

ETL Performance Tuning Tips

i

ETL Performance Tuning Tips

Introduction ..1
Overview ...1
Important Concepts ...2

Jobs, Flows, and Transformations in SAS Data Integration Studio ...2
Executing SAS Data Integration Studio Jobs ..2
Identifying the Server That Executes a Job...3
Intermediate Files for SAS Data Integration Studio Jobs ..3
Deleting Intermediate Files ..4

The Basics: Things to Consider ..5
Data Partitions Using Relational Databases or SAS Scalable Performance Data Server.........................5
Transformation and Column Optimizations ...6
Extra Mappings..7
Tips for Sizing Input Data to an ETL Flow ...7

Columns Input to the ETL Flow...7
Number of Bytes That Each Column Consumes ..7
Rows Input to the ETL Flow ..8

SAS Data Files Compression ..8
Data Validation and Data Cleansing..9
Star Schemas and Lookups ..9
Surrogate Keys..9
Remote versus Local Data ..10
Joins, Views, and Physical Tables...10
Dormant Data ..11
Simple Techniques for Writing ETL Flows...11

Display Job Status ..11
Verify Transformation’s Output ...11
Limit Transformation’s Input ..11

 ii

Select a Load Technique ..14

SAS Data Integration Studio Process Flow Analysis ...17
Applying SAS Invocation Options to ETL Flows..17

SAS Invocation Options for SAS Data Integration Studio Jobs and Transformations18
SAS Logs for Analyzing ETL Flows...18

Review SAS Logs during Job Execution...18
SAS Options for Analyzing Job Performance ...19
Re-Direct Large SAS Logs to a File ..20
View or Hide the Log in SAS Data Integration Studio ...20

Debugging Transformations in an ETL Flow ...21
Transformation Output Tables Used to Analyze ETL Flows..22

Viewing the Output File for a Transformation..22
SAS Options That Preserve Files Created during Batch Jobs..22
Re-Directing Output Files for a Transformation ..23
List Data Transformation Added to the ETL Flow ...24
User-Written Code Transformation Added to the ETL Flow..24

Simple Tuning of ETL Flows Results in Immediate Gains...25
Sorting Data...25

Tuning Sort Performance ..26
Disk Space Consumption When Sorting ...30

SAS SQL Joins ..35
Optimizing Join Performance ..35
Sort-Merge Joins...37
Index Joins ..38
Hash Joins ..41
Multi-Way Joins ...42
Relational Database Considerations...43

Indexes on SAS Data Sets ..45
WHERE Clauses Resolved in ETL Flows ...45
Allowing Index Joins..45
Verifying Key Uniqueness ...46
Index Used in SAS? ..46
Encouraging Index Usage...47
Indexes for Sorting ..47

 iii

Environment Tuning ..48
Disk Space Maximum for Intermediate Files ...48
Disk Space Usage for Intermediate Files ..48

Deleting Transformation Output Tables in a Long ETL Flow ..50
Hardware Considerations for ETL Flows...50

File Cache Management ...51
I/O Performance Improvement..51
Direct I/O ...52

Monitoring SAS Data Integration Studio Flows..53

Advanced Topics ...54
Removing Non-Essential Indexes and Constraints During a Load..54
Optimizing Join Order and Performance ...55
GROUPINTERNAL Option in PROC MEANS ...55
Lookups in a Star Schema ..55

Hash-Object Lookup ..56
Format-Based Lookup ...59
Performance Considerations with Lookup ..61

Processing Level Performed by a Relational Database ..61
UPCASE and LOWCASE Functions versus UPPER and LOWER Functions62

Getting Counts of the Number of Rows in a Table ..64
Row Counts in SAS Data Sets ..64
Row Counts in Databases...66

Bulk Loading the Relational Database...66
SAS Date Functions ..66
Views or Physical Tables for ETL Flows..68

Views or Physical Tables for SAS Data Integration Studio Flows...69
Loading Fact and Dimension Tables When Working with Dimensional Models......................................70

Overview of Dimensional Modeling...70
Transformations for Generating Keys and Loading Dimension Tables...70
Transformations for Loading Fact Tables and Matching Fact Tables to Dimension Tables71
Fact and Dimension Tables: Order of Loading Is Important ...71
SAS Scalable Performance Data Server Star Joins..71

Parallel ETL Processing ..73
Software and Hardware Setups for Executing ETL Code in Parallel ..74

 iv

Software Setup..74
Hardware Setup ..74
System Throttles ...75
File System Requirements for Grid Computing...76
How to Approach a Parallel ETL Effort..76

Appendix 1: Customizing or Replacing Generated Code in SAS Data Integration Studio78
Modify Configuration Files or SAS Start Commands...78

MPRINT Option in SAS Data Integration Studio ...79
Specify Options on the Code Generation Tab...79
Add SAS Code on the Pre- and Post-Processing Tab ..79
SAS System Options for Transformations ...80
Replace Generated Code for a Transformation with Customized Code..81
Add Your Own Code to User-Written Code Transformation..82
Add Your Own Transformation to the Process Library ..83

Appendix 2: A Sample Scenario for Using Parallel ETL Processing ...84
Recommended Reading ..88
Glossary..89

1

Introduction

A team of ETL performance experts at SAS Institute reviewed ETL flows for several SAS®9
solutions with the goal of improving the performance and scalability of the solutions. The
recommendations that are presented here are based on team observations and performance testing. A
review of concepts that are important to understanding the content of this paper is given at the
beginning of the paper, and a Glossary is provided at the end of the paper.

Overview

This paper provides important ETL (extract, transform, and load) performance, tuning, and capacity
information for SAS®9 and SAS Data Integration Studio. ETL concepts are introduced, and ETL
performance topics are discussed in depth. Examples are given, as needed. Topics include how to
analyze and debug flows, gain efficiency quickly, set up the system environment, and, when
necessary, customize advanced performance techniques. Many best practice recommendations are
presented that will help you to customize and enhance the performance of new and existing ETL
processes.

This paper is written for developers, administrators, and project leaders who are responsible for data
integration and who have an understanding of the basic principles of data warehouse ETL processes.
In addition, business sponsors, project managers, and IT support staff might find the material helpful
when they provide guidelines for designing ETL processes that scale up to meet your requirements
across your enterprise.

Many examples in this paper require a basic understanding of data warehousing and relational
database concepts such as tables, rows, keys, joins, and views. It is helpful (but not required) for you
to understand the SAS language. It is also helpful if you have knowledge of the SAS®9 architecture
and the role that metadata plays in the architecture. For more information about the SAS®9
architecture read the SAS Intelligence Platform: Overview available at
support.sas.com/documentation/configuration/biov.pdf.

The recommendations that are presented in this paper are applicable:

• to SAS 9.1.3.
• specifically to ETL flows that use Base SAS data sets as the data store. As appropriate,

commentary and best practices are applied to discussions about flows that use data from the
SAS Scalable Performance Data Server (SAS SPD Server) and relational databases.

• across hardware platforms and operating environments except where noted.
• to code that is generated by SAS Data Integration Studio and to custom code that is

developed outside SAS Data Integration Studio.

http://support.sas.com/documentation/configuration/biov.pdf

 2

Important Concepts

Jobs, Flows, and Transformations in SAS Data Integration Studio
In SAS Data Integration Studio, a job is a collection of SAS tasks that specify processes that create
output. Each job generates or retrieves SAS code that reads sources and creates targets in physical
storage. To generate code for a job, you must create a process flow diagram that defines the
sequence of each source, target, and process in a job. Each process in an ETL flow is specified by a
task called a transformation. A transformation specifies how to extract data, transform data, or load
data into data stores. Each transformation generates or retrieves SAS code. You can specify user-
written code for any transformation in an ETL flow.

Figure 1 shows an ETL flow for a job that reads data from a source table, sorts the data, and then
writes the sorted data to a target table.

Figure 1. SAS Data Integration Studio Process Flow Diagram for a Job That Sorts Data

The SAS data set ALL_EMP specifies metadata for the source table. The SAS Sort transformation
sorts the input data to the temporary output table Sort Target-W5A6Z25L. The Table Loader
transformation reads the output from the previous task and loads this data into a target table. The SAS
data set Employees Sorted is the target table. SAS Data Integration Studio uses metadata to generate
SAS code that reads the data set ALL_EMP, sorts this information, writes the sorted information to a
temporary output table, then writes it to the Employees Sorted table.

Executing SAS Data Integration Studio Jobs
You can execute a SAS Data Integration Studio job by using one of the following options:

• the Submit Job option to submit the job for interactive execution on a SAS Workspace

Server.

• the Deploy for Scheduling option to generate code for the job and save it to a file;
then, you can execute the job in batch mode.

• the Stored Process option to generate a stored process for the job and save it to a file;
then, you can execute the job via a stored process server.

• the Web Service option to generate a Web service for the job and save it to a hosting
server; then, you can execute the job via a Web server.

• the SAVE AS option to save the job to a file that can be executed later.

3

Identifying the Server That Executes a Job
In Business Intelligence Architecture applications in SAS®9 such as SAS Data Integration Studio, a
SAS Application Server represents an existing server environment that contains servers, libraries,
schemas, directories, and other resources. Usually, an administrator defines this environment and tells
the SAS Data Integration Studio user which server to select as the default (usually, the default is
SASMAIN).

Behind-the-scenes, when you submit a SAS Data Integration Studio job for execution, it is submitted
to a SAS Workspace Server component of the relevant SAS Application Server. The relevant SAS
Application Server is one of the following:

• the default server that is specified on the SAS Server tab in the SAS Data Integration
Studio Options window

• the SAS Application Server that a job is deployed to when the Deploy for
Scheduling option is used.

It is important to know which SAS Workspace Server or which servers will execute a job in order to
perform the following tasks:

• store data where it can be accessed efficiently by the transformations in a SAS Data
Integration Studio job, as described in the section "Remote versus Local Data".

• locate the SAS WORK library where the job’s intermediate files are stored by default

• specify the SAS options that you want to apply to all jobs that are executed on a given
server, as described in the section "SAS Invocation Options for SAS Data Integration
Studio Jobs and Trabsformations".

To identify the SAS Workspace Server or the servers that will execute a SAS Data Integration Studio
job, use SAS Management Console to examine the metadata for the relevant SAS Application
Server.

Intermediate Files for SAS Data Integration Studio Jobs
Transformations in a SAS Data Integration Studio job can produce three types of intermediate files:

• procedure utility files are created by the SORT and SUMMARY procedures if these

procedures are used in the transformation

• transformation temporary files are created by the transformation as it is working

• transformation output tables are created by the transformation when it produces its
result; the output for a transformation becomes the input to the next transformation in the
flow.

For example, suppose you execute the job with the ETL flow that is shown in Figure 1. When the
SAS Sort is finished, it creates an output table. The default name for the output table is a two-level
name that contains the libref WORK and a generated member name, for example, work.W5A6Z25L.
This output table becomes the input to the next task in the ETL flow.

4

By default, procedure utility files, transformation temporary files, and transformation output tables are
created in the WORK library. You can use the -WORK invocation option to force all intermediate files
to a specified location. You can use the -UTILLOC invocation option to force only utility files to a
separate location. (There are more details about this topic throughout this paper.)

Knowledge of intermediate files helps you to:

• view or analyze the output tables for a transformation and verify that the output is correct,

as described in the section "Transformation Output Tables Used to Analyze ETL Flows".

• estimate the disk space that is needed for intermediate files, as described in the section
"Disk Space Maximum for Intermediate Files".

Deleting Intermediate Files
Utility files are deleted by the SAS procedure that created them. Transformation temporary files are
deleted by the transformation that created them.

When a SAS Data Integration Studio job is executed in batch, transformation output tables are deleted
when the ETL flow ends or the current server session ends.

When a job is executed interactively in SAS Data Integration Studio, transformation output tables are
retained until the Process Designer window is closed or the current server session is ended in some
other way (for example, by selecting Process ► Kill from the menu.

Transformation output tables can be used to debug the transformations in a job, as described in the
section "Transformation Output Tables Used to Analyze ETL Flows". However, as long as you keep
the job open in the Process Designer window, the output tables remain in the WORK library on the
SAS Workspace Server that executed the job. If this is not what you want, you can manually delete
the output tables, or you can close the Process Designer window and open it again, which will delete
all intermediate files.

 5

The Basics: Things to Consider
Building efficient processes to extract data from operational systems, transforming the data into the
appropriate data structures that form the data warehouse, and loading the data into those structures is
critical to the success of the data warehouse. Efficiency becomes more important as data volumes and
complexity increase. This section provides simple recommendations for creating ETL processes.
Specific SAS Data Integration Studio optimizations and more general considerations are discussed.
These techniques help ensure the success and longevity of the ETL project and the overall success of
the data warehouse.

Data Partitions Using Relational Databases or SAS Scalable
Performance Data Server
The following advantages result from partitioning data:

• Updates--partitioning enables you to manage smaller tables that do not have to be
uploaded as frequently.

• Performance--partitioning enables you to spread your data across your I/O subsystem
(more disks) to increase your throughput capability.

Consider partitioning the source data and the target data on a boundary that best matches the needs of
the consumers of the data warehouse. For example, if users will most often query information from
the warehouse based on monthly data, it would be best to partition the data by month. Here are some
other factors to consider when partitioning data:

• Select a natural boundary such as the Time boundary, which can minimize the size of the
files that are being imported. Using weekly or monthly extracts of the data can considerably
reduce the amount of data that has to be loaded or extracted from an operation source system.
This can speed-up the delivery of the data to the transformations and minimize load times.
Spreading these smaller partitions across your I/O subsystem helps parallel processes access
the data more quickly. (Read more about parallel processing in the section "Parallel ETL
Processing".)

• Select boundaries, by using WHERE clauses or key-based partitions, that describe the data.

For example, partition the data by State, County, Social Security Number, or some other
value that describes the data.

In addition, when you are partitioning, try to distribute the data as evenly as possible across the
partitions so that one transformation doesn't have to read or load the bulk of the data at one time. If
one partition is significantly larger than another partition, the benefit of the partitioning scheme is
reduced.

 6

Transformation and Column Optimizations
For efficiency, try to minimize the number of times that the data is read and written to disk. Where
possible, consider using views to access the data directly. Many transformations in SAS Data
Integration Studio enable you to set the output to be a view instead of a physical table, as described in
the section "Views or Physical Tables for SAS Data Integration Studio Flows". Using views
eliminates extra Reads and Writes of the data, which use additional I/O cycles and take up disk space.

As the data is coming in, consider dropping any columns that are not required for subsequent
transformations in the flow. If you drop columns and make aggregations early in the ETL flow instead
of later, then extraneous detail data is not carried over to all the transformations in the flow. The goal
is to create, early in an ETL flow, the structure that matches the final target table structure as closely
as possible, so that extra data is not carried over.

To drop columns in the output table for a SAS Data Integration Studio transformation, click the
Mapping tab and remove the extra columns from the Target table area on the tab. Use derived
mappings to create expressions to map several columns together. You can also turn off automatic
mapping for a transformation by right-clicking the transformation in the ETL flow, then deselecting
the Automap option on the pop-up menu. Then, you can build your own transformation output table
columns to match, as closely as possible, your final target table, and map columns as necessary.

When you map columns, consider the level of detail that is being retained. Ask yourself these
questions:

• Is the data being processed at the correct level of detail?

• Can the data be aggregated?

Aggregations and summarizations eliminate redundant information and reduce the number of records
that have to be retained, processed, and loaded into the data warehouse.

Also, because data volumes multiply quickly, you must ensure that the size of the variables that are
being retained in the data warehouse is appropriate to the data length. When you do this, consider the
current and the future uses of the data. Answering the following questions will help you determine the
correct size variables for the data.

• Are the keys the right length for the current data?

• Will the keys accommodate future growth?

• Are the data sizes on other variables correct?

• Do the data sizes need to be increased or decreased?

 7

Extra Mappings
As data is passed from step-to-step in an ETL flow, columns can be added or modified. For example,
column names, lengths, or formats might be added or changed. In SAS Data Integration Studio, these
modifications to a table (via the transformation’s Mapping tab) often result in generating an
intermediate SQL view step. In many situations, that intermediate step adds processing time. Try to
avoid generating more of these steps than is necessary.

Instead of performing column modifications or additions throughout many transformations in an ETL
flow, re-work your flow so that these activities are consolidated in fewer transformations. Avoid using
unnecessary aliases. If the mapping between columns is one-to-one, keep the same column names.
Avoid multiple mappings of the same column, for example, don’t convert a column from a numeric to
a character value in one transformation, and then convert that column from a character to a numeric
value in another transformation. For aggregation steps, re-name columns in the aggregation
transformations instead of in subsequent transformations.

In addition to consolidating the intermediate SQL view steps, you might observe that the logic that is
performed by one of these views can be performed by using different code in the preceding or the
following generated steps. If necessary, you can incorporate user-written code into an ETL flow using
one of the methods that are described in "Appendix 1: Customizing or Replacing Generated Code in
SAS Data Integration Studio".

Tips for Sizing Input Data to an ETL Flow
To size input data to an ETL flow, examine the following factors:

• number of columns that will be input to the ETL flow

• number of bytes that each column consumes

• number of rows that will be input to the ETL flow

For details about this topic, see the section "Sizing Input Data".

Columns Input to the ETL Flow
You can subset the number of columns that are input to the ETL flow in order to create a "thinner"
table by using, for example, a DROP or a KEEP clause or SQL that selects only some rows.
Eliminated columns do not appear in the ETL flow.

Number of Bytes That Each Column Consumes
The width of a SAS character column is represented by its format. For example, a character column
that has the format $30 holds 30 characters. In the usual condition, that is, SAS running in single-byte
character mode, this column consumes 30 bytes. (If you run SAS in Unicode or in another multi-byte
character mode, the character column width doubles, as a minimum.) With the exception of short
numerics, other columns (such as numerics, dates, datetimes, and so on) consume 8 bytes per column.
If input data is from a relational database, columns are translated to a SAS format. CHARACTER(30)
and VARCHAR(30) columns are translated to $30, which consumes 30 bytes. Other relational
database columns translate to SAS types that consume 8 bytes. The CONTENTS procedure displays
space consumption for each column. The following PROC CONTENTS statements and partial output

 8

are for a relational database table 'input' that has four columns: name CHAR(30), age INTEGER,
enrollment_time TIMESTAMP, and description VARCHAR(64). The number of bytes per column
appear under the column heading "Len".

proc contents varnum data=rdbms.input;

run;

 Variables in Creation Order

Variable Type Len Format Informat Label

1 name Char 30 $30. $30. name

2 age Num 8 11. 11. age

3 enrollment_time Num 8 DATETIME26.6 DATETIME26.6 enrollment_time

4 description Char 64 $64. $64. description

Rows Input to the ETL Flow
You can subset the number of rows that are input to an ETL flow in order to create a "shorter" table
by using WHERE-clause filtering or other means, for example, the OBS and FIRSTOBS options.
Eliminated rows do not appear in the ETL flow. Determining the initial count of input rows, before
subsetting, is straightforward and efficient for SAS data. PROC CONTENTS lists the total row count
as Observations. ,However, for relational database data, PROC CONTENTS does not indicate row
count. You can determine row count for a relational database table by using SELECT COUNT(*) in
SQL, which is sometimes an expensive relational database operation. It is also expensive to pre-
determine row count when your input is a SAS SQL view that translates to a join or other complex
logic.

SAS Data Files Compression
When working with "large" SAS data files, SAS users are often confronted with the problem of how
to reduce the amount of disk space that’s required to store the file without deleting important columns
or rows. In such cases, use the COMPRESS=YES data set option. Most of the time, the COMPRESS=
data set option reduces the size of your SAS data file but, if there are not a lot of repeating blanks, it
might increase the size of the data file. There is also a cost of increased CPU utilization when
executing DATA or procedure steps on the compressed data set, because the records in the file must
be uncompressed before SAS can use them.

When compression is specified, depending on the characteristics of each observation in the data set,
SAS removes repeating blanks and adds a "tag" to each observation that contains the information that
SAS needs to uncompress each row when it is used. The question is whether the overhead of using
compression is larger or smaller than the amount of storage space that is saved. SAS displays the
results of applying the data set compression algorithm in the SAS log.

 9

It is recommended that you specify the data set option COMPRESS=YES on a file-by-file basis and
not use the SAS system global option COMPRESS=YES. The SAS system global option compresses
every file (including very small temporary files) and the overhead of compression might degrade the
performance of your SAS job.

For details about using compression with SAS, see the following paper, which gives the pros and cons
for using SAS compression with your SAS data files: "Indexing and Compressing SAS® Data Sets:
How, Why, and Why Not" at www2.sas.com/proceedings/sugi28/003-28.pdf.

Data Validation and Data Cleansing
To reduce the volume and increase the accuracy of the data that is sent through the ETL flow, validate
and clean your data. If you need to, clean and delete duplicates in the incoming data early in the ETL
flow so that extraneous data that might cause errors in the flow later in the process is eliminated.

You can clean the data by using the SAS Sort transformation with the NODUPKEY option or use the
Data Validation transformation. In a single pass of the data, the Data Validation transformation
detects missing-values and invalid values. It is important to eliminate extra passes over the data, so
you should try to program all validations in a single transformation. The Data Validation
transformation also eliminates duplicates and provides error-condition handling.

 Note: You can also use the DataFlux (a SAS company, www.dataflux.com) Data Quality
transformations, apply Lookup Standardization, and create Match Code for data cleansing.

Star Schemas and Lookups
When you are building ETL flows that require lookups (such as fact table loads and data validation),
consider using the Lookup transformation that is available in SAS Data Integration Studio. The
Lookup transformation is built by using a fast, in-memory lookup technique that is known as DATA
step hashing. This transformation allows multi-column keys, has useful error-handling techniques,
such as control over missing value handling, and the ability to set limits on errors. For details about
lookups, see the section "Lookups in a Star Schema".

When you are working with star schemas, you can use the Slowly Changing Dimensions
transformation. This transformation efficiently detects changed data and is optimized for performance.
Several change-detecting techniques based on date, current indicator, and version number are
supported. For details about the Slowly Changing Dimensions transformation, see the section
"Loading Fact and Dimension Tables When Working with Dimensional Models".

Surrogate Keys
Another technique to consider when you are building the data warehouse is to use incrementing
integer surrogate keys as the main key technique in your data structures. Surrogate keys are values
that are assigned sequentially, as needed, to populate a dimension. They are very useful because they
can shield users from changes in the incoming data that might invalidate the data in a warehouse (and
require re-design and re-loading). In this case, the surrogate key remains valid, but an operational key
would not.

http://www2.sas.com/proceedings/sugi28/003-28.pdf
http://www.dataflux.com

 10

The Slowly Changing Dimensions transformation includes a surrogate key generator. You can also
plug in your own methodology that matches your business environment to generate the keys and point
the transformation to it. In addition, there is a Surrogate Key Generator transformation that builds
incrementing integer surrogate keys.

Avoid character-based surrogate keys. In general, functions that are based on integer keys are more
efficient because they avoid the need for subsetting or string partitioning that might be required for
character-based keys. Also, numerics are smaller in size than character strings, thereby reducing the
amount of storage that is required in the warehouse.

For more information about surrogate keys and the Slowly Changing Dimensions transformation, the
section "Loading Fact and Dimension Tables When Working with Dimensional Models".

Remote versus Local Data
Remote data has to be copied locally because it is not accessible by the relevant components in the
default SAS Application Server at the time that the code was generated. SAS uses SAS/CONNECT
and the UPLOAD and DOWNLOAD procedures to move data. It can take longer to access remote
data than local data, especially when you access large data sets.

For example, the following data is considered local in a SAS Data Integration Studio job:

• data that can be accessed as if it were on the same computer(s) as the SAS Workspace
Server component(s) of the default SAS Application Server

• data that is accessed with a SAS/ACCESS engine (used by the default SAS Application
Server).

The following data is considered remote in a SAS Data Integration Studio job:

• data that cannot be accessed as if it were on the same computer(s) as the SAS Workspace
Server

• data that exists in a different operating environment from the SAS Workspace Server
component(s) of the default SAS Application Server (such as mainframe data that is
accessed by servers running under Microsoft Windows).

Joins, Views, and Physical Tables
Many ETL flows require table joins that can be resource-intensive. For details about optimizing joins,
see the section "SAS SQL Joins".

In general, each task in an ETL flow creates an output table that becomes the input of the next task in
the flow. Consider which format would be best for transferring data between s in the flow. For a
discussion of the relative merits of views and physical tables in an ETL flow, see the section "Views
or Physical Tables for ETL Flows".

 11

Dormant Data
Dormant data is data that exists in the warehouse but does not contribute to current usage patterns. As
a data warehouse evolves over time, data ages. Data that does not contribute to queries is taking
valuable space and time. By removing dormant data, user-access times can be improved. Consider
archiving aged-out data. Dimensional data can be aged-out based on whether records are current.
Other techniques include partitioning the data and storing it based on time, such as monthly or yearly
values.

Simple Techniques for Writing ETL Flows
When you build ETL flows, begin with simple tasks and build up to complex tasks instead of
beginning with complex tasks. For example, build multiple, individual jobs and validate each job
instead of building large, complex jobs. This will ensure that the simpler logic produces the expected
results.

Also, consider subsetting incoming data or setting a pre-process option to limit the number of rows
that are initially processed. This enables you to fix job errors and validate results before applying the
processes to large volumes of data or to complex tasks. For more information about adding a pre-
process to a SAS Data Integration Studio job, see the section "Add SAS Code on the Pre- and Post-
Processing Tab".

Display Job Status
After you submit one or more jobs for execution, display the Job Status Manager window to view the
name, status, starting time, ending time, and application server that will be used for all jobs that are
submitted in the current session. From the SAS Data Integration Studio desktop, select Tools ►Job
Status Manager to open the Job Status Manager window.

Verify Transformation’s Output
If a job is not producing the expected output or if you suspect that something is wrong with a specific
transformation, you can view the output tables for the transformations in the job in order to verify that
each transformation is creating the expected output. See the section "Transformation Output Tables
Used to Analyze ETL Flows".

Limit Transformation’s Input
When you are debugging and working with large data files, you might find it useful to decrease some
or all the data that is flowing into a specific task. Here are some suggestions for doing this:

• Use the OBS= data set option on input tables of DATA steps and procedures.

In SAS Data Integration Studio, you can do this with a simple edit in the source editor.

In version 2 of the SQL Join transformation, to limit observations, specify the following
options: "Last Row to Process" and "First Row to Process" (optional). In a multi-table
join process, you can specify these settings individually for each table that participates in
the join.

 12

In the following example, the query will pull only 1000 rows from the fact table, but it
will find matches from the complete dimension table.

proc sql;

 create table finalTable as

 select a.*, b.dimVar1

 from factTable(obs=1000) as a, dimTable as b

 where a.id=b.id;

quit;

In the example shown in Figure 2, the query that is shown in the bottom-right panel of the
window will pull 10 rows from the PRODUCTS source table, beginning at row 10.

Figure 2. Subsetting Rows in Version 2 of SQL Join Transformation

 13

• Specify the option on the transformation to pull in only a specific number of input
observations from all tables that are used in the query, as shown in Figure 3.

Figure 3. Setting the Number of Input Rows in Version 2 of SQL Join Transformation

• Insert the OBS= system option into the desired part of your process flow.

In SAS Data Integration Studio, you can do this by adding the option for a temporary
amount of time on a transformation’s Options tab, or by adding the following
OPTIONS statement on the Pre and Post Processing tab in the job’s Property
window.

options obs=<number>;

 14

Here are some important facts to consider when you use the OBS= system option.

 All inputs to all subsequent tasks will be limited to the specified number until
you re-set the OBS= system option.

 Setting the value for the OBS= system option too low, prior to a join or a merge,
can result in few or no matching records, depending on the data.

 In the SAS Data Integration Studio Process Editor, the OBS= system option
stays in effect for all runs of the job until it is re-set or the Process Designer
window is closed. The syntax for re-setting the option is:

options obs=MAX;

 Note: Removing the preceding line of code from the Process Editor does not re-set
the OBS= system option. You must re-set it by using the preceding OPTIONS
statement or by closing the Process Designer window.

Select a Load Technique
An important step in an ETL process usually involves loading data into a permanent physical table
that is structured to match your data model. As the designer or builder of an ETL process flow, you
must identify the type of load that your process requires in order to: append all source data to any
previously loaded data, replace all previously loaded data with the source data, or use the source data
to update and add to the previously loaded data based on specific key column(s). When you know the
type of load that is required, you can select the techniques and options that are available that will
maximize the step’s performance.

In SAS Data Integration Studio, you use the Table Loader transformation to perform any of the three
load types (or "Load style" as they are labeled in Figure 4). The transformation generates the code that
is required in order to load SAS data sets, database tables, and other types of tables, such as an Excel
spreadsheet. When loading tables, the transformation maintains indexes and constraints on the table
that is being loaded.

Figure 4. Load Styles on the Table Loader Transformation Load Technique Tab

 15

After you have selected the Load style, you can choose from a number of load techniques and options.
Based on the Load style that you select and the type of table that is being loaded, the choice of
techniques and options will vary. The Table Loader transformation generates code to perform a
combination of the following tasks:

• Remove all rows

• Add new rows

• Match rows

• Update rows

The following sections describe the SAS code alternatives for each task, and provide tips for selecting
the load technique (or techniques) that will perform best.

Remove All Rows
This task is associated with the Replace Load style. Based on the type of target table that is being
loaded, two or three selections are listed in the "Replace" combo-box:

• Replace entire table – uses PROC DATASETS to delete the target table

• Replace all rows using truncate - uses PROC SQL with TRUNCATE to remove all rows
(only available for some databases)

• Replace all rows using delete - uses PROC SQL with DELETE * to remove all rows

When you select "Replace entire table", the table is removed and disk space is freed. Then the table is
re-created with 0 rows. Consider this option unless your security requirements restrict table deletion
permissions (a restriction that is commonly imposed by a database administrator on database tables).
Also, avoid this method if the table has any indexes or constraints that SAS Data Integration Studio
cannot re-create from metadata (for example, check constraints).

If available, consider using "Replace all rows using truncate". Either of the "Remove all rows..."
selections enable you to keep all indexes and constraints intact during the load. By design, using
TRUNCATE is the quickest way to remove all rows. The "DELETE *" syntax also removes all rows;
however, based on the database and table settings, this choice can incur overhead that will degrade
performance. Consult your database administrator or the database documentation for a comparison of
the two techniques.

 Caution: When "DELETE *" is used repeatedly to clear a SAS table, the size of that table
should be monitored over time. "DELETE *" only performs logical deletes for SAS tables,
therefore, a table’s physical size will grow and the increased size can negatively affect
performance.

Add New Rows
For this task, the Table Loader transformation provides two techniques for all three Load styles:
PROC APPEND with the FORCE option and PROC SQL with the INSERT statement. The two
techniques handle discrepancies between source and target table structures, differently. For details
about PROC APPEND and PROC SQL, see the SAS Help documentation.

 16

PROC APPEND with the FORCE option is the default. If the source is a large table and the target is
in a database that supports bulk load, PROC APPEND can take advantage of the bulk-load feature.
Consider bulk loading the data into database tables, by using the optimized SAS/ACCESS engine bulk
loaders. (It is recommended that you use native SAS/ACCESS engine libraries instead of ODBC
libraries or OLEDB libraries for relational database data. SAS/ACCESS engines have native access to
the databases and have superior bulk-loading capabilities.) For more information about bulk loading,
see the section "Bulk Loading the Relational Database".

PROC SQL with the INSERT statement performs well when the source table is small. This is because
you don’t incur the overhead that is necessary to set up bulk loading. PROC SQL with INSERT adds
one row at a time to the database.

Match Rows and Update Rows
The Table Loader transformation provides three techniques for matching and updating rows in a table.
All these techniques are associated with the Update/Insert Load style.

• DATA step with the MODIFY BY

• DATA step with the MODIFY KEY=

• PROC SQL with the WHERE and SET statements

For each of these techniques, you must select a column (or columns) or an index for matching. All
three techniques will update matching rows in the target table. The options MODIFY BY and MODIFY
KEY= have the added benefit of being able to take unmatched records and add them to the target table
during the same pass through the source table.

Of these three choices, the DATA step with MODIFY KEY= often out-performs the other update
methods in tests conducted on loading SAS tables. An index is required. MODIFY KEY= can also
perform adequately for database tables when indexes are used.

When PROC SQL with the WHERE or SET statement is used, performance varies. Neither of these
statements in PROC SQL requires data to be indexed or sorted, but indexing on the key column(s) can
greatly improve performance. Both of these statements use WHERE processing to match each row of
the source table with a row in the target table.

The update technique that you choose depends on the percentage of rows being updated. If the
majority of target records are being updated, the DATA step with MERGE (or UPDATE) might
perform better than the DATA step with MODIFY BY or MODIFY KEY= or PROC SQL because
MERGE makes full use of record buffers. Performance results can be hardware and operating-
environment dependent, so you should consider testing more than one technique.

 Note: Though the general Table Loader transformation does not offer the DATA step with
MERGE as a load technique, you can revise the code for the MODIFY BY technique to do a
merge and save that as user-written code for the transformation. (See "Appendix 1: Customizing
or Replacing Generated Code in SAS Data Integration Studio".)

 Tip: You should also take into consideration the number of indexes and the number of column
constraints that exist. Temporarily removing these during the load can significantly improve
performance. See the advanced topic "Removing Non-Essential Indexes and Constraints During
a Load".

 17

SAS Data Integration Studio Process Flow Analysis
Occasionally, an ETL flow might run longer than you expect, or the data that is produced might not
be what you anticipate (either too many records or too few). In such cases, it is important to
understand how an ETL flow works, so that you can correct errors in the flow or improve its
performance.

A first step in analyzing ETL flows is being able to access information from SAS that explains what
happened during the run. If there were errors, you need to understand what happened before the errors
occurred. If you're having performance issues, the logs will explain where time is being spent. Finally,
if you know which SAS options are set and how they are set, this can help you find out what is going
on in your ETL flows.

The next step in analyzing ETL flows is interpreting the information that you obtain. This section
discusses how to use the SAS log to gather important information, how to analyze this information,
how to determine option settings, how to get the return code from a job, and how to maintain the
intermediate files after the ETL flow is completed so that you can review what is being created.

Applying SAS Invocation Options to ETL Flows
Most SAS options can be specified in several locations, such as in configuration files, at invocation,
and in SAS source code as global, libname, or data set options.

Invocation options override options specified in the configuration file, with the exception of SAS
restricted options that are supported on the UNIX and z/OS operating environments. Restricted
options are defined by SAS Administrators and cannot be overridden. The options that are suggested
in this paper are, usually, not restricted by SAS Administrators. To see what configuration files are
read at SAS startup, including any files that contain restricted options, submit the following code in
your SAS session or SAS program:

proc options option=config value;

run;

To see any restricted options that are supported on the UNIX or z/OS operating environments, submit
the following code:

proc options restrict;

run;

For further information about SAS configuration files and SAS invocation options, see the topics
about "configuration" and "invoking SAS" in your SAS online documentation.

 18

SAS Invocation Options for SAS Data Integration Studio Jobs and
Transformations
When you submit a SAS Data Integration Studio job for execution, it is submitted to a SAS
Workspace Server component of the relevant SAS Application Server. The relevant SAS Application
Server is one of the following:

• the default server that is specified on the SAS Server tab in the Options window

• the SAS Application Server to which a job is deployed with the Deploy for
Scheduling option.

To set SAS invocation options for all SAS Data Integration Studio jobs that are executed by a
particular SAS server, specify the options in the configuration files for the relevant SAS Workspace
Servers, batch or scheduling servers, and grid servers. (Do not set these options on SAS Metadata
Servers or SAS Stored Process Servers.)

You can set SAS system options for a particular job on the Pre and Post Process tab in the
Properties window for a job. For details about adding a pre-process to a SAS Data Integration Studio
job, see the section "Add SAS Code on the Pre- and Post-Processing Tab".

The Property window for transformations in a job has an Options tab with a System Options
field. Use the System Options field to specify options for a particular transformation in a job’s
ETL flow.

SAS Logs for Analyzing ETL Flows
The errors, warnings, and notes in a SAS log provide a wealth of information about ETL flows.
However, large SAS logs can decrease performance, so the costs and benefits of large SAS logs
should be evaluated. For example, you might not want to create large SAS logs by default, in a
production environment.

Review SAS Logs during Job Execution
The SAS logs from your ETL flows are an excellent resource to help you understand what is
happening as the flows execute. For example, when you look at the run times shown in the log,
compare the real-time values to the CPU time (user CPU plus system CPU). If there is a difference of
20-25%, then you should look at the hardware to see if there is a computer resource bottleneck. For
more information about how the computer resources are being used by the SAS process, see "Solving
SAS Performance Problems: Employing Host Based Tools" at
support.sas.com/rnd/scalability/papers/TonySUGI31_20060403.pdf. If the real time and the CPU time
vary greatly and these times should be similar in your environment, find out what is causing the
difference.

If you think that you have a hardware issue, see "A Practical Approach to Solving Performance
Problems with the SAS System" at support.sas.com/rnd/scalability/papers/solve_perf.pdf. This paper
provides information about what to look for and what investigative tools to use.

http://support.sas.com/rnd/scalability/papers/TonySUGI31_20060403.pdf
http://support.sas.com/rnd/scalability/papers/solve_perf.pdf

 19

If you determine that your hardware is properly configured, then next look at what the SAS code is
doing. Transformations generate SAS code. Understanding what this code is doing is very important
to ensure that you do not duplicate tasks, especially SORTs, which are very resource-intensive. For
details about sorts, see the section "Sorting Data".

The ultimate goal is to configure the hardware so that you can load your data in the desired time frame
by avoiding needless I/O in the ETL flows.

SAS Options for Analyzing Job Performance
To analyze performance, it is recommended that you add the following SAS options to capture
detailed information in the log about what the SAS tasks are doing:

FULLSTIMER

MSGLEVEL=I (This option prints additional notes that pertain to indexes,
merge processing, sort utilities, and CEDA usage; along with the standard
notes, warnings, and error messages.)

SOURCE, SOURCE2

MPRINT

NOTES

To interpret the output from the FULLSTIMER option, see "A Practical Approach to Solving
Performance Problems with the SAS System" at
support.sas.com/rnd/scalability/papers/solve_perf.pdf.

In addition to the preceding options, the following SAS statements will echo useful information to the
SAS log:

PROC OPTIONS OPTION=UTILLOC; run;

PROC OPTIONS GROUP=MEMORY; run;

PROC OPTIONS GROUP=PERFORMANCE; run;

LIBNAME _ALL_ LIST;

There are hundreds of SAS options, and the PROC OPTIONS statement lists all the SAS options and
their current settings in the SAS log. If you want to see the value that was specified for the SAS
MEMORY option, issue the PROC OPTIONS statement with the GROUP=MEMORY parameter. If you
want to see only the SAS options that pertain to performance, issue the PROC OPTIONS statement
with the GROUP=PERFORMANCE parameter.

The LIBNAME _ALL_ LIST statement lists to the SAS log information (physical path location,
engine being used, and so on) regarding each libref that is currently assigned to the SAS session. This
information is helpful for understanding which file systems on the computer are being used during the
ETL flow.

http://support.sas.com/rnd/scalability/papers/solve_perf.pdf

 20

For more information, see the section "SAS Invocation Options for SAS Data Integration Studio Jobs
and Transformations".

Re-Direct Large SAS Logs to a File
Each SAS Data Integration Studio job generates or retrieves SAS code that reads sources and creates
targets in physical storage. The SAS log for a job provides critical information about what happened
when the job executed. However, large jobs can create large logs, which can slow performance,
considerably. In order to avoid this problem, you can re-direct the SAS log to a permanent file, then
turn off logging using the Log tab in the Process Designer window. For more information about re-
directing logs to a file for each job run in SAS Data Integration Studio, see the section "SAS Logs for
Analyzing ETL Flows". Also, see the section "Administering SAS Data Integration Studio,
Redirecting Output and Logging Information to a File"in SAS OnlineDoc 9.1.3 at
support.sas.com/onlinedoc/913/docMainpage.jsp.

Alternatively, you can add the following code on the Pre and Post Process tab in the
Properties window for a job:

proc printto log=...<path_to_log_file> NEW; run;

The preceding code re-directs the log to the specified file. When you specify this log file, be sure to
use the appropriate host-specific syntax of the host that your job will run on, and verify that you have
Write access to the location that the log will be written to.

 Note: Consider re-directing the log file to a library that is not heavily used by your system so
that the creation of the log file does not impact performance.

For details about adding a pre-process to a SAS Data Integration Studio job, see the section "Add SAS
Code on the Pre- and Post-Processing Tab".

View or Hide the Log in SAS Data Integration Studio
The Process Designer window in SAS Data Integration Studio has a Log tab that displays the SAS log
for the job that is in the window. To display or hide the Log tab, perform the following tasks:

1. From the SAS Data Integration Studio desktop, select Tools ►Options to open the Options
window.

2. In the Options window, click the General tab.

3. Click or unclick the check box that controls whether the Log tab is displayed in the Process
Designer window.

http://support.sas.com/onlinedoc/913/docMainpage.jsp

 21

Debugging Transformations in an ETL Flow
If you are analyzing a SAS Data Integration Studio job and the information that is added by the
logging options is not enough for your purposes, consider adding temporary debugging steps to your
ETL flows to generate additional information. Here are some suggestions for doing this:

• Add a Return Code Check transformation.

For details about using the Return Code Check transformation, see the SAS Data Integration
Studio online help. For information about adding custom debugging steps, including the
addition of user-written transformations, see the section "Add Your Own Code to User-
Written Code Transformation ".

• Add a User-Written transformation and write your own code.

You can use the User-Written and Return Code Check transformations together or use them
separately to direct information to the log or to alternate destinations such as external files,
tables, or e-mail. Possible uses of User-Written transformations include: e-mailing status
values; testing frequency counts; listing SAS macro variable settings, or listing the run-time
values of system options. An advantage of using these two transformations is that they can be
inserted between existing transformations and removed later without affecting the mappings
in the original ETL flow.

When you are working with the SQL Join transformation version 2, enable the Debug
property on the transformation by typing the letter 'Y'or clicking Yes on the screen in the
Value column (Figure 5). The Debug property enables trace information and other useful
debugging information to be sent to the log for this transformation.

Figure 5. Debug Property Turned On in Version 2 of the SQL Join Transformation

 22

Transformation Output Tables Used to Analyze ETL Flows
Most transformations (especially data transformations) in a SAS Data Integration Studio job create at
least one output table and, by default, store that table in the WORK library on the SAS Workspace
Server that executes the job. The output table for each transformation becomes the input to the next
transformation in the ETL flow. All output tables are deleted when the job is finished or the current
server session ends.

If a job is not producing the expected output or if you suspect that something is wrong with a
particular transformation, you can view the output tables for the transformations in the job and verify
that each transformation is creating the expected output.

 Tip: In addition to being useful when analyzing ETL flows, output tables can be preserved to
determine how much disk space they require or to re-start an ETL flow after it has failed at a
particular step (transformation).

Viewing the Output File for a Transformation
In SAS Data Integration Studio, you can use the View Data window to display the contents of a
transformation’s output table. To view the output file, perform the following tasks:

1. Open the job in the Process Designer window.

2. Submit the job for execution. The job—or at least the relevant transformations—must
execute successfully. (Otherwise, a current output table would not be available for viewing.)

3. Right-click the transformation of the output table that you want to view, and select View
Data from the pop-up menu. The transformation’s output table is displayed in the View Data
window.

This approach will work if you do not close the Process Designer window. When you close the
Process Designer window, the current server session ends, and the output tables are deleted.

SAS Options That Preserve Files Created during Batch Jobs
When SAS Data Integration Studio jobs are executed in batch mode, a number of SAS options can be
used to preserve intermediate files in the WORK library. These system options can be set as described
in the section "SAS Invocation Options for SAS Data Integration Studio Jobs and Transformations".

Use the NOWORKINIT system option to tell SAS not to create a new WORK sub-directory at
invocation (use the most recent existing WORK sub-directory). Use the NOWORKTERM system option
to prevent SAS from erasing the current WORK sub-directory at termination. For example, to create a
permanent SAS WORK library in UNIX and Windows operating environments, start the SAS
Workspace Server with the WORK option to re-direct the WORK files to a permanent WORK library.
The NOWORKINIT and NOWORKTERM system options must be included, as shown here.

C:\>"C:\Program Files\SAS\SAS 9.1\sas.exe" -work "C:\Documents and
Settings\sasapb\My Documents\My SAS Files\My SAS Work Folder" -
noworkinit

-noworkterm

 23

For more information about the NOWORKINIT and NOWORKTERM system options, see the SAS
OnlineDoc 9.1.3 available at support.sas.com/onlinedoc/913/docMainpage.jsp.

In the following example, the generated WORK files are re-directed to the folder My SAS Work
Folder.

To create a permanent SAS WORK library in the z/OS operating environment, edit your JCL (Job
Control Language) statements by changing the WORK DD statement to a permanent MVS data set.
For example:

//STEP1 EXEC SDSSAS9,REGION=50M

//* changing work lib definition to a permanent data set

//SDSSAS9.WORK DD DSN=userid.somethin.sasdata,DISP=OLD

//* other file defs

//INFILE DD ….

 Caution: If you re-direct WORK files to a permanent library, you must manually delete these
files to avoid running out of disk space.

Re-Directing Output Files for a Transformation
The default name for a transformation’s output table is a two-level name that specifies the WORK
libref and a generated member name, such as work.W5AMVTC8. Transformation output tables are
visible in the Process Editor and have a Property Sheet that contains the physical name and location of
the table. By default, the table is created in the WORK library. To change the location for the table,
open the Property Sheet for the table, and specify an alternate library for the table on the Physical
Storage tab. The location of the output table can be a SAS library or a relational database library.
Re-directing the file has the added benefit of providing you with the ability to specify which output
tables you want to retain and allow the rest of the tables to be deleted, by default. You can use this
approach as a methodology for checkpoints by writing specific output tables to disk when needed.

Some transformations can create either a table or a view as their output table. This is also specified on
the output table if the output table is a WORK table. To specify whether a transformation should
create a table or a view by default, right-click the transformation’s output table, and click or unclick
the Create View option. A visual indication of the type of output (table or view) that the
transformation will generate is indicated on the icon of the WORK table in theProcess Editor window.

The transformation creates a view.

The transformation creates a table.

http://support.sas.com/onlinedoc/913/docMainpage.jsp

 24

If you specify an output table by using a single-level name (for example, EMPLOYEE), instead of a
two-level name (for example, WORK.EMPLOYEE), SAS automatically sends the output table into
the User library, which defaults to the WORK library. However, this default behavior can be changed
by any SAS user via the USER= system option, which eanbles the user to re-direct the User library to a
different library. If the USER= system option is set, single-level tables are stored in the User library
that has been re-directed to a different library, instead of being stored in the WORK library.

 Note: Changing the property setting of the transformation output to create a view does not
always guarantee that a view will be created because some SAS procedures, by default, cannot
create a view. One example of a transformation that will create a view is the SAS Sort
transformation, which will create a view however and wherever possible.

List Data Transformation Added to the ETL Flow
In SAS Data Integration Studio, you can use the List Data transformation to print the contents of an
output table from the preceding transformation in an ETL flow. Add the List Data transformation after
any transformation output table that you want to see.

The List Data transformation uses the PRINT procedure to produce output. Any options that are
associated with PROC PRINT can be added on the Options tab in the transformation’s Property
window. By default, output goes to the Output tab of the Process Designer window. Output can also
be directed to an HTML file. For large data, customize this transformation to print just a subset of the
data. For details, see the section "Limit Transformation’s Input".

User-Written Code Transformation Added to the ETL Flow
You can add a User-written Code transformation to the end of an ETL flow that would move or copy
some of the data sets in the WORK library to a permanent library.

For example, assume that there are three tables in the WORK library (test1, test2, and test3). The
following code moves the three tables from the WORK library to a permanent library named
PERMLIB, and then deletes the tables in the WORK library.

libname permlib base

 "C:\Documents and Settings\ramich\My Documents\My SAS Files\9.1";

proc copy move

 in = work

 out = permlib;

 select test1 test3;

run;

For information about user-written transformations, see the section "Add Your Own Code to User-
Written Code Transformation".

 25

Simple Tuning of ETL Flows Results in Immediate Gains
When you are writing and deploying ETL flows, there are some areas that, when tuned, can give you
immediate performance gains. Here are some simple ways that you should consider when you write
ETL flows or run into problems when you deploy ETL flows.

Sorting Data
Sorting is a common and resource-intensive component of ETL. Sorts occur explicitly as PROC
SORT steps and implicitly in other operations such as joins. Effective sorting requires a detailed
analysis of performance and resource usage.

Sorting is either handled by SAS or is passed to an external sort engine. There are several types of
external sort engines: third-party sort utilities, relational databases, and the SAS Scalable Performance
Data Server (SAS SPD Server). SAS does not, automatically, pass sorting to third-party sort utilities
such as SyncSort and DFSORT. Under most circumstances, SAS passes sorting to the relational
database or the SAS SPD Server. When you use PROC SORT, you can alter this behavior and specify
SAS-based sorting by using the SORTPGM= option. In other cases (for example, when you use
ORDER BY clauses), SAS always passes sorting to the relational database or the SAS SPD Server. If
you are using PROC SORT, the option MSGLEVEL=I verifies whether the sort is performed by SAS or
by an external engine. The following note in the log "Sorting was performed by the data
source" indicates that an external engine was used.

The information in this section describes SAS-based sorting except where noted.

 Note: It is not a good practice to sort data and output the data to a relational database because
the sort order is lost. Therefore, the sort was a useless expenditure of resources.

Sorting physically re-arranges the rows in a table and orders the rows on one or more key columns.
To sort a table, SAS reads the first 'n' table rows into memory until the value of the SORTSIZE=
option is reached. The 'n' rows are sorted in memory, then output to disk as a "run" in the SORT
procedure utility file. Groups of 'n' rows are processed this way until all rows are read, sorted in
memory, and output as "runs". Then, the runs are merged to produce the fully sorted table.

When the value for SORTSIZE= is large enough to fit all rows in memory at one time, the sorting
completes without the need for "runs" or a SORT procedure utility file. This is called an internal
sort. The performance of internal sorts is optimal if the memory that is required does not exceed the
available physical memory.

 Note: If the value for SORTSIZE= is larger than the available physical memory, system paging
can occur and the performance of the sort might degrade when memory resources are exhausted.
This issue can become critical on multi-user systems. A best practice in a large ETL
environment is to restrict SORTSIZE=, which forces most sorts to be external as runs in the
SORT procedure utility file.

 26

Sorting occurs implicitly with index creation, ORDER BY clauses, SAS SQL joins, and procedure
execution that requires ordering. For any caller, the underlying sort engine is the same. Sort callers
include, but are not limited to, the DATA step, PROC SORT, PROC SQL, and PROC SUMMARY.
Callers begin the sort process by setting any special sort attributes. For example, PROC SORT sets
the EQUALS attribute, which preserves the original order of rows that have identical sort key values.
Callers next feed rows to sort, and wait for the sorted results. The format of rows that are passed for
sorting might vary by caller. For example, SAS SQL might add pad bytes to rows, which increases the
overall amount of data that is sorted.

Sorting large SAS tables requires large SORT procedure utility files. When ETL is running on
multiple SAS jobs simultaneously, multiple SORT procedure utility files can be active. For these
reasons and the reasons mentioned above, tuning sort performance and understanding sort disk-space
consumption are critical.

Tuning Sort Performance
Tuning sort performance is both a science and an art. The science of tuning applies tactics that ensure
better performance. The art of tuning is experimenting with tactics that might increase performance,
but it is also possible that the same tactics will decrease performance.

Performance-enhancing tactics are listed below in order of importance. The tactics that might result in
the most performance gains are discussed first.

 Note: Tactics in the category of "art" are indicated by the words "Consider This Approach" in
bold.

Leveraging the Improved SAS®9 Sort Algorithm
SAS®9 includes an improved SORT algorithm that incorporates threading and data latency reduction
algorithms. SAS®9 multi-threaded sort outperforms a SAS 8 sort in almost all cases. However, in
cases in which the data to be sorted is almost in sorted order, the TAGSORT option in PROC SORT in
SAS 8 can outperform the SAS®9 multi-threaded sort. This situation is addressed later in this paper.
In general, use the default SAS®9 multi-threaded sort for optimal sort performance.

Minimizing Width of Rows Being Sorted
The smaller the width of each row that is being sorted, the faster a sort completes. For example,
compare sorting rows that are 40 bytes wide with sorting rows that are 80 bytes wide. More 40-byte
rows fit into memory and are sorted in memory at the same time. Fewer runs are written to the SORT
procedure utility file, and the SORT procedure utility file is half as large. CPU and I/O savings are
substantial.

Drop unnecessary columns. This is an obvious tactic to minimize row width. If you don’t need
columns in the sort, eliminate them before sorting. For details about dropping columns in SAS Data
Integration Studio, see the section "Transformation and Column Optimizations".

Minimize pad bytes. In some situations, SAS adds pad bytes between columns that are fed to the sort.
For example, pad bytes are added when a SAS data set is referenced through a SAS SQL view. For
details, see the section "Disk Space Consumption When Sorting".

 27

Directing Sort Utility Files to Fast Storage Devices
The -WORK and -UTILLOC invocation options direct SORT procedure utility files to fast, less-used
storage devices. If possible, use the -UTILLOC invocation option to isolate SORT procedure utility
files from other intermediate files. Some procedure utility files are accessed heavily and segregating
them from other active files might improve performance. The SORT procedure utility file is a primary
example. By default, it resides with other intermediate files in the SAS WORK directory. With the -
UTILLOC option, it can be directed to a separate disk location. This enables higher I/O rates, thereby
reducing sort time.

SAS WORK is set with the -WORK option either in a configuration file or at SAS invocation (in the
command line). Except in the z/OS operating environment, when the -UTILLOC invocation option is
not set, SORT procedure utility files and other intermediate files co-reside in the SAS WORK
location. (For details about the -UTILLOC invocation option for the mainframe, see the SAS 9.1.3
Companion for z/OS available at
support.sas.com/documentation/onlinedoc/91pdf/sasdoc_913/base_zoscom_8406.pdf.)

The -UTILLOC invocation option provides granular control of the SORT procedure utility file
location. Two utility file locations must be listed; however, PROC SORT only uses the second
UTILLOC location that is specified. For intensive processing, be sure that UTILLOC and SAS WORK
are on different file systems.

If your ETL is join-intensive and ample file systems are available, isolate SORT procedure utility files
from other intermediate files by specifying the path option. I/O throughput improves for large joins,
which creates large SQL temporary files and large SORT procedure utility files. The following SAS
command line in a UNIX environment directs the SORT procedure utility file to volume2 and SQL
and other intermediate files to volume1.

-work /volume1/saswork -utilloc '(/volume9 /volume2/saswork)'

Use PROC OPTIONS to verify your -UTILLOC invocation option setting:

proc options option=utilloc; run;

For details about the SORT procedure and the -UTILLOC invocation option, see "Getting the Best
Performance from V9 Threaded PROC SORT"at support.sas.com/rnd/papers/sugi30/V9SORT.ppt.

Distributing Sort Utility Files for Parallel Jobs across Multiple, Fast File Systems
When you run multiple SAS Data Integration Studio jobs in parallel, you should distribute SORT
procedure utility files across multiple fast, less-used file sytems. Because the SORT procedure utility
file is critical to overall performance, leverage multiple devices for multiple SAS jobs that perform
sorting. Direct the SORT procedure utility file of each job to a different device.

http://support.sas.com/documentation/onlinedoc/91pdf/sasdoc_913/base_zoscom_8406.pdf
http://support.sas.com/rnd/papers/sugi30/V9SORT.ppt

 28

For example, assume that you have two SAS jobs with large sorts. Direct the respective SORT
procedure utility files to different devices by using the –WORK invocation option:

Job 1:

-work /volume1/saswork

Job 2:

-work /volume3/saswork

In addition, assume that you have jobs with large SAS SQL joins. You can further optimize I/O by
isolating the jobs and the SORT procedure utility files and intermediate files in the jobs by using the
-UTILLOC invocation option. For example:

Job 1:

-work /volume1/saswork -utilloc '(/volume9 /volume2/saswork)'

Job 2:

-work /volume3/saswork -utilloc '(/volume9 /volume4/saswork)'

Consider This Approach: If you isolate SORT procedure utility files by using the
–UTILLOC invocation option, you might want to obtain further optimization by disabling the
operating environment read-ahead and file-caching for the utility files. PROC SORT in SAS
implements its own internal read-ahead and file-caching algorithms. On a system that has heavy I/O
activity, operating environment read-ahead and file caching provide little added value to the SAS
algorithms, but often consume I/O bandwidth and memory elsewhere.

For example, on the AIX operating system, if you are using JFS2 files systems, try to increase
optimization by enabling AIX direct I/O by using the following:

mount –o dio /volume2

mount –o dio /volume4

 Note: Do not disable read-ahead and file-caching unless you use both the -WORK and -
UTILLOC invocation options to isolate the SORT procedure utility file from other intermediate
files. Then, disable read-ahead and file-caching only on UTILLOC, not on WORK. For details
about read-ahead and file-caching, see the section "Direct I/O". Work with your system
administrator before you consider using this approach.

Explicitly Pre-Sorting on Most Common Sort Key
Consider This Approach: ETL processes might arrange a table in sort order, one or multiple times.
For large tables in which sort order is required multiple times, look for a common sort order. Consider
pre-sorting on the most frequent sort key. For example, if table ACCOUNT is sorted four times, with
three sorts on ACCOUNT_KEY, consider pre-sorting once on ACCOUNT_KEY. Look for instances

 29

of the table name that appear in PROC SORT steps, SAS SQL joins, ORDER BY clauses, and other
operations that might require sorting. Also, use the MSGLEVEL=I option to display information in the
SAS log to determine where sorts occur.

Changing Default Value for SORTSIZE= Option
When a sort cannot complete in memory, then setting sort memory to a high value (for example, over
512M) might degrade performance even when there is ample physical memory available. This is due
to system overhead and hardware cache misses that are associated with virtual-to-physical memory
address translation. For large tables, set SORTSIZE= to 256M or 512M. Tune these recommended
values further based on empirical testing or based on in-depth knowledge of your hardware and
operating environment.

For extremely large tables (a billion or more wide rows), set SORTSIZE= to 1G or higher. This helps
to prevent an undesirable multi-pass merge condition, which is described later in this paper.
Preventing multi-pass merges outweighs the additional system overhead that is associated with a
value for SORTSIZE= that is larger than 512M (assuming that increased SORTSIZE does not cause a
lot of system paging).

Changing Default Value for MEMSIZE= Option
Set the value for the MEMSIZE= option to be at least 50% larger than the value for SORTSIZE=. In
general, do not set the values for SORTSIZE= or MEMSIZE= greater than the amount of random access
memory (RAM) that is available to a SAS session. The amount of RAM a SAS session can access is
always smaller than the amount of physical memory that exists because the operating system, file
cache, other SAS sessions, and other applications all contend for memory. For example, with 8GB of
physical memory and 2GB reserved for the operating system and file cache, a maximum of 6GB is
free for SAS sessions and other applications.

An exception, which is not sort-related, is using a SAS procedure that requires more memory than the
amount of available RAM. In this case, you must incur system paging for the procedure to complete.

NOSORTEQUALS System Option
Maintaining the relative order of rows is rarely, if ever, an ETL requirement. If maintaining the
relative order of rows with identical key values is not important, set the system option
NOSORTEQUALS to save resources. Alternatively, add the NOEQUALS option to applicable PROC
SORT steps in your ETL process flow.

UBUFNO Option Maximum of 20
The UBUFNO option specifies the number of utility I/O buffers. In some cases, maximizing the value
of UBUFNO increases sort performance up to 10%. Increasing the value of UBUFNO has no negative
ramifications.

TAGSORT Option for Nearly Sorted Data
Consider This Approach: The SORT procedure has a TAGSORT option. TAGSORT is an alternative,
SAS 8 sort algorithm that is useful for data that is almost in sort order. However, do not apply the
TAGSORT option, liberally. The cost of applying TAGSORT increases rapidly if data is not pre-sorted.
Using the TAGSORT option on a large unsorted data set results in extremely high sort times when
compared to a SAS®9 multi-threaded sort.

Using the TAGSORT option on nearly-sorted data is most effective when the sort-key width is no more
than 5% of the total, uncompressed column width. TAGSORT only pulls key values from the input
table, and retains a rowID that points to the original row in the input table. The key-rowID elements
sort fast, however, post-sort I/O to extract rows in order from the input table is expensive. On
unsorted data, this post-sort extract results in random I/O on the input data and poor overall
performance.

For relational database data, SAS options are available that encourage SAS based sorting in place of
default relational database-based sorting. If you encourage SAS sorting of relational database data, do
not use the TAGSORT option, which will degrade performance in this instance.

Leveraging External Sort Engines for Pre-Sorting Tables if There Are No Data Order Issues
Consider This Approach: If your source data is from a relational database, there might be an
opportunity to pre-sort more effectively. For example, pre-sorting in relational databases might
outperform SAS sorting. Use options for the SAS Data Integration Studio Extract transformation to
generate an ORDER BY clause in the SAS SQL. The ORDER BY clause causes the relational
database to return the rows in the specified "sorted" order.

The ORDER BY clause prohibits SAS threaded reads in a relational database. If threaded reads are
critical to throughput rates, then pre-sorting in the relational database might be undesirable. SAS
automatically threads relational database reads where possible for threaded SAS procedures such as
SORT, SUMMARY, REG, DMREG, GLM, and DMINE. To determine if threaded reads occur, use
the SASTRACE option that is described in the section "DBSLICEPARM= Data Set Option" in SAS
OnlineDoc 9.1.3 available at support.sas.com/onlinedoc/913/docMainpage.jsp.

For pre-sorting in the relational database, the sort order for SAS and the relational database must
match. Missing values (database NULLs) sort differently in SAS than they do in some databases. In
those databases, you might restrict relational database pre-sorting to NOT NULL key columns. For
example, DB2 and Oracle sort NULL values high, which is different from a sort performed in SAS.
However, SQL Server, Teradata, Sybase, and Informix sort NULLs in the same way as SAS. In
SAS®9, SAS/ACCESS to Oracle provides the option DEBUG=ORA_SORTNULLS_LIKE_SAS that
requests Oracle to sort NULLs in the same way as SAS.

Disk Space Consumption When Sorting
Sorting large SAS tables requires that large procedure utility files are written to the SAS WORK or
UTILLOC location. Running SAS sorts in parallel can open multiple sort utility files. Either of these
tasks can cause the following problems:

• slower-than-expected sorts due to extra I/O activity

• inability to predict space needs and to size solutions

• out-of-space conditions.

Disk Space Requirements for a Sort
The total space required to complete a sort includes the size of the input data, the size of the sorted output
data, and the space needed to sort WORK files. To he total disk space you will need for a sort,
multiply the size of the input data by 3. This section

estimate t
30

 provides details on disk space consumption.

http://support.sas.com/onlinedoc/913/docMainpage.jsp

 31

SAS includes several aids for sizing, including the DETAILS option in PROC SORT and the column
information output by PROC CONTENTS. You will see these aids used in later sections to size the
input data, SORT procedure utility file, and output data.

You can also collect sizing numbers with external instrumentation tools. For example, see the section
"Disk Space Maximum for Intermediate Files" for a sample shell script to measure the maximum size
that is attained by the SORT procedure utility file.

Sizing Input Data
Because sorting is I/O intensive, it's important to begin sorting with only the rows and columns that
are needed. The size of the WORK files and the output file for PROC SORT is dependent on the input
file size.

When working with compressed data files, PROC SORT uncompresses the rows from the source table
and keeps the data in an uncompressed format while the data is manipulated into the specified sort
order. This means that the SORT procedure utility files are written to disk in an uncompressed
format.

Sizing SORT Procedure Utility Files
When you are trying to size your SORT procedure utility files, you need to consider these factors:

• (for SAS data sets) pad bytes that align each row by 8-bytes

If you directly sort a SAS data set (no view involved), each row is aligned to an 8-byte
boundary unless it is composed only of character columns. For example, a row that has
one numeric variable and one $65 character variable (8 + 65 = 73 bytes) consumes 80
bytes. A row that has one numeric variable and one $72 character variable (8 + 72 = 80
bytes) has no alignment overhead.

• 8 bytes per row overhead using EQUALS option

By default, PROC SORT enables EQUALS processing, which maintains the relative order
of rows that have equal key values. The cost results from having to get a rowID that has an
additional 8 bytes per row. Specifying the NOEQUALS option in PROC SORT eliminates
this overhead.

• per-page, unused space in the SORT procedure utility files

In SAS®9, sort utility file pages default to 64K per page. Rows do not span pages.
Therefore, some space at the end of each page often cannot be used. After you incorporate
padding and possible rowID to ascertain the "real row length", you can calculate unused
space per-page as follows:

65536 - real_rowlen * FLOOR(65536 / real_rowlen)

 32

• multi-pass merge: doubling SORT procedure utility files (or sort failure)

Sorts of extremely large data might cause a multi-pass merge. The wider the
uncompressed data (padded row width that is fed to the sort) and the more rows, the
higher the chance of a multi-pass merge. A value for SORTSIZE= that is too small can also
cause a multi-pass merge.

The merge phase combines procedure utility file runs and completes the sort. Usually, a
merge is single-pass. No additional space consumption or other considerations are needed
for a single-pass merge.

A multi-pass merge generates a copy of every row that is in the procedure utility file,
which doubles space consumption. In addition, a multi-pass merge is not yet implemented
in a SAS®9 multi-threaded sort; the rare multi-pass condition fails due to insufficient
memory. There are two work-arounds for a SAS®9 multi-pass merge condition:

• increase the value for SORTSIZE=

• request a SAS 8 sort and use the NOTHREADS option.

The following simple equation estimates the number of rows that you can sort in a single-
pass merge. A number of rows close to or exceeding this figure might require a multi-pass
merge.

(SORTSIZE/64K) * (SORTSIZE/row_width)

In the preceding equation:

• 64K is the default I/O page size of the SORT procedure utility file. This can be
changed for the SORT procedure but not for joins.

• row_width is the length of each row that is passed for sorting, including pad
bytes.

• SORTSIZE/64K is the maximum number of procedure utility file runs that are
possible for a single-pass merge.

• SORTSIZE/row_width is the number of rows per run, that is, the number of
rows that can be sorted in memory constrained by the value of SORTSIZE=.

This equation shows the number of rows that handled single-pass increases with smaller
row width and a larger value for SORTSIZE=.

The approximate figure is the theoretical maximum; in reality, fewer rows can be handled
before a multi-pass condition. The merge phase of a SAS®9 multi-threaded sort requires a
64K-memory allocation for each run. Each 64K-allocation that is run is charged against
the SORTSIZE= memory limitation. Assuming SORTSIZE=512M and ignoring overhead
for data structures, the limit is 8192 runs (512M / 64K). That is, the maximum number of
runs that are processed during a single-pass when SORTSIZE=512M is about 8000.
Ignoring overhead, the number of rows per run is SORTSIZE / row_width, where
row_width includes pad bytes.

 33

A simple example with an extremely small SORTSIZE of 256K further illustrates this
idea. Only several runs are accommodated in a single-pass. With a row length of almost
32K (32000+8), a run only holds 8 rows. The text with the examples explains their
progression. In the following example, the THREADS option forces you to use a SAS®9
multi-threaded sort. The DETAILS option outputs SORT procedure utility file information.

With 8 rows, the sort completes in memory, because 256K / 32K = 8.

%let numrows=8;

data a; length chr $32000; length i 8.;

do i=1 to &numrows; output; end; run;

option sortsize=256k;

proc sort threads details data=a out=b; by i; run;

NOTE: There were 8 observations read from the data set WORK.A.

NOTE: Sort completed in memory.

There are 3 runs (24 / 8). The sort completes because
(3 * 64K) + overhead < 256K.

%let numrows=24;

data a; length chr $32000;

do i=1 to &numrows; output; end; run;

option sortsize=256k;

proc sort threads details data=a out=b; by i; run;

NOTE: There were 24 observations read from the data set WORK.A.

NOTE: 3 sorted runs written to utility file.

NOTE: Utility file contains 12 pages of size 65536 bytes for a
total of 768.00 KB.

 34

There are 4 runs (32 / 8). The sort fails because (4 * 64K) + overhead > 256K, which
forces a multi-pass sort.

%let numrows=32;

data a; length chr $32000;

do i=1 to &numrows; output; end; run;

option sortsize=256k;

proc sort threads details data=a out=b; by i; run;

NOTE: There were 32 observations read from the data set WORK.A.

NOTE: 4 sorted runs written to utility file.

NOTE: Utility file contains 16 pages of size 65536 bytes for a
total of 1024.00 KB.

ERROR: Insufficient memory.

 Note: Increasing the sort size might not always help the performance of your sort.
The amount of memory that you have, the number of rows, and the width of the
rows all affect sorting performance.

Sizing Output Data
To size the output data, apply the sizing rules of the destination data store to the columns that are
produced by the sort. For our purposes, we assume output to a SAS data set. A SAS output data set
eliminates most padding. The data set physically arranges 8-byte, non-character columns first,
followed by short numeric values and character columns packed together. The only padding is at the
end of a row, which forces the next row to have an 8-byte boundary. Other SAS data set rules apply to
predict space for the output data. For example, compression usually reduces space consumption. For
more information, see "Indexing and Compressing SAS® Data Sets: How, Why, and Why Not"
(Karp 1995) at www2.sas.com/proceedings/sugi25/25/aa/25p005.pdf.

 Note: If your input and output data are in the same SAS data set, you can decrease the
maximum disk space that is required by using the OVERWRITE option. However, be aware that
you are using the OVERWRITE option because an overwrite deletes the input data set before
writing the same named output data set with the sorted data. It is important to notice if an I/O
error or out-of-space error appears during output because this can cause loss of critical data.

Sizing output relational database data should not be an issue when you use PROC SORT. Relational
databases do not maintain data in sorted order.

http://www2.sas.com/proceedings/sugi25/25/aa/25p005.pdf

 35

SAS SQL Joins
Joins are a common and resource-intensive part of ETL. SAS SQL implements several well-known
join algorithms: sort-merge, index, and hash. There are common techniques to aid join performance,
irrespective of the algorithm that is chosen. Conditions often cause the SAS SQL optimizer to choose
the sort-merge algorithm; techniques that improve sort performance also improve sort-merge join
performance. However, understanding and leveraging index and hash joins will result in performance
gains.

It is common in ETL to perform lookups between tables, especially when building Star Schemas.
Based on key values in one table, you look up matching keys in a second table and retrieve associated
data in the second table. SQL joins can perform lookups. However, SAS and SAS Data Integration
Studio provide special look-up mechanisms that usually outperform a join. For details, see the section
"Lookups in a Star Schema".

Here are some misconceptions that are associated with joins:

• Join performance is slow.

• It’s not clear how joins, especially multi-way joins, work under the "covers".

• There is no way to influence which join algorithm SAS SQL chooses.

• The amount of disk space that is needed to complete the join, especially multi-way joins,
is very large

• How SAS SQL joins work when joining relational database data and SAS data sets is not
optimal.

The next sections address these misconceptions.

Optimizing Join Performance
If you understand the attributes of your tables such as table size, join keys, column cardinality, and so
on, you can use this information to help you optimize the SAS SQL join strategy. Keep in mind that,
over time, table attributes might change, and the join strategy might need to be adapted. The following
best practices should help you optimize performance of the joins.

Pre-Sorting Data for Joins
Pre-sorting can be the most effective means to improve overall join performance. Usually, a table that
participates in multiple joins on the same join key benefits from pre-sorting. A word of caution here.
In a pre-sort, all retained rows and columns in the table are "carried over" during the sort; the SORT
procedure utility file and output data set are relatively large. Pre-sorting might not be needed if you
have large amounts of data, and you are subsetting the data for the join.

Optimizing Order of Columns
Columns should be ordered in the SELECT statement as follows:

• non-character (numeric, date, datetime) columns first

• character columns last.

 36

In a join context, all non-character SAS columns consume 8 bytes. This includes SAS short numeric
columns. Ordering non-character (numeric, date, datetime) columns first, perfectly aligns internal
SAS SQL buffers so that the character columns, which are listed last in the row returned by the
execution of the SELECT statement are not padded. The result is fewer I/Os and lower CPU
consumption, particularly in the sort phase of a sort-merge join.

 Tip: In SAS Data Integration Studio, use a transformation’s Mapping tab to re-arrange columns
by column type. Do this by sorting the "type" column in the target table in descending order.

Dropping Unneeded Columns
Joins tend to be I/O intensive. To help minimize I/O and improve performance, it is recommended
that you drop unneeded columns, minimize column widths (especially from relational database tables
if they have wide columns), and delay the expansion of column widths (this usually happens when
you combine multiple columns into a single column to use a key value) until the end of the ETL flow.
See the tips in the section "Transformation and Column Optimizations"

Options to Influence SQL Selection of Join Algorithm
Options exist to influence SAS SQL to use a particular join algorithm. Use these options to influence
SAS SQL from using the join algorithm that is selected by the optimizer to the join algorithm that you
prefer.

Note that these options can only influence the optimizer; they cannot force it. If the optimizer cannot
perform the type of join that you have selected, then it will select the type of join that it considers best
for the data.

Before discussing the different join algorithms, you need to learn how to determine which join
algorithm your SAS SQL code is using. To do this, specify the add _METHOD parameter in the
PROC SQL statement. This parameter writes debugging trace output in the SAS log file.

Also, it is important to understand the keywords that are used in the trace output.

sqxsort: sort step

sqxjm: sort-merge join

sqxjndx: index join

sqxjhsh: hash join

sqxsrc: table name

 37

The following fragment examples show these keywords in a _METHOD trace.

In this example, each data set is sorted, and sort-merge is used for the join.

sqxjm

 sqxsort

 sqxsrc(WORK.JOIN_DATA2)

 sqxsort

 sqxsrc(LOCAL.MYDATA)

In this example, an index nested loop is used for the join.

sqxjndx

 sqxsrc(WORK.JOIN_DATA2)

 sqxsrc(LOCAL.MYDATA)

In this example, a hash is used for the join.

sqxjhsh

 sqxsrc(LOCAL.MYDATA)

 sqxsrc(WORK.JOIN_DATA1)

Now, let’s examine the types of SAS SQL joins.

Sort-Merge Joins
Sort-merge is the algorithm most often selected by the SQL optimizer. As the name implies, the two
files that are being joined are sorted and then merged. Sorting is the most resource-intensive aspect of
a sort-merge join. Therefore, techniques that improve sort performance do the most to improve join
performance. To optimize sorting, see the section "Sorting Data", which contains a detailed discussion
about what happens behind-the-scenes in a sort. Briefly, intermediate files are placed in the SAS
WORK location unless the -UTILLOC invocation option is specified. For very large joins, using
-UTILLOC to segregate I/O activity is recommended. For more information, see the section "Sorting
Data".

To encourage a sort-merge join algorithm in SAS Data Integration Studio, select the Suggest Sort
Merge Join property in the lower-left panel in the SQL Join Properties window of the SQL Join
transformation (Figure 6) to add MAGIC=102 to the PROC SQL invocation.

 38

Figure 6. Sort-Merge Join Property Turned On in Version 2 of SQL Join Transformation

You can also directly code the options that are added in SAS Data Integration Studio by adding
MAGIC=102 to the PROC SQL invocation,as follows:

proc sql _method magic=102;

 Caution: If you code the MAGIC= option directly into your SAS SQL, be aware that this option
is subject to change in future releases of SAS, and a change might cause your code to become
invalid. If you deploy the MAGIC= option in SAS 9.1.3 or earlier, be prepared to change your
code.

Index Joins
An index join looks up each row of the smaller table by querying an index of the large table. When
chosen by the optimizer, an index join usually outperforms a sort-merge on the same data. The SAS
SQL optimizer considers an index join under the following conditions:

• The join is an equijoin—tables are related by equivalence conditions on key columns.

• There are multiple conditions, and they are connected by the AND operator.

• The larger table has an index composed of all the join keys.

 39

Example 1: Eligibility for Index Join
A single equijoin condition on column ASSESSMENT_RATING_GRADE_RK:

 select COUNTERPARTY.ASSESSMENT_MODEL_RK,

 COUNTERPARTY.ASSESSMENT_RATING_RK,

 ASSESSMENT.CCF_MAX_ASSESSMENT_RT

 from DDS.COUNTERPARTY INNER JOIN CRMART.ASSESSMENT

ON (COUNTERPARTY.ASSESSMENT_RATING_RK = ASSESSMENT.ASSESSMENT_RATING_RK);

Assuming an ASSESSMENT on the larger table and indexed on ASSESSMENT_RATING_RK, the
join is eligible for an index join.

A composite index on (ASSESSMENT_RATING_RK, ASSESSMENT_MODEL_RK) does not
qualify for an index join in Example 1.

Example 2: Eligibility for Index Join
An equijoin on ASSESSMENT_RATING_GRADE_RK AND ASSESSMENT_MODEL_RK:

 select COUNTERPARTY.ASSESSMENT_MODEL_RK,

 COUNTERPARTY.ASSESSMENT_RATING_RK,

 ASSESSMENT.CCF_MAX_ASSESSMENT_RT

 from DDS.COUNTERPARTY INNER JOIN CRMART.ASSESSMENT

 ON (COUNTERPARTY.ASSESSMENT_RATING_RK = ASSESSMENT.ASSESSMENT_RATING_RK

 AND

 COUNTERPARTY.ASSESSMENT_MODEL_RK = ASSESSMENT.ASSESSMENT_MODEL_RK);

Assuming an ASSESSMENT on the larger table and a composite index on either
(ASSESSMENT_RATING_RK, ASSESSMENT_MODEL_RK) or
(ASSESSMENT_MODEL_RK,ASSESSMENT_RATING_RK), the join is eligible for an index join.

A simple index on ASSESSMENT_RATING_RK does not qualify for an index join in Example 2.

After a table is assessed as eligible for an index join, the optimizer factors the relative table sizes and
key cardinality to decide whether to perform an index join. The optimizer assumes that every row in
the small table has one or more matching values in the large table. Further, the optimizer uses the
cardinality of the large table to predict how many matches occur per small table row.

 40

For example, assume that the small table has 10 rows and the large table has 1,000,000 rows with
500,000 distinct values on an indexed equijoin key. The optimizer predicts 10 * (1,000,000 /
500,000) = 20 matches. Then, if the predicted number of matches is less than 15% of the rows in the
large table, SAS SQL uses the index. In this case, the predicted number is 20 < 150,000, and an index
join occurs.

Option to Influence Index Join Algorithm
Usually, an index join outperforms a sort-merge join on the same data. However, the optimizer cost
equation for choosing the index is conservative. If you suspect that the optimizer equation is overly
conservative for your particular data, encourage an index join with the data set option
IDXWHERE=YES. You might want to influence the optomizer to use an index join if the following
conditions exist:

• There are relatively few matches on the join key. Although the optimizer uses a prediction
of 15% matching rows in the large table to decide on an index join, you might find that an
index join outperforms the sort-merge join when the the table contains up to 25% actual
matches.

• The tables have very wide row widths, which decreases performance in a sort-merge join.
"Very wide" refers to the decompressed width.

• An indexed large table is partially ordered on the join key, which lowers I/O for indexed
access.

• A small (sequentially scanned) table is ordered on the join key, which optimizes index
"probes" on the larger table.

There must be an appropriate index on the larger table; otherwise the option IDXWHERE=YES has no
effect. For additional information about indexes and index joins, see the section "Indexes on SAS
Data Sets".

Alternatively, when using SAS Data Integration Studio, turn on the Suggest Index Join property in
the 2nd day Properties panel in the lower-left corner of the SQL Join Properties window for an input
table in the SQL Join transformation of SAS Data Integration Studio (Figure 7).

.

 41

Figure 7. Suggest Index Join Property Turned On in Version 2 of the SQL Join Transformation

Hash Joins
With a hash join, the smaller table is re-configured in memory as a hash table. SAS SQL sequentially
scans the larger table and, row-by-row, performs hash lookup against the small table to create the
result set.

A memory-sizing formula, which is not presented here, determines if a hash join is chosen. The
formula is based on the PROC SQL option BUFFERSIZE=, whose default value is 64K. Especially on
a memory-rich system, consider increasing the value for BUFFERSIZE= in order to increase the
likelihood that a hash join is chosen.

Option to Influence Hash Join Algorithm
Encourage a hash join by increasing the default value of 64K for the BUFFERSIZE= option in PROC
SQL, as shown in Figure 8. Here is the PROC SQL statement for this.

proc sql _method buffersize= 1048576;

 42

Figure 8. Changing Buffer Size Property in Version 2 of the SQL Join Transformation

Multi-Way Joins
Many joins are two-table joins. Multi-way joins can join more than two tables and are common in Star
Schema processing.

In SAS SQL, a multi-way join is executed as a series of joins between two tables. The first two tables
that are joined create a temporary result table. That result table is joined with a third table from the
original join, which results in a second result table being created. This pattern continues until all the
tables in the multi-way join have been processed, and the final answer set is created. For example,
consider a multi-way join on tables TAB1, TAB2, TAB3, and TAB4. Here is how the process might
be handled by SAS SQL:

• join TAB2 and TAB3 to create temporary result table TEMP1

• join TEMP1 and TAB4 to create temporary result table TEMP2

• join TEMP2 and TAB1 to create the final result.

 Note: Prior to SAS 9.1.3 Service Pack 4, SAS SQL joins were limited to 32 table references.
For SAS 9.1.3 Service Pack 4 and later, the SAS SQL join limit has been increased to 256 table
references. The SQL procedure can internally reference the same table more than once, and each
reference counts as one of the allowed table references.

 43

Disc Space Consumption of Multi-Way Joins
SAS SQL does not release temporary tables, which reside in the SAS WORK directory, until the final
result is produced. Therefore, the disk space that is needed to complete a join increases with the
number of tables that participate in a multi-way join.

Whether they reside in SAS WORK or in UTILLOC, the sort utility files are deleted when an
intermediate sort-merge join completes. This means that, unlike temporary result tables, sort utility
files are not retained throughout a multi-way join.

Order of Processing in Multi-Way Joins
By nature, the SAS SQL inner join operation allows the SAS SQL optimizer to re-arrange the join
order. An inner join of tables A, B, and C results in the same answer if the operation is performed in
either of the following ways:

((A inner join B) inner join C)

or

((B inner join C) inner join A)

The join syntax that you use for inner joins determines if the SAS SQL optimizer will attempt to re-
arrange inner joins. The recommended syntax is to delimit inner join table references with a comma,
and place the join condition in the WHERE clause. When you use the recommended syntax, you
enable SAS SQL to apply cost analysis and to re-arrange the ordering of inner joins. In general, SAS
SQL chooses the optimal order.

The alternate inner join syntax spells out INNER JOIN between table references and places the join
condition(s) in the ON clause. This syntax disables re-ordering of inner joins. If you determine that
the SAS SQL optimizer makes a non-optimal choice in ordering the inner joins that are specified with
the recommended syntax, you can explore the alternate syntax as a means of optimizing performance.

Join Algorithms in Multi-Way Joins
The optimizer re-orders execution to favor index usage on the first join that is executed. Subsequent
joins do not use an index unless encouraged with the IDXWHERE option. Based on row counts and the
BUFFERSIZE= value, subsequent joins are executed with a hash join if they meet the optimizer
formula. In all cases, a sort-merge join is used when neither an index join nor a hash join are
appropriate.

Relational Database Considerations
There are two types of joins that can occur between relational database tables and SAS data sets:

• homogenous joins in which all the tables reside in a single schema of the relational database
• heterogeneous joins in which relational database table(s) are joined with SAS data set(s).

In homogenous joins, SAS SQL attempts to push the SQL code that is associated with the join to the
realational database. Alternatively, if some of the tables to be joined are from a single database

 44

instance, SAS SQL attempts to push the joins that reference data tables to the database. Any joins that
are performed by a database are executed with database-specific join algorithms; the rules and
algorithms of SAS do not apply.

In heterogeneous joins, SAS SQL first tries to push any WHERE-clause processing to the database to
handle. Then SAS SQL pulls all the data from the relational database table into SAS and joins the
heterogeneous data in SAS. Performance problems can sometimes occur in heterogeneous joins. This
occurs when SAS SQL chooses a hash join. The following example shows that influencing SAS SQL
to use a sort-merge join by using MAGIC=102 can perform the join faster.

proc sql _method; create table new as select * from
join_data1,orcle.join_data2

where join_data1.var1 = join_data2.var1;

SQL trace:

sqxcrta

 sqxjhsh

 sqxsrc(WORK.JOIN_DATA1)

 sqxsrc(ORCLE.JOIN_DATA2)

proc sql _method magic=102; create table new as select * from
join_data1,orcle.join_data2

where join_data1.var1 = join_data2.var1;

SQL trace:

sqxcrta

 sqxjm

 sqxsort

 sqxsrc(WORK.JOIN_DATA1)

 sqxsort

 sqxsrc(ORCLE. JOIN_DATA2)

Star Schema Optimization
The SAS SQL optimizer has no dedicated logic for Star Schema optimization.

 45

Indexes on SAS Data Sets
In the context of large-scale ETL flows, indexes on SAS data sets might be useful to perform the
following processes:

• resolve WHERE clauses

• allow an index join as an optimization for two-table equijoins

• verify key uniqueness.

WHERE Clauses Resolved in ETL Flows
In the context of ETL flows, indexes on SAS data sets are beneficial for processing selective WHERE
clauses that qualify for index use. When resolving a WHERE clause, if the number of rows that
qualify for the subsetting is 15% or less than the total number of rows, then the index is used;
otherwise, a sequential scan occurs. Keep this in mind when you build indexes because the overhead
of building and maintaining an index is costly.

Index selection for resolving WHERE clauses and examples are contained in the following paper:
"Indexing and Compressing SAS Data Sets: How, Why and Why Not", (Karp and Shamlin 1993)
available at www2.sas.com/proceedings/sugi28/003-28.pdf.

Allowing Index Joins
As described in the earlier section "Index Joins", if several conditions are met (such as, equijoin, one
table much smaller, larger table indexed, high key cardinality in larger table), SAS SQL performs an
index join.

Only equijoins are eligible for an index join. If there are multiple join conditions, they must be
connected by the AND operator.

Index use is limited in multi-way joins, which leverage only one index. Multi-way joins are solved as
a series of two-way joins. The SAS SQL optimizer samples keys and, based on the sample
distribution, arranges the join order to optimize overall execution time. The optimizer favors an index
join for the first two tables joined, but a usable index must exist. Sampled distributions favor an index
join. On subsequent sub-joins, SAS SQL does not use an index.

Here is an example. Three tables have an index on column i and an index on randvar. The
_METHOD trace output shows that an index join was used in the first sub-join
(WORK.JOIN_DATA2 joined to LOCAL.COMPRESS_90PERCENT). However, a sort-merge is
used for the next sub-join. An index join is represented by sqxjndx. A sort-merge is represented by
sqxjm.

http://www2.sas.com/proceedings/sugi28/003-28.pdf

 46

proc sql _method;

create table _null as select * from
join_data1,join_data2,local.compress_90percent

where join_data1.randvar = compress_90percent.randvar

and join_data2.i = compress_90percent.i;

quit;

 sqxcrta

 sqxjm

 sqxsort

 sqxsrc(WORK.JOIN_DATA1)

 sqxsort

 sqxjndx

 sqxsrc(WORK.JOIN_DATA2)

 sqxsrc(LOCAL.COMPRESS_90PERCENT)

An index join exhibits best performance when there is a high percentage of non-matches between the
join tables. In this circumstance, most attempted matches "short-circuit" because the key is not present
in the indexed table. That is, for non-matches, the join accesses only the index of the large table, not
the table itself. The optimizer that chooses an index join usually provides superior performance results
when compared to a sort-merge join, but superior performance is not guaranteed.

For a comparison of index joins to other SAS SQL join algorithms, see the section "SAS SQL Joins".

Verifying Key Uniqueness
With the UNIQUE qualifier, an index build verifies key uniqueness. Here is an example:

proc sql; create unique index Cust_ID on mydata.customer; quit;

Index Used in SAS?
To determine if SAS uses an index, use the SAS option MSGLEVEL=:

option msglevel=i;

For information about index usage by SAS SQL, use the _METHOD trace option:

proc sql _method;

 47

Encouraging Index Usage
In general, let SAS determine if an index should be used for WHERE clauses and joins. To encourage
SAS to use an index with a specific SAS data set, use the option IDXWHERE=YES. However, be aware
that encouraging index usage can degrade performance. PROC SQL applies intelligence in declining
to use an index.

Indexes for Sorting
Indexes are not used by SAS for sorting.

 48

Environment Tuning
Each ETL flow interacts with the hardware and the operating environment that it runs on to
accomplish its tasks. In addition to ETL code and underlying methods and options, actual
performance is highly dependent on correctly setting up the hardware environment for maximum
capacity and throughput. Appropriate resource allocation for each concurrent process ensures good
performance.

The following hardware and software tuning recommendations and comments are based on
experience with the SAS ETL flows. While developing your ETL flows, you should determine the
amount of disk space that is required for the various SAS libraries that are used by the ETL flow (the
size of the SAS WORK area is the hardest to determine) if you want the ETL flow to complete in a
timely fashion. After you know the size of the various libraries, you can determine how to balance the
I/O subsystems to ensure that you have the best I/O throughput possible for the computer that you are
running. There is a lot of discussion in this paper about tuning the I/O, because experience has shown
that I/O bottlenecks are the leading reason for poor performance of ETL flows. A traditional ETL
flow is usually a single-threaded process, so achieving your desired service levels might require
breaking a single ETL flow into multiple flows that can execute concurrently. Periodically, you
should monitor the ETL flow and the hardware it is running on in order to make sure that there are no
bottlenecks so that the job will run in the required time frame.

Disk Space Maximum for Intermediate Files
As described in the section "Intermediate Files for SAS Data Integration Studio Jobs", SAS Data
Integration Studio jobs create many intermediate files. There have been situations in which ETL flows
fail because the flows completely fill up the directory that is used for SAS WORK. Determining the
maximum amount of space that is required for intermediate files is valuable when you are configuring
the computer to support your ETL flows. Configuring the amount of WORK cannot be done by
turning on a SAS parameter, but there are ways outside of SAS to track the disk space that is used by
intermediate files.

If you direct the UTILLOC directory(s) to a location other than SAS WORK, or you are heavily using
another SAS library, run additional scripts to capture the maximum amount of disk space for the
additional directory(s).

Disk Space Usage for Intermediate Files
Managing intermediate files throughout the ETL flow can save valuable disk space, especially if the
amount of disk space that is available to the ETL flow is restricted.

As described in the section "Deleting Intermediate Files", intermediate files are usually deleted after
they have served their purpose. However, it is possible that some intermediate files might be retained
longer than desired in a particular ETL flow. For example, some user-written transformations might
not delete the temporary files that they create, and scheduled ETL flows to the batch server might run
out of disk space for WORK files.

 49

The following post-processing macro can be incorporated into an ETL flow. This macro uses the
DATASETS procedure to delete all data sets in the WORK library, including any intermediate files
that have been saved to the WORK library.

%macro clear_work;

 %local work_members;

 proc sql noprint;

 select memname

 into :work_members separated by ","

 from dictionary.tables

 where

 libname = "WORK" and

 memtype = "DATA";

 quit;

 data _null_;

 work_members = symget("work_members");

 num_members = input(symget("sqlobs"), best.);

 do n = 1 to num_members;

 this_member = scan(work_members, n, ",");

 call
symput("member"||trim(left(put(n,best.))),trim(this_member));

 end;

 call symput("num_members",
trim(left(put(num_members,best.))));

 run;

 %if &num_members gt 0 %then %do;

 proc datasets library = work nolist;

 %do n=1 %to &num_members;

 delete &&member&n;

 %end;

 quit;

 %end;

%mend clear_work;

%clear_work

For details about adding a post process to a SAS Data Integration Studio job, see the section "Add
SAS Code on the Pre- and Post-Processing Tab".

 50

Deleting Transformation Output Tables in a Long ETL Flow
The transformation output tables for an ETL flow remain until the SAS session that is associated with
the flow is terminated. As you analyze what is happening behind-the-scenes with your ETL flow, and
you determine that there are many output tables that are not being used, you might want to add nodes
to the ETL flow that will delete these output tables (especially, if these tables are large). Deleting the
output tables will free valuable disk space and memory.

For example, you can add a generated transformation that would delete output tables at a specified
point in the flow. For details about generated transformations, see the section "Add Your Own
Transformation to the Process Library".

Hardware Considerations for ETL Flows
As mentioned in the introduction to this section, I/O bottlenecks are the leading causes of ETL flows
not finishing within the desired time frame. Here is some information about what you should look for
when you set up the file systems on your computer, and some general information about what to look
for with regard to your ETL flow. From a hardware perspective, the best way to improve I/O is to
ensure the following items:

• adequate I/O bandwidth for ETL flows

• sufficient disk spindles (to ensure the I/O throughput rate that is required to achieve the
best I/O performance)

• fastest I/O rate is available to the various SAS libraries (from a hardware perspective, do
this by striping the file system across multiple disks and I/O channels).

It is best to work with the IT administrators at your site in order to determine how to best configure
the hardware, based on SAS usage. Knowing the amount of I/O that occurs during each
transformation and how quickly the transformation must be complete, will help your IT administrators
determine the I/O throughput rate that is required to ensure that a transformation finishes within the
desired time frame. Additional resources to help you with hardware configuration issues are: the SAS
Support Consultant at your site, a Technical Support Consultant at SAS, a partner vendor, or the SAS
9.1.3 Intelligence Platform Planning and Administration Guide available at
support.sas.com/documentation/configuration/iaplanning913.pdf.

SAS ETL flows benefit when multiple file systems are configured with many, independent disks
across independent I/O channels or fast I/O channels. Smaller disks have more spindles. More
spindles result in faster I/O throughput rates (a minimum of 200 MB/sec up to 800 MB/sec), which
makes this type of configuration ideal for the heavily-used SAS WORK and UTILLOC libraries, and
effectively distributes I/O and boosts performance.

Understanding the SAS code that is generated by your SAS Data Integration Studio flow is critical to
effectively deploying available volumes. If you understand the code that is generated, you can
determine if a faster I/O throughput rate is needed because of the sequential access of the data. If there
will be more random access to the data, you can determine if a high number of IOPs are required.
These determinations can also help your system administrator to decide the best way to set up the I/O
sub-systems.

http://support.sas.com/documentation/configuration/iaplanning913.pdf

 51

File Cache Management
By default, SAS asks the operating environment to retrieve data from and write data to the various file
systems on the computer. The operating environment performs these tasks by reading the data from
disk into file cache (that is, memory on the computer). One of the recent improvements in operating
environments results in reads that are more efficient. The operating environment analyzes how the
application is requesting the data and initiates activities on behalf of the application. With SAS
performing large sequential reads, the file system becomes very aggressive in performing read-aheads
of the data so that the data is in memory and ready to be accessed by SAS. This is good until it causes
the computer to thrash physical memory that is used by the SAS application and memory that is used
by the file cache. When the computer begins to swap real memory pages out to disk (for example,
virtual memory), then performance is degraded. For these reasons, ensure that there is enough
memory to support SAS activities, file cache, and other operating environment requirements. It is
essential that you monitor the memory usage to make sure that there is no thrashing (on UNIX, the lru
and sync daemons begin accruing a lot of time) on the server. If this occurs, then you should restrict
the amount of memory used by file cache (this can be done on most of the UNIX operating
environments), or you should restrict the amount of memory that SAS can access.

 Note: If the amount of memory for file cache is restricted too much, the performance of SAS is
degraded because too great a restriction of file-cache memory disables its read-ahead
capability.

I/O Performance Improvement
When you set up file systems, consider enabling read-ahead, write-behind, and file cache free-behind;
disable write-throttling; and look for a lack of physical I/O buffers as reported by the operating
environment tools. These features are not available on all file systems or on all operating
environments, and the actual settings for the file system are based on the actual I/O access patterns of
the ETL flow.

Consider balancing the I/O requests from SAS (via the BUFSIZE= option) with the I/O buffers of the
underlying I/O sub-system. If you can set the SAS I/O buffer and the operating environment I/O
buffer to be the same size or to be a multiple of one another (setting the operating environment buffer
larger than the SAS buffer), you can streamline the process of getting data into SAS and the
processing might be faster.

Here are some recommendations for improving I/O performance under various operating
environments:

• Under z/OS, when you specify sequential access of files, choose a library block size that

corresponds to half-track blocking, that is, two blocks per track. For example, specify:

option blksize(3380)=half blksize(3390)=half;

• Under z/OS, when you specify random access of files, choose a library block size of 6K, if
that block size is practical. For some DASD controller configurations, half-track blocking
performs almost as well as a 6K block size for random access. Half-track blocking, which
results in fewer inter-block gaps, allows more data to be packed on a track.

• Under Windows and UNIX, it is recommended that BUFSIZE= be set to 64K when you are
executing large, sequential Reads and Writes. You might want to increase the value of
BUFSIZE= to 128K if you have a fast I/O sub-system. However, a value higher than 128K
for this option is not recommended.

 52

Occasionally, SAS is asked about setting up in-memory file systems to improve I/O performance.
Depending on the application, using in-memory file systems can improve performance by having the
data close to the processor. However, as soon as you need more space than you have physical RAM,
swapping begins and you will see a big degradation of performance. Using in-memory file systems
has been used, successfully, when an application uses a single file (or several small files) that can fit
in the memory on the computer. Putting that file into an in-memory file system might improve
performance:

• Under z/OS, consider using the In-Memory File (IMF) feature for a SAS file that will be

accessed across many SAS steps (DATA steps or procedures) if the file is small enough to fit
in the available region size. Load the file by specifying the SASFILE statement before
specifying the SAS steps that will process the file. The file will be read and, if necessary,
written only once. Without IMF, the file would be read once per step. For more information
about the SASFILE statement, see the "SAS Companion for z/OS" under Base SAS,
Operating Environment Specific Information in SAS OnlineDoc® 9.1.3 available at
support.sas.com/onlinedoc/913/docMainpage.jsp.

• Under Windows, use the MEMLIB and MEMCACHE options to create memory-based SAS
libraries. Depending on your operating environment, extended memory or conventional
memory supports these memory-based libraries. For more information, see "SAS Language
Reference: Dictionary" under Base SAS in SAS OnlineDoc® 9.1.3 available at
support.sas.com/onlinedoc/913/docMainpage.jsp.

• Under UNIX, many of the operating systems can create in-memory file systems. Consult
your System Administrator to learn which operating systems are available.

Direct I/O
An alternative to restricting memory is to have SAS execute direct I/O (that is, directly access data
from disks), where possible, and not use file cache. This alternative process decreases the amount of
memory that is used by the ETL flow because the SAS process accesses the data directly from disk
and not from memory (file cache). This alternative process is best used in the following situations:

• the system is saturated, and you are running low on physical RAM

• a single, sequential pass of the data is specified.

Direct I/O frees system resources (including memory). The advantage of direct I/O processing is that
memory is not thrashed; the disadvantage is that read-aheads and write-behinds are no longer
available to you.

Another advantage to avoiding file cache on systems that are I/O bound is working directly from disk,
which cuts in half the amount of I/O from the ETL flow. The advantage of this process is less I/O; a
disadvantage is that the file is not readily available in memory. Therefore, if your ETL flow is using
the same file repeatedly, and the file is small enough to fit in memory, then accessing the file from
disks as opposed to memory that is close, results in the job taking more time to run.

 Note: Currently, you can only execute direct I/O on Windows 32-bit systems using SAS®9 with
the SGIO option and on most UNIX systems by using a file system MOUNT command. For
more information, see "SGIO System Option: Windows" in the SAS OnlineDoc 9.1.3 at
support.sas.com/onlinedoc/913/docMainpage.jsp and "Setting Up and Tuning Direct I/O for SAS®9
on AIX" (Bartucca 2005) available at www-03.ibm.com/support/techdocs/atsmastr.nsf/WebIndex/
WP100890.

http://support.sas.com/onlinedoc/913/docMainpage.jsp
http://support.sas.com/onlinedoc/913/docMainpage.jsp
http://support.sas.com/onlinedoc/913/docMainpage.jsp
http://www-03.ibm.com/support/techdocs/atsmastr.nsf/WebIndex/WP100890
http://www-03.ibm.com/support/techdocs/atsmastr.nsf/WebIndex/WP100890

 53

Monitoring SAS Data Integration Studio Flows
Periodically, you should monitor the SAS ETL flows to ensure that they are performing to
specification (most importantly, the ability to run in a pre-determined time frame). Experience has
shown that, over time, the data volume increases: this might be input data coming into the ETL flow
or it might be the back-end data warehouse becoming larger as the historical data is loaded. To ensure
that the ETL flow does not fail, you should monitor the flow to verify that it is completing within the
desired time frame. Do this by reviewing the SAS log files from the ETL flow to see if they are
completing successfully (and with plenty of time to spare), and that there are no large gaps between
the real time and the CPU time.

In addition to reviewing the SAS logs, use various operating environment tools or third-party
hardware monitoring tools to monitor the computer for any system-resource bottlenecks (such as I/O,
memory, or CPU constraints), and to ensure that you have enough disk space to complete the ETL
flow. It is always better to monitor the status of your long-running ETL flows, periodically, instead of
having to troubleshoot to find out why an ETL flow failed today (ran too long or ran out of disk
space), although it has completed, successfully, on other days.

 54

Advanced Topics
Now that you've tried the basics and the simple tuning techniques, if you are still having trouble with
performance or you want to investigate other methods of improving performance, you are ready for
the advanced topics. This section discusses topics such as how to modify SAS Data Integration
Studio-generated code, how the order of a join can affect performance, how SAS functions are passed
to the databases, the best method for getting counts from SAS data sets and the databases, and how to
optimally use dates in SAS SQL statements.

Removing Non-Essential Indexes and Constraints During a Load
In some situations, removing non-essential indexes before a load and re-creating those indexes after
the load improves performance. As a general rule, consider removing and re-creating indexes if more
than 10% of the data in the table will be re-loaded.

You might also want to temporarily remove key constraints in order to improve performance. If there
are a significant number of transactions and the data that is being loaded conforms to the constraints,
then removing the constraints from the target before a load removes the overhead that is associated
with maintaining those constraints during the load.

To control the timing of index and constraint removal, use the options that are available on the Load
Technique tab (Figure 9) of the Table Loader transformation (version 2). There are four settings that
enable you to specify the desired conditions for the indexes and constraints before and after the load.

Figure 9. Constraint and Condition Options on Load Technique Tab of Table Loader Transformation

The options that are available will depend on the load technique that you choose. The choices
translate to three different tasks: put on, take off, and leave as is. (For more information, see the
product Help.) Select Off for the Before Load option(s) and the generated code checks for and
removes any indexes (or constraints) that are found, and then loads the table. If an index is required
for an update, that index is not removed or it will be added, as needed. Select On for the After Load
option(s) to have indexes added after the load.

After the table is loaded, if you decide not to build indexes, your physical table will be out of sync
with the metadata for the table. Here is a scenario where you might want to leave indexes off during
and after loading for performance reasons: Indexes are defined on the table only to improve
performance of a query and reporting application that runs after the nightly load. The table is updated
multiple times in a series of load steps that appear in separate jobs. None of the load steps need the
indexes, and leaving the indexes on impedes the performance of the load. In this scenario, the indexes
can be taken off before the first update and left off until after the final update.

 55

Optimizing Join Order and Performance
Sometimes, changing the oder of a join in a multi-stage join can substantially improve the overall
elapse time (performance) and resource consumption. The SAS Data Integration Studio SQL Join
transformation gives you complete control over the order in which your joins are performed. The
default syntax that is generated is implicit inner joins, but you can control this in the transformation.

You might want to use the order of a join to reduce the number of columns in a table that has many
columns and rows. The difference in the join processing can reduce the amount of data that must
participate in the join. You can use the interface for the SQL Join transformation to change the order
of the join.

You can also turn on the DEBUG option in PROC SQL, which enables you to examine the SQL tree
in order to determine how processing will be performed.

GROUPINTERNAL Option in PROC MEANS
The GROUPINTERNAL option in PROC MEANS tells the procedure not to apply formats to class
variables when PROC MEANS groups the values to create combinations of class variables. Using this
option can be useful when there are numeric values that do not have a format specified. PROC
MEANS converts the numeric values to a character string by using the BEST12 format, then converts
this value to a character string, which saves computer resources when the numeric values contain
discrete values.

Lookups in a Star Schema
Lookup is frequently used to validate data values against a reference table, to add descriptive text
from a code table, or to add values from dimension tables to a fact table in a star schema.

A star schema is a method of organizing information in a data warehouse that enables efficient
retrieval of business information. A Star Schema consists of a collection of tables that are logically
related to each other. Using foreign key references, data is organized around a large central table that
is called the "fact table", which is related to a set of smaller tables that are called "dimension tables".
To load data into the fact table, each record must be loaded with the associated dimension-table,
foreign-key entry.

There are several techniques commonly used to perform lookups. Lookups can be made directly
against data on disk by using join or merge, or against data in memory by using a DATA step with
SAS Formats or Hash Objects (new in SAS®9). The technique that you choose can have a significant
impact on how well your processes perform.

For general lookups, given adequate available memory, the SAS DATA step hash technique is the
best all-around choice. With the hash object, a lookup can be made with a composite key, and more
than one column of data can be retrieved from the lookup data (tasks not easily accomplished with
Formats). The hash object uses less memory than the Format. If the source data for the lookup is large
and memory constraints are an issue, the hash object and SAS format techniques might be slow due to
system paging, or they might fail completely. Join or Merge lookup techniques might be required.

 56

SAS Data Integration Studio provides several transformations in the transformation library that can be
used to perform lookups. Choose the Lookup transformation to perform a hash-object lookup. Choose
the Fact Table Lookup transformation to perform a SAS Format lookup. Choose the SQL Join
transformation for joining tables.

Hash-Object Lookup
The SAS DATA step hash lookup enables you to store data in an expandable, in-memory table that
has fast lookup capabilities. It is similar to a DATA step array, where an index is used to store and
retrieve data in the array. While an array uses numeric indexes, a hash table can use character,
numeric, or a combination of character and numeric indexes. Unlike an array, the number of values
stored in a hash table is not specified when creating the table. A hash table can grow to hold as many
values as will fit into memory. When adding data to a hash table, an index, often called a key, is used
to find a position in the table to copy the data. When retrieving data from a hash table, a key is given
and a fast, nonlinear search occurs to determine if data with the key has been placed in the table. If so,
the data that is stored with that key is returned. The hash table is destroyed when the DATA step ends.
Hash objects are also scalable because one or more lookups can be performed on a single pass of the
data. The hash technique also supports lookup on one or more source-key values and retrieval of one
or more target values.

Hash-object lookup is ideal for a one-time lookup step. A hash-object lookup builds rapidly,
consumes no disk space, is fast, and it scales well to multiple values. A hash table is a good choice for
lookups in unordered data that can fit into memory.

The Lookup transformation in SAS Data Integration Studio leverages the hash technique to perform
lookups. The transformation has the following advantages:

• It uses the fast-performing, DATA step hash technique as the lookup algorithm for
matching source values to target values.

• It allows multi-column key lookups and multi-column propagation into the target table.

• It supports WHERE-clause extracts on dimension tables for subsetting the number of data
records.

• It enables customized error handling.

Figure 10 shows how to configure the Lookup transformation to build fact table data from associated
dimension tables. The first step is to configure each lookup table in the Lookup transformation. The
Source to Lookup Mapping tab is used to indicate the columns to use in order to match the
incoming source record to the lookup table. Note that multiple columns can be used to perform the
match.

 57

Figure 10. Configuring the Lookup Transformation to Build Fact Table Data from Associated
Dimension Tables

Figure 11 shows the columns to pull out of the lookup table and propagate to the target table. Because
the Lookup transformation supports multi-column keys, any number of attributes can be pulled out of
each lookup table and retained in the target table.

 58

Figure 11. Selecting Lookup Table Columns to Propagate the Target Table

The Lookup transformation is especially useful when the complexity of the process increases because
the hash-based lookup easily handles multi-column keys and multiple lookups without degrading
performance. For example, suppose that each fact in a fact table requires a composite foreign key
from the dimension table. Adding the complexity to include these associated fields can degrade the
performance of the process when using methods such as joins or formats. It can also increase the
complexity of the code to handle the process. Using hash lookup, an additional table is added as
another lookup entry and matching can occur on one or more columns.

The following example shows the DATA step code for a hash-based lookup. This example uses a
multi-column lookup key and pulls two columns into the target table.

if _n_=1 then

do;

/* Build hash h3 from lookup table CMAIN.Household_income */

declare hash h3(dataset:"CMAIN.Household_income");

/* lookup on a 2 column key */

h3.defineKey("SERIALNO", "STATE");

/* pull two columns out into the target data set */

h3.defineData("INCOME", "YEARS");

/* lookup complete */

h3.defineDone();

end;

 59

Sample Test Results
To test performance, an example lookup was coded to perform the search in four ways: using a
format, SET with KEY=, MERGE with BY, and HASH lookup. The results are shown in the table
below.

Real Time to Perform Lookup

SET with KEY= 108.14s

Build Index 11.33s

Search 96.81s

Format and PUT() 89.03s

Build Format 67.32s

Search 21.71s

MERGE with BY 35.78s

Sort Data Sets 31.60s

Search 4.18s

Hash Table 18.35s

Load and Search 18.35s

For more information, see "The DATA Step in SAS 9: What's New?" (Seckosky 2004) at
support.sas.com/rnd/base/topics/datastep/dsv9-sugi-v3.pdf.

Format-Based Lookup
The FORMAT procedure provides another method for performing lookups. PROC FORMAT creates
a permanent lookup table that is saved in the SAS format library for use later in the job or in
subsequent jobs. A step that references the format reads it into memory; the source table is not
accessed. However, compared to the hash object, formats require additional processing and disk space
to create and store the format. Sorting and I/O overhead to create the format can be costly. Thus for a
one-time lookup, the format method is less desirable to use than hash.

The following example illustrates how to create a FORMAT-based lookup. You can use user-defined
formats to display or write-out coded values in raw data. This technique enables you to re-write If-
Then/Else trees and replace them with a single line of code. For example, assume that you have a set
of discount factors that are stored in the user-defined format $DISC.

http://support.sas.com/rnd/base/topics/datastep/dsv9-sugi-v3.pdf

 60

proc format;

value $disc

‘ABC’ = 0.20

‘DEF’ = 0.25

‘XYZ’ = 0.00

other = 0.00;

You can replace code that looks like this:

if vendor = ‘ABC’ then discount = 0.20;

else if vendor = ‘DEF’ then discount = 0.25;

else if vendor = ‘XYZ’ then discount = 0.00;

with a single statement that looks like this:

discount = input(put(vendor, $disc.),best32.);

This technique has the added advantage of separating the data (that is, the table of discount factors)
from the code. If you need to add or to change the discount values for your vendors, you change that
data outside of the DATA step and leave your existing DATA-step code alone. Note that the PUT()
function performs the lookup and returns a character string. The INPUT() function (as used here)
converts that character value to a numeric value.

You can also create a user-defined format from an existing data set or database table. PROC
FORMAT provides an analog to the CNTLOUT= option called CNTLIN=, which loads a user-defined
format from a data set. For example, you have an existing data set, DISCOUNT, that has two
columns: VENDOR and DISCOUNT. You can build a suitable CNTLIN= data set from the
DISCOUNT data set as follows:

data cntlin(

keep = fmtname type hlo start label);

retain fmtname ‘disc’ type ‘C’;

set discount end = lastrec;

start = vendor; label = put(discount, 6.2);

output;

if lastrec then do;

hlo = ‘O’; label = ‘0.00’;

output;

end;

run;

 61

For more information about formats, see "Eight PROC FORMAT Gems" (Shoemaker 2001) available
at www.suk.sas.com/proceedings/26/26/p062-26.pdf.

Performance Considerations with Lookup

1. When using the DATA step hash technique, verify that you have enough available RAM to
hold the hash table. Adjust the value for the MEMSIZE= option to be large enough to hold the
in-memory hash table and support other SAS memory needs. However, be aware of
increasing the value of the MEMSIZE= option beyond the amount of available physical
memory because system paging will occur and degrade job performance.

2. In order to minimize the amount of memory that is required to hold the lookup objects, create
the hash object or format on the smaller table.

3. If you are performing processes in parallel, ensure that each parallel job has sufficient
physical RAM to hold the format or hash object, because these structures are NOT shared
between SAS jobs.

4. A format exists for the life of the SAS session; a hash object exists only within the single
DATA step in which it is created. If lookups against a table key is a one-time event in your
ETL flow, use the hash object. If several steps perform identical lookups, consider using the
format-based lookup. One read of the lookup’s source table to create a format in memory is
cheaper than the multiple reads that would be required to construct hash objects, repeatedly,
in the separate steps. The difference in performance can be discernible when the lookup’s
source table is large.

5. The hash object consumes less memory than a format. If you are using a format and
experiencing system paging, try replacing the format with a functionally equivalent hash
object.

6. The hash object easily supports composite keys and composite data fields. You must
"coerce" a format to support more than a single, key column and single, data column.

7. For large tables that reside in a database, you can use database-specific SQL to perform the
lookup in the database. Using the hash object or a format causes the database tables to be
imported into SAS for the lookup. Network and I/O overhead make this method slow relative
to performing the work in the database.

Processing Level Performed by a Relational Database
When working with relational database source data, it can be performance-critical to push work to the
database. For large data extracts, examine the generated SQL to verify that filtering and other
processing is passed to the database.

Use the SASTRACE= option to display the SQL that is passed to the database by a SAS/ACCESS
engine. The SASTRACE option displays SQL, some API call information, and database return codes
or messages in your SAS log file. For more information, see "SASTRACE= System Option" in
SAS/ACCESS® 9.1.3 for Relational Databases: Reference available at
support.sas.com/documentation/onlinedoc/91pdf/sasdoc_913/access_rdbref_9297.pdf.

The list of SAS functions that are translated to the database equivalent is specific to each
SAS/ACCESS product.

http://www.suk.sas.com/proceedings/26/26/p062-26.pdf
http://support.sas.com/documentation/onlinedoc/91pdf/sasdoc_913/access_rdbref_9297.pdf

 62

Enable tracing by using the following OPTIONS statement:

option SASTRACE=”,,,d” no$stsuffix SASTRACELOC=saslog;

Disable tracing by using the following OPTIONS statement:

option SASTRACE=”,,,”;

SAS/ACCESS engines send SQL for both prepare and execute on the database. Prepare-only SQL is
inexpensive on the database. An example of a Prepare-only SQL is the "SELECT * from tablename"
prepare to determine if a table exists and to retrieve column metadata.

Executed SQL contains any WHERE filters, joins, or other complex queries that are passed to the
database. Executed SQL triggers substantive database activity by transferring rows from the database
to SAS.

Sometimes, warnings and errors that are generated in trace output are not a cause for concern. The
warnings and errors might indicate that the SQL was not handled by the database, and it was passed
back to SAS to process.

UPCASE and LOWCASE Functions versus UPPER and LOWER
Functions
SAS/ACCESS engines will attempt to pass SAS functions to the underlying relational database if the
database provides an equivalent function. If you need to use a SAS function in a WHERE clause, it is
important to consider if the SAS function can be passed to the database by the SAS/ACCESS
interface that is being used.

The SAS functions UPCASE and LOWCASE are similar in functionality to the SQL UPPER and
LOWER string functions. SAS SQL treats UPPER and LOWER differently than it treats UPCASE
and LOWCASE in the SQL that is generated to a database. The UPCASE and LOWCASE functions
are preferred because they can be translated to database-specific equivalent functions. WHERE-clause
filtering that is performed on the database for UPCASE and LOWCASE causes a significant
difference in processing time.

The first example code uses the UPPER and LOWER string functions. This is illustrated by the use of
the SASTRACE option with SAS/ACCESS to DB2.

options sastrace=",,,d" sastraceloc=saslog no$stsuffix;

proc sql;

select Component_Id from dbms.project

where UPPER(Complete_code) = 'PENDING' or LOWER(lead) = 'valance';

quit;

 63

DB2_4: Prepared:

SELECT * FROM MYDB2.PROJECT FOR READ ONLY

DB2: COMMIT performed on connection 0.

DB2_5: Executed:

Prepared statement DB2_4

NOTE: PROCEDURE SQL used (Total process time):

 real time 3.35 seconds

 user cpu time 3.01 seconds

 Note: In the preceding example, notice that the WHERE-clause processing was not passed
to the database, therefore, all the data was processed in SAS.

The next example shows the same code that is used in the first example, but this code specifies the
UPCASE and LOWCASE functions instead of the UPPER and LOWER string functions.

proc sql;

select Component_Id from dbms.project

where UPCASE(Complete_code) = 'PENDING' or LOWCASE(lead) = 'valance';

quit;

DB2: AUTOCOMMIT turned ON for connection id 0

DB2_1: Prepared:

SELECT * FROM MYDB2.PROJECT FOR READ ONLY

DB2: COMMIT performed on connection 0.

DB2_2: Prepared:

SELECT "COMPONENT_ID", "COMPLETE_CODE", "LEAD" FROM MYDB2.PROJECT WHERE

 64

(({fn UCASE("COMPLETE_CODE")} = 'PENDING') OR ({fn LCASE("LEAD")} =

'valance')) FOR READ ONLY

DB2_3: Executed:

Prepared statement DB2_2

NOTE: PROCEDURE SQL used (Total process time):

 real time 0.20 seconds

 user cpu time 0.04 seconds

 Note: In the preceding example, notice that the WHERE-clause processing was passed to
the database.

You can also turn on the DEBUG option in SAS Data Integration Studio version 2 of the SAS SQL Join
transformation; this will generate the SASTRACE option.

Getting Counts of the Number of Rows in a Table
In an ETL flow, you might need a count of the number of rows in a table. There are several ways to
get a count; some ways are more efficient than others, depending on the data source.

The following examples show ways to count rows in tables for both SAS data sets and relational
database tables.

Row Counts in SAS Data Sets
There are easy and efficient ways to get counts for SAS data sets. You can use either the CONTENTS
procedure or a dictionary call in PROC SQL to get a count. Following is an example that uses PROC
CONTENTS.

proc contents noprint

 data = mydata.test

 out = mydata.contents;

run;

data _null_;

 set mydata.contents;

 if _n_ = 1 then do;

 65

 call symput("counter", left(trim(put(nobs,best.))));

 stop;

 end;

run;

If you try to get a count from a relational database system, PROC CONTENTS returns a value of -1.

Using the SET statement with the NOBS= option, as shown in the following example, might be faster
because PROC CONTENTS is eliminated.

data _null_;

 if 0 then set mydata.test nobs = nobs;

 call symputx("counter", nobs);

 stop;

run;

You can also use a dictionary call in PROC SQL. If you use this method, subtract the deleted
observations (DELOBS) from the total number of observations (NOBS). Following is an example:

proc sql noprint;

 select nobs - delobs

 into :counter

 from dictionary.tables

 where

 libname = "MYLIB" and

 memname = "TEST" and

 memtype = "DATA"

 ;

quit;

If the dictionary call returns a missing value, then it was unsuccessful in getting a count from the data
source. See the section "Row Counts in Databases".

 Note: In SAS 9.1.3 Service Pack 4 or later, the COUNT(*) statement in SAS SQL, which is
recommended for databases, can now be used efficiently with SAS data files. SAS will retrieve
the number of observations from the header.

 66

Row Counts in Databases
Relational databases do not have the number of rows in a table readily available. As a result, when
asked for a count, SAS/ACCESS engines return a value of -1 when PROC CONTENTS is used or a
missing value when PROC SQL is used. To get a row count in a relational database, use the SELECT
COUNT(*) command. This command might result in a full-table scan, but it is the recommended
method of getting counts, and, usually, relational databases handle full-table counts with an
acceptable amount of efficiency. Here is an example that uses PROC SQL:

proc sql noprint;

 select count(*)

 into :counter

 from mydb.test;

quit;

Bulk Loading the Relational Database
One of the fastest ways to insert large data volumes into a relational database, when you use the
SAS/ACCESS engine, is to use the bulk-loading capabilities of the database. By default, the
SAS/ACCESS engines load data into tables by preparing an SQL INSERT statement, executing the
INSERT statement for each row, and periodically issuing a COMMIT. If you specify BULKLOAD=YES
as a data set or a LIBNAME option, a database bulk-load method is used. This can significantly
enhance performance, especially, when database tables are indexed. Additional information is
available in the SAS/ACCESS online documentation available at
support.sas.com/documentation/onlinedoc/91pdf/index_913.html#access and in database vendor bulk-
load documentation. (The term "bulk load" is not useful in finding or navigating database
documentation; instead, look for the load methods, such as SQL*Loader and FastLoad.)

 Note: Some SAS/ACCESS engines implement BULKLOAD=YES as a LIBNAME option,
however, this is not supported across all SAS/ACCESS engines. Therefore, specify BULKLOAD=
as a data set option for reliable behavior across SAS/ACCESS engines.

The Use Bulkload for Uploading and Bulkload Options properties are available on the Property
Sheets in SAS Data Integration Studio for each table in a version 2 SQL Join transformation. The Use
Bulkload for Uploading option to bulk-load tables only applies to source tables in a heterogeneous
join. Also, the user must upload the table to the DBMS where the join is performed. Use Bulkload for
Uploading is only a valid option when the source table is being uploaded to the DBMS to create a
homogeneous join. The Bulkload to DBMS property applies to target tables and turns bulk loading on
and off. The Bulkload to DBMS property is not valid when the target table has the Pass Through
property on the SQL Properties pane set to Yes.

SAS Date Functions
If your ETL process needs to convert or assign date and datetime values, your first instinct might be to
use a SAS date function. These functions are very powerful, but there are some issues you need to be
aware of when you use a SAS date function (or any function that exists only in SAS):

http://support.sas.com/documentation/onlinedoc/91pdf/index_913.html#access

 67

• Function calls incur overhead for every row that is processed via the ETL step. This

overhead should be avoided for WHERE filtering or other iterative processes when the
function's desired returned value is, in effect, a constant value across all rows. The cost is
negligible for small tables, but it is substantial if there are millions of rows.

• During a long-running process, SAS date functions can yield unintended or undesirable
results. For example, the value that is returned by the TODAY() function will change if the
job runs past midnight into the following day.

• SAS/ACCESS engines might not support the passing down of these functions for evaluation
on the relational database. The result is that each record will be read into SAS so that the
function can be processed.

• SAS/ACCESS engines might not support passing some WHERE clause expressions that
contain date and time variables.

One alternative to using a SAS function directly in a filter or iterative process is to pre-evaluate the
function expression in a SAS macro variable definition. Then, the SAS macro variable can be used in
a direct comparison in a SAS WHERE clause or in assignments in a SAS DATA step.

The following examples show the performance gain when comparing the two techniques. The
following two DATA steps assign a date value to a variable. The first DATA step accomplishes the
assignment by using the SAS TODAY function. The second DATA step uses a macro variable that
has been assigned the value of the same SAS TODAY function that is used in the first DATA step.
The assignment is repeated one million times in each DATA step to show that the processing
overhead of the function that is used in the DATA step increases with each iteration.

5

6 /* today() function used directly in variable assignment */

7 data _null_;

8 format date_var date9.;

9 do n=1 to 1000000;

10 date_var = today();

11 end;

12 put date_var=;

13 run;

date_var=13SEP2005

NOTE: DATA statement used (Total process time):

 real time 1.04 seconds

 cpu time 0.98 seconds

 68

The next example replaces DATEVAR=TODAY() with a macro variable that contains today's date.
This assignment is made only once.

14

15 /* macro variable for subsequent variable assignment */

16 %let target_date=%sysfunc(today());

17

18 data _null_;

19 format date_var date9.;

20 do n=1 to 1000000;

21 date_var = &target_date;

22 end;

23 put date_var=;

24 run;

date_var=13SEP2005

NOTE: DATA statement used (Total process time):

 real time 0.03 seconds

 cpu time 0.03 seconds

The preceding technique should work effectively with any SAS data source.

Views or Physical Tables for ETL Flows
In general, each step in an ETL flow creates an output table that becomes the input of the next step in
the flow. Decide which of the following would be best for transferring data between steps in the flow:

• write the output for a step to disk (in the form of SAS data files or relational database tables)

• create views that process input and pass the output directly to the next step (with the intent of
bypassing some writes to disk).

Note that SAS supports two types of views: SQL views and DATA step views. These two types of
views can behave differently. Switching from views to physical tables or tables to views, sometimes
makes little difference in an ETL flow. At other times, improvements can be significant. Here are
some useful tips.

 69

• If the data that is defined by a view is only referenced once in an ETL flow, then a view is
usually appropriate.

• If the data that is defined by a view is referenced multiple times in an ETL flow, then putting
the data into a physical table will probably improve overall performance. When accessing a
view, SAS must execute the underlying code repeatedly, that is, each time the view is
accessed.

• If the view is referenced once in an ETL flow but the procedure performs multiple passes of
the input, then consider using a physical table.

• If the view is SQL and referenced once but that view references another SQL view, then
consider using a physical table. SAS SQL optimization can be less effective when views are
nested. This is especially true if the view performs joins or accesses relational database
sources.

• If the view is SQL and involves a multi-way join, the view is subject to the performance
limitations and disk space considerations that are discussed in the section "SAS SQL Joins".

• When creating physical tables, SAS optimizes where the columns are placed on disk and in
memory in order to avoid unnecessary padding. However, with views, the columns are
placed in memory in the order in which they are specified in the SELECT statement. You
need to ensure that there is no extra padding added that would force the non-character
column to the next 8-byte aligned boundary. This extra padding causes the record length to
become very wide, which results in extra I/O when you manipulate the record.

• SAS physical tables honor short numerics (less than 8 bytes in length), however, views
expand all short numerics to 8 bytes. Therefore, three short numerics that are 4 bytes in
length (for a total of 12 bytes in a SAS data set) become 24 bytes when accessed by using a
view. .

Assess the overall impact to your ETL flow if you make changes based on these tips. In some
circumstances, you might find that you have to sacrifice performance in order to conserve disk space
or vice versa.

Views or Physical Tables for SAS Data Integration Studio Flows
The process flows in SAS Data Integration Studio jobs include icons for sources, targets, and
transformations. In order to facilitate performance in process flows, the output of many
transformations can be either a physical table or a view. Each format has its advantages, as noted in
the preceding section.

WORK tables that are displayed in the Process Editor have an option called "Create View"on the
menu that results when you right-click. Not all transformations can support a view, but the following
are some of the transformations that enable you to specify a view format or a physical table format for
their output tables.

• Append

• Extract

• Data Validation

• SQL Join

• Library Contents

• Lookup

 70

Loading Fact and Dimension Tables When Working with
Dimensional Models
Fact and dimension tables can be used extensively in data integration. You need an understanding of
what they are and how to use them.

Overview of Dimensional Modeling
Dimensional modeling is a methodology for logically modeling the data for easy query access.
Dimensional models contain a single fact table that is surrounded by dimension tables. Dimension
tables record a category of information such as time, customer information, and so on. Usually, the
information that is stored in dimension tables does not change frequently. Fact tables contain
information that is related to the measures of interest for example, sales amount, which is measured at
a time interval. This measure is stored in the fact table with the appropriate granularity such as hour,
day, or week.

Usually, the data that is coming into the dimensional model is collected from many sources. This data
might not have unique identifiers across all its sources. For example, the data might have several
different customer identifiers (also known as business keys) that are the same for different customers’
last names. Each of these entries indicates a different customer, therefore, each entry should have a
unique value assigned to it in order to differentiate among customers. The process of creating a
complete set of unique identifiers when storing information in a dimensional model is called
generating a surrogate key. Usually, the primary key, which is stored in a dimension table, is a
unique surrogate key that is assigned to each entry in the dimension table. The business key is stored
in the dimension table along with the unique surrogate key, so that each entry is unique in the
dimension table.

The fact table contains foreign keys that are imported from each of the dimensions that are related to
it. The primary keys are stored in the related dimension tables. Key relationships among tables are
registered in the metadata repository when the metadata about tables is captured in SAS Data
Integration Studio via the source designers or a metadata import. Key relationships can also be
defined and viewed on the Keys tab of a table’s property window. When information about
dimension tables is captured via the source designers or a metadata import, be sure to register all
related tables together so that the primary and the foreign keys are registered.

Transformations for Generating Keys and Loading Dimension Tables
SAS Data Integration Studio provides several transformations that generate surrogate keys and load
dimension tables. It is recommended that you use the Slowly Changing Dimensions (SCD)
transformation when you are loading dimension tables. This transformation is located in the Data
Transforms Process Library named SCD Type2 Loader. The SCD Type2 Loader transformation
contains algorithms that enable creation of a unique generated key based on an incoming business
key and tracks changes to the incoming data. If the incoming data contains changes to the values in an
observation, you might want to retain this history in the dimension table so that you can track these
changes over time. The SCD Type2 Loader transformation provides several ways of retaining this
type of historic information when loading a dimension table.

The Surrogate Key Generator transformation is also available when only a unique key value has to be
generated for a given set of data. This transformation is also available in the Data Transforms Process
Library folder.

 71

Transformations for Loading Fact Tables and Matching Fact Tables to
Dimension Tables
For loading fact tables and for performing key matching with dimension tables, SAS Data Integration
Studio provides the following transformations: Lookup and Fact Table Lookup. The preferred
transformation to use when loading fact tables is the Lookup transformation, which is located in the
Data Transformations folder of the Process Library. The Lookup transformation has several
advantages:

• It uses the fast-performing DATA-step hashing technique as the lookup algorithm for
matching source values from the fact table to the dimension tables.

• It enables multi-column key lookups.
• It enables users to customize error-handling when problems occur in the source or dimension

records such as missing or invalid values.

Fact and Dimension Tables: Order of Loading Is Important
Because of the relationships that exist between fact and dimension tables, the order in which you load
data into these tables is important. Because the primary key in the relationship is contained in the
dimension table, dimension tables must be loaded first when you are loading data into a dimensional
model set of tables. After the data has been loaded into the dimensional tables, facts or measures can
be loaded into the fact table. In the incoming data for facts, the business key in each source row is
usually matched with values in the associated dimension tables. The matching row in the dimension
table provides a generated key value that is added to the specified target column for that new target
row in the fact table. This directly associates each fact with the appropriate dimension tables in the
dimensional model and enables fast retrieval of information in response to queries. Usually, to
retrieve the data, only one level of join (fact table to dimension table) has to occur.

SAS Scalable Performance Data Server Star Joins
You can use the SAS Data Integration Studio SQL Join transformation to construct SAS Scalable
Performance Data Server (SAS SPD Server) star joins when you use SAS SPD Server 4.2 or later.
Star joins are useful when you query information from dimensional models that contain two or more
dimension tables which surround a centralized fact table that is referred to as a star schema. SAS
SPD Server star joins are queries that validate, optimize, and execute SQL queries in the SAS SPD
Server database for upgraded performance. If the star join is not used, the SQL is processed in SAS
SPD Server using pair-wise joins that require one step for each table in order to complete the join.
When the SAS SPD Server options are set, the star join is enabled.

To enable a star join in the SAS SPD Server, the following requirements must be met:

• All dimension tables must surround a single fact table.

• Dimension-to-fact table joins must be equal joins, and there should be one join per
dimension table.

• You must have at least two or more dimension tables in the join condition.

• The fact table must have at least one subsetting condition placed on it.

• All subsetting and join conditions must be specified in the WHERE clause.

• Star join optimization must be enabled by setting options in the SAS SPD Server library.

 72

To enable star join optimization, code that will run on the generated Pass SAS SPD Server system
library MUST have the following settings:

LIBGEN=YES

IP=YES

When correctly configured, the following output is generated in the log:

SPDS_NOTE: STARJOIN optimization used in SQL execution

Here is an example of a WHERE clause that enables a SAS SPD Server star join optimization:

/* dimension1 equi-joined on the fact table */

WHERE hh_fact_spds.geosur = dim_h_geo.geosur AND

/* dimension2 equi-joined on the fact table */

 hh_fact_spds.utilsur = dim_h_utility.utilsur AND

/* dimension3 equi-joined on the fact table */

 hh_fact_spds.famsur = dim_h_family.famsur AND

/* subsetting condition on the fact table */

dim_h_family.PERSONS = 1

The Where tab of the SQL Join transformation (see bottom of right panel on the Designer tab in the
SQL Join Properties window) can be used to build the condition that is expressed in the preceding
WHERE clause. Figure 12 shows how the Where tab depicts the preceding WHERE clause.

 73

Figure 12. The Where Tab in SQL Join Transformation

 Note: The SAS Scalable Performance Data Server requires all subsetting to be implemented on
the Where tab in the SQL Join transformation. For more information about SAS Scalable
Performance Data Server support for star joins, see the SAS Scalable Performance Data Server
4.4: User's Guide at
support.sas.com/documentation/onlinedoc/91pdf/sasdoc_913/scalable_ug_9722.pdf.

Parallel ETL Processing
Sometimes it's possible to divide an ETL flow into multiple parts and execute the parts in parallel in
order to reduce overall run time. The success of the parallel execution depends on the ability to divide
the process or task into independent parts, the availability of the hardware resources, and the
performance benefit analysis of converting to a parallel process.

The secret of effective parallel processing is to know when parallel processing will be effective in
improving performance. To run ETL code in parallel requires the designer to divide the task into
smaller parts that do not have dependencies. An example of a dependency is where any row in a table
cannot be processed until after its preceding row is processed. When a task must be executed in a
sequential fashion (that is, one row at a time), that task cannot be divided into individual tasks to

http://support.sas.com/documentation/onlinedoc/91pdf/sasdoc_913/scalable_ug_9722.pdf

 74

leverage parallelism. However, if all the rows in a table can be processed independently, without
requiring information from another row in the table, then this table can be divided and run in parallel.

It is important to note that your total parallel process run time includes setup, parallel execution, and
merging results. Some tasks can be divided in order to run in parallel, but the effort to divide the task
or merge the results can take more time than the original sequential execution. Therefore, be sure to
estimate the benefit of parallel execution by analyzing the parallel task, set-up time, and the resources
that are available before you begin. Your run-time estimate will help you to determine when parallel
processing might be beneficial or cost effective.

Software and Hardware Setups for Executing ETL Code in Parallel
Both the software and the hardware must be set up correctly in order to execute ETL code in parallel.
The software can be modified manually or tools such as SAS Data Integration Studio can be used to
add parallel capability. More importantly, it might be necessary to modify the SAS server setup and
the hardware environment in order to gain any benefit from running a task in parallel. Incorrect server
setup can quickly mitigate any benefits that might result from running a task in parallel. Setup
changes usually involve modifying both the software and the hardware environment.

Software Setup
There are several components built into SAS products to help with parallelism. In SAS Data
Integration Studio, looping capability was introduced to help facilitate the conversion of a program to
run in parallel. On the SAS server, there are mechanisms to spawn processes across multiple servers
and control when they are launched. Best practices for developing ETL flow, load balancing,
workspace pooling, and scheduling are given in the following product guides:

• "Enabling Parallel Execution of Process Flows", SAS® Data Integration Studio 3.3:
User's Guide available at support.sas.com/documentation/onlinedoc/etls/usage33.pdf.

• "Supporting Grid Computing", SAS® 9.1.3 Intelligence Platform: System Administration
Guide available at support.sas.com/documentation/configuration/bisag.pdf.

Hardware Setup
It is very important to ensure that the hardware has enough resources and is correctly set up when you
execute tasks in parallel. The resources that you should look at are: network, I/O, memory, and
processors (CPUs).

Network
A network is used when an application uses resources across several computers or nodes. If there is
extensive communication among server nodes, it is important to ensure that there will be enough
network bandwidth to facilitate communication between processes and grid nodes. You should
minimize the amount of data that is transferred on the network for any parallel processing tasks.
Parallel processes that must get to a resource on the same system can do this at internal hardware
speeds; however, when a resource is spread across the network, it takes significantly more time to get
to. If there is a need to transfer large amounts of data to remote resources, consider high-speed
networks in which multiple network lines are truncated together for increased throughput. If more
throughput for data is needed, consider moving data onto a high-speed storage network (for additional
information about this topic, see the "I/O" section that follows).

http://support.sas.com/documentation/onlinedoc/etls/usage33.pdf
http://support.sas.com/documentation/configuration/bisag.pdf

 75

I/O
I/O performance is a critical factor in parallel performance of SAS applications. If a single threaded
process already results in poor I/O performance, performance will be further degraded if you try to
run the process in parallel. Before adding parallelism to your ETL flow, it is important that you
determine the I/O requirements of the ETL flow. The best practice is to run the program in single
threaded mode (one process) and monitor its I/O usage. Learn where the task reads and writes data
and how much throughput it uses during execution. System tools are useful for monitoring I/O usage.
To estimate the overall I/O requirement for running in parallel, multiply the single process I/O
requirement by the number of simultaneous parts that you plan to execute. The I/O requirement can
quickly exceed the capability of the system as more simultaneous processes are added to the task,
especially if there is a heavy I/O component such as PROC SORT.

Memory
It’s easy to forget about memory as an ETL requirement. Memory can quickly become an issue as
more simultaneous ETL tasks are added to the system. For example, the Lookup transformation in
SAS Data Integration Studio creates a hash table in memory for each dimension table that it
references. If the application is looking up values in multiple dimension tables and the tables are of
significant size, the application can quickly use up significant amounts of memory. Keep in mind that
EVERY simultaneous process will use this same amount of memory by creating its own independent
hash tables, because memory cannot be shared between SAS processes. A large dimension table (for
example, 10 gigabytes) would require up to 10 gigabytes of random access memory (RAM) per SAS
ETL process that executes in parallel. The amount of memory that is actually used will depend on
SAS settings such as MEMSIZE, but it is important that you think about memory utilization during
coding.

CPU
If the task is a CPU-intensive ETL task (that is, it has many variable calculations or comparisons),
then be sure that you know the number of processors that are available in the environment. Make sure
that you do not launch so many tasks in parallel that the resources required are larger than the amount
of resources available. CPU utilization can be monitored with system performance tools as available
for all the operating systems. As with I/O-intensive applications, it’s a good idea to estimate the CPU
needs by running one sample task in order to determine the CPU requirements.

System Throttles
If the amount of resources cannot be pre-determined, there are SAS Data Integration Studio controls
and controls in schedules that can help "throttle" a parallel execution so it won’t overrun the available
resources. SAS provides a significant number of execution controls in the SAS Data Integration
Studio Loop transformation. SAS Server load balancing can also be achieved with the support of
third-party scheduling products such as Platform LSF software. By using these "throttles", it is
possible to limit the exact number of tasks that are spawned in parallel. Each task can be controlled or
launched on different servers based on user profiles or system utilization. Many operating systems
also have controls that can help limit the amount of resources that are given to a specific software
server or user process. For more information, see the following documentation:

• The "Loop Transformation Guide", "Loop Properties", and "Loop Options Tab" sections
in the SAS® Data Integration Studio 3.3: User's Guide available at
support.sas.com/documentation/onlinedoc/etls/usage33.pdf.

• The topic of scheduling in the SAS® 9.1.3 Intelligence Platform: System Administration
Guide available at support.sas.com/documentation/configuration/bisag.pdf.

http://support.sas.com/documentation/onlinedoc/etls/usage33.pdf
http://support.sas.com/documentation/configuration/bisag.pdf

 76

File System Requirements for Grid Computing
In most cases, grid computing is set up to use multiple instances of an operating system—either as
independent computers on a network or as domains or LPARs (logical partitions) on a single, larger
computer. This is good for processing, but it doesn't take into consideration how the computers will
share data. Figure 13 shows an example of how to configure a shared file system with multiple
computers.

Figure 13. Grid-Computing Environment Configuration Example

If your environment is a collection of independent computers, you need to ensure that all the
computers have equal access to file systems with data files that will be shared. It is also important that
each parallel process has equivalent access to all data. You can set up shared file systems by using
tools that are available on most operating environments, or you can use a clustered file system that is
available from the manufacturer of your operating environment or from third parties. Usually, you get
more flexibility and I/O throughput from clustered file systems than you get from the shared file
systems that come with an operating environment. In either case, it is best to have a thorough
understanding of the I/O throughput requirements for your SAS application. It is recommended that
you work with your hardware and software vendors to determine the best shared file system
implementation for your environment and solution needs.

How to Approach a Parallel ETL Effort
Recently, SAS executed various ETL grid tests across four large UNIX servers that shared one, very
large, clustered file system. The file system was connected with equal bandwidth to all grid nodes.
During the tests, one of the major tasks was to execute a Star Schema build in parallel to run across
the grid. The following process was followed for this task.

 77

1. Analyze the job to learn if it can run in parallel.

2. Determine whether running the job in parallel provides significant improvement in
performance.

3. Determine if it's possible to divide the job into parts that can be executed simultaneously.

4. Verify that the hardware environment can effectively execute multiple tasks in parallel.

5. Evaluate I/O, Memory, Network, Bandwidth.

6. Design the work flow.

7. Evaluate whether the estimated run time is worth the effort.

8. Determine if the parallel process will save money.

9. Determine if the parallel process will save time.

10. Determine if the parallel process will fit in your ETL window.

11. Build a small test case on a small part of the data.

12. Run one task in stand-alone mode to get a baseline.

13. Slowly increase the number of tasks and monitor for bottlenecks.

14. Fix issues (hardware, software, code logic, and so on) as they appear.

15. Run the parallel process against the full-sized volume of data; test and validate the results.

16. Tune hardware and software.

17. Run Steps 6 through 10 until performance is acceptable.

For more information, see "Appendix 2: A Sample Scenario for Using Parallel ETL Processing".

 78

Appendix 1: Customizing or Replacing Generated Code in SAS
Data Integration Studio

Here are multiple ways you can customize or replace the code in SAS Data Integration Studio.

• Modify the SAS config file, autoexec file or modify the SAS start for the SAS Workspace
Server or servers that will execute SAS Data Integration Studio ETL flows.

• Specify options on the Code Generation tab in the General Options window.

• Add SAS code to the Pre and Post Processing tab in the Properties window for a
job.

• Specify SAS system options for many transformations.

• Write customized code to replace the generated code for a transformation.

• Add your own code to the user-written code transformation.

• Add your own transformation to the Process Library by using the Transformation
Generator.

Modify Configuration Files or SAS Start Commands
Several suggestions are made in this paper for invoking SAS with customizations to the environment.
You might want to apply specific settings to a particular SAS program or to all jobs that run on a
particular server(s). You can do this by adding parameters to the SAS startup command, modifying
the config.sas file, or enhancing the autoexec.sas file.

The options -UTILLOC and -NOWORKINT are examples of the types of options that are used in the
configuration file or as parameters in the SAS startup command. -UTILLOC and -NOWORKINT are
invocation options and can only be set when you initialize a SAS session. These options cannot be
included in a SAS program or used in a process flow that defines a job in SAS Data Integration
Studio.

You can specify other options and settings for a SAS program in the autoexec.sas file. The SAS
Workspace Server(s) must be set up to use your customized autoexec.sas file for jobs that you run
in SAS Data Integration Studio. The autoexec.sas file can contain any valid SAS code. Some
options that can be included are: SORTSIZE, NONOTES, and SYMBOLGEN. Options that are specified in
the autoexec.sas file affect all programs that are run with that file, unless the program has code
that overrides those options.

For more information about invocation options, config.sas, and autoexec.sas, see SAS
OnlineDoc 9.1.3 available at support.sas.com/onlinedoc/913/docMainpage.jsp.

http://support.sas.com/onlinedoc/913/docMainpage.jsp

 79

MPRINT Option in SAS Data Integration Studio
Code that is generated by SAS Data Integration Studio contains conditional logic that turns on the
MPRINT option at the start of every job, regardless of whether the option is set in the startup
command for the server or in the configuration files. Turning on the MPRINT option sends additional
information to the SAS log, which is essential for debugging SAS macro code. This can be an
important tool when developing and testing your process flows.

After you have tested a process flow and deployed the job as a SAS program for production use, you
might want to evaluate the need for using the MPRINT option. Having the option On for production
runs is usually desirable because you might still have debugging issues. If there is a concern, such as
SAS logs becoming too large, you might want to suppress the MPRINT lines. You can accomplish this
without having to edit the deployed program. Add the following code to the autoexec.sas file
for your production run:

%let etls_debug=0;

If the condition etls_debug=0 is true, the logic in the deployed job prevents execution of the
OPTIONS MPRINT; statement. To turn on the MPRINT option again, remove %let
etls_debug=0; from the autoexec.sas file.

 Caution: It is highly recommended that you do not turn off the MPRINT option in a development
environment.

Specify Options on the Code Generation Tab
In SAS Data Integration Studio, you can specify options on the Code Generation tab in the general
Options window to affect the code that is generated for all new jobs. This is where you can specify
many of the settings that are used for parallel and grid computing.

To open the general Options window from the SAS Data Integration Studio desktop, on the toolbar,
click Tools ►Options For a description of the available options, see the SAS online Help for the tab.

Add SAS Code on the Pre- and Post-Processing Tab
You can add SAS code on the Pre and Post Processing tab in the Properties window for an
ETL flow. To open the Properties window, right-click the icon for the job in the Inventory tree and
select Properties in the ETL flow pop-up window. Use this method to execute SAS code at the
beginning or the end of a job. For more information about adding code, see the SAS online Help for
the tab.

 80

To re-direct the SAS log and SAS output to specific locations, add this code on the Pre and Post
Processing tab:

PROC PRINTTO LOG=’<filename>’

PRINT=’<filename>’;

RUN;

You can also specify OPTION statements for the following options: FULLSTIMER, MSGLEVEL,
SYMBOLGEN, UBUFNO, WORKTERM, BLKSIZE, and BUFSIZE if you want these options to apply to an
entire job.

SAS System Options for Transformations
You can specify SAS system options, SAS statement options, or transformation-specific options for
many transformations on the Options tab or on other tabs in the Properties window.

To open the Properties window for a transformation in a job and specify options, follow these steps:

1. Open the job to display its ETL flow.

2. Right-click the transformation and select Properties from the pop-up menu.

3. In the Properties window, click the Options tab (or other tab as appropriate).

If the Options tab includes a system options field, you can specify options such as UBUFNO for the
current transformation. Some transformations enable you to specify options that are specific to that
transformation. For example, the Options tab for the SAS Sort transformation has specific fields for
Sort Size and Sort Sequence. It also has a PROC SORT Options field in which you can specify sort-
related options (which are described in the "Sorting Data" section) that are not surfaced in the
interface.

In addition to the Options tab, some transformations have other tabs that enable you to specify
options that affect performance. For example, the Properties window for the SAS Scalable
Performance Server Loader transformation has an Other SPD Server Settings tab that enables you
to specify multiple SAS Scalable Performance Server options.

For a description of the options that are available for a transformation, see the SAS online Help for the
Options tab or for any tab that enables you to specify options.

 81

Replace Generated Code for a Transformation with Customized
Code
You can replace the generated code for a transformation with customized code. For example, you can
edit the code that is generated for a transformation and save it so that the customized code will run
whenever the transformation is executed. You can change back to have SAS Data Integration Studio
automatically re-generate the step’s code by clicking User written: on the Process tab (Figure 14).
Column mappings between the edited step and the steps that precede or follow it will stay intact.

Figure 14. Process Tab for Setting Customized Code for a Transformation

You can replace generated code when a transformation does not provide all the choices that you need
in its point-and-click interface and the provided option fields. For example, you can replace the
generated code to change the default join order that is generated for the SQL Join transformation, as
described in the section "SAS SQL Joins".

The following steps you through the process for customizing generated code. First, it is assumed that
an ETL flow has already been created, and you know which modifications you want to make in the
generated code for a specific transformation in the flow. It is also assumed that the flow is displayed
in the Process Editor.

1. In the Process Editor, right-click the desired transformation and select Process ►View Step

Code. Code is generated for the transformation and displays in the Source Editor window.

2. In the Source Editor window, edit the generated code to customize it.

3. When finished, click X in the upper-right corner of the Source Editor window.

4. Click Yes when asked if you want to save your changes. A file selection window displays.

5. In the file selection window, specify a path name for the edited code and click Save. The
edited code is saved to a file.

 82

After you save the customized code, set the transformation so that the customized code will run
whenever the transformation is executed. To run the customized code, perform the following tasks:

1. In the Process Designer window, select the transformation and then click File ►Properties
on the toolbar. The Properties window for the transformation opens.

2. Click the Process tab.

3. On the Process tab, click the User Written button. The Type field and related fields
become active.

4. In the Type field, select File.

5. Usually, you will accept the default host in the Host field.

6. In the Path field, specify a path to the file that contains the edited code. The server in the
Host field must be able to resolve this path. You can type this path in or click the Browse
button to display a file-selection window.

7. After specifying the path, click OK to save your changes.

The specified user-written code is retrieved whenever code for this transformation is generated. From
then on, the edited code is used in the job’s code generation, until you re-select the option
Automatically create source code on the Process tab. For more information about specifying user-
written code for a transformation, see "Specifying User-Written Source Code for a Transformation in
a Job" in the SAS Data Integration Studio online Help.

Add Your Own Code to User-Written Code Transformation
To create an ETL flow for a job, you can drag-and-drop transformations from the Process Library tree
into the Process Editor. If the predefined transformations in the Process Library tree do not meet your
needs for a task in a specific ETL flow, you can write a SAS program that will perform the desired
task, add your own code to a User-Written Code transformation to the ETL flow, and then specify the
location of the new code in the metadata for the User-Written Code transformation (Figure 15).

Figure 15. Adding Your Code to a User-Written Code Transformation in an ETL Flow

After the transformation is inserted, modify the code location so that it specifies the location of your
user-written code transformation. This is done via the Process tab. When the ETL flow is generated,
the user-written code is retrieved and inserted as part of the ETL flow (see Figure 15).

 83

You can base your SAS program on code that is generated for one or more standard transformations
in SAS Data Integration Studio, or you can use some other SAS code-generation tool such as SAS
Enterprise Guide to help build the initial code.

The following steps you through the process of writing your own transformation. It is assumed that an
ETL flow has already been created, that you have already written and tested the desired SAS program,
and that you are ready to add the User-Written Code transformation to the flow. It is also assumed that
the flow is displayed in the Process Editor.

1. Drag a User-Written Code transformation from the Process Library and drop it into the
appropriate location in the ETL flow.

2. Right-click the icon for the User-Written Code transformation and select Properties from the
pop-up menu.

3. On the Source tab, either paste in the revised code as metadata or specify the path to the
saved code (if you will be maintaining user-written code in an external location).

4. Make any final edits of the code; be sure the input and output table names are correct.
Specify &SYSLAST as your input table name if the input refers to the output from the
preceding task. Specify &_OUTPUT as your output table name if your output is a single
WORK data set that is being used to feed the next task.

5. If other tasks follow, manually define columns on the Mapping tab. Use the Quick Propagate
option on the Mapping tab and apply additional edits to define the output columns correctly.

 Tip: In an ETL flow, a User-Written Code transformation can have only one input and one
output. If you need additional inputs or outputs, you can add a Generated Transformation (as
described in the next section).

For more information about using a User-Written Code transformation in an ETL flow, see "Example:
Include a User-Written Code Template in a Job" in the SAS Data Integration Studio online Help.

Add Your Own Transformation to the Process Library
If have custom code that you want to use in more than one place, or if there are multiple inputs or
outputs for your custom code segment, use the Transformation Generator wizard to create a generated
transformation.

To display the Transformation Generator wizard from the SAS Data Integration Studio desktop, click
Tools ►Transformation Generator on the toolbar. In the wizard, specify the number of inputs and
outputs, custom options (if any), then attach your user-written SAS code, just as you would for the
User-Written transformation that is described in the preceding section. The newly-created
transformation appears in the Process Library tree and is available for use in any SAS Data
Integration Studio job.

 Drop the generated transformation into the ETL flow and specify options. When the the ETL flow is
 generated, the user-written code is retrieved and included as part of the flow. For example, you can
 write a generated transformation that includes a program to call the CLEAR_WORK macro (see
 "Deleting Intermediate Files") in order to delete the intermediate files in a job and recover disk space.

 84

Appendix 2: A Sample Scenario for Using Parallel ETL Processing
Using the list of ETL planning tasks from the section, "How to Approach a Parallel ETL Effort", a
star schema data mart was built "from scratch" using SAS Data Integration Studio from operational
data that is stored in text files. The newly created star schema dimensions and fact table were loaded
in parallel into SAS SPD Server.

The usual execution cycle when building a star schema is to first build the dimension tables and index
the tables. The second step is to build the fact table and link it to each dimension table via a lookup
function. There are multiple dimension tables to be built so it was possible to execute each of the
dimension builds in parallel. This allowed some processes to run concurrently in order to reduce
execution time. In the sample case, there were five dimension tables. Therefore, up to five processes
ran concurrently for the first phase of the star schema build.

The second phase in building the star schema focused on the longer running task (fact table build with
dimension lookups) to see how that phase could be implemented in parallel. In the scenario, the fact
table data was composed of multiple years of retail transaction data, therefore, it made sense to
attempt to divide (partition) the data by time. The incoming transaction data was stored in text files by
week, so Week became the natural partition on which to parallelize the fact table load process. Each
process in the second phase used a week’s worth of data, performed dimension table lookups for each
row, and loaded the data into the final fact table that was stored in SAS SPD Server. After all the
weeks were processed into the fact table, the SAS SPD Server dynamic cluster capability was used to
instantly merge all the independent week partitions into one, large fact table (for information about
SAS SPD Server and the dynamic cluster capability, see the SAS Scalable Performance Data Server
4.4: User's Guide at
support.sas.com/documentation/onlinedoc/91pdf/sasdoc_913/scalable_ug_9722.pdf). After the cluster
snap was completed, the star schema build-out was completed.

Figure 16 shows the flow diagrams for the SAS Data Integration Studio jobs that executed phase II of
the star schema build mentioned earlier (the dimension table lookup and fact table load phase). The
master job in Figure 17 is a Loop transformation that calls the dimension lookup job (also shown in
Figure 16). The Loop transformation is set up to assign one week’s transaction data to the sub-job,
and execute it across the available resources via Platform LSF software. As input, the Loop
transformation had a list of the weekly data files. For more information about the Loop
transformation, see the sections "Loop Transformation Guide", "Loop Properties", and "Loop Options
tab" in the SAS® Data Integration Studio 3.3: User's Guide avaliable at
support.sas.com/documentation/onlinedoc/etls/usage33.pdf.

http://support.sas.com/documentation/onlinedoc/91pdf/sasdoc_913/scalable_ug_9722.pdf
http://support.sas.com/documentation/onlinedoc/etls/usage33.pdf

 85

Figure 16. SAS Data Integration Studio Dimension Lookup

Throttle Settings in the Loop Transformation
Figure 17 shows the settings that were used in SAS Data Integration Studio on the loop
transformation to control (dictate) the method of execution. Notice that "Run all processes
concurrently" is selected. "Wait for all processes to complete before continuing" was also selected.
This specifies that loop sub-tasks should be complete before continuing to the next step in the master
ETL process. By using these settings, the SAS code determines the number of concurrent processes to
be launched.

 86

Figure 17. SAS Data Integration Studio Loop Transformation Settings

Throttle Settings Used in the Scheduler
In the set-up run, Platform LSF software controls the speed at which these jobs were launched.
Platform LSF has the capability to control the speed at which jobs are submitted to the operating
system based on various parameters (resources available, max number of jobs to run at one time, how
many jobs to run on a particular grid node,and so on).

The following list shows some of the Platform LSF settings that were used on a very large UNIX
implementation during high volume ETL runs that involve multiple terabytes of data and many
concurrent processes. These settings throttle the number of jobs that are launched in order to stagger
the start of tasks to prevent resource contention during job startup.

MBD_SLEEP_TIME = 5

SBD_SLEEP_TIME = 30

JOB_SCHEDULING_INTERVAL = 0

JOB_ACCEPT_INTERVAL = 3

NEW_JOB_SCHED_DELAY = 0

For details about the settings to use for your task, see Administering Platform LSF Version 6.0 -
January 2004 at ftp.sas.com/techsup/download/unix/lsf_admin_6.0.pdf.

http://ftp.sas.com/techsup/download/unix/lsf_admin_6.0.pdf

 87

It is recommended that you, initially, keep the default settings in Platform LSF in the LSF
configuration directory until some basic performance testing is completed. Monitor the jobs to see
how fast or how slowly they are launching, and then adjust Platform LSF as needed. Platform LSF
settings vary greatly based on the hardware, software setup, and job task.

Scenario Results
Figure 18 shows the results of running the Star Schema scenario across multiple CPU cores. As
mentioned earlier, the dimension table builds in phase I were not converted to run in parallel beyond
building each dimension table as a separate process. Therefore, in phase I, the maximum number of
jobs that ran in parallel was five, which coincides with the number of dimension tables that were built.
Phase II of the scenario consisted of the dimension lookup and parallel fact table load for each week
of retail transaction data. By using the weekly transaction file as the partition for parallel processes,
up to 260 simultaneous processes could be run. However, due to resource restraints and contention,
not all 260 processes were executed concurrently. In the Star Schema scenario, Platform LSF software
scheduled (throttled) the start of each job in order to best utilize available resources.

0:00

1:00

2:00

3:00

4:00

5:00

6:00

7:00

8:00

10 20 30 40
Number of CPU Cores Used During

Scenario Execution

R
un

tim
e

H
H

:M
M

Phase II - Dimension Lookup / Fact Table Load - Up
To 1096 Parallel Processes

Phase I - Dimension Creation - 5 Parallel Processes

Figure 18. Results from Running the Star Schema Parallel Build across Multiple CPU Cores

Looking at the results shown in Figure 18, it is easy to see that changing from 10 CPUs to 20 CPUs
resulted in a major improvement in performance (50% run-time reduction). Run time was further
reduced as more CPUs (over 20) were added, but the return on investment was less significant (this
was attributed to data partitioning overhead, job design, and system architecture). Results can vary
greatly based on the ETL job design and the resources that are available.

It is important to note that any decrease in run time can be advantageous. Therefore, adding more
system resources (that is, CPUs, memory, disk) despite decreasing returns on investment, can be very
valuable to an enterprise. Investment cost tolerance varies greatly depending on the business problem.

 88

Recommended Reading
Bartucca, Frank. 2005. "Setting Up and Tuning Direct I/O for SAS®9 on AIX". Raleigh, NC: IBM
Corporation Inc. Available at www-03.ibm.com/support/techdocs/atsmastr.nsf/WebIndex/WP100890.

Karp, Andrew H. and David Shamlin. 2003. "Indexing and Compressing SAS® Data Sets: How, Why,
and Why Not". Proceedings of the 28th Annual SUGI Conference. Cary, NC: SAS Institute Inc. Available
at www2.sas.com/proceedings/sugi28/003-28.pdf.

Karp, Andrew. 2000. "Indexing and Compressing SAS® Data Sets: How, Why, and Why Not".
Proceedings of the 25th Annual SUGI Conference. Cary, NC: SAS Institute Inc. Available at
www2.sas.com/proceedings/sugi25/25/aa/25p005.pdf.

Platform Computing Corporation. 2004. Administering Platform LSF Version 6.0. Available at
ftp.sas.com/techsup/download/unix/lsf_admin_6.0.pdf.

SAS Institute Inc. 2007. SAS® Install Center Web Site. SAS® 9.1.3 Intelligence Platform: Administration
Documentation. Available at support.sas.com/documentation/configuration/913admin.html.

SAS Institute Inc. 2006. SAS/ACCESS®9.1.3 for Relational Databases: Reference. Available at
support.sas.com/documentation/onlinedoc/91pdf/sasdoc_913/access_rdbref_9297.pdf.

SAS Institute Inc. 2006. SAS® Data Integration Studio 3.3: User's Guide. Available at
support.sas.com/documentation/onlinedoc/etls/usage33.pdf.

SAS Institute Inc. 2006. SAS OnlineDoc® 9.1.3. Available at
support.sas.com/onlinedoc/913/docMainpage.jsp.

SAS Institute Inc. 2006. SAS® Scalable Performance Data Server® 4.4: User's Guide. Available at
support.sas.com/documentation/onlinedoc/91pdf/sasdoc_913/scalable_ug_9722.pdf.

Seckosky, Jason. 2004. "The DATA Step in SAS 9: What's New?". Proceedings of the 29th Annual SUGI
Conference. Cary, NC: SAS Institute Inc. Available at support.sas.com/rnd/base/topics/datastep/dsv9-
sugi-v3.pdf.

Shoemaker, Jack. 2001. "Eight PROC FORMAT Gems". Proceedings of the 26th Annual SUGI
Conference. Cary, NC: SAS Institute Inc. Available at www.suk.sas.com/proceedings/26/26/p062-26.pdf.

http://www2.sas.com/proceedings/sugi28/003-28.pdf
http://www2.sas.com/proceedings/sugi25/25/aa/25p005.pdf
http://ftp.sas.com/techsup/download/unix/lsf_admin_6.0.pdf
http://support.sas.com/documentation/onlinedoc/etls/usage33.pdf
http://support.sas.com/documentation/onlinedoc/91pdf/sasdoc_913/scalable_ug_9722.pdf
http://support.sas.com/rnd/base/topics/datastep/dsv9-sugi-v3.pdf
http://www.suk.sas.com/proceedings/26/26/p062-26.pdf
http://www-03.ibm.com/support/techdocs/atsmastr.nsf/WebIndex/WP100890
http://support.sas.com/documentation/configuration/913admin.html
http://support.sas.com/documentation/onlinedoc/91pdf/sasdoc_913/access_rdbref_9297.pdf
http://support.sas.com/onlinedoc/913/docMainpage.jsp

 89

Glossary
business key

one or more columns in a dimension table that comprise the primary key in a source table in an
operational system. See also: dimension table, primary key.

data cleansing
the process of eliminating inaccuracies, irregularities, and discrepancies from character data.

database library
a collection of one or more database management system files that are recognized by SAS and that
are referenced and stored as a unit. Each file is a member of the library.

debug
a process of eliminating errors in code by examining logs and data to determine where or if an error
has occurred.

derived mapping
a mapping between a source column and a target column in which the value of the target column is a
function of the source column. For example, if two tables contain a Price column, the value of the
target table Price column might equal the value of the source table Price column times 0.8.

dimension
a category of contextual data or detail data that is implemented in a data model such as a star schema.
For example, in a star schema, a dimension named Customers might associate customer data with
transaction identifiers and transaction amounts in a fact table. See also: fact table.

dimension table
in a star schema or a snowflake schema, a table that contains data about a specific dimension. A
primary key connects a dimension table to a related fact table. For example, if a dimension table that
is named Customers has a primary key column that is named Customer ID, then a fact table that is
named Customer Sales might specify the Customer ID column as a foreign key. See also: fact table,
foreign key, primary key.

ETL flow
a collection of SAS tasks that perform an extract, transform, and load of data.

fact table
the central table in a star schema or a snowflake schema. Usually, a fact table contains numerical
measurements or amounts and is supplemented by contextual information in dimension tables. For
example, a fact table might include transaction identifiers and transaction amounts. Dimension tables
add contextual information about customers, products, and sales personnel. Fact tables are associated
with dimension tables via key columns. Foreign key columns in the fact table contain the same
values as the primary key columns in the dimension tables. See also: dimension table, foreign key.

foreign key
one or more columns that are associated with a primary key or a unique key in another table. A table
can have one or more foreign keys. A foreign key is dependent upon its associated primary or unique
key; a foreign key cannot exist without that primary or unique key. See also: primary key, unique
key.

generated key
a column in a dimension table that contains values that are sequentially generated using a specified
expression. Generated keys implement surrogate keys and retained keys. See also: dimension table,
surrogate key, retained key.

generated transformation
in SAS Data Integration Studio, a transformation that is created with the Transformation Generator
wizard, which helps you specify SAS code for the transformation. See also: transformation.

 90

job
a collection of SAS tasks that specifies processes that create output.

metadata object
specifies an instance of a metadata type such as the metadata for a particular data store or metadata
repository. All SAS Open Metadata Interface clients use the same methods to read or write a
metadata object, whether the object defines an application element or a metadata repository. See
also: metadata repository.

metadata repository
a collection of related metadata objects such as the metadata for a set of tables and columns that are
maintained by an application. A SAS Metadata Repository is an example. See also: metadata
object.

operational system
one or more programs (often, relational databases) that provide source data for a data warehouse.

primary key
one or more columns that uniquely identify a row in a table. A table can have only one primary key.
Columns in a primary key cannot contain null values.

process flow diagram
a diagram in the Process Editor that specifies the sequence of each source, target, and process in a
job. Each process in the diagram is called a transformation step. See also: transformation.

register
saves metadata about an object to a metadata repository. For example, if you register a table, you
save metadata about that table to a metadata repository. See also: metadata repository.

SAS Application Server
a server that provides SAS services to a client. In SAS Open Metadata Architecture, the metadata for
a SAS Application Server can specify one or more server components that provide SAS services to a
client. See also: SAS Open Metadata Architecture.

SAS Management Console
a Java application that provides a single user interface for performing SAS administrative tasks.

SAS Open Metadata Architecture
a general-purpose metadata management facility that provides metadata services to SAS
applications. SAS Open Metadata Architecture enables applications to exchange metadata, which
makes it easier for these applications to work together.

server component
in SAS Management Console, metadata that specifies how to connect to a particular type of SAS
server on a particular computer. See also: SAS Management Console.

source
an input to an operation.

star schema
tables in a database in which a single fact table is connected to multiple dimension tables. This is
visually represented in a star pattern. SAS OLAP cubes can be created from a star schema. See also:
dimension table, fact table.

surrogate key
a numeric column in a dimension table that is the primary key of that table. The surrogate key
column contains unique integer values that are generated sequentially when rows are added and
updated. In the associated fact table, the surrogate key is included as a foreign key in order to
connect to specific dimensions. See also: dimension table, fact table, foreign key, primary key.

 91

target
an output of an operation.

thrashing
resource contention under heavy utilization

transformation
a process that specifies how to extract data, transform data, or load data into data stores. Each
transformation that you specify in a process flow diagram generates or retrieves SAS code. You can
specify user-written code in the metadata for any transformation in a process flow diagram. See also:
process flow diagram.

unique key
one or more columns that uniquely identify a row in a table. A table can have one or more unique
keys. Unlike a primary key, a unique key can contain null values. See also: primary key

SAS and all other SAS Institute Inc. product or service names are registered trademarks or trademarks of SAS Institute Inc.in the USA and other countries.
® indicates USA registration. Other brand and product names are trademarks of their respective companies. Copyright © 2006, SAS Institute Inc.
All rights reserved. 422597.0107

SAS INSTITUTE INC. WORLD HEADQUARTERS 919 677 8000

U.S. & CANADA SALES 800 727 0025 SAS INTERNATIONAL +49 6221 416-0 WWW.SAS.COM

