=revenu sortseq=linguistic(strength=1);
 by mois;
run;

 Linguistic Collation 7

proc summary data=revenu ;
 by mois;
 output out=sommaire mean(ventes)= moyenne; run;

proc print data=sommaire;
run;

The output makes it obvious that character case and accents are insignificant during BY processing:

 Obs mois _TYPE_ _FREQ_ moyenne

 1 Août 0 3 424867.00
 2 Avril 0 3 418914.00
 3 Décembre 0 3 373973.67
 4 Février 0 3 387750.33
 5 Janvier 0 3 373522.67
 6 Juillet 0 3 435473.67
 7 Juin 0 3 440028.00
 8 Mai 0 3 409105.00
 9 Mars 0 3 439210.00
 10 Novembre 0 3 378713.33
 11 Septembre 0 3 348756.67

Linguistic sorting allows differences such as case and accents to be ignored allowing BY groups to contain
character BY variable values that are distinct when compared in a binary fashion, character for character. In
the example above, because the option STRENGTH=1 was specified, “Août”, “août”, and “AOUT” are
considered equivalent values and fall within a single BY group. Such BY groups are denoted by the first
variable value encountered within the sorted data. This is most easily observed by examining the BY group
boundary values shown in the SAS listing and output by procedures such as PROC PRINT. It is for this
reason that the variable MOIS, in the first observation listed in the output of the example above, has the value
“Août” and not “août” or “AOUT”.

Examples of culturally expected sorting

Let us go on a virtual tour around the world and visit several countries and cities. Let us start our journey in
the north of Europe, in Sweden. The Swedish alphabet has two interesting features: the characters “å”, “ä”,
and “ö” are considered as distinct letters to be sorted after the “z” whereas in most other European languages
they are considered as accented characters to come right after the base characters. The letter "W" is used
only in family names and in words that have been borrowed from foreign languages; hence, it used to be
treated as a mere variant of "V", and so "V" and "W" have been sorted as one letter. This practice is still
commonly encountered in Swedish dictionaries and telephone books, though just recently the Swedish
Academy separated the two letters in conformity with international lexicographic practicevi.

Let us see what a linguistically sorted list of Swedish names and cities looks like:

Obs name first city

8 Linguistic Collation

 1 Bergström Birgitta Alingsås
 2 Blomqvist Margareta Borås
 3 Håkansson Anders Ängelholm
 4 Johansson Erik Uppsala
 5 Lund Märta Åkersberga
 6 Strömberg Gunnar Ystad
 7 Wallin Lars Luleå
 8 Vikström Linnéa Örebro
 9 Åström Eva Göteborg
 10 Öberg Åsa Stockholm

 Obs name first city

 1 Bergström Birgitta Alingsås
 2 Blomqvist Margareta Borås
 3 Åström Eva Göteborg
 4 Wallin Lars Luleå
 5 Öberg Åsa Stockholm
 6 Johansson Erik Uppsala
 7 Strömberg Gunnar Ystad
 8 Lund Märta Åkersberga
 9 Håkansson Anders Ängelholm
 10 Vikström Linnéa Örebro

In the first case, it has been sorted by name, in the second by city.

We now proceed to Germany. German distinguishes between a "phone book" sort and a "dictionary" sort.
With the former the umlauted vowels "ä,ö,ü" are sorted with "ae, oe, ue" after "ad, od, ud". With the latter (the
more frequent), the umlauted vowels are sorted with the simple vowels "a, o, u" while the alternate spellings
"ae, oe, ue" in personal names are sorted after "ad, od, ud" respectively. Linguistic sorting allows one to take
care of these varieties by specifying the keyword collation=phonebook.vii (Dictionary order is the default and
cannot be specified as keyword.)

The differences can be clearly seen by comparing the output of a default (dictionary) sort with the one of a
phone book sort. With the former, names with “ö” and “ü” sort after names with base characters; with the latter
it is the other way round.

Dictionary sort:
 Obs name first

 1 Mader Ernst
 2 Mader Fritz
 3 Mader Josef
 4 Meder Bruno
 5 Meder Regina
 6 Meier Hans
 7 Mlynek Mike
 8 MolitorMolitorMolitorMolitor Martina Martina Martina Martina
 9 MöllerMöllerMöllerMöller Ellen Ellen Ellen Ellen
 10 Möller Georg
 11 Möller Sabine
 12 Mras Cindy
 13 Muller George
 14 Muller Pam
 15 MullerMullerMullerMuller Susan Susan Susan Susan
 16 MüllerMüllerMüllerMüller Christina Christina Christina Christina

 Linguistic Collation 9

 17 Müller Heinz
 18 Müller Max
 19 Müller Renate
 20 Mwamba Ed
 21 Myrzik Peter
 22 Mzyk Mary

Phonebook sort:
 Obs name first

 1 Mader Ernst
 2 Mader Fritz
 3 Mader Josef
 4 Meder Bruno
 5 Meder Regina
 6 Meier Hans
 7 Mlynek Mike
 8 Möller Ellen
 9 Möller Georg
 10 MöllerMöllerMöllerMöller Sabine Sabine Sabine Sabine
 11 MolitorMolitorMolitorMolitor Martina Martina Martina Martina
 12 Mras Cindy
 13 Müller Christina
 14 Müller Heinz
 15 Müller Max
 16 MüllerMüllerMüllerMüller Renate Renate Renate Renate
 17 MullerMullerMullerMuller George George George George
 18 Muller Pam
 19 Muller Susan
 20 Mwamba Ed
 21 Myrzik Peter
 22 Mzyk Mary

Similarly, for Spanish you can use both a traditional sort order and a modern sort order. (The latter is the
default.) Using the keyword collation=traditionalviii allows for treating the digraphs “ch” and “ll” as separate
letters.

Let us now travel further to the southeast and develop an understanding of the intricacies of Hungarian culture
and language as well as see where the ICU algorithm meets its limits. As mentioned earlier, Hungarian is rich
in digraphs, which ought to be sorted as separate letters. Here is our list with Hungarian names:

Balázs Ildikó
Lynesné Antal Mária
Szabó Gy ızı
Zsóri Gergely
Kovács Szabolcs
Bazsó Zsuzsanna
Lychnovszky Ferenc
Tyukász Anna Krisztina
Tyukász György
Székely Mihály
Bundzsák Dezs ı
Nyáguly Gergely
Márkus Zsóka
Csernus Gábor
Gyırffy Szilárd
Dzsida Jen ı

10 Linguistic Collation

Zsóri Csilla
Cudar Vilmos
Nyáguly Csengezy István
Lyankus István

After sorting, it looks like this:

 Obs name first

 1 Balázs Ildikó
 2 Bazsó Zsuzsanna
 3 Bundzsák Dezsı
 4 Cudar Vilmos
 5 Csernus Gábor
 6 Dzsida Jenı
 7 Gyırffy Szilárd
 8 Kovács Szabolcs
 9 Lyankus István
 10 Lychnovszky Ferenc
 11 Lynesné Antal Mária
 12 Márkus Zsóka
 13 Nyáguly Gergely
 14 Nyáguly Csengezy István
 15 Szabó Gyızı
 16 Székely Mihály
 17 Tyukász Anna Krisztina
 18 Tyukász György
 19 Zsóri Gergely
 20 Zsóri Csilla

"Cudar Vilmos" precedes "Csernus Gábor" as expected. However, "Lychnovszky Ferenc" should precede
"Lynesné Antal Mária" and "Lyankus István" because in the first two cases the letters “Ly” are not considered
as digraphs because these names are of foreign origin, not Hungarian origin. Admittedly, the example does
seem a little far-fetched, and in general, the ICU algorithm works very well. Sorting these names could be
managed only by a vocabulary-based solution.

Now, it is time to mention another restriction. Here is a simple list with some glitches:

MacDonald
Robertson
Madden
Brown
Mackintosh
McKinley
Mc Arthur

The sorted output looks like this:

Brown
MacDonald
Mackintosh
Madden
Mc Arthur
McKinley
Robertson

 Linguistic Collation 11

One might have expected the Mac and or Mc spellings to have been sorted together—for example, with
McKinley preceding Mackintosh, as if it had been spelled "MacKinley":

Brown
Mc Arthur
MacDonald
McKinley
Mackintosh
Madden
Robertson

This is the accepted ordering, for some cultures, of these family names when appearing in, for example, a
phone book or a dictionary. However, since the advent of computer-sorted lists, this type of alphabetization
has fallen out of favorix.

Finally yet importantly, let us leave the world of alphabetic writing systems and investigate how to sort
characters of an Asian language.

The table can be part of a bigger database that contains the names of Chinese customers:

Name Name
(English)

First name First name
(English)

李 Li 伟 Wei

王 Wang 建国 Jianguo

张 Zhang 东 Dong

陈 Chen 英 Ying

馬 Ma 雪 Xue

There are various possibilities for sorting the data—say, by name. You can use the COLLATION= option to do
so. For Simplified Chinese you can specify GB2312HAN, PINYIN, or STROKEx. GB2312HAN means that
characters are ordered according to their position in the GB2312 standard (or EUC-CN encoding); PINYIN
means using a phonetic spelling system in Latin characters for ordering, and STROKE means using the
stroke order (the number of strokes it takes to draw a character) for defining the collating sequence. The
results looks very different. For example, the following code:

proc sort data=list out=sorted sortseq=linguistic (locale=zh_CN
 collation=GB2312HAN);
 by name;
run;
proc print data=sorted; run;

yields:

12 Linguistic Collation

Name Name
(English)

First name First name
(English)

陈 Chen 英 Ying

李 Li 伟 Wei

王 Wang 建国 Jianguo

张 Zhang 东 Dong

馬 Ma 雪 Xue

Sorted with collation=PINYIN the result looks like this:

Name Name
(English)

First name First name
(English)

陈 Chen 英 Ying

李 Li 伟 Wei

馬 Ma 雪 Xue

王 Wang 建国 Jianguo

张 Zhang 东 Dong

and with collation=STROKE like this:

Name Name
(English)

First name First name
(English)

王 Wang 建国 Jianguo

李 Li 伟 Wei

馬 Ma 雪 Xue

张 Zhang 东 Dong

陈 Chen 英 Ying

 Linguistic Collation 13

Linguistic collation for the global enterprise

Global enterprises have data from all over the world, in all kinds of scripts and encodings. A good way to store
such data centrally is to use a form of Unicode. You can then have data in native script and transliterated to
Latin characters or just in English, for convenience. From there it is easy to create subsets and views for one
locale or for multiple locales. If multilingual data are kept together and there is a need to order them, but the
context does not define a particular locale, the Unicode Collation Algorithm (UCA) provides a convenient way
to put them in sequence.

Let us imagine that we have a big database with names and addresses of customers both in native script and
with plain Latin characters. Below is an excerpt:

name=Воронин name_e=Voronin first= Борис first_e=Boris city= Санкт- Петербург
city_e=Saint Petersburg country= Россия country_e=Russia
name=Śmigowska name_e=Smigowska first= Świetłana first_e=Swietlana
city=Warszawa city_e=Warsaw country=Polska country_ e=Poland
name=Παπαρίζου name_e=Paparizou first= Ζωή first_e=Zoe city= Θεσσαλονίκη
city_e=Thessaloniki country= Ελλάδα country_e=Greece
name=Crespo name_e=Crespo first=Gustavo first_e=Gus tavo city=Lleida
city_e=Lleida country=España country_e=Spain
name=Christensen name_e=Christensen first=Astrid fi rst_e=Astrid city=Århus
city_e=Aarhus country=Danmark country_e=Denmark
name=Vikström name_e=Vikstrom first=Linnéa first_e =Linnea city=Örebro
city_e=Orebro country=Sverige country_e=Sweden
name=Müller name_e=Muller first=Alois first_e=Alois city=München
city_e=Munich country=Deutschland country_e=Germany
name=Côté name_e=Cote first=Frédéric first_e=Freder ic city=Châteauroux
city_e=Chateauroux country=France country_e=France
name=פרץ name_e=Peretz first= =first_e=Rachel city רחל city_e=Tel תל אביב
Aviv country= country_e=Israel יִשְׂרָאֵל
name=Yılmaz name_e=Yilmaz first=Ekrem first_e=Ekrem city= Đstanbul
city_e=Istanbul country=Türkiye country_e=Turkey
name=佐藤 name_e=Sato first= 明子 first_e=Akiko city= 東京 city_e=Tokyo
country= 日本 country_e=Japan

name=馬 name_e=Ma first= 雪 first_e=Xue city= 南京 city_e=Nanjing country= 中国
country_e=China
name=Lynesné name_e=Lynesne first=Antal Mária first _e=Antal Maria
city=Csabapuszta city_e=Csabapuszta country=Magyaro rszág country_e=Hungary

If you do not decide to sort everything by the English name or English city but by name or city what does the
sorted output look like? The answer: In a multilingual environment, the relative ordering of scripts has been
defined by UCA as (using the above example) Latin – Greek – Cyrillic – Hebrew – CJK (Chinese – Korean –
Japanese).

Will a city like Aarhus be sorted together with other cities that start with an “Å”? The answer is yes. But will
they sort at the end of the alphabet that is. after a “z”xi? No, unless you specify a LOCALE= option that
requires such a convention (for example: Danish or Swedish). Will the city of “Lleida” be sorted after “Lugo”?
No, unless you use the keyword collation=traditional together with a Spanish locale. Will Herr Müller’s record
be sorted before Frau Muller’s? No, unless you use the keyword collation=phonebook together with a German
locale.

Therefore, the general answer is: How to sort your data in a multilingual environment depends on your
situation. The UCA algorithm provides enough flexibility to do so.

14 Linguistic Collation

The addition of linguistic collation abilities to the SAS System is an evolutionary change and, of course, has
been done in a way as to be backward compatible and not break existing code. These abilities have not,
however, been extended into all parts of the system that manipulate and compare character string values.
For example, basic string comparison operations such as EQ, LE, LT, GE, GT, NE, and IN, which can be
used within a WHERE statement or SQL WHERE clause, have not been modified to be implicitly locale
sensitive and to be performed in a linguistic fashion. Likewise, data set indexes created using character
variables are not linguistically organized. Such can be made in the future but until that time, many of these
abilities can be achieved manually through the explicit creation of linguistic sorting keys. The SORTKEY
function has been provided for this purpose.

This function offers a convenient way of sorting multilingual data according to different language conventions.
In our example above, we could create custom-made sort keys for sorting our data according to Swedish,
French, German, Spanish convention, and so on.

The syntax is quite intuitive:

sortKey(string, <locale, strength, case, numeric, type>)

Only the first parameter, the data set variable or string constant from which to form the key, is required. The
rest of the parameters are optional and, if constants, are specified within quotation marks. The locale name
must be in the form of a POSIX name (for example: “sv_SE”). Strength uses the collation levels as explained
above and is specified using a letter (“P, “S” for Secondary, and so on,). Case specifies, for Level 3, which
character variant appears first and can be either “U” for upper or “L” for lower. Numeric, indicating numeric
collation, is used to order numbers by the numeric value rather than by the characters that make up the
number. And, collation type can be any of the types supported by the COLLATION option for example; P for
PHONEBOOK or T for TRADITIONAL.

Hence, for creating four sort keys we would run the following code:

data list ;
 set list ;
 key_fr = sortkey(name,"fr_FR") ;
 key_de = sortkey(name,"de_DE",,,,'P') ;
 key_sv = sortkey(name,"sv_SE") ;
 key_es = sortkey(name,"es_ES",,,,'T') ;
run ;

The sort key for German (“key_de”) would use the German phone book collating sequence; the Spanish one
(“key_es”) would use the traditional Spanish collating sequence.

You could then create copies of your data that are sorted according to the language convention of your choice
for example:

PROC SQL ;
 create table fre_sort as
 SELECT * FROM list
 ORDER BY key_fr;
QUIT ;

Please note that a sort key should be considered as temporary and not as suitable for permanent storage.
This is because the sortKey function uses ICU functionality, and ICU does not guarantee compatibility with
future versions. Further, sort keys created using one set of options should not be compared with keys created
with another set of options. Such a comparison is not valid and might return unexpected results.

Also note that within SCL, PROC SQL, and WHERE statements, missing For example: parameters must be
specified by an empty string.

 key_es = sortkey(name,"es_ES",’’,’’,’’,'T') ;

 Linguistic Collation 15

Another way to create a sorted copy and immediately drop the key could be achieved with the code below. It
also bypasses the default length of 200 characters for an undeclared variable being assigned the results of a
function returning a character value, which could cause truncation.

PROC SQL ;
 create table fre_sort as
 select *, sortkey(name,"fr_FR") as skey length=70 0 format=$hex20.
label="French Key"
 from list
 ORDER BY skey ;
 alter table query drop skey ;
QUIT ;

The length of the key returned from the SORTKEY function is not constant but can vary and depends upon
not only the SORTKEY function options but also on the input string. If the receiving character variable is
insufficient in size then the SORTKEY function returns an error indicating that the key has been truncated.
While quite large, an estimate of twelve times the length of the longest string from which a key is created and
can be used as the initial length of the receiving character variable. To increase efficiency and decrease
storage requirements, this estimate can be reduced to a size just above that for which a truncation error l
occurs.

There is even more you can do with this function. You can use it for comparisons, creating subsets of your
data, and indexing a data set.

Let us have another look at the database that contains names and addresses of customers. Here is an
excerpt with some European addresses:

Name
Name

(English)
First name

First name
(English)

City City (English) Country
Country
(English)

Gómez Gomez Juan Juan Barcelona Barcelona España Spain

Martínez-
Monés

Martinez-
Mones

Leonardo Leonardo La Coruña La Coruna España Spain

López
Fernandez

Lopez
Fernandez

Ángela Angela León Leon España Spain

Sánchez Sanchez Miguel
José

Miguel
Jose

Algeciras Algeciras España Spain

Llinares
Sellés

Llinares
Selles

Cristina Cristina Lugo Lugo España Spain

Nuñez
Navarro

Nunez
Navarro

Ignacio Ignacio Madrid Madrid España Spain

Chuliá
Mengual

Chulia
Mengual

David David Oviedo Oviedo España Spain

16 Linguistic Collation

Name
Name

(English)
First name

First name
(English)

City City (English) Country
Country
(English)

Crespo Crespo Gustavo Gustavo Lleida Lleida España Spain

Hernández
Cerrillo

Hernandez
Cerrillo

María del
Pilar

Maria del
Pilar

Zaragoza Zaragoza España Spain

… … … … … … … …

Côté Cote Frédéric Frederic Châteauroux Chateauroux France France

Boucher Boucher Corinne Corinne Paris Paris France France

Fournier Fournier Étienne Etienne Mâcon Macon France France

Cotée Cotee Madeleine Madeleine Nîmes Nimes France France

Legrand Legrand Claire Claire Orléans Orleans France France

Dubois Dubois Benoît Benoit Yerres Yerres France France

Thibeault Thibeault Georges Georges Évry Evry France France

Martin Martin Désirée Desiree Fréjus Frejus France France

Vaudron Vaudron Sébastien Sebastien Marseille Marseille France France

Girard Girard Régine Regine Lyon Lyon France France

Now, we would like to create a subset with all cities sorted after “Lleida”. To do so we can use something like
the code below:

data cities ;
 set list ;
 key = sortkey(city) ;
 put key= $hex40. ;
 where (sortkey(city) > sortkey("Lleida")) ;
run ;

/* The sorted list will start with "Lugo" */
PROC SQL ;
 create table sorted as
 SELECT * FROM cities
ORDER BY key;
QUIT ;

As a result, the data set WORK.CITIES has 24 observations and 9 variables.

 Linguistic Collation 17

Remember that in the traditional Spanish collating sequence “ll” is treated as a separate character; so our
output looks different with the code below:

data cities2 ;
 set list ;
 key = sortkey(city,"es_ES",,,,'T') ;
 put key= key= $hex40. ;
 where (sortkey(city,"es_ES",'','','','T')
 > sortkey("Lleida", "es_ES",'','','','T'));
run ;

/* The sorted list will start with "Mâcon" */
PROC SQL ;
 create table sorted2 as
 SELECT * FROM cities2
ORDER BY key;
QUIT ;

As a result, the data set WORK.CITIES2 has 21 observations and 9 variables.

18 Linguistic Collation

The following example demonstrates two more ways the SORTKEY function can be used: (a) to enhance the
capability of a WHERE clause to select observations and (b) to optimize the performance of the WHERE
clause processing by using an index.

data lista;
 set list;
 length llave $ 30;
 format llave $hex60.;
 llave=sortkey(country,'','P');
run;

proc datasets;
 modify lista;
 index create llave;
quit;

options msglevel=i;
proc sql;
 select name, first, city from lista

where llave = sortkey('España','','P'); quit;

The MSGLEVEL=I option shows that the index is used for optimization.

 Linguistic Collation 19

 The SAS System

 name first city
 ƒƒ
 Gómez Juan Barcelona
 Martínez-Monés Leonardo La Coruña
 López Fernandez Ángela León
 Sánchez Miguel Algeciras
 Llinares Sellés Cristina Lugo
 Nuñez Navarro Ignacio Madrid
 Chuliá Mengual David Oviedo
 Crespo Gustavo Lleida
 Hernández Cerrillo María del Pilar Zaragoza

By default, linguistic sorting considers character case only after considering letters and accents to establish a
basic alphabetic ordering. Let us check the following unordered list of commodities:

Housekeeping Supplies
Kitchen Supplies
Medical Supplies, Sports Medicine
Plastic Bags & Liners
Medical Supplies, Occupational Therapy
Medical Supplies, Rehabilitation
BOOKS
Plumbing Supplies
Bulbs & Lighting
Industrial Supplies
Burn Garments
Paper Disposables
WATER COOLERS
PHARMACEUTICALS
SUPPLIES, RADIOACTIVE
Medical Supplies, Orthotic Lab
Hardware
Beverages
Trophies & Plaques
Utensils, Kitchen
Periodicals, Publications
Water, Distilled Spring, & Bottled
Tableware
Pool Supplies
Business Cards
MEDICAL SUPPLIES, ORTHOPAEDIC DEVICES
MEDICAL SUPPLIES, PHYSICAL THERAPY

A “normal” (ASCII) sort results in:

 1 BOOKS
 2 Beverages
 3 Bulbs & Lighting
 4 Burn Garments
 5 Business Cards
 6 Hardware
 7 Housekeeping Supplies
 8 Industrial Supplies
 9 Kitchen Supplies
 10 MEDICAL SUPPLIES, ORTHOPAEDIC DEVICES

20 Linguistic Collation

 11 MEDICAL SUPPLIES, PHYSICAL THERAPY
 12 Medical Supplies, Occupational Therapy
 13 Medical Supplies, Orthotic Lab
 14 Medical Supplies, Rehabilitation
 15 Medical Supplies, Sports Medicine
 16 PHARMACEUTICALS
 17 Paper Disposables
 18 Periodicals, Publications
 19 Plastic Bags & Liners
 20 Plumbing Supplies
 21 Pool Supplies
 22 SUPPLIES, RADIOACTIVE
 23 Tableware
 24 Trophies & Plaques
 25 Utensils, Kitchen
 26 WATER COOLERS
 27 Water, Distilled Spring, & Bottled

In this case, the group of medical supplies is not sorted in the expected order for example:, Medical Supplies,
Occupational Therapy should sort before MEDICAL SUPPLIES, ORTHOPAEDIC DEVICES. A PROC SORT
run with SORTSEQ=LINGUISTIC will do this:

 1 Beverages
 2 BOOKS
 3 Bulbs & Lighting
 4 Burn Garments
 5 Business Cards
 6 Hardware
 7 Housekeeping Supplies
 8 Industrial Supplies
 9 Kitchen Supplies
 10 Medical Supplies, Occupational Therapy
 11 MEDICAL SUPPLIES, ORTHOPAEDIC DEVICES
 12 Medical Supplies, Orthotic Lab
 13 MEDICAL SUPPLIES, PHYSICAL THERAPY
 14 Medical Supplies, Rehabilitation
 15 Medical Supplies, Sports Medicine
 16 Paper Disposables
 17 Periodicals, Publications
 18 PHARMACEUTICALS
 19 Plastic Bags & Liners
 20 Plumbing Supplies
 21 Pool Supplies
 22 SUPPLIES, RADIOACTIVE
 23 Tableware
 24 Trophies & Plaques
 25 Utensils, Kitchen
 26 WATER COOLERS
 27 Water, Distilled Spring, & Bottled

But does this also work when we add some data from other locales? Yes, it does, as we can see from the
excerpt here:

 9 Kitchen Supplies
 10 Medical Supplies, Occupational Therapy
 11 MEDICAL SUPPLIES, ORTHOPAEDIC DEVICES
 12 Medical Supplies, Orthotic Lab

 Linguistic Collation 21

 13 MEDICAL SUPPLIES, PHYSICAL THERAPY
 14 Medical Supplies, Rehabilitation
 15 Medical Supplies, Sports Medicine
 16 Medizinisches Zubehör, Orthesen
 17 MEDIZINISCHES ZUBEHÖR, ORTHOPÄDISCHE HILFSMITTEL
 18 Medizinisches Zubehör, physikalische Therapie
 19 Medizinisches Zubehör, Sportmedizin
 20 Paper Disposables

Conclusion

As shown above, there are numerous ways to sort data according to different conventions. To be successful
in the global economy, it is essential that you make accommodations for all possible situations. The linguistic
collation capabilities ensure that you cannot only sort your data according to local language conventions and
also appropriately order global character data and make use of extended character operations in a way that is
linguistically appropriate.

No system is perfect and systems that are evolutionary are likely to have developed interesting behaviors and
restrictions. SAS is no exception to this so some behaviors and restrictions that you can encounter or of
which you should be aware are discussed in the appendix. Regardless of these caveats, we at SAS believe
you find the addition of linguistic collation to be useful and that it allows you to get the results from SAS that
you expect.

Acknowledgments

The authors want to express their thanks to the reviewers whose valuable feedback on the drafts has resulted
in several enhancements. A special thank you goes to John Kohl whose suggestions have greatly improved
the readability and consistency of this paper.

References

Mebust, Scott and Michael Bridgers. 2006. "Creating Order out of Character Chaos: Collation Capabilities of
the SAS System."

SAS Institute Inc. 2008. SAS® 9.2 National Language Support (NLS): Reference Guide. Cary, NC: SAS
Institute Inc.

Sorting Your Linguistic Data Inside an Oracle Database. 2005. An Oracle Technical White Paper.

Wissink, Cathy and Michael Kaplan. 2002. "Sorting it all out: An introduction to collation." Twenty-first
International Unicode Conference Presentations

Xiao Hui Zhu et al. 2002. "E-business globalization solution design guide: getting started" IBM Redbooks
ISBN:0738426563

22 Linguistic Collation

Appendix A: Things to be aware of

Appendix A1: General Notes

In 9.2, graphical user interface (GUI) dialog boxes have not been modified to support linguistic collation so, to
sort linguistically, you need to use PROC SORT. Further SORTSEQ=LINGUISTIC is recognized only when
set as a SORT procedure option; SORTSEQ=LINGUISTIC are not recognized when set as a system option.

The following locales are not supported by PROC SORT: Afrikaans_SouthAfrica (af_ZA),
Cornish_UnitedKingdom (kw_GB), ManxGaelic_UnitedKingdom (gv_GB), and Bosnian_BosniaHerzegovina
(bs_BA). In these cases, there is a fall back to the default root collation rules. That is, collation might not be
tailored specifically to these locales but it is still using the UCA (that is for multilingual collation), so the
results should be generally reasonable. This is acceptable because none of these locales uses extended
characters. In the case of Bosnian_BosniaHerzegovina (bs_BA) we recommend using sh_BA instead.

Appendix A2: Platform Notes

LINGUISTIC sorting is available on all platforms except for 64-bit Windows on Itanium and VMS on Itanium.

On the mainframe (with z/OS), LINGUISTIC sorting requires more memory. Specifically, you might need to set
your REGION to 50M or higher. This must be done in JCL, if running in batch, or in the VERIFY screen if
running interactively. This is simply to get the ICU libraries to load properly and does not have anything to do
with how much memory is used for sorting (although that increases with LINGUISTIC sorting as well).

Appendix A3: BY Processing and Formatted Variables

Sorting a data set linguistically by a character variable that has an associated format does not result in
linguistic ordering of the formatted variable values. BY processing such a data set can produce unexpected
results.

General BY processing groups observations based on the formatted value of a BY variable, when a format
has been applied to the variable, but PROC SORT orders data only by the raw, internal value. If the
formatted values of a variable do not collate in the same relative order as the raw values, then the result can
be multiple BY groups for any single format value. Further, DATA step BY processing behaves differently, by
default, than general BY processing. Normally, for the DATA step, BY groups are determined using internal
variable values. This DATA step behavior can be changed to match that of general BY processing using the
GROUPFORMAT option on the BY statement.

The following examples illustrate these issues and present a method should one want to linguistically order
and BY process formatted values.

/** ********************
 BY processing data sorted BY a variable that has an associated format
 can produce unexpected results. However, linguis tic collation and
 formats can be combined with a bit of additional work.
 ** ********************/
options locale=en_US;

/** ********************
 Create a format which assigns each country in the LIST data set to a
 specific world region.

 Linguistic Collation 23

 ** ********************/
proc format;
 value $REGION (default=20)
 "China" = "Asia"
 "Denmark" = "Scandinavia"
 "France" = "Europe"
 "Germany" = "Europe"
 "Greece" = "Europe"
 "Hungary" = "Europe"
 "Israel" = "Middle-East"
 "Japan" = "Asia"
 "Poland" = "Europe"
 "Russia" = "Asia"
 "Spain" = "Europe"
 "Sweden" = "Scandinavia"
 "Turkey" = "Asia"
 ;
run;

 /*** *********************
 Create a subset of the LIST data set to demonstrat e issues involving
 the mixture of linguistic collation and formatted character variables.
 ** ********************/
data cities;
 set list;
 where city_e >= "Chateauroux" and city_e < "Leon";
 keep city_e country_e;
run;

TITLE "CITIES SUBSET";
proc print data=cities;
run;

/** ********************
 Create some input data for the first three example s. For this
 demonstration, we create a new variable REGION_E, which contains the
 same raw value as variable COUNTRY_E but is format ted with $REGION.
 Note that the SORT procedure orders the data set b y the unformatted
 value of variable REGION_E!
 ** ********************/
data cities_1;
 set cities;
 region_e=country_e;
 format region_e $REGION.;
run;

proc sort data=cities_1 SORTSEQ=LINGUISTIC;
 by region_e;
run;

/** ********************
 EXAMPLE 1

 In general BY processing, BY groups will be define d by the formatted
 value of a BY variable if that variable has an ass ociated format.

24 Linguistic Collation

 Note that (1) the data is sorted linguistically by the name of the
 country (the unformatted value of REGION_E) and (2) BY processing
 recognizes that the data is sorted BY REGION_E. H owever, the
 presence of the $REGION format causes the BY group s to be defined by
 the FORMATTED value!

 This example, perhaps unexpectedly, results in mul tiple BY groups for
 a single formatted BY variable value because the f ormatted values are
 not properly grouped. Formatted BY variable value s are not grouped
 because the data set is sorted by the unformatted BY variable value.
 ** ********************/
TITLE "EXAMPLE 1";
proc print data=cities_1;
by region_e;
run;

/** ********************
 EXAMPLE 2

 In DATA step BY processing, the default is to defi ne BY groups based
 on the unformatted value of a BY variable.

 Note that (1) the data is sorted linguistically by the name of the
 country (the unformatted value of REGION_E) and (2) the DATA step
 recognizes that the data is sorted BY REGION_E. H owever, by default,
 the presence of the format is ignored and BY group s are defined by
 the UNFORMATTED value!
 ** ********************/
data example_2;
 set cities_1;
 by region_e;
 if first.region_e
 then NewGroup="YES";
 else NewGroup="NO";
run;

TITLE "EXAMPLE 2";
proc print data=example_2;
run;

/** ********************
 EXAMPLE 3

 The default behavior for DATA step BY processing c an be overridden
 with the GROUPFORMAT option to achieve the same re sults as general
 BY processing.

 Note that (1) the data is sorted linguistically by the name of the
 country (the unformatted value of REGION_E) and (2) the DATA step
 recognizes that the data is sorted BY REGION_E. H owever, the GROUPFORMAT
option causes BY groups to be defined by the FORMAT TED
 value.

 This example produces the same results as EXAMPLE 1 and does so for
 the same reason. See EXAMPLE 1 for a description.

 Linguistic Collation 25

 ** ********************/
data example_3;
 set cities_1;
 by region_e GROUPFORMAT;
 if first.region_e
 then NewGroup="YES";
 else NewGroup="NO";
run;

TITLE "EXAMPLE 3";
proc print data=example_3;
run;

/** ********************
 EXAMPLE 4

 To combine linguistic collation and formatted char acter BY variables,
 create a separate variable to contain the formatte d value and sort
 linguistically BY that variable. This technique w orks with both
 general BY processing and DATA step BY processing. It can also be
 done with a VIEW should one want to avoid the I/O costs associated
 with creating and reading a new data set.

 Here, we put the formatted value of COUNTRY_E into the variable
 REGION_E and then sort linguistically BY the (unfo rmatted) value of
 REGION_E.
 ** ********************/
data cities_2;
 set cities;
 length region_e $ 20;
 region_e=put(country_e,$REGION.);
run;

proc sort data=cities_2 SORTSEQ=LINGUISTIC;
 by region_e;
run;

TITLE "EXAMPLE 4A";
proc print data=cities_2;
 by region_e;
run;

data example_4;
 set cities_2;
 by region_e;
 if first.region_e
 then NewGroup="YES";
 else NewGroup="NO";
run;

TITLE "EXAMPLE 4B";
proc print data=example_4;
run;

 CITIES SUBSET

26 Linguistic Collation

 country_
 Obs city_e e

 1 Cracow Poland
 2 Czestochowa Poland
 3 Corinth Greece
 4 Ioannina Greece
 5 La Coruna Spain
 6 Copenhagen Denmark
 7 Gothenburg Sweden
 8 Frankfurt Germany
 9 Duesseldorf Germany
 10 Goerlitz Germany
 11 Hamburg Germany
 12 Chateauroux France
 13 Evry France
 14 Frejus France
 15 Haifa Israel
 16 Istanbul Turkey
 17 Izmir Turkey
 18 Elazig Turkey
 19 Corlu Turkey
 20 Kawasaki Japan
 21 Guangzhou China
 22 Gyor Hungary
 23 Csabapuszta Hungary
 24 Csempeszkopacs Hungary
 25 Csempeszkopacs Hungary

 Linguistic Collation 27

 EXAMPLE 1

--- region_e=Asia -----------------------

 country_
 Obs city_e e

 1 Guangzhou China

-- region_e=Scandinavia -------------------

 country_
 Obs city_e e

 2 Copenhagen Denmark

-- region_e=Europe ----------------------

 country_
 Obs city_e e

 3 Chateauroux France
 4 Evry France
 5 Frejus France
 6 Frankfurt Germany
 7 Duesseldorf Germany
 8 Goerlitz Germany
 9 Hamburg Germany
 10 Corinth Greece
 11 Ioannina Greece
 12 Gyor Hungary
 13 Csabapuszta Hungary
 14 Csempeszkopacs Hungary
 15 Csempeszkopacs Hungary

-- region_e=Middle-East -------------------

 country_
 Obs city_e e

 16 Haifa Israel

--- region_e=Asia -----------------------

 country_
 Obs city_e e

 17 Kawasaki Japan

-- region_e=Europe ----------------------

 country_
 Obs city_e e

28 Linguistic Collation

 18 Cracow Poland
 19 Czestochowa Poland
 20 La Coruna Spain

-- region_e=Scandinavia -------------------

 country_
 Obs city_e e

 21 Gothenburg Sweden

 Linguistic Collation 29

 EXAMPLE 1

--- region_e=Asia -----------------------

 country_
 Obs city_e e

 22 Istanbul Turkey
 23 Izmir Turkey
 24 Elazig Turkey
 25 Corlu Turkey

30 Linguistic Collation

 EXAMPLE 2

 country_ New
 Obs city_e e region_e Group

 1 Guangzhou China Asia YES
 2 Copenhagen Denmark Scandinavia YES
 3 Chateauroux France Europe YES
 4 Evry France Europe NO
 5 Frejus France Europe NO
 6 Frankfurt Germany Europe YES
 7 Duesseldorf Germany Europe NO
 8 Goerlitz Germany Europe NO
 9 Hamburg Germany Europe NO
 10 Corinth Greece Europe YES
 11 Ioannina Greece Europe NO
 12 Gyor Hungary Europe YES
 13 Csabapuszta Hungary Europe NO
 14 Csempeszkopacs Hungary Europe NO
 15 Csempeszkopacs Hungary Europe NO
 16 Haifa Israel Middle-East YES
 17 Kawasaki Japan Asia YES
 18 Cracow Poland Europe YES
 19 Czestochowa Poland Europe NO
 20 La Coruna Spain Europe YES
 21 Gothenburg Sweden Scandinavia YES
 22 Istanbul Turkey Asia YES
 23 Izmir Turkey Asia NO
 24 Elazig Turkey Asia NO
 25 Corlu Turkey Asia NO

 Linguistic Collation 31

 EXAMPLE 3

 country_ New
 Obs city_e e region_e Group

 1 Guangzhou China Asia YES
 2 Copenhagen Denmark Scandinavia YES
 3 Chateauroux France Europe YES
 4 Evry France Europe NO
 5 Frejus France Europe NO
 6 Frankfurt Germany Europe NO
 7 Duesseldorf Germany Europe NO
 8 Goerlitz Germany Europe NO
 9 Hamburg Germany Europe NO
 10 Corinth Greece Europe NO
 11 Ioannina Greece Europe NO
 12 Gyor Hungary Europe NO
 13 Csabapuszta Hungary Europe NO
 14 Csempeszkopacs Hungary Europe NO
 15 Csempeszkopacs Hungary Europe NO
 16 Haifa Israel Middle-East YES
 17 Kawasaki Japan Asia YES
 18 Cracow Poland Europe YES
 19 Czestochowa Poland Europe NO
 20 La Coruna Spain Europe NO
 21 Gothenburg Sweden Scandinavia YES
 22 Istanbul Turkey Asia YES
 23 Izmir Turkey Asia NO
 24 Elazig Turkey Asia NO
 25 Corlu Turkey Asia NO

32 Linguistic Collation

 EXAMPLE 4A

--- region_e=Asia -----------------------

 country_
 Obs city_e e

 1 Istanbul Turkey
 2 Izmir Turkey
 3 Elazig Turkey
 4 Corlu Turkey
 5 Kawasaki Japan
 6 Guangzhou China

-- region_e=Europe ----------------------

 country_
 Obs city_e e

 7 Cracow Poland
 8 Czestochowa Poland
 9 Corinth Greece
 10 Ioannina Greece
 11 La Coruna Spain
 12 Frankfurt Germany
 13 Duesseldorf Germany
 14 Goerlitz Germany
 15 Hamburg Germany
 16 Chateauroux France
 17 Evry France
 18 Frejus France
 19 Gyor Hungary
 20 Csabapuszta Hungary
 21 Csempeszkopacs Hungary
 22 Csempeszkopacs Hungary

-- region_e=Middle-East -------------------

 country_
 Obs city_e e

 23 Haifa Israel

-- region_e=Scandinavia -------------------

 country_
 Obs city_e e

 24 Copenhagen Denmark
 25 Gothenburg Sweden

 Linguistic Collation 33

 EXAMPLE 4B

 country_ New
 Obs city_e e region_e Group

 1 Istanbul Turkey Asia YES
 2 Izmir Turkey Asia NO
 3 Elazig Turkey Asia NO
 4 Corlu Turkey Asia NO
 5 Kawasaki Japan Asia NO
 6 Guangzhou China Asia NO
 7 Cracow Poland Europe YES
 8 Czestochowa Poland Europe NO
 9 Corinth Greece Europe NO
 10 Ioannina Greece Europe NO
 11 La Coruna Spain Europe NO
 12 Frankfurt Germany Europe NO
 13 Duesseldorf Germany Europe NO
 14 Goerlitz Germany Europe NO
 15 Hamburg Germany Europe NO
 16 Chateauroux France Europe NO
 17 Evry France Europe NO
 18 Frejus France Europe NO
 19 Gyor Hungary Europe NO
 20 Csabapuszta Hungary Europe NO
 21 Csempeszkopacs Hungary Europe NO
 22 Csempeszkopacs Hungary Europe NO
 23 Haifa Israel Middle-East YES
 24 Copenhagen Denmark Scandinavia YES
 25 Gothenburg Sweden Scandinavia NO

Appendix A4: CLASS Processing versus BY Processing

CLASS processing does not order or group data linguistically nor is it sensitive to an existing linguistic
collation sequence of a data set. CLASS processing can produce results that are different from those
obtained using BY processing because BY processing is now sensitive to collating sequences.

For example, with the SUMMARY procedure, class processing is normally performed by grouping formatted
values of a class variable (or raw values, if the GROUPINTERNAL option is specified). If a data set is sorted,
the ORDER=DATA option can be used to preserve the order in which class levels are output for the NWAY
type. However, if the data is sorted linguistically, classification boundaries are still determined by a binary
difference in the formatted (or unformatted) class variable values. For example, if a case-insensitive linguistic
collating sequence was used (that is STRENGTH=2), changes in character case still denotes a new level in
the NWAY type.

The following example shows the difference in output between BY processing and CLASS processing using
PROC MEANS when, in the first case, the input data set is linguistically sorted in a case-insensitive manner
and, in the second case, when the ORDER=DATA option is used with the same input data set. We can
address this particular problem, as shown in the third PROC MEANS invocation, by using the $UPCASE
format but this type of solution is not universally applicable.

data survey;

34 Linguistic Collation

 length gender $ 10;
 input gender age;
 cards;
 Male 27
 Female 31
 MALE 25
 FEMALE 23
 ;
run;

proc sort data=survey SORTSEQ=LINGUISTIC(STRENGTH=2);
 by gender;
run;

TITLE "BY GENDER";
proc means data=survey n mean;
 var age;
 BY GENDER;
run;

TITLE "CLASS GENDER";
proc means data=survey n mean ORDER=DATA;
 var age;
 CLASS GENDER;
run;

TITLE "CLASS GENDER with $UPCASE format";
proc means data=survey n mean ORDER=DATA;
 var age;
 CLASS GENDER;
 format gender $upcase.;
run;

 BY GENDER 1

-- gender=Female ---

 The MEANS Procedure

 Analysis Variable : age

 N Mean
 ƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒ
 2 27.0000000
 ƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒ

--- gender=Male --

 Analysis Variable : age

 N Mean
 ƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒ
 2 26.0000000
 ƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒ

 Linguistic Collation 35

 CLASS GENDER 2

 The MEANS Procedure

 Analysis Variable : age

 N
 gender Obs N Mean
 ƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒ
 Female 1 1 31.0000000

 FEMALE 1 1 23.0000000

 Male 1 1 27.0000000

 MALE 1 1 25.0000000
 ƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒ

 CLASS GENDER with $UPCASE format 3

 The MEANS Procedure

 Analysis Variable : age

 N
 gender Obs N Mean
 ƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒ
 FEMALE 2 2 27.0000000

 MALE 2 2 26.0000000
 ƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒ

Appendix B: Where to Turn for More Information

More information on collating sequence options, collation rules, the sortKey function and or National Language
Support in general can be obtained from the online documentation and or the National Language Support (NLS)
Reference Guide.

i E.g. ISO/IEC 14651:2001 Information technology -- International string ordering and comparison -- Method for
comparing character strings and description of the common template tailorable ordering.
ii Accents or other marks modifying a character.

36 Linguistic Collation

iii This is because accents at the end of a French word are considered more important for the understanding than other
accents; the order is no accent, acute accent, grave accent, circumflex accent, and diaeresis.
iv All names in this paper are purely fictitious. Any resemblance to actual persons is completely accidental.
v In 1994, the Royal Spanish Academy agreed to alphabetize ch and ll as ordinary pairs of letters in the dictionary, and
not as separate letters as in the past. This means there are now two ways to sort Spanish data: according to the
"traditional" sort order and the "modern" one.
vi Swedish alphabet. (2007, September 4). In Wikipedia, The Free Encyclopedia. Retrieved 08:55, October 2, 2007, from
http://en.wikipedia.org/w/index.php?title=Swedish_a lphabet&oldid=155619192 .
vii PHONEBOOK works only in conjunction with a German locale.
viii Select TRADITIONAL only with a Spanish locale.
ix Collation. (2007, September 14). In Wikipedia, The Free Encyclopedia. Retrieved 10:39, October 2, 2007, from
http://en.wikipedia.org/w/index.php?title=Collation&oldid=157934736
x Select these keywords only with the Chinese language.
xi Correct alphabetization in Danish and Norwegian places Aa along with Å as the last letter in the alphabet, the sequence
being Æ, Ø, Å/Aa. (Å. (2007, August 24). In Wikipedia, The Free Encyclopedia. Retrieved 08:31, October 4, 2007, from
http://en.wikipedia.org/w/index.php?title=%C3%85&oldid=153346567

