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Introduction 

It would be an understatement to say that there is a lot of buzz these days about big data. Because of the proliferation of 

new data sources such as machine sensor data, medical images, financial data, retail sales data, radio frequency 

identification, and web tracking data, we are challenged to decipher trends and make sense of data that is orders of 

magnitude larger than ever before. Almost every day, we see another article on the role that big data plays in improving 

profitability, increasing productivity, solving difficult scientific questions, as well as many other areas where big data is 

solving problems and helping us make better decisions. One of the technologies most often associated with the era of big 

data is Apache Hadoop. 

Although there is much technical information about Hadoop, there is not much information about how to effectively 

structure data in a Hadoop environment. Even though the nature of parallel processing and the MapReduce system 

provide an optimal environment for processing big data quickly, the structure of the data itself plays a key role. As 

opposed to relational data modeling, structuring data in the Hadoop Distributed File System (HDFS) is a relatively new 

domain. In this paper, we explore the techniques used for data modeling in a Hadoop environment. Specifically, the intent 

of the experiments described in this paper was to determine the best structure and physical modeling techniques for 

storing data in a Hadoop cluster using Apache Hive to enable efficient data access. Although other software interacts with 

Hadoop, our experiments focused on Hive. The Hive infrastructure is most suitable for traditional data warehousing-type 

applications. We do not cover Apache HBase, another type of Hadoop database, which uses a different style of modeling 

data and different use cases for accessing the data. 

In this paper, we explore a data partition strategy and investigate the role indexing, data types, files types, and other data 

architecture decisions play in designing data structures in Hive. To test the different data structures, we focused on typical 

queries used for analyzing web traffic data. These included web analyses such as counts of visitors, most referring sites, 

and other typical business questions used with weblog data.   

The primary measure for selecting the optimal structure for data in Hive is based on the performance of web analysis 

queries. For comparison purposes, we measured the performance in Hive and the performance in an RDBMS. The reason 

for this comparison is to better understand how the techniques that we are familiar with using in an RDBMS work in the 

Hive environment. We explored techniques such as storing data as a compressed sequence file in Hive that are particular 

to the Hive architecture. 

Through these experiments, we attempted to show that how data is structured (in effect, data modeling) is just as 

important in a big data environment as it is in the traditional database world.  

Understanding HDFS and Hive 

Similar to massively parallel processing (MPP) databases, the power of Hadoop is in the parallel access to data that can 

reside on a single node or on thousands of nodes. In general, MapReduce provides the mechanism that enables access 

to each of the nodes in the cluster. Within the Hadoop framework, Hive provides the ability to create and query data on a 

large scale with a familiar SQL-based language called HiveQL. It is important to note that in these experiments, we strictly 

used Hive within the Hadoop environment. For our tests, we simulated a typical data warehouse-type workload where 

data is loaded in batch, and then queries are executed to answer strategic (not operational) business questions.    
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According to the Apache Software Foundation, here is the definition of Hive: 

“Hive is a data warehouse system for Hadoop that facilitates easy data summarization, ad-hoc queries, and the 

analysis of large datasets stored in Hadoop compatible file systems. Hive provides a mechanism to project structure 

onto this data and query the data using a SQL-like language called HiveQL. At the same time this language also 

allows traditional map/reduce programmers to plug in their custom mappers and reducers when it is inconvenient or 

inefficient to express this logic in HiveQL.” 

To demonstrate how to structure data in Hadoop, our examples used the Hive environment. Using the SAS/ACCESS 

engine, we were able to run our test queries through the SAS interface, which is executed in the Hive environment within 

our Hadoop cluster. In addition, we performed a cursory examination of Impala, the “SQL on top of Hadoop” tool offered 

by Cloudera.   

All queries executed through SAS/ACCESS to Hadoop were submitted via the Hive environment and were translated into 

MapReduce jobs. Although it is beyond the scope of this paper to detail the inner-workings of MapReduce, it is important 

to understand how data is stored in HDFS when using Hive to better understand how we should structure our tables in 

Hadoop. By gaining some understanding in this area, we are able to appreciate the effect data modeling techniques have 

in HDFS. 

In general, all data stored in HDFS is broken into blocks of data. We used Cloudera’s distribution of version 4.2 of Hadoop 

for these experiments. The default size of each data block in Cloudera Hadoop 4.2 is 128 MB. As shown in Figure 1, the 

same blocks of data were replicated across multiple nodes to provide reliability if a node failed, and also to increase the 

performance during MapReduce jobs. Each block of data is replicated three times by default in the Hadoop environment. 

The NameNode in the Hadoop cluster serves as the metadata repository that describes where blocks of data are located 

for each file stored in HDFS. 

Figure 1: HDFS Data Storage[5] 
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At a higher level, when a table is created through Hive, a directory is created in HDFS on each node that represents the 

table. Files that contain the data for the table are created on each of the nodes, and the Hive metadata keeps track of 

where the files that make up each table are located. These files are located in a directory with the name of the table in 

HDFS in the /user/hive/warehouse folder by default. For example, in our tests, we created a table named 

BROWSER_DIM. We can use an HDFS command to see the new table located in the /user/hive/warehouse 

directory. By using the command hadoop fs -ls, the contents of the browser_dim directory are listed. In this 

directory, we find a file named browser_dim.csv. HDFS commands are similar to standard Linux commands. 

 

By default, Hadoop distributes the contents of the browser_dim table into all of the nodes in the Hadoop cluster. The 

following hadoop fs –tail command lists the last kilobyte of the file listed: 

 

 

The important takeaway is to understand at a high level how data is stored in HDFS and managed in the Hive 

environment. The physical data modeling experiments that we performed ultimately affect how the data is stored in blocks 

in HDFS and in the nodes where the data is located and how the data is accessed. This is particularly true for the tests in 

which we partitioned the data using the Partition statement to redistribute the data based on the buckets or ranges 

defined in the partitions. 

Project Environment 

Hardware 

The project hardware was designed to emulate a small-scale Hadoop cluster for testing purposes, not a large-scale 

production environment. Our blades had only two CPUs each. Normally, Hadoop cluster nodes have more. However, the 

size of the cluster and the data that we used are large enough to make conclusions about physical data modeling 

techniques. As shown in Figure 2, our hardware configuration was as follows: 

Overall hardware configuration: 

 1 Dell M1000e server rack 

 10 Dell M610 blades 

 Juniper EX4500 10 GbE switch 

  

601235 Safari 1 1 11.1 r121 1 0   24 1024x600

601236 Safari 1 1 11.1 r102 1 1 1.6.0_29 Macintosh 24 1280x800

601237 Safari 1 1 11.1 r102 1 1 1.6.0_29 Macintosh 24 1280x800

601238 Safari 1 1 11.2 r202 1 1 1.6.0_31 Macintosh 24 1280x800
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Blade configuration: 

 Intel Xeon X5667 3.07GHz processor 

 Dell PERC H700 Integrated RAID controller 

 Disk size: 543 GB 

 FreeBSD iSCSI Initiator driver 

 HP P2000 G3 iSCSI dual controller 

 Memory: 94.4 GB 

 Linux 2.6.32 

 

Figure 2: The Project Hardware Environment 

 

 

Software 

The project software created a small-scale Hadoop cluster and included a standard RDBMS server and a client server 

with release 9.3 of Base SAS software with supporting software. 
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The project software included the following components: 

 CDH (Cloudera’s Distribution Including Apache Hadoop) version 4.2.1 

o Apache Hadoop 2.0.0 

o Apache Hive 0.10.0 

o HUE (Hadoop User Experience) 2.2.0 

o Impala 1.0 

o Apache MapReduce 0.20.2 

o Apache Oozie 3.3.0 

o Apache ZooKeeper 3.4.5 

 Apache Sqoop 1.4.2 

 Base SAS 9.3 

 A major relational database 
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Figure 3: The HDFS Architecture 

 

The Hadoop Cluster 

The Hadoop cluster can logically be divided into two areas: HDFS, which stores the data, and MapReduce, which 

processes all of the computations on the data (with the exception of a few tests where we used Impala).   

The NameNode on nodes 1 and 2 and the JobTracker on node 1 (in the next figure) serve as the master nodes. The other 

six nodes are acting as slaves.[1] 

Figure 3 shows the daemon processes of the HDFS architecture, which consist of two NameNodes, seven DataNodes, 

two Failover Controllers, three Journal Nodes, one HTTP FS, one Balancer, and one Hive Metastore. The NameNode 

located on blade Node 1 is designated as the active NameNode. The NameNode on Node 2 is serving as the standby. 

Only one NameNode can be active at a time. It is responsible for controlling the data storage for the cluster. When the 

NameNode on Node 2 is active, the DataNode on Node 2 is disabled in accordance with accepted HDFS procedure. The 

DataNodes act as instructed by the active NameNode to coordinate the storage of data. The Failover Controllers are 

daemons that monitor the NameNodes in a high-availability environment. They are responsible for updating the 

ZooKeeper session information and initiating state transitions if the health of the associated NameNode wavers.[2] The 
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JournalNodes are written to by the active NameNode whenever it performs any modifications in the cluster. The standby 

NameNode has access to all of the modifications if it needs to transition to an active state.[3] The HTTP FS provides the 

interface between the operating system on the server and HDFS.[4] The Balancer utility distributes the data blocks across 

the nodes evenly.[5] The Hive Metastore contains the information about the Hive tables and partitions in the cluster.[6] 

Figure 4 depicts the system’s MapReduce architecture. The JobTracker is responsible for controlling the parallel 

processing of the MapReduce functionality. The TaskTrackers act as instructed by the JobTracker to process the 

MapReduce jobs.[1] 
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Figure 4: The MapReduce Architecture 

 

The Client Server 

The client server (Node 9, not pictured) had Base SAS 9.3, Hive 0.8.0, a Hadoop 2.0.0 client, and a standard RDBMS 

installed. The SAS installation included Base SAS software and SAS/ACCESS products. 

The RDBMS Server 

A relational database was installed on Node 10 (not pictured) and was used for comparison purposes in our experiments. 

Data Environment Setup 

The data for our experiments was generated to resemble a technical company’s support website. The company sells its 

products worldwide and uses Unicode to support foreign character sets. We created 25 million original weblog sessions 

featuring 90 million clicks, and then duplicated it 90 times by adding unique session identifiers to each row. This bulked-up 

flat file was loaded into the RDBMS and Hadoop via SAS/ACCESS and Sqoop. For our tests, we needed both a flat file 

representation of the data and a typical star schema design of the same data. Figure 5 shows the data in the flat file 

representation. 
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Figure 5: The Flat File Representation 

 

A star schema was created to emulate the standard data mart architecture. Its tables are depicted in Figure 6.  

Figure 6: The Entity-Relationship Model for the Star Schema 
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To load the fact and dimension tables in the star schema, surrogate keys were generated and added to the flat file data in 

SAS before loading the star schema tables in the RDBMS and Hadoop. The dimension tables and the 

PAGE_CLICK_FACT table in the RDBMS were loaded directly through a SAS program and loaded directly into the 

RDBMS through the SAS/ACCESS engine. The surrogate keys from the dimension tables were added to the 

PAGE_CLICK_FACT table via SQL in the RDBMS. The star schema tables were loaded directly from the RDBMS into 

Hadoop using the Sqoop tool. The entire process for loading the data in both star schemas is illustrated in Figure 7. 
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Figure 7: The Data Load Process 

 

As a side note, we uncovered a quirk that occurs when loading data from an RDBMS to HDFS or vice versa through Hive. 

Hive uses the Ctrl+A ASCII control character (also known as the start of heading or SOH control character in Unicode) as 

its default delimiter when creating a table. Our data had ^A sprinkled in the text fields. When we used the Hive default 

delimiter, Hive was not able to tell where a column started and ended due to the dirty data. All of our data loaded, but 

when we queried the data, we discovered the issue. To fix this, we redefined the delimiter. The takeaway is that you need 

to be data-aware before choosing delimiters to load data into Hadoop using the Sqoop utility. 

Once the data was loaded, the number of rows in each table was observed as shown in Figure 8.    

Figure 8: Table Row Numbers 

Table Name Rows 

PAGE_CLICK _FACT 1.45 billion 

PAGE_DIM 2.23 million 

REFERRER_DIM 10.52 million 

BROWSER_DIM 164.2 thousand 

STATUS_CODE  70 

PAGE_CLICK_FLAT 1.45 billion 

SAS Data
Collection

Bulked-Up 
Data

Star Schema
Data Sets

RDBMS
Flat File

RDBMS
Star 

Schema

Data
Duplication

Dimension Table
Data Sets Created

with Surrogate Keys

SAS/ACCESS

SAS/ACCESS

Apache Sqoop

Apache Sqoop

Hadoop
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In terms of the actual size of the data, we compared the size of the fact tables and flat tables in both the RDBMS and 

Hadoop environment. Because we performed tests in our experiments on both the text file version of the Hive tables as 

well as the compressed sequence file version, we measured the size of the compressed version of the tables. Figure 9 

shows the resulting sizes of these tables. 

Figure 9: Table Sizes 

Table Name RDBMS Hadoop (Text 
File) 

Hadoop (Compressed 
Sequence File) 

PAGE_CLICK_FACT 573.18 GB 328.30 GB 42.28 GB 

PAGE_CLICK_FLAT 1001.11 GB 991.47 GB 124.59 GB 

Approach for Our Experiments 

To test the various data modeling techniques, we wrote queries to simulate the typical types of questions business users 

might ask of clickstream data. The full SQL queries are available in Appendix A. Here are the questions that each query 

answers: 

1. What are the most visited top-level directories on the customer support website for a given week and year? 

2. What are the most visited pages that are referred from a Google search for a given month? 

3. What are the most common search terms used on the customer support website for a given year? 

4. What is the total number of visitors per page using the Safari browser? 

5. How many visitors spend more than 10 seconds viewing each page for a given week and year? 

As part of the criteria for the project, the SQL statements were used to determine the optimal structure for storing the 

clickstream data in Hadoop and in an RDBMS. We investigated techniques in Hive to improve the performance of the 

queries. The intent of these experiments was to investigate how traditional data modeling techniques apply to the Hadoop 

and Hive environment. We included an RDBMS only to measure the effect of tuning techniques within the Hadoop and 

Hive environment and to see how comparable techniques work in an RDBMS. It is important to note that there was no 

intent to compare the performance of the RDBMS to the Hadoop and Hive environment, and the results were for our 

particular hardware and software environment only. To determine the optimal design for our data architecture, we had the 

following criteria: 

 There would be no unnecessary duplication of data. For example, we did not want to create two different flat files 

tuned for different queries. 

 The data structures would be progressively tuned to get the best overall performance for the average of most of 

the queries, not just for a single query. 

We began our experiments without indexes, partitions, or statistics in both schemas and in both environments. The intent 

of the first experiment was to determine whether a star schema or flat table performed better in Hive or in the RDBMS for 

our queries. During subsequent rounds of testing, we used compression and added indexes and partitions to tune the data 
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structures. As a final test, we ran the same queries against our final data structures using Impala. Impala bypasses the 

MapReduce layer used by Hive.  

The queries were run using Base SAS on the client node with an explicit SQL pass-through for both environments. All 

queries were run three times on a quiet environment to obtain accurate performance information. We captured the timings 

through the SAS logs for the Hive and RDBMS tests. Client session timing was captured in Impala for the Impala tests 

because SAS does not currently support Impala. 

Results 

Experiment 1: Flat File versus Star Schema 

The intent of this first experiment was to determine whether the star schema or flat table structure performed better in 

each environment in a series of use cases. The tables in this first experiment did not have any tuning applied such as 

indexing. We used standard text files for the Hadoop tables. 

Results for Experiment 1 

H
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Query 
Min. Time 
(MM:SS) 

Max. Time 
(MM:SS) 

Average 
(MM:SS) 

1 51:42 52:13 52:00 

2 49:55 50:46 50:36 

3 54:53 56:36 55:54 

4 50:37 52:37 51:28 

5 49:43 50:25 50:00 
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S
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S
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a
 

Query 
Min. Time 

(H:MM:SS) 
Max. Time 
(H:MM:SS) 

Average 
(H:MM:SS) 

1 09:40 11:22 10:33 

2 09:08 09:57 09:35 

3 49:53 55:37 52:46 

4 13:04 15:14 14:33 

5 9:57 10:32 10:13 

 

R
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F
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t 
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ile
 

Query 
Min. Time 

(H:MM:SS) 
Max. Time 
(H:MM:SS) 

Average 
(H:MM:SS) 

1 1:04:35 1:17:49 1:09:13 

2 1:09:26 1:09:52 1:09:35 

3 1:08:14 1:08:53 1:08:32 

4 1:06:22 1:07:44 1:07:06 

5 1:04:20 1:04:57 1:04:31 
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Query 
Min. Time 
(MM:SS) 

Max. Time 
(MM:SS) 

Average 
(MM:SS) 

1 33:03 33:41 33:26 

2 33:19 33:35 33:28 

3 33:28 34:27 34:02 

4 32:58 33:09 33:03 

5 33:00 33:56 33:35 
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Analysis of Experiment 1 

H
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D
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e

 Query Flat File 
Average 
(MM:SS) 

Star Schema 
Average 

(H:MM:SS) 

Improvement 
(Flat to Star) 

1 52:00 10:33 42:27 

2 50:36 09:35 41:01 

3 55:54 52:46 03:08 

4 51:28 14:33 36:55 

5 50:00 10:33 39:27 
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Query 
 

1   

 
 

2  

 
 

3  

 
 

4  

 
 

5  
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e

 Query Flat File 
Average 

(H:MM:SS) 

Star Schema 
Average 
(MM:SS) 

Improvement 
(Star to Flat) 

1 1:09:13 33:26 35:47 

2 1:09:35 33:28 36:07 

3 1:08:32 34:02 34:30 

4 1:07:06 33:03 34:03 

5 1:04:31 33:35 30:56 

 
  



Data Modeling Considerations in Hadoop and Hive          

 
 

16 
 

R
D

B
M

S
 

S
c
h
e
m

a
 D

if
fe

re
n
c
e

 

Query  
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2  

 
 

3  

 
 

4  

 
 

5  

 
 

   

 

As you can see, both the Hive table and the RDBMS table in the star schema structure performed significantly faster 

compared to the flat file structure. This results for Hive were surprising, given the more efficient practice in HDFS of 

storing data in a denormalized structure to optimize I/O. 

Although the star schema was faster in the Hadoop text file environment, we decided to complete the remaining 

experiments for Hadoop using the flat file structure because it is the more efficient data structure for Hadoop and Hive. 

The book Programming Hive says, “The primary reason to avoid normalization is to minimize disk seeks, such as those 

typically required to navigate foreign key relations. Denormalizing data permits it to be scanned from or written to large, 

contiguous sections of disk drives, which optimizes I/O performance. However, you pay the penalty of denormalization, 

data duplication and the greater risk of inconsistent data.”[8] 

Experiment 2: Compressed Sequence Files 

The second experiment applied only to the HIve environment. In this experiment, the data in HDFS was converted from 

uncompressed text files to compressed sequence files to determine whether the type of file for the table in HDFS made a 

difference in query performance. 

Results for Experiment 2 

H
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S
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ile
 Query 

Min. Time 
(MM:SS) 

Max Time 
(MM:SS) 

Average 
(MM:SS) 

1 04:44 04:48 04:47 

2 05:27 04:41 05:34 

3 05:51 06:04 05:57 

4 05:35 05:47 05:40 

5 05:30 05:40 05:35 
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 Query Text File 
Average 
(MM:SS) 

Sequence File 
Average 

(H:MM:SS) 

Improvement 
(Text to 

Sequence) 

1 52:00 04:47 47:13 

2 50:36 05:34 45:02 

3 55:54 05:57 49:57 

4 51:28 05:40 45:48 

5 50:00 05:35 44:25 
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The results of this experiment clearly show that the compressed sequence file was a much better file format for our 

queries than the uncompressed text file. 

Experiment 3: Indexes  

In this experiment, indexes were applied to the appropriate columns in the Hive flat table and in the RDBMS fact table. 

Statistics were gathered for the fourth set of tests. In Hive, a B-tree index was added to each of the six columns 

(BROWSER_NM, DETAIL_TM, DOMAIN_NM, FLASH_ENABLED_FLG, QUERY_STRING_TXT, and 

REFERRER_DOMAIN_NM) used in the queries. In the RDBMS, a bitmap index was added to each foreign key in the 

PAGE_CLICK_FACT table, and a B-tree index was added to each of the five columns (DOMAIN_NM, 

FLASH_ENABLED_FLG, REFERRER_DOMAIN_NM, QUERY_STRING_TXT, and 

SECONDS_SPENT_ON_PAGE_CNT) used in the queries that were not already indexed.  

Results for Experiment 3 

H
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Query 
Min. Time 
(MM:SS) 

Max Time 
(MM:SS) 

Average 
(MM:SS) 

1 01:17 01:28 01:22 

2 01:25 01:33 01:29 

3 05:55 06:03 05:59 

4 01:32 01:37 01:34 

5 04:42 04:45 04:43 
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Query 
Min. Time 
(MM:SS) 

Max Time 
(MM:SS) 

Average 
(MM:SS) 

1 00:04 00:04 00:04 

2 00:25 01:01 00:39 

3 00:25 00:43 00:31 

4 00:07 00:07 00:07 

5 00:25 00:31 00:27 
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 Query No Indexes 
Average 
(MM:SS) 

Indexed Average 
(MM:SS) 

Improvement 
(No Indexes to 

Indexed) 

1 04:47 01:22 03:25 

2 05:34 01:29 04:05 

3 05:57 05:59 (00:02) 

4 05:40 01:34 04:06 

5 05:35 04:43 00:52 
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 Query No Indexes 
Average 

(H:MM:SS) 

Indexed Average 
(MM:SS) 

Improvement 
(No Indexes to 

Indexed) 

1 33:26 00:04 33:22 

2 33:28 00:39 32:49 

3 34:02 26:29 07:33 

4 33:03 00:07 32:56 

5 33:35 00:27 33:08 
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Analysis of Experiment 3: 

With the notable exception of the third query in the Hadoop environment, adding indexes provided a significant increase in 

performance across all of the queries. 

Experiment 4: Partitioning 

In experiment 4, we added partitioning to the DETAIL_DT column in both the flat table in Hive and in the fact table in the 

star schema in the RDBMS. A partition was created for every date value. 

Results for Experiment 4 
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Query 
Min. Time 
(MM:SS) 

Max Time 
(MM:SS) 

Average 
(MM:SS) 

1 00:50 01:00 00:55 

2 01:04 01:10 01:06 

3 06:42 07:41 07:04 

4 01:07 01:13 01:09 

5 02:25 02:28 02:26 
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Query 
Min. Time 
(MM:SS) 

Max Time 
(MM:SS) 

Average 
(MM:SS) 

1 00:01 00:03 00:02 

2 00:02 00:06 00:04 

3 39:33 45:40 45:32 

4 00:02 00:46 00:17 

5 00:01 00:03 00:02 
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 Query No Partitions 
Average 
(MM:SS) 

Partitioned 
Average 

(H:MM:SS) 

Improvement 
(No Partitions to 

Partitioned) 

1 01:22 00:55 00:27 

2 01:29 01:06 00:23 

3 05:59 07:04 (01:05) 

4 01:34 01:09 00:25 

5 04:43 02:26 02:17 
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 Query No Partitions 
Average 
(MM:SS) 

Partitioned 
Average 
(MM:SS) 

Improvement 
(No Partitions to 

Partitioned) 

1 26:01 00:02 25:59 

2 00:39 00:04 00:35 

3 00:31 45:32 (45:01) 

4 17:28 00:17 17:11 

5 00:27 00:02 00:25 
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Charts for queries 2, 3, and 5 have been rescaled 

Partitioning significantly improved all queries except for the third query. Query 3 was slightly slower in Hive and 

significantly slower in the RDBMS. 

Experiment 5: Impala 

 

In experiment 5, we ran the queries using Impala on the Hive compressed sequence file table with compression and 

indexes. Impala bypasses MapReduce to use its own distributed query access engine. 

Results for Experiment 5 
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Query 
Time 

(MM:SS) 

1 00:10 

2 00:04 

3 15:48 

4 00:04 

5 06:46 

 
Analysis of Experiment 5 
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Query 
Average Hive 

(MM:SS) 
Impala Time 

(MM:SS) 
Improvement 

(Hive to Impala) 

1 01:22 00:10 01:12 

2 01:29 00:04 01:25 

3 05:59 15:48 (09:49) 

4 01:34 00:04 01:30 

5 04:43 06:46 (02:03) 
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The results for Impala were mixed. Three queries ran significantly faster, and two queries ran longer. 

Interpretation of Results 

The results of the first experiment were surprising. When we began the tests, we fully expected that the flat file structure 

would perform better than the star schema structure in the Hadoop and Hive environment. In the following table, we 

provide information that helps explain the differences in the amounts of time processing the queries. For example, the 

amount of memory required is significantly higher in the flat table structure for the query. Moreover, the number of 

mappers and reducers needed to run the query was significantly higher for the flat table structure. Altering system 

settings, such as TaskTracker heap sizes, showed benefits in the denormalized table structure. However, the goal of the 

experiment was to work with the default system settings in Cloudera Hadoop 4.2 and investigate the effects of structural 

changes on the data. 

 

Unique Visitors per Page for Safari 

  DENORMALIZED NORMALIZED DIFF 

Virtual Memory (GB) 7,452 2,927 4,525 

Heap (GB) 3,912 1,512 2,400 

Read (GB) 507 329 178 

Table Size (GB) 1,002 328 674 

Execution Plan 3967 maps/999 reduce 1279 maps/352 reduce   

Time (minutes) 42 14 28 

 
 

Our second experiment showed the performance increase that emerged from transitioning from text files to sequence files 

in Hive. This performance improvement was expected. However, the magnitude of the improvement was not. The queries 

ran about ten times faster when the data was stored in compressed sequential files than when the data was stored in 

uncompressed text files. The compressed sequence file optimizes disk space usage and I/O bandwidth performance by 

using binary encoding and splittable compression. This proved to be the single biggest factor with regard to data 

structures in Hive. For this experiment, we used block compression with SnappyCodec. 
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In our third experiment, we added indexes to the fact table in the RDBMS and to the flat table in Hive. As expected, the 

indexes generally improved the performance of the queries. The one exception was the third query, where adding the 

indexes did not show any improvement in Hive. The Hive Explain Plan helps explain why this is happening. In the 

highlighted section of the Hive Explain Plan, we see that there are no indexes used in the predicate of the query. Given 

the characteristics of the data, this makes sense because almost all of the values of DOMAIN_NM were the support site 

itself. The referring domain was predominantly www.google.com. 

Hive Explain Plan: 
STAGE DEPENDENCIES: 
  Stage-1 is a root stage 
  Stage-2 depends on stages: Stage-1 
  Stage-3 depends on stages: Stage-2 
  Stage-0 is a root stage 
STAGE PLANS: 
  Stage: Stage-1 
    Map Reduce 
      Alias -> Map Operator Tree: 
        visits_pp_ph_summary:page_click_flat_seq_ns 
          TableScan 
            alias: page_click_flat_seq_ns 
            Filter Operator 
              predicate: 
                  expr: ((domain_nm = ‘support.foo.com') and (referrer_domain_nm = 'www.google.com')) 
                  type: boolean 

 

Experiment 4 added partitioning to the table structures. Both the fact table and the flat table were partitioned by date in the 

DETAIL_DT column. Partitioning tables changes how Hive structures the data storage. In addition to the directory for each 

table, Hive creates subdirectories reflecting the partitioning structure. When a query is executed on Hive, the query does 

not need to scan the entire directory for the query. Rather, partition elimination enables the query to go directly to the 

subdirectory or subdirectories where that data is located to retrieve the results. Because many of our queries used 

DETAIL_DT in the WHERE clause of the query, execution time improved. The same improvement was seen in the 

RDBMS, which was able to use partition elimination for most of the queries. In the case of the third query, the predicate 

does not include DETAIL_DT. In this case, having partitions actually hurt query performance because the query needed to 

examine each partition individually to locate the relevant rows. The decrease in performance was significant in the 

RDBMS. 

Experiment 5 explored Impala and gauged the performance. Impala is a query engine that provides more SQL 

functionality in the Hive environment. Impala does not use MapReduce to process the data. Rather, it provides direct 

access to the data in HDFS through its own proprietary engine. 

Overall, three of the queries ran significantly faster in Impala. Two of the queries were worse in Impala. Interestingly, in 

our query for the top referrers, we needed to add a LIMIT clause following the ORDER BY clause because this is currently 

a requirement for Impala queries. Similar to the issue in query 3 in the Hive environment, query 3 was slow because a full 

table scan of all of the partitions was required to retrieve the data. 
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Conclusions 

Through our experiments, we have shown that structuring data properly in Hive is as important as in an RDBMS. The 

decision to store data in a sequence file format alone accounted for a performance improvement of more than 1,000%. 

The judicious use of indexes and partitions resulted in significant performance gains by reducing the amount of data 

processed.   

For data architects working in the Hive environment, the good news is that many of the same techniques such as indexing 

that are used in a traditional RDBMS environment are applicable. For those of us who are familiar with MPP databases, 

the concept of partitioned data across nodes is very familiar.   

The key takeaway is that we need to understand our data and the underlying technology in Hadoop to effectively tune our 

data structures. Simply creating a flat table or star schema does not result in optimized structures. We need to understand 

how our data is distributed, and we need to create data structures that work well for the access patterns of our 

environment. Being able to decipher MapReduce job logs as well as run explain plans are key skills to effectively model 

data in Hive. We need to be aware that tuning for some queries might have an adverse impact on other queries as we saw 

with partitioning.   

Future experimentation should look into the performance enhancements offered with other Hive file formats, such as 

RCFile, which organizes data by column rather than by row. Another data modeling test could examine how well collection 

data types in Hive work compared to traditional data types for storing data. As big data technology continues to advance, 

the features that are available for structuring data will continue to improve, and further options for improving data 

structures will become available. 
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Appendix 

Queries Used in Testing Flat Tables 

1. select top_directory, count(*) as unique_visits 
     from (select distinct visitor_id, 

                  split(requested_file, '[\\/]')[1] as top_directory 

             from page_click_flat 

            where domain_nm = 'support.sas.com' and 

                  flash_enabled='1' and 

                  weekofyear(detail_tm) = 48 and 

                  year(detail_tm) = 2012 

          ) directory_summary 

   group by top_directory 

   order by unique_visits; 

2. select domain_nm, requested_file, count(*) as unique_visitors, month 
     from (select distinct domain_nm, requested_file, visitor_id, 

                  month(detail_tm) as month 

             from page_click_flat 

            where domain_nm = 'support.sas.com' and 

                  referrer_domain_nm = 'www.google.com' 

          ) visits_pp_ph_summary 

   group by domain_nm, requested_file, month 

   order by domain_nm, requested_file, unique_visitors desc, month asc; 

3. select query_string_txt, count(*) as count 
     from page_click_flat 

    where query_string_txt <> '' and 

          domain_nm='support.sas.com' and 

          year(detail_tm) = '2012' 

   group by query_string_txt 

   order by count desc; 

4. select domain_nm, requested_file, count(*) as unique_visitors 
    from (select distinct domain_nm, requested_file, visitor_id 

            from page_click_flat 

           where domain_nm='support.sas.com' and 

                 browser_nm like '%Safari%' and 

                 weekofyear(detail_tm) = 48 and 

                 year(detail_tm) = 2012 

         ) uv_summary 

   group by domain_nm, requested_file 

   order by unique_visitors desc; 

5. select domain_nm, requested_file, count(*) as unique_visits 
     from (select distinct domain_nm, requested_file, visitor_id 

             from page_click_flat 

            where domain_nm='support.sas.com' and 

                  weekofyear(detail_tm) = 48 and 

                  year(detail_tm) = 2012 and 

                  seconds_spent_on_page_cnt > 10; 

          ) visits_summary 

   group by domain_nm, requested_file 

   order by unique_visits desc; 
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